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Abstract. Nongeneric bifurcation analysis near rough heterodimensional cy-

cles associated to two saddles in R4 is presented under inclination flip. By
setting up local moving frame systems in some tubular neighborhood of unper-

turbed heterodimensional cycles, we construct a Poincaré return map under

the nongeneric conditions and further obtain the bifurcation equations. Coex-
istence of a heterodimensional cycle and a unique periodic orbit is proved after

perturbations. New features produced by the inclination flip that heterodi-

mensional cycles and homoclinic orbits coexist on the same bifurcation surface
are shown. It is also conjectured that homoclinic orbits associated to different

equilibria coexist.

1. Introduction. Newhouse and Palis [11] were the first to consider heterodimen-
sional cycles in dynamical systems. A heteroclinic cycle is said to be equidimensional
if all saddle-type periodic points in the cycle have the same dimension of the stable
manifold or unstable manifold. Otherwise, such a cycle is called heterodimensional
(Dı́az [5]). Since different saddles in Rn are not necessarily identical with the di-
mension of their stable manifolds, heterodimensional cycles turn out to be a more
general type of heteroclinic cycles than equidimensional heteroclinic cycles in prac-
tical problems. In 2005, Lamb et al [9] demonstrated that the reversible vector
fields with heterodimensional cycles are dense near Hopf-zero bifurcation, which
confirmed indirectly the generality of heterodimensional cases. It is worthy to note
that the dimension of the concerned vector field is required to be not less than 3
because 2-dimensional heteroclinic cycles are certainly equidimensional.

For concrete heterodimensional cycles of finite dimension there are few results,
especially on the bifurcation, and it is more challenging to study than the non-
heterodimensional cases. The heterodimensional cycles involving two saddle-foci
were found in Bykov [1] and Deng and Zhu [4]. Rademacher [13] took into account
the bifurcations of heterodimensional cycles connecting one hyperbolic equilibrium
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and one hyperbolic periodic orbit. Different from the above results, in an earlier pa-
per (Liu et al. [10]) the authors studied the bifurcation of heterodimensional cycles
containing two saddles in three dimensional vector fields. Under some generic hy-
potheses, it was proved that there are a family of homoclinic cycles bifurcated from
the heterodimensional cycle through small perturbations of parameters. Nonethe-
less, that phenomenon has not been observed in the equidimensional cases (see
Shui and Zhu [14], Zhang and Zhu [18], Zhu and Xia [20]), which demonstrates that
there are very rich dynamical behaviors near heterodimensional cycles although the
bifurcation occurs in dimension-3 vector fields. Following this method, generic bi-
furcation in a very simple 4-dimensional system has also been analyzed in Geng
[6].

Bifurcations on inclination flips have been developed in equidimensional cycles
(see Shui and Zhu [14], Worfolk [17]). However, there is no research on heterodi-
mensional problems concerning inclination flips in the literature. Motivated by this
fact, in this paper we intend to explore possible bifurcations by an inclination flip
of heterodimensional cycles in 4-dimensional vector fields and make a comparison
with that of equidimensional cycles and 3-dimensional heterodimensional cycles,
respectively.

The organization of the rest of this paper is as follows. In the next section,
some hypotheses are given for our discussion. Based on these hypotheses, we make
qualitative analysis of system (1) using the invariant manifold theory in section
3. Near the heterodimensional cycle of the unperturbed system (2), the Poincaré
return map and the successor function are obtained by the establishment of a local
moving frame system which was firstly introduced in Zhu [19]. Then bifurcation
equations are derived by using the implicit function theorem. Section 4 presents the
bifurcation results on different parameter regions and the sufficient conditions for
the persistence of heterodimensional cycles, the coexistence of a heterodimensional
cycle and a periodic orbit or a homoclinic orbit, and the existence of bifurcation
surfaces of homoclinic orbits. A brief discussion ends the paper in section 5.

2. Hypotheses. This paper is concerned with, under an inclination flip, the non-
generic bifurcation analysis of the 4-dimensional Cr system

ż = f(z) + g(z, µ), (1)

where r ≥ 6, z ∈ R4, f(pi) = 0, g(pi, µ) = g(z, 0) = 0 for i = 1, 2, µ ∈ Rl (0 <
||µ|| � 1, l ≥ 3) is a vector of perturbation parameters. Therefore, the unperturbed
system of system (1) is

ż = f(z). (2)

Besides the above requirements, the following hypotheses (H1)-(H5) are also
necessary for systems (1) and (2) throughout this paper.

(H1) z = pi is a hyperbolic fixed point of (1). W s
i and Wu

i are the Cr stable
and unstable manifolds of z = pi, respectively, for i = 1, 2, which satisfy
dim(W s

1 ) = 4 − dim(Wu
1 ) = 1 and dim(W s

2 ) = dim(Wu
2 ) = 2. In addition,

Df(p1) has four simple real eigenvalues −ρ, λj1 (j = 1, 2, 3) satisfying −ρ <
0 < λ1

1 < λ2
1 < λ3

1 and Df(p2) has four simple real eigenvalues −ρk2 , λk2 (k =
1, 2) satisfying −ρ2

2 < −ρ1
2 < 0 < λ1

2 < λ2
2, where Df(z) denotes the Jacobian

matrix of f(z) (see Fig. 1).
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Figure 1. Manifolds of the heterodimensional cycle Γ = Γ1 ∪ Γ2.

(H2) System (2) has a heteroclinic cycle Γ = Γ1∪Γ2, where Γi = {z = ri(t) : t ∈ R},
r1(−∞) = r2(+∞) = p1, r1(+∞) = r2(−∞) = p2.

(H3) Define e±i = limt→∓∞
ṙi(t)
|ṙi(t)| , then e+

i ∈ TpiWu
i , e
−
i ∈ Tpi+1

W s
i+1 are the unit

eigenvectors corresponding to λ1
i and −ρ1

i , respectively, where ρ1
1 = ρ, W s

3 =
W s

1 , i = 1, 2.
(H4) dim(Tr1(t)W

u
1 ∩ Tr1(t)W

s
2 ) = 1.

(H5) Tr2(t)W
u
2 → span{e−2 , e

+
1 } as t → +∞, where e+

1 is the unit eigenvector

corresponding to λ1
1 (see Fig. 2).
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Figure 2. The local coordinate systems of Γ = Γ1 ∪ Γ2

under the inclination flip of Wu
2 .
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We now introduce a definition of strong inclination property of manifolds.

Definition 2.1. Wu
i is said to have the strong inclination property if and only if

lim
t→+∞

TΓiW
u
i = span{Γ

′

i(+∞), Umi−1
i+1 },

where Γ
′

i(+∞) stands for the tangent direction of Γi at t = +∞, Umi−1
i+1 is a

subspace of R4 spanned by (mi − 1) strongest expanding directions of Tpi+1
Wu
i+1,

mi = dim(Wu
i ), p3 = p1, Wu

3 = Wu
1 , i = 1, 2.

Likewise, the strong inclination property of W s
i can be defined as

lim
t→−∞

TΓi+1W
s
i = span{Γ

′

i+1(−∞), Uni−1
i+1 },
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where Uni−1
i+1 is a subspace of R4 spanned by (ni−1) strongest contracting directions

of Tpi+1
W s
i+1, Γ3 = Γ1, ni = dim(W s

i ), i = 1, 2.

Remark 1. If the invariant manifold of an equilibrium fails to satisfy the strong
inclination property, we say it undergoes an inclination flip.

Within the above hypotheses, (H1)− (H4) are all generic conditions, while (H5)
implies that the inclination flip occurs on Wu

2 by Definition 2.1 and Remark 1.
(H1) indicates that Γ is a heterodimensional cycle. Since (H4) means that Γ1 is
a transversal heteroclinic orbit, we can deduce that the heterodimensional cycle Γ
has codimension 3, two comes from the fact that codim(Tr2(t)W

s
1 ⊕ Tr2(t)W

u
2 ) = 2,

and the remaining one is caused by the inclination flip of Wu
2 .

3. Preliminary analysis and bifurcation equations. By the stable and unsta-
ble manifolds theorem and up to two local linear transformations, we see that there
are two open neighborhoods Ui 3 pi = (0, 0, 0, 0)T (i = 1, 2) such that pi (i = 1, 2)
have Cr−1 local manifolds W s

i,loc and Wu
i,loc, which are rendered as below:

Wu
1,loc = {z = (x, y, u, w)T ∈ U1|y = y(x, u, w), y(0, 0, 0) = 0,

∂y

∂(x, u, w)
(0, 0, 0) = ∅},

W s
1,loc = {z = (x, y, u, w)T ∈ U1|(x, u, w) = (x, u, w)(y), (x, u, w)(0) = ∅,

∂(x, u, w)

∂y
(0) = ∅},

Wu
2,loc = {z = (x, y, u, v)T ∈ U2|(y, v) = (y, v)(x, u), (y, v)(0, 0) = ∅,

∂(y, v)

∂(x, u)
(0, 0) = ∅},

W s
2,loc = {z = (x, y, u, v)T ∈ U2|(x, u) = (x, u)(y, v), (x, u)(0, 0) = ∅,

∂(x, u)

∂(y, v)
(0, 0) = ∅},

where the sign T means the transposition of a matrix and ∅ is a zero matrix.
Take open neighborhoods Vi such that pi ∈ Vi ⊂ V̄i ⊂ Ui for i = 1, 2, we can

use successively straightening transformations (including the straightening of the
orbit segments Γ1 ∩V1, Γ1 ∩V2, Γ2 ∩V2) such that system (1) has the following Ck

normal forms

ẋ = [λ1
1(µ) + o(1)]x+O(y)[O(u) +O(w)]

ẏ = [−ρ(µ) + o(1)]y

u̇ = [λ3
1(µ) + o(1)]u+O(xy) +O(w)[O(x) +O(y) +O(w)]

ẇ = [λ2
1(µ) + o(1)]w +O(xy) +O(u)[O(x) +O(y) +O(u)]

(3)

as z = (x, y, u, w)T ∈ V1, and

ẋ = [λ1
2(µ) + o(1)]x+O(u)[O(y) +O(v)]

ẏ = [−ρ1
2(µ) + o(1)]y +O(v)[O(x) +O(u)]

u̇ = [λ2
2(µ) + o(1)]u+O(x)[O(y) +O(v))]

v̇ = [−ρ2
2(µ) + o(1)]v +O(y)[O(x) +O(u)]

(4)
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as z = (x, y, u, v)T ∈ V2, where k = min{r− 3, [λ2
1/λ

1
1]− 1, [ρ2

2/ρ
1
2]− 1, [λ2

2/λ
1
2]− 1},

which is owing to that the curves Γ1 ∩ V1, Γ1 ∩ V2 and Γ2 ∩ V2 are approximately

Cλ
2
1/λ

1
1 , Cρ

2
2/ρ

1
2 and Cλ

2
2/λ

1
2 , respectively.

In order to ensure the above resulting systems are at least C3, we make another
assumption.

(H6) λ2
1 ≥ 4λ1

1, ρ
2
2 ≥ 4ρ1

2, λ
2
2 ≥ 4λ1

2.
Choose δ > 0 small enough and T1, T2 > 0 sufficiently large such that ri(−Ti) =

(δ, 0, 0, 0)T ∈ Vi, ri(Ti) = (0, δ, 0, 0)T ∈ Vi+1, where V3 = V1. Now let us take into
account the linear variational system and its corresponding adjoint system of (1)
formed respectively by:

ż = Df(ri(t))z (5)

and

φ̇ = −(Df(ri(t)))
Tφ, (6)

where i = 1, 2. By the above assumptions (H1)− (H6), system (5) has exponential
dichotomies in R+ and R− (see Palmer [12] and Wiggins [16]) and the following
property can be obtained.

Lemma 3.1. System (5) has the fundamental solution matrices

Zi(t) = (z1
i (t), z2

i (t), z3
i (t), z4

i (t)), i = 1, 2,

which satisfy, respectively,

z1
1(t) = ṙ1(t)/|ṙ1(−T1)| ∈ Tr1(t)W

u
1 ∩ Tr1(t)W

s
2 ,

z2
1(t), z3

1(t) ∈ Tr1(t)W
u
1 ∩ (Tr1(t)W

s
2 )c,

z4
1(t) ∈ (Tr1(t)W

u
1 )c ∩ Tr1(t)W

s
2 ,

Z1(−T1) =


1 0 0 w14

1

0 0 0 w24
1

0 1 0 w34
1

0 0 1 w44
1

 , Z1(T1) =


0 w12

1 w13
1 0

w21
1 w22

1 w23
1 0

0 w32
1 w33

1 0
0 w42

1 w43
1 1

 ,

where w21
1 < 0, d1 = w12

1 w33
1 − w13

1 w32
1 6= 0, w24

1 6= 0, | (w24
1 )−1wi41 |� 1, i 6= 2,

d−1
1 wjk1 � 1, j = 2, 4, k = 2, 3, and

z1
2(t) = ṙ2(t)/|ṙ2(−T2)| ∈ Tr2(t)W

u
2 ∩ Tr2(t)W

s
1 ,

z2
2(t) ∈ Tr2(t)W

u
2 ∩ (Tr2(t)W

s
1 )c,

z3
2(t), z4

2(t) ∈ (Tr2(t)W
u
2 )c,

Z2(−T2) =


1 0 w13

2 w14
2

0 0 w23
2 w24

2

0 1 w33
2 w34

2

0 0 w43
2 w44

2

 , Z2(T2) =


0 w12

2 0 0
w21

2 w22
2 0 0

0 0 1 0
0 0 0 1

 ,

where w21
2 < 0, w12

2 6= 0, d2 = w23
2 w44

2 −w24
2 w43

2 6= 0, | (w12
2 )−1w22

2 |� 1, | d−1
2 wjk2 |�

1, j = 1, 3, k = 3, 4.

Proof. First w21
1 , w21

2 < 0 are evident since z1
i (t) is taken along the heterodimen-

sional cycle Γ (i = 1, 2). In terms of the transversality hypothesis (H4), we derive

R4 = Tr1(T1)W
uu
1 + Tr1(T1)W

s
2 = span{z2

1(T1), z3
1(T1)}+ span{z1

1(T1), z4
1(T1)},

where Wuu
1 is the strong unstable manifold of p1, which turns out that d1 =

w12
1 w33

1 − w13
1 w32

1 6= 0. Then applying the Liouville formula (Hartman [7, Ch.IV,
Th.1.2]) to the fundamental solution Z1(t) leads to w24

1 6= 0.
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Suppose the initial value of z2
2(t) is z2

2(−T2) = (0, 0, 1, 0)T and denote z2
2(T2) =

(w12
2 , w22

2 , w32
2 , w42

2 )T . Then, based on the fact that, compared with the x com-
ponent, the u and w components are subject to the stronger expanding rate as
t → +∞, we see that the inclination flip of Wu

2 must imply that w12
2 6= 0, w32

2 =
w42

2 = 0, that is, Tr2(T2)W
u
2 = span{(1, 0, 0, 0)T , (0, 1, 0, 0)T }. Now the Liouville

formula implies that d2 = w23
2 w44

2 − w24
2 w43

2 6= 0.
All the inequalities follow directly from that the associated component is either

exponentially expanding or exponentially contracting.

Let (z1
i (t), z2

i (t), z3
i (t), z4

i (t)) be a local coordinate system along Γi. Denote

Φi(t) = (φ1
i (t), φ

2
i (t), φ

3
i (t), φ

4
i (t)) = (Z−1

i (t))T . (7)

Then it is obvious to find that Φi(t) is a fundamental solution matrix of the adjoint
system (6) for i = 1, 2.

Now take the transformation of coordinates z(t) = hi(t) = ri(t)+Zi(t)Ni(t) in the
neighborhood of Γi, where t ∈ [−Ti, Ti], Ni(t) = (0, n2

i (t), n
3
i (t), n

4
i (t))

T , i = 1, 2.
Define four cross sections:

S0
1 = {z = h1(−T1) : |x|, |y|, |u|, |w| < 2δ},
S1

1 = {z = h1(T1) : |x|, |y|, |u|, |v| < 2δ},
S0

2 = {z = h2(−T2) : |x|, |y|, |u|, |v| < 2δ},
S1

2 = {z = h2(T2) : |x|, |y|, |u|, |w| < 2δ},
which intersect with the heteroclinic orbit Γi at t = −Ti or t = Ti, respectively.

In order to obtain the corresponding bifurcation equation, we need to restrict our
attention to set up the Poincaré return map of system (1). Consider the mappings
F 0
i : q1

i−1 ∈ S1
i−1 7→ q0

i ∈ S0
i , and F 1

i : q0
i ∈ S0

i 7→ q1
i ∈ S1

i , where S1
0 = S1

2 , q
1
0 =

q1
2 (see Fig. 3), the construction of the Poincaré return map or successive function

consists of three steps.

-

�
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Figure 3. The Poincaré map of system (1).

F 1
2

First, we intend to find the relationship between the two types of coordinates of
z(t) and N(t) in the section Sji and furthermore present the expressions of F 1

i for
i = 1, 2. Denote:

qji = (xji , y
j
i , u

j
i , r

j
i )
T = ri((−1)j+1Ti) + Zi((−1)j+1Ti)N

j
i ,

N j
i = (0, nj,2i , nj,3i , nj,4i )T ∈ Sji ,

where i = 1, 2, j = 0, 1 and r0
1 = w0

1, r1
1 = v1

1 , r0
2 = v0

2 , r1
2 = w1

2. Then the
expressions of Zi(−Ti) and Zi(Ti) give us that x0

i = δ + o(δ), y1
i = δ + o(δ),
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
n0,2

1 = u0
1 − w34

1 (w24
1 )−1y0

1 ,

n0,3
1 = w0

1 − w44
1 (w24

1 )−1y0
1 ,

n0,4
1 = (w24

1 )−1y0
1 ,

(8)


n1,2

1 = d−1
1 (w33

1 x1
1 − w13

1 u1
1),

n1,3
1 = d−1

1 (w12
1 u1

1 − w32
1 x1

1),

n1,4
1 = v1

1 + d−1
1 [(w32

1 w43
1 − w33

1 w42
1 )x1

1 + (w13
1 w42

1 − w12
1 w43

1 )u1
1],

(9)


n0,2

2 = u0
2 − d−1

2 [(w33
2 w44

2 − w34
2 w43

2 )y0
2 + (w23

2 w34
2 − w24

2 w33
2 )v0

2 ],

n0,3
2 = d−1

2 (w44
2 y0

2 − w24
2 v0

2),

n0,4
2 = d−1

2 (w23
2 v0

2 − w43
2 y0

2),

(10)

and 
n1,2

2 = (w12
2 )−1x1

0,

n1,3
2 = u1

0,

n1,4
2 = w1

0.

(11)

Now we suppose that z = ri(t) + Zi(t)Ni(t) is a solution of system (1). Putting

it into (1), together with the assumption of ṙi(t) = f(ri(t)), Żi(t) = Df(ri(t))Zi(t)
and g(ri(t), 0) = 0, one gets the following differential equations of Ni(t):

Ṅi(t) = ΦTi (t)gµ(ri(t), 0)µ+ h.o.t.,

which implies that

Ni(Ti) = Ni(−Ti) + (

∫ Ti

−Ti
ΦTi (t)gµ(ri(t), 0)dt)µ+ h.o.t. = Ni(−Ti) +M j

i µ+ h.o.t.,

where M j
i (i = 1, 2, j = 2, 3, 4) are called Melnikov vectors. As a result, the

Poincaré return maps F 1
i (i = 1, 2) are solved as

n1,j
i = n0,j

i +M j
i µ+ h.o.t., i = 1, 2, j = 2, 3, 4. (12)

Remark 2. In fact, M j
i is independent of the choice of Ti for i = 1, 2, j = 2, 3, 4,

which can be verified similarly as in [18].

Our second task is to seek the Poincaré mappings F 0
i induced by the flows of

systems (3) and (4) in small neighborhoods Ui of pi (i = 1, 2). Let τi be the time

it takes from q1
i−1 to q0

i , s1 = e−λ
1
1(µ)τ1 and s2 = e−ρ

1
2(µ)τ2 be the Silnikov times

(Deng [3]). Since Γ is an unperturbed heteroclinic cycle, τi > 0 will be infinite or a
very large constant which corresponds to 0 ≤ si � 1 for the perturbed system (1).

We use the same notations β1(µ) = ρ(µ)/λ1
1(µ) and β2(µ) = ρ1

2(µ)/λ1
2(µ) as in

Liu et al. [10] for simplification. From the linearly approximated solutions of (3)
and (4) in the neighborhood Ui (i = 1, 2), respectively, the mapping F 0

1 : q1
0 =

(x1
0, y

1
0 , u

1
0, w

1
0) ∈ S1

0 7→ q0
1 = (x0

1, y
0
1 , u

0
1, w

0
1) ∈ S0

1 can be expressed in the forms:

x1
0 = x(T2) = s1δ + h.o.t. y0

1 = y(T2 + τ1) = sβ1

1 δ + h.o.t.

u1
0 = u(T2) = s

λ3
1(µ)/λ1

1(µ)
1 u0

1 + h.o.t. w1
0 = w(T2) = s

λ2
1(µ)/λ1

1(µ)
1 w0

1 + h.o.t.
(13)

and F 0
2 : q1

1 = (x1
1, y

1
1 , u

1
1, v

1
1) ∈ S1

1 7→ q0
2 = (x0

2, y
0
2 , u

0
2, v

0
2) ∈ S0

2 is given by

x1
1 = x(T1) = s

1/β2

2 δ + h.o.t. y0
2 = y(T1 + τ2) = s2δ + h.o.t.

u1
1 = u(T1) = s

λ2
2(µ)/ρ12(µ)

2 u0
2 + h.o.t. v0

2 = w(T1 + τ2) = s
ρ22(µ)/ρ12(µ)
2 v1

1 + h.o.t.
(14)
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In the final step, we compose the mappings F 1
i and F 0

i by merging (8), (10) and
(12) as follows:

F1 = F 1
1 ◦ F 0

1 :


n1,2

1 = u0
1 − w34

1 (w24
1 )−1y0

1 +M2
1µ+ h.o.t.

n1,3
1 = w0

1 − w44
1 (w24

1 )−1y0
1 +M3

1µ+ h.o.t.

n1,4
1 = (w24

1 )−1y0
1 +M4

1µ+ h.o.t.

(15)

and

F2 = F 1
2 ◦ F 0

2 :


n1,2

2 = u0
2 − d−1

2 [(w33
2 w44

2 − w34
2 w43

2 )y0
2 + (w23

2 w34
2

−w24
2 w33

2 )v0
2 ] +M2

2µ+ h.o.t.

n1,3
2 = d−1

2 (w44
2 y0

2 − w24
2 v0

2) +M3
2µ+ h.o.t.

n1,4
2 = d−1

2 (w23
2 v0

2 − w43
2 y0

2) +M4
2µ+ h.o.t.

(16)

Let G be the successor function associated with the heterodimensional cycle, then
it can be worked out by considering the difference of the transitional variables n1,j

i

between (9) and (15), (11) and (16), that is, G = (G1, G2) = (F1(q1
0)− q1

1 , F2(q1
1)−

q1
0). Using the expressions of solutions (13) and (14), the successor function is

expressed as

G2
1 = u0

1 − δw34
1 (w24

1 )−1sβ1

1 +M2
1µ− d−1

1 (δw33
1 s

1/β2

2 − w13
1 s

λ2
2/ρ

1
2

2 u0
2) + h.o.t.

G3
1 = w0

1 − δw44
1 (w24

1 )−1sβ1

1 +M3
1µ− d−1

1 (w12
1 s

λ2
2/ρ

1
2

2 u0
2 − δw32

1 s
1/β2

2 ) + h.o.t.

G4
1 = δ(w24

1 )−1sβ1

1 +M4
1µ− v1

1 − d−1
1 [δ(w32

1 w43
1 − w33

1 w42
1 )s

1/β2

2 + (w13
1 w42

1

−w12
1 w43

1 )s
λ2
2/ρ

1
2

2 u0
2] + h.o.t.

G2
2 = u0

2 − d−1
2 [δ(w33

2 w44
2 − w34

2 w43
2 )s2 + (w23

2 w34
2 − w24

2 w33
2 )s

ρ22/ρ
1
2

2 v1
1 ] +M2

2µ
−δ(w12

2 )−1s1 + h.o.t.

G3
2 = d−1

2 (δw44
2 s2 − w24

2 s
ρ22/ρ

1
2

2 v1
1) +M3

2µ− s
λ3
1/λ

1
1

1 u0
1 + h.o.t.

G4
2 = d−1

2 (w23
2 s

ρ22/ρ
1
2

2 v1
1 − δw43

2 s2) +M4
2µ− s

λ2
1/λ

1
1

1 w0
1 + h.o.t.

where all variables appearing in the exponents depend on the bifurcation parameter
µ, which is dropped in denotations here and likewise in the sequel for simplification.

To determine if there are any periodic orbits, homoclinic or heteroclinic cycles
bifurcated from the heterodimensional cycle when system (1) is perturbed slightly
by µ, it is sufficient to verify if the equation

G = (G2
1, G

3
1, G

4
1, G

2
2, G

3
2, G

4
2) = 0 (17)

has any solution (s1, s2, u
0
1, w

0
1, u

0
2, v

1
1) satisfying s1 ≥ 0 and s2 ≥ 0. Concretely, the

existence of solution pairs (a) s1 > 0, s2 > 0, (b) s1 > 0, s2 = 0 (or s1 = 0, s2 > 0)
and (c) s1 = 0, s2 = 0 of (17) correspond to, respectively, the existence of a periodic
orbit, a homoclinic orbit and a heteroclinic cycle of system (1).

Obviously, we can see from the Jacobian matrix that the equation (G2
1, G

3
1, G

4
1,

G2
2)= 0 has a unique solution (u0

1, w
0
1, v

1
1 , u

0
2) in a sufficiently small neighborhood of

(s1, s2, µ) = (0, 0, 0) due to the implicit function theorem, where

u0
1 = δw34

1 (w24
1 )−1sβ1

1 + δw33
1 d−1

1 s
1/β2

2 −M2
1µ+ h.o.t.

w0
1 = δw44

1 (w24
1 )−1sβ1

1 − δw32
1 d−1

1 s
1/β2

2 −M3
1µ+ h.o.t.

v1
1 = δ(w24

1 )−1sβ1

1 + δ(w33
1 w42

1 − w32
1 w43

1 )d−1
1 s

1/β2

2 +M4
1µ+ h.o.t.

u0
2 = δ(w12

2 )−1s1 + δ(w33
2 w44

2 − w34
2 w43

2 )d−1
2 s2 −M2

2µ+ h.o.t.

(18)

Substituting (18) into the equations G3
2 = 0 and G4

2 = 0, the next lemma is
followed.
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Lemma 3.2. The bifurcation equations corresponding to the heterodimensional cy-
cle Γ consist of the following two equations:

w44
2 s2 = w34

1 (w24
1 )−1d2s

λ31
λ11

+β1

1 + w33
1 d−1

1 d2s

λ31
λ11
1 s

1
β2
2 − δ−1d2s

λ31
λ11
1 M2

1µ− δ−1d2M
3
2µ

+w24
2 s

ρ22
ρ12
2 [(w24

1 )−1sβ1

1 + (w33
1 w42

1 − w32
1 w43

1 )d−1
1 s

1
β2
2 + δ−1M4

1µ] + h.o.t.

w43
2 s2 = −w44

1 (w24
1 )−1d2s

λ21
λ11

+β1

1 + w32
1 d−1

1 d2s

λ21
λ11
1 s

1
β2
2 + δ−1d2s

λ21
λ11
1 M3

1µ+ δ−1d2M
4
2µ

+w23
2 s

ρ22
ρ12
2 [(w24

1 )−1sβ1

1 + (w33
1 w42

1 − w32
1 w43

1 )d−1
1 s

1
β2
2 + δ−1M4

1µ] + h.o.t.,
(19)

where 0 ≤ s1, s2 � 1, |µ| � 1.

Remark 3. The two equations of (19) have a symmetrical structure which distin-
guish from previous bifurcation equations of unsymmetrical cycles and can exhibit
richer bifurcation behaviors.

4. Bifurcation results. In this section we first study the nonnegative solutions
(s1, s2) of system (19) to determine the bifurcation surfaces for the persistence of
the primary heterodimensional cycle or occurrence of new bifurcated singular orbits
after perturbation. Then we give bifurcation results on the coexistence of a het-
erodimensional cycle and a periodic or homoclinic orbit. The next theorem provides
conditions to ensure that the heterodimensional cycle persists even if undergoing
some slight perturbation of bifurcation parameters.

Theorem 4.1. Suppose that hypotheses (H1)− (H6) hold and M3
2 and M4

2 are two
linearly independent vectors. Then there exists an (l − 2)-dimensional surface

L12 = {µ : M3
2µ+ h.o.t. = M4

2µ+ h.o.t. = 0}

with a normal plane Σ12 = span{M3
2 , M

4
2 } at µ = 0 such that system (1) has only

one heteroclinic cycle Γ(µ) in the small tube neighborhood of Γ when µ ∈ L12 and
0 < |µ| � 1.

The proof is a direct application of the implicit function theorem after setting
s1 = s2 = 0 in equation (19), so it is omitted here.

In the following, we will develop our discussion under the condition 1/β2 > β1 > 1
to look for other possible singular orbits near the heterodimensional cycle on the
bifurcation surface L12. The bifurcation analysis for other cases, such as 1/β2 >
1 > β1, 1 > 1/β2 > β1 as well as β1β2 > 1, can be investigated in a similar way.

From the expression of Z2(−T2) in Lemma 3.1, we have d2 6= 0, which shows
that (w43

2 )2 + (w44
2 )2 6= 0. In other words, there are three possible situations:

w43
2 w44

2 6= 0, w43
2 = 0, w44

2 6= 0 or w43
2 6= 0, w44

2 = 0. First of all, we discuss the
bifurcation analysis when neither w43

2 nor w44
2 is vanished.

Theorem 4.2. Suppose that hypotheses (H1)− (H6) are valid, Rank(M3
2 ,M

4
2 )=2,

1/β2 > β1 > 1 and w43
2 w44

2 6= 0. Then for µ ∈ L12 and 0 < |µ| � 1, the following
results hold.

(1) If w44
1 6= 0 and ρ+λ2

1 < λ3
1, then when µ lies in the region {µ : w24

1 w44
1 M3

1µ >
0, ω(s∗1, µ) > 0}, there exists one unique periodic orbit. When µ ∈ {µ :
w24

1 w44
1 M3

1µ > 0, ω(s∗1, µ) = 0}, there exists one unique homoclinic orbit
associated to p2, where ω(s∗1, µ) is defined as in the following (23). When
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µ ∈ {µ : w24
1 w44

1 M3
1µ > 0, ω(s∗1, µ) < 0} or {µ : w24

1 w44
1 M3

1µ < 0}, there are
no periodic or homoclinic orbits near Γ.

(2) If w44
1 6= 0 and ρ+λ2

1 > λ3
1, then when µ lies in the region {µ : d2w

44
2 M2

1µ < 0,

|M3
1µ| � |M2

1µ|
α1
α1−1 , w24

1 w44
1 w43

2 w44
2 M2

1µ > 0} or {µ : d2w
44
2 M2

1µ < 0,

|M3
1µ| � |M2

1µ|
α1
α1−1 , w24

1 w44
1 M3

1µ > 0}, there exists one unique periodic

orbit, where α1 =
λ1
1β1

λ3
1−λ2

1
> 1. When d2w

44
2 M2

1µ > 0, system (1) has no

periodic or homoclinic orbits near Γ.
(3) If w44

1 = 0 and w34
1 6= 0, then when µ lies in the region {µ : d2w

43
2 M3

1µ > 0,

|M3
1µ| � |M2

1µ|
α2
α2−1 , w24

1 w34
1 M2

1µ > 0} or {µ : d2w
43
2 M3

1µ > 0, |M3
1µ| �

|M2
1µ|

α2
α2−1 , w24

1 w34
1 w43

2 w44
2 M3

1µ > 0}, there exists one unique periodic orbit,

where α2 = 1 +
λ1
1β1

λ3
1−λ2

1
> 1. When d2w

43
2 M3

1µ < 0, system (1) has no periodic

or homoclinic orbits near Γ.
(4) If w44

1 = w34
1 = 0, then when µ satisfies d2w

43
2 M3

1µ > 0, |M3
1µ| � |M2

1µ|
and w43

2 w44
2 M2

1µM
3
1µ < 0, there exists one unique periodic orbit. Otherwise,

system (1) has neither periodic orbits nor homoclinic orbits near Γ.

Proof. When 1/β2 > 1 and w43
2 w44

2 6= 0, bifurcation equations (19) are reduced to

w44
2 s2 = w34

1 (w24
1 )−1d2s

λ31
λ11

+β1

1 − δ−1d2s

λ31
λ11
1 M2

1µ+ h.o.t.

w43
2 s2 = −w44

1 (w24
1 )−1d2s

λ21
λ11

+β1

1 + δ−1d2s

λ21
λ11
1 M3

1µ+ h.o.t.

(20)

for µ ∈ L12 and 0 < |µ| � 1. Eliminating s2 in (20), it follows that:

w44
1 (w24

1 w43
2 )−1s

λ21
λ11

+β1

1 + w34
1 (w24

1 w44
2 )−1s

λ31
λ11

+β1

1

= δ−1[(w43
2 )−1s

λ21
λ11
1 M3

1µ+ (w44
2 )−1s

λ31
λ11
1 M2

1µ] + h.o.t.

(21)

(1) When w44
1 6= 0 and

λ2
1

λ1
1

+ β1 <
λ3
1

λ1
1

(i.e. λ2
1 + ρ < λ3

1) hold, (21) reads as

w44
1 (w24

1 )−1s

λ21
λ11

+β1

1 = δ−1s

λ21
λ11
1 M3

1µ+ h.o.t.
(22)

As w24
1 w44

1 M3
1µ < 0, (22) has no nonnegative solutions which means that sys-

tem (1) has neither periodic orbits nor homoclinic orbits near Γ. Whereas as
w24

1 w44
1 M3

1µ > 0, it is easy to see that (22) has only one positive solution s∗1 =

[δ−1w24
1 (w44

1 )−1M3
1µ]

1
β1 + h.o.t. � 1. Substituting s∗1 into the first equation of

(20), we can find that

s∗2 = δ−1(s∗1)
λ31
λ11 (w44

2 )−1d2[w34
1 (w44

1 )−1M3
1µ−M2

1µ] + h.o.t. = ω(s∗1, µ), (23)

which implies the conclusion of (1).

(2) In case w44
1 6= 0 and

λ2
1

λ1
1

+ β1 >
λ3
1

λ1
1

(i.e. λ2
1 + ρ > λ3

1), (21) can be simplified

to

w44
1 (w24

1 w43
2 )−1s

λ21
λ11

+β1

1 = δ−1[(w43
2 )−1s

λ21
λ11
1 M3

1µ+ (w44
2 )−1s

λ31
λ11
1 M2

1µ] + h.o.t.
(24)

Since we are interested in the coexistence of periodic orbits or homoclinic orbits with
the heterodimensional cycle, the case s1 = 0 is not considered any more. Suppose
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s1 > 0 is small enough, by eliminating the term s
λ2
1/λ

1
1

1 from both sides of (24), we
obtain

w44
1 (w24

1 w43
2 )−1sβ1

1 = δ−1[(w43
2 )−1M3

1µ+ (w44
2 )−1s

λ31−λ
2
1

λ11
1 M2

1µ] + h.o.t.

Set t1 = s
(λ3

1−λ
2
1)/λ1

1
1 and α1 =

λ1
1β1

λ3
1−λ2

1
. Then the above equation yields

w44
1 (w24

1 w43
2 )−1tα1

1 = δ−1(w43
2 )−1M3

1µ+ [δ−1(w44
2 )−1M2

1µ]t1 + h.o.t. (25)

Hypothesis (H1) and
λ2
1

λ1
1

+ β1 >
λ3
1

λ1
1

guarantee that α1 is a positive constant greater

than 1 and 0 < t1 � 1.

When |M3
1µ| � |M2

1µ|
α1
α1−1 and w24

1 w44
1 w43

2 w44
2 M2

1µ > 0 are valid, we can con-
clude that system (25) has a unique sufficiently small positive solution

t1 = [δ−1w24
1 w43

2 (w44
1 w44

2 )−1M2
1µ]

1
α1−1 + h.o.t.

This follows the fact that |M2
1µ|t1, t

α1
1 = O(|M2

1µ|
α1
α1−1 )� |M3

1µ|.
When |M3

1µ| � |M2
1µ|

α1
α1−1 and w24

1 w44
1 M3

1µ > 0, equation (25) has a unique
sufficiently small positive solution

t1 = [δ−1w24
1 (w44

1 )−1M3
1µ]

1
α1 + h.o.t.

which is because |M2
1µ|t1 = O(|M2

1µ||M3
1µ|

1
α1 )� |M3

1µ|.
The existence of a positive solution t1 � 1 indicates that system (24) has a

unique sufficiently small positive solution s1. Putting this solution s1 into the
second equation of (20), we have

s2 = −δ−1d2(w44
2 )−1s

λ31
λ11
1 M2

1µ+ h.o.t.

which implies the conclusion of (2).
(3) If w44

1 = 0, the second equation of (20) becomes

w43
2 s2 = δ−1d2s

λ21
λ11
1 M3

1µ+ h.o.t.
(26)

which has no positive solution s2 if d2w
43
2 M3

1µ < 0 and has at most one nonnegative
solution s2 if d2w

43
2 M3

1µ > 0.
When d2w

43
2 M3

1µ > 0, we need to obtain a positive solution s1 from (21). If
w44

1 = 0 and w34
1 6= 0, system (21) can be transformed into

w34
1 (w24

1 w44
2 )−1s

λ31
λ11

+β1

1 = δ−1[(w43
2 )−1s

λ21
λ11
1 M3

1µ+ (w44
2 )−1s

λ31
λ11
1 M2

1µ] + h.o.t.
(27)

Let α2 = 1 +
λ1
1β1

λ3
1−λ2

1
> 1, then (27) can be changed in a similar way as (24) by

eliminating the common factor s
λ2
1/λ

1
1

1 . The new equation is

w34
1 (w24

1 w44
2 )−1tα2

1 = δ−1(w43
2 )−1M3

1µ+ [δ−1(w44
2 )−1M2

1µ]t1 + h.o.t. (28)

Using the same techniques as in equation (25) for (28), we obtain the conclusion of
(3).

(4) If w44
1 = w34

1 = 0, system (21) is transformed into

(w43
2 )−1s

λ21
λ11
1 M3

1µ+ (w44
2 )−1s

λ31
λ11
1 M2

1µ+ h.o.t. = 0.
(29)
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After eliminating the common factor s
λ2
1/λ

1
1

1 in the left side of (29), we have

s

λ31−λ
2
1

λ11
1 M2

1µ = −w44
2 (w43

2 )−1M3
1µ+ h.o.t.

(30)

Obviously, (30) has a unique sufficiently small positive solution when |M3
1µ| �

|M2
1µ| and w44

2 w43
2 M2

1µM
3
1µ < 0, but has no solutions under the condition |M3

1µ| �
|M2

1µ| or |M3
1µ| � |M2

1µ| and w44
2 w43

2 M2
1µM

3
1µ > 0. This ends the proof of con-

clusion (4).

Remark 4. Theorem 4.2 (1) shows that a heterodimensional cycle can coexist with
a homoclinic orbit in the heteroclinic bifurcation surface L12 (see Fig. 4), which
indicates that there is a great difference between inclination-flip bifurcation and the
bifurcation without inclination flip in heterodimensional cycles (Liu et al. [10]).

Now look back at the bifurcation equations (19), then we can observe evidently
that, between the two equations, there is some kind of symmetry with regard to
the variables s1 and s2. Therefore, the bifurcation discussion for the case (w43

2 )2 +
(w44

2 )2 6= 0 can be simplified without loss of generality in the situation w43
2 = 0 and

w44
2 6= 0. The opposite case can be dealt with by analogous techniques.

Theorem 4.3. Suppose that hypotheses (H1)− (H6) are valid, Rank(M3
2 ,M

4
2 )=2,

1/β2 > β1 > 1, w44
2 6= 0 and w43

2 = w34
1 = 0. Then for µ ∈ L12 and 0 < |µ| � 1,

the following results hold.

(1) If w44
2 d2M

2
1µ > 0, then system (1) has no periodic or homoclinic orbits near

Γ.
(2) If w44

2 d2M
2
1µ < 0, w44

1 6= 0 and
λ2
1

λ1
1

+ β1 <
λ3
1ρ

2
2

λ1
1ρ

1
2
, then when µ satisfies

w24
1 w44

1 M3
1µ > 0, there exists one unique periodic orbit (see Fig. 4). System

(1) has neither periodic orbits nor homoclinic orbits when w24
1 w44

1 M3
1µ < 0.

(3) If w44
2 d2M

2
1µ < 0, w44

1 6= 0 and
λ2
1

λ1
1

+ β1 >
λ3
1ρ

2
2

λ1
1ρ

1
2
, then when µ lies in the

region {µ : |M3
1µ| � (|M2

1µ|
ρ22
ρ12 |M4

1µ|)
α3
α3−1 , w24

1 w44
1 w23

2 d2M
4
1µ > 0} or {µ :

|M3
1µ| � (|M2

1µ|
ρ22
ρ12 |M4

1µ|)
α3
α3−1 , w24

1 w44
1 M3

1µ > 0}, there exists one unique

periodic orbit, where α3 =
λ1
1ρ

1
2β1

λ3
1ρ

2
2−λ2

1ρ
1
2
> 1 (see Fig. 4).

(4) If w44
2 d2M

2
1µ < 0, w44

1 = 0 and w32
1 6= 0, then when µ satisfies |M3

1µ| �
|M2

1µ|m, there exists at most one periodic orbit and when |M3
1µ| � |M2

1µ|m
system (1) has neither periodic nor homoclinic orbits, where m=min{1/β2,
ρ2

2/ρ
1
2}.

(5) If w44
2 d2M

2
1µ < 0, w44

1 = w32
1 = 0, then when µ satisfies |M3

1µ| � |M2
1µ|

ρ22
ρ12 ,

system (1) has no periodic orbits or homoclinic orbits near Γ. When µ lies in

the region {µ : |M2
1µ|

ρ22
ρ12 � |M3

1µ| � |M2
1µ|

ρ22
ρ12 |M4

1µ|
α4
α4−1 and w23

2 w24
1 M3

1µ <

0} or {µ : |M3
1µ| � |M2

1µ|
ρ22
ρ12 |M4

1µ|
α4
α4−1 and w24

1 M4
1µ < 0}, there exists one

unique periodic orbit bifurcated from Γ, where α4 = (
λ3
1ρ

2
2

λ1
1ρ

1
2

+ β1 − λ2
1

λ1
1
)/(

λ3
1ρ

2
2

λ1
1ρ

1
2
−

λ2
1

λ1
1
) > 1.
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Proof. For any µ ∈ L12 and 0 < |µ| � 1, when 1/β2 > β1 > 1, w43
2 = w34

1 = 0 but
w44

2 6= 0, bifurcation equations (19) are changed into

s2 = −δ−1(w44
2 )−1d2s

λ31
λ11
1 M2

1µ+ h.o.t.

0 = −w44
1 (w24

1 )−1s

λ21
λ11

+β1

1 + w32
1 d−1

1 s

λ21
λ11
1 s

1
β2
2 + δ−1s

λ21
λ11
1 M3

1µ

+w23
2 d−1

2 s

ρ22
ρ12
2 [(w24

1 )−1sβ1

1 + δ−1M4
1µ] + h.o.t.

(31)

where the term s

ρ22
ρ12

+ 1
β2

2 = o(s

ρ22
ρ12
2 sβ1

1 ) in the right side of the second equation has been
merged in the higher order term by the first equation s2 = o(s1) and 1/β2 > β1.

(1) The first equation of (31) obviously shows that there is no nonnegative solu-
tions if w44

2 d2M
2
1µ > 0. Thus there is no periodic orbits or homoclinic orbits near

the heterodimensional cycle Γ.
In the following, we set ν1 = −δ−1(w44

2 )−1d2M
2
1µ � 1, which is positive when

w44
2 d2M

2
1µ < 0. Then s2 = ν1s

λ3
1/λ

1
1

1 + h.o.t. = o(s
λ3
1/λ

1
1

1 ) ≥ 0, where s2 = 0 if and
only if s1 = 0. Putting this simple expression of s2 into the second equation of (31),
we have

−w44
1 (w24

1 )−1s

λ21
λ11

+β1

1 + w32
1 d−1

1 s

λ21
λ11

+
λ31
λ11β2

1 ν
1
β2
1 + δ−1s

λ21
λ11
1 M3

1µ

+w23
2 d−1

2 s

λ31ρ
2
2

λ11ρ
1
2

1 ν

ρ22
ρ12
1 [(w24

1 )−1sβ1

1 + δ−1M4
1µ] + h.o.t. = 0.

(32)

(2) If w44
2 d2M

2
1µ < 0, w44

1 6= 0 and
λ2
1

λ1
1

+β1 <
λ3
1ρ

2
2

λ1
1ρ

1
2
, then system (32) is simplified

into

w44
1 (w24

1 )−1sβ1

1 = δ−1M3
1µ+ h.o.t. (33)

(33) has a unique positive solution when w24
1 w44

1 M3
1µ > 0 which corresponds to a

unique pair of positive solutions (s1, s2) of (31). Thus the conclusion is obvious.

(3) If w44
2 d2M

2
1µ < 0, w44

1 6= 0 and
λ2
1

λ1
1

+ β1 >
λ3
1ρ

2
2

λ1
1ρ

1
2
, then system (32) is reduced

to

w44
1 (w24

1 )−1s

λ21
λ11

+β1

1 = δ−1s

λ21
λ11
1 M3

1µ+ δ−1w23
2 d−1

2 s

λ31ρ
2
2

λ11ρ
1
2

1 ν

ρ22
ρ12
1 M4

1µ+ h.o.t.
(34)

Setting t2 = s

λ31ρ
2
2

λ11ρ
1
2
−λ

2
1
λ11

1 and α3 =
λ1
1ρ

1
2β1

λ3
1ρ

2
2−λ2

1ρ
1
2
> 1 and taking similar techniques to

(25), we obtain the conclusion (3).
(4) If w44

2 d2M
2
1µ < 0, w44

1 = 0 but w32
1 6= 0, then system (32) becomes

w32
1 d−1

1 s

λ21
λ11

+
λ31
λ11β2

1 ν
1
β2
1 + δ−1s

λ21
λ11
1 M3

1µ+ w23
2 d−1

2 s

λ31ρ
2
2

λ11ρ
1
2

1 ν

ρ22
ρ12
1 [(w24

1 )−1sβ1

1 + δ−1M4
1µ]

+h.o.t. = 0.
(35)

For system (35), if
λ2
1

λ1
1

+
λ3
1

λ1
1β2

<
λ3
1ρ

2
2

λ1
1ρ

1
2
, which implies that 1

β2
<

ρ22
ρ12

and therefore

s

λ31ρ
2
2

λ11ρ
1
2

1 ν

ρ22
ρ12
1 = o(s

λ21
λ11

+
λ31
λ11β2

1 ν
1
β2
1 ), then we can rewrite it as

w32
1 d−1

1 s

λ31
λ11β2

1 ν
1
β2
1 = −δ−1M3

1µ+ h.o.t. = 0.
(36)
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From (36) we can see directly that this equation has only one positive solution s1 �
1 if and only if |M3

1µ| � |M2
1µ|

1
β2 and w32

1 d1M
3
1µ < 0. When |M3

1µ| � |M2
1µ|

1
β2

or w32
1 d1M

3
1µ > 0 there is no sufficiently small positive solutions.

If
λ3
1ρ

2
2

λ1
1ρ

1
2
<

λ2
1

λ1
1

+
λ3
1

λ1
1β2

<
λ3
1ρ

2
2

λ1
1ρ

1
2

+ β1 and 1
β2
<

ρ22
ρ12

, then (35) turns out to be

w32
1 d−1

1 s

λ21
λ11

+
λ31
λ11β2

1 ν
1
β2
1 + δ−1s

λ21
λ11
1 M3

1µ+ δ−1w23
2 d−1

2 s

λ31ρ
2
2

λ11ρ
1
2

1 ν

ρ22
ρ12
1 M4

1µ+ h.o.t. = 0,

which can be simplified to

w32
1 d−1

1 s

λ31
λ11β2

1 ν
1
β2
1 + δ−1M3

1µ+ δ−1w23
2 d−1

2 s

λ31ρ
2
2

λ11ρ
1
2
−λ

2
1
λ11

1 ν

ρ22
ρ12
1 M4

1µ+ h.o.t. = 0.
(37)

When |M3
1µ| � |M2

1µ|
1
β2 � |M2

1µ|
ρ22
ρ12 , (37) has no solutions. To assure the existence

of small enough positive solutions, |M3
1µ| � |M2

1µ|
1
β2 must be valid at any rate.

If
λ3
1ρ

2
2

λ1
1ρ

1
2
<

λ2
1

λ1
1

+
λ3
1

λ1
1β2

<
λ3
1ρ

2
2

λ1
1ρ

1
2

+ β1 and 1
β2
>

ρ22
ρ12

, then (35) is equivalent to

w32
1 d−1

1 s

λ31
λ11β2

1 ν
1
β2
1 + δ−1M3

1µ+ w23
2 d−1

2 s

λ31ρ
2
2

λ11ρ
1
2
−λ

2
1
λ11

1 ν

ρ22
ρ12
1 [(w24

1 )−1sβ1

1 + δ−1M4
1µ]

+h.o.t. = 0.
(38)

When |M3
1µ| � |M2

1µ|
ρ22
ρ12 � |M2

1µ|
1
β2 , (38) has no solutions. Whereas in case that

|M3
1µ| � |M2

1µ|
ρ22
ρ12 , there is at most one sufficiently small positive solution for (38).

If
λ3
1ρ

2
2

λ1
1ρ

1
2

+ β1 <
λ2
1

λ1
1

+
λ3
1

λ1
1β2

and 1
β2
<

ρ22
ρ12

, then the simplified equation here is the

same as (38). The only difference lies in ν
ρ22/ρ

1
2

1 � ν
1
β2
1 as ν approaches zero, so in

the case that |M3
1µ| � |M2

1µ|
1
β2 � |M2

1µ|
ρ22
ρ12 , (37) has no solutions. In the other

case, there is at most one positive solution for system (35).

If
λ3
1ρ

2
2

λ1
1ρ

1
2

+ β1 <
λ2
1

λ1
1

+
λ3
1

λ1
1β2

and 1
β2
>

ρ22
ρ12

, we can rewrite system (35) into

δ−1s

λ21
λ11
1 M3

1µ+ w23
2 d−1

2 s

λ31ρ
2
2

λ11ρ
1
2

1 ν

ρ22
ρ12
1 [(w24

1 )−1sβ1

1 + δ−1M4
1µ] + h.o.t. = 0,

which is followed by

δ−1M3
1µ+ w23

2 d−1
2 s

λ31ρ
2
2

λ11ρ
1
2
−λ

2
1
λ11

1 ν

ρ22
ρ12
1 [(w24

1 )−1sβ1

1 + δ−1M4
1µ] + h.o.t. = 0.

(39)

Obviously system (39) has no sufficiently small positive solutions in case that

|M3
1µ| � |M2

1µ|
ρ22
ρ12 � |M2

1µ|
1
β2 and has at most one such solution in case that

|M3
1µ| � |M2

1µ|
ρ22
ρ12 .

Let m=min{1/β2, ρ
2
2/ρ

1
2}. Summarizing the above discussion, we finish the proof

of the conclusion (4).
(5) If w44

2 d2M
2
1µ < 0 and w44

1 = w32
1 = 0, we obtain the following equation from

system (32)

δ−1M3
1µ+ w23

2 d−1
2 s

λ31ρ
2
2

λ11ρ
1
2
−λ

2
1
λ11

1 ν

ρ22
ρ12
1 [(w24

1 )−1sβ1

1 + δ−1M4
1µ] + h.o.t. = 0.

(40)



BIFURCATIONS OF HETERODIMENSIONAL CYCLES WITH INCLINATION FLIP 1525

As a consequence, in case of |M3
1µ| � |M2

1µ|
ρ22
ρ12 , no solutions exist for system (40).

If |M3
1µ| � |M2

1µ|
ρ22
ρ12 , we set t2 = s

λ31ρ
2
2

λ11ρ
1
2
−λ

2
1
λ11

1 and α4 = (
λ3
1ρ

2
2

λ1
1ρ

1
2

+ β1− λ2
1

λ1
1
)/(

λ3
1ρ

2
2

λ1
1ρ

1
2
− λ2

1

λ1
1
),

then system (40) becomes

w23
2 (w24

1 )−1d−1
2 tα4

2 = −δ−1ν
− ρ

2
2
ρ12

1 M3
1µ− δ−1w23

2 d−1
2 t2M

4
1µ+ h.o.t.

(41)

Applying analogous techniques used for (25) to the above equation, one can com-
plete the proof.

Theorem 4.4. Suppose that hypotheses (H1)− (H6) are valid, Rank(M3
2 ,M

4
2 )=2,

1/β2 > β1 > 1, w43
2 = 0, w44

2 w34
1 6= 0. Then for µ ∈ L12 and 0 < |µ| � 1, the

following results hold.

(1) If w44
1 6= 0 and

λ2
1

λ1
1
+β1 <

λ3
1ρ

2
2

λ1
1ρ

1
2
, then when µ lies in the region {µ : w24

1 w44
1 M3

1µ >

0, ω(ŝ1, µ) > 0}, there exists one unique periodic orbit. When µ ∈ {µ :
w24

1 w44
1 M3

1µ > 0, ω(ŝ1, µ) = 0}, there exists one unique homoclinic orbit as-
sociated to p2, where ω(ŝ1, µ) is defined same as in (23). When µ ∈ {µ :
w24

1 w44
1 M3

1µ > 0, ω(ŝ1, µ) < 0} or {µ : w24
1 w44

1 M3
1µ < 0}, system (1) has

neither periodic nor homoclinic orbits near Γ (see Fig. 4).

(2) If w44
1 6= 0 and

λ2
1

λ1
1

+β1 >
λ3
1ρ

2
2

λ1
1ρ

1
2
, then there exists at most one periodic orbit or

homoclinic orbit associated to p2.
(3) If w44

1 = 0, then there exists at most one periodic orbit.

Proof. (1) In case w44
1 6= 0, for µ ∈ L12 and 0 < |µ| � 1, bifurcation equations (19)

can be changed into

w44
2 s2 = s

λ31
λ11
1 [w34

1 (w24
1 )−1d2s

β1

1 − δ−1d2M
2
1µ] + h.o.t.

0 = −w44
1 (w24

1 )−1d2s

λ21
λ11

+β1

1 + w32
1 d−1

1 d2s

λ21
λ11
1 s

1
β2
2 + δ−1d2s

λ21
λ11
1 M3

1µ

+w23
2 s

ρ22
ρ12
2 [(w24

1 )−1sβ1

1 + (w33
1 w42

1 − w32
1 w43

1 )d−1
1 s

1
β2
2 + δ−1M4

1µ] + h.o.t.
(42)

The first equation of (42) shows s2 = o(s
λ3
1/λ

1
1

1 ). Under the condition that
λ2
1

λ1
1

+β1 <

λ3
1ρ

2
2

λ1
1ρ

1
2
, the second equation of (42) is simplified into

w44
1 (w24

1 )−1s

λ21
λ11

+β1

1 = δ−1s

λ21
λ11
1 M3

1µ+ h.o.t.

which meets the same situation as (22) and has a sufficiently small positive solution

ŝ1 = [δ−1w24
1 (w44

1 )−1M3
1µ]

1
β1 + h.o.t. only as w24

1 w44
1 M3

1µ > 0, which has the same
leading term as s∗1. Since (42) and (20) have the same first equation, the conclusion
is followed by Theorem 3.2 (1).
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(2) In case w44
1 6= 0 and

λ2
1

λ1
1

+ β1 >
λ3
1ρ

2
2

λ1
1ρ

1
2
, (19) becomes

s2 = (w44
2 )−1s

λ31
λ11
1 [w34

1 (w24
1 )−1d2s

β1

1 − δ−1d2M
2
1µ] + h.o.t.

0 = −w44
1 (w24

1 )−1s

λ21
λ11

+β1

1 + w32
1 d−1

1 s

λ21
λ11
1 s

1
β2
2 + δ−1s

λ21
λ11
1 M3

1µ

+δ−1w23
2 d−1

2 s

ρ22
ρ12
2 M4

1µ+ h.o.t.

(43)

for µ ∈ L12 and 0 < |µ| � 1. From the above first equation, we see immediately
that if s1 = 0, then s2 must be zero. If s2 = 0, then the second equation of

(43) shows that s1 = 0 or 0 < s1 = [δ−1w24
1 (w44

1 )−1M3
1µ]

1
β1 + h.o.t. � 1 only as

w24
1 w44

1 d2M
3
1µ > 0. If s2 in the first equation of (43) is positive, then substituting

its expression into the second equation of (43), we find that there is at most one
sufficiently small positive solution and no zero solution with regard to s1. Thus,
the conclusion of (2) follows.

(3) In case w44
1 = 0, for µ ∈ L12 and 0 < |µ| � 1, bifurcation equations (19) are

transformed into

s2 = (w44
2 )−1s

λ31
λ11
1 [w34

1 (w24
1 )−1d2s

β1

1 − δ−1d2M
2
1µ] + h.o.t.

0 = w32
1 d−1

1 s

λ21
λ11
1 s

1
β2
2 + δ−1s

λ21
λ11
1 M3

1µ+ w23
2 d−1

2 s

ρ22
ρ12
2 [(w24

1 )−1sβ1

1 + δ−1M4
1µ] + h.o.t.

(44)
which imply that s1 = 0 holds if and only if s2 = 0. Therefore, (44) has at most a
positive solution pair (s1, s2) small enough. The proof is complete.

Remark 5. From Theorems 4.2, 4.3 and 4.4, Figure 4 presents the possible orbits
bifurcated from the heterodimensional cycle on the bifurcation surface L12. When
w43

2 w44
2 6= 0 or w43

2 = 0 and w44
2 w34

1 6= 0, the coexisting orbits on L12 correspond to
(a) and (b). When w43

2 = w34
1 = 0 and w44

2 6= 0, the coexisting case corresponds to
(b).

-

�

-

�

�

q

Urrr r r
Γ2 Γ2

Γ1 Γ1

p1 p1p2 p2

H2 P

(a) (b)

Figure 4. Coexisting diagram of bifurcated orbits as µ ∈ L12,

H2–homoclinic orbit connecting to p2, P–periodic orbit.

Now our consideration turns to the existence of homoclinic orbits bifurcated
from the heterodimensional cycle as µ is not confined on the heterodimensional
bifurcation surface L12.

Theorem 4.5. Assume that hypotheses (H1)− (H6) hold, Rank(M3
2 ,M

4
2 ) ≥ 1 and

1/β2 > β1 > 1. Then for 0 < |µ| � 1, we have the following conclusions.
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(1) When w43
2 w44

2 6= 0, system (1) has a unique (l−1)-dim homoclinic bifurcation
surface

L1
1 = {µ : (w43

2 M3
2 + w44

2 M4
2 )µ+ h.o.t. = 0, w43

2 d2M
4
2µ > 0}

such that there is a unique homoclinic orbit Γ1
1 to p1 as µ ∈ L1

1, which is
tangent to L12 at µ = 0.

(2) When w43
2 = 0 and w44

2 6= 0, system (1) has a unique (l − 1)-dim homoclinic
bifurcation surface

L2
1 = {µ : M4

2µ+ w23
2 d−1

2 [−δ−1(w44
2 )−1d2M

3
2µ]

ρ22
ρ12M4

1µ

+δw23
2 (w33

1 w42
1 − w32

1 w43
1 )(d1d2)−1[−δ−1(w44

2 )−1d2M
3
2µ]

ρ22
ρ12

+ 1
β2

+h.o.t. = 0, w44
2 d2M

3
2µ < 0}

such that there is a unique homoclinic orbit Γ2
1 to p1 as µ ∈ L2

1, which is
tangent to L12 at µ = 0.

(3) When w43
2 6= 0 and w44

2 = 0, system (1) has a unique (l − 1)-dim homoclinic
bifurcation surface

L3
1 = {µ : M3

2µ− w24
2 d−1

2 [δ−1(w43
2 )−1d2M

4
2µ]

ρ22
ρ12M4

1µ

−δw24
2 (w33

1 w42
1 − w32

1 w43
1 )(d1d2)−1[δ−1(w43

2 )−1d2M
4
2µ]

ρ22
ρ12

+ 1
β2

+h.o.t. = 0, w43
2 d2M

4
2µ > 0}

such that there is a unique homoclinic orbit Γ3
1 to p1 as µ ∈ L3

1, which is
tangent to L12 at µ = 0.

Proof. The existence of a homoclinic orbit which is associated to the left saddle p1

corresponds to the existence of a solution pair s1 = 0, 0 < s2 � 1 of the bifurcation
equations (19). Fix s1 = 0 in system (19), we have

w44
2 s2 = −δ−1d2M

3
2µ+ w24

2 s

ρ22
ρ12
2 [(w33

1 w42
1 − w32

1 w43
1 )d−1

1 s
1
β2
2 + δ−1M4

1µ] + h.o.t.

w43
2 s2 = δ−1d2M

4
2µ+ w23

2 s

ρ22
ρ12
2 [(w33

1 w42
1 − w32

1 w43
1 )d−1

1 s
1
β2
2 + δ−1M4

1µ] + h.o.t.
(45)

(1) If w43
2 w44

2 6= 0, then (45) is simplified into

w44
2 s2 = −δ−1d2M

3
2µ+ h.o.t.

w43
2 s2 = δ−1d2M

4
2µ+ h.o.t.

(46)

Thus we have s2 = δ−1(w43
2 )−1d2M

4
2µ + h.o.t. from the second equation of (46).

This solution is positive if and only if w43
2 d2M

4
2µ > 0, which guarantees the existence

of the homoclinic bifurcation surface L1
1. At µ = 0, the normal vector of the surface

L1
1 is w43

2 M3
2 +w44

2 M4
2 , which is contained in Σ12, thus it is inescapably tangent to

L12.
(2) If w43

2 = 0, w44
2 6= 0, (45) has the simplified form

s2 = −δ−1(w44
2 )−1d2M

3
2µ+ h.o.t.

0 = δ−1d2M
4
2µ+ w23

2 s

ρ22
ρ12
2 [(w33

1 w42
1 − w32

1 w43
1 )d−1

1 s
1
β2
2 + δ−1M4

1µ] + h.o.t.
(47)

Obviously, s2 is meaningful only in case w44
2 d2M

3
2µ < 0. Putting s2 > 0 into the

second equation of (47), we obtain the bifurcation surface L2
1, which has a normal

vector M4
2 at µ = 0 so this surface is tangent to L12 at µ = 0 as well.
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(3) If w43
2 6= 0 and w44

2 = 0, we can rewrite (45) as

0 = −δ−1d2M
3
2µ+ w24

2 s

ρ22
ρ12
2 [(w33

1 w42
1 − w32

1 w43
1 )d−1

1 s
1
β2
2 + δ−1M4

1µ] + h.o.t.
s2 = δ−1(w43

2 )−1d2M
4
2µ+ h.o.t.

(48)
which is completely symmetrical with system (47), so the homoclinic bifurcation
surface L3

1 can be deduced in an analogous way.

>
*

-
M3

2

w43
2 M3

2 + w44
2 M4

2

M4
2

O

L2
1

L1
1

L3
1

L12

Figure 5. Bifurcation surfaces of orbits homoclinic to p1

as w43
2 ≥ 0, w44

2 ≥ 0, d2 > 0.

Remark 6. Lj1 (j = 1, 2, 3) correspond to different homoclinic bifurcation surfaces
associated to p1 of system (1) under different conditions. Figure 5 shows the position

sketch of bifurcation surfaces L12 and Lj1 (j = 1, 2, 3) in the same coordinate system
of the µ space as w43

2 > 0, w44
2 > 0, d2 > 0.

Theorem 4.6. Suppose that hypotheses (H1)− (H6) hold, Rank(M3
2 ,M

4
2 ) ≥ 1 and

1/β2 > β1 > 1. Then for 0 < |µ| � 1, we have the following conclusions.

(1) If w34
1 6= 0, then in the region |M3

2µ| � |M2
1µ|

α̃
α̃−1 , there exists one unique

bifurcation surface

L1
2 = {µ : M4

2µ = δw44
1 (w24

1 )−1s̃

λ21
λ11

+β1

1 − s̃
λ21
λ11
1 M3

1µ+ h.o.t., w24
1 w34

1 M2
1µ > 0},

where α̃ = (
λ3
1

λ1
1

+ β1)/(
λ2
1

λ1
1
) > 1 and s̃1 = [δ−1w24

1 (w34
1 )−1M2

1µ]
1
β1 , such that

for µ ∈ L1
2 and 0 < |µ| � 1, system (1) has a unique homoclinic orbit Γ1

2 to
p2 in a neighborhood of the heterodimensional cycle Γ.

(2) If w34
1 6= 0, then in the region |M3

2µ| � |M2
1µ|

α̃
α̃−1 , there exists one unique

bifurcation surface

L2
2 = {µ : M4

2µ = δw44
1 (w24

1 )−1ŝ

λ21
λ11

+β1

1 − ŝ
λ21
λ11
1 M3

1µ+ h.o.t., w24
1 w34

1 M3
2µ > 0},
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where α̃ is same as in (1) and ŝ1 = [δ−1w24
1 (w34

1 )−1M3
2µ]

λ11
λ31+λ11β1 , such that

for µ ∈ L2
2 and 0 < |µ| � 1, system (1) has a unique homoclinic orbit Γ2

2 to
p2 in a neighborhood of the heterodimensional cycle Γ.

(3) If w34
1 = 0, then in the region |M3

2µ| � |M2
1µ|, there exists one unique bifur-

cation surface

L3
2 = {µ : M4

2µ = δw44
1 (w24

1 )−1s̄

λ21
λ11

+β1

1 − s̄
λ21
λ11
1 M3

1µ+ h.o.t., M2
1µM

3
2µ < 0},

where s̄1 = (−M
3
2µ

M2
1µ

)
λ11
λ31 , such that for µ ∈ L3

2 and 0 < |µ| � 1, system (1) has

a unique homoclinic orbit Γ3
2 to p2 in a neighborhood of the heterodimensional

cycle Γ.
(4) If w34

1 = 0, then in the region |M3
2µ| � |M2

1µ|, there exist no homoclinic
bifurcation surfaces such that system (1) has a homoclinic orbit to p2 when µ
lies on that surfaces.

Proof. In order to bifurcate a cycle homoclinic to the right saddle p2 from the
heterodimensional cycle Γ, bifurcation equations (19) need to have the solution pair
0 < s1 � 1, s2 = 0. Substituting s2 = 0 into system (19), we get

0 = w34
1 (w24

1 )−1s

λ31
λ11

+β1

1 − δ−1s

λ31
λ11
1 M2

1µ− δ−1M3
2µ+ h.o.t.

0 = −w44
1 (w24

1 )−1d2s

λ21
λ11

+β1

1 + δ−1d2s

λ21
λ11
1 M3

1µ+ δ−1d2M
4
2µ+ h.o.t.

(49)

When w34
1 6= 0, we will work out s1 from the above equations. Let t̃ = s

λ3
1/λ

1
1

1 ,
then the first equation of (49) is turned to be

w34
1 (w24

1 )−1t̃α̃ = δ−1M3
2µ+ δ−1t̃M2

1µ+ h.o.t. (50)

where α̃ is defined as in (1). Proceeding along the same techniques as (25) to

equation (50), we obtain that in case |M3
2µ| � |M2

1µ|
α̃
α̃−1 and w24

1 w34
1 M2

1µ > 0, (50)

has a unique sufficiently small positive solution t̃ = [δ−1w24
1 (w34

1 )−1M2
1µ]

1
α̃−1 +h.o.t.

In case |M3
2µ| � |M2

1µ|
α̃
α̃−1 and w24

1 w34
1 M3

2µ > 0, (50) has a unique sufficiently

small positive solution t̃ = [δ−1w24
1 (w34

1 )−1M3
2µ]

1
α̃ + h.o.t. Uniting t̃ and the second

equation of (49), the conclusions of (1) and (2) are proved.
When w34

1 = 0, the first equation of (49) becomes

s

λ31
λ11
1 M2

1µ = −M3
2µ+ h.o.t.

(51)

It is clear to observe that equation (51) has no sufficiently small solution in case
|M3

2µ| � |M2
1µ|. Therefore, there are no homoclinic bifurcation surfaces. In case

|M3
2µ| � |M2

1µ| and M2
1µM

3
2µ < 0, (51) has a unique positive solution s1 =

(−M
3
2µ

M2
1µ

)
λ11
λ31 � 1. Putting this solution into the second equation of (49), we get the

expression of L3
2, which completes the proof of Theorem 3.6.

Remark 7. Figure 6 depicts the position sketch of homoclinic bifurcation surfaces
associated to p2 in the µ-space when w24

1 > 0, w34
1 > 0, M2

1µ > 0. Comparing
Figure 5 with Figure 6, we observe that there possibly exist some codimension-
2 subsurfaces in a small neighborhood of µ = 0 which are the intersection of Lj1
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with Lk2 (j = 1, 3, k = 1, 2) and correspond to the coexistence of homoclinic orbits
associated to p1 and p2, respectively (see Fig. 7).

M3
2

O

L2
2

L12

>

-

L1
2

L3
2

M4
2

Figure 6. Bifurcation surfaces of orbits homoclinic to p2

as w24
1 ≥ 0, w34

1 ≥ 0, M2
1µ > 0.

r r
-

�
�

:

p1 p2

H1

H2

Figure 7. Diagram of coexistence of homoclinic orbits

as µ ∈ Lj1 ∩ Lk2 for j = 1, 3, k = 1, 2.

5. Discussion. The paper is concerned with codimension 3 bifurcations of het-
erodimensional cycles with inclination flip in the case of 1/β2 > β1 > 1. By con-
structing the local moving frame system in a neighborhood of the heterodimenaional
cycle, we constructed the successor functions and the Poincaré return map by using
the fundamental solution matrix of the linearly variational system with respect to
the primary cycle. Bifurcation equations were also given.

In the forementioned bifurcation analysis, we attempted to prove the possible
bifurcations from the heterodimensional cycles associated to two hyperbolic critical
points in the four dimensional space. It is interesting to find the persistence of het-
erodimensional cycles, the coexistence of heterodimensional cycles and bifurcated
periodic orbits, and the remarkable coexistence of heterodimensional cycles and
bifurcated homoclinic orbits for system (1) when an unstable manifold undergoes
inclination flip as moving along the nontransversal heteroclinic orbit. Furthermore,
we conjectured the coexistence of orbits homoclinic to p1 and p2 at the end of the
third section. However, because the bifurcation equations (19) deeply depend on
too many coefficients, it is very challenging to conduct the bifurcation analysis. A
few cases where the coexistence of heterodimensional cycles and periodic or homo-
clinic orbits could not be uniquely determined are shown in Theorem 4.3 (4) and
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Theorem 4.4 (2) and (3). The inclination flip of Wu
2 is essentially responsible for

the complicated bifurcations.
It is worthy to mention that our techniques in the present paper can be ex-

tended to investigate more general situations. Jin and Zhu [8] proved bifurcations
occurring in rough equidimensional cycles with three saddles. As a matter of fact,
we may analyze bifurcations of multi-saddle heterodimensional cycles in any finite
dimensional vector fields by the above method.

In Sun [15], the problem of persistence of generic heteroclinic orbits connecting
nonhyperbolic equilibria was investigated. Bifurcation of homoclinic orbits with a
nonhyperbolic equilibrium, such as for a saddle-node, has been dealt with (see Chow
and Lin [2]). Motivated by this note, we can study the bifurcation of heterodimen-
sional cycles associated to nonhyperbolic equilibria by constructing local moving
frame systems. However, the appearance of center manifolds of nonhyperbolic equi-
libria will increase tremendous difficulty for studying the global bifurcation problem,
since the perturbed system will exhibit local bifurcation at an equilibrium of the
unperturbed system besides the orbit bifurcation. Finally, it will be interesting to
apply the results obtained in this paper to study some biological and epidemiological
models. We leave these for future research.
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