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Abstract After the outbreak of the first avian influenza A

virus (H5N1) in Hong Kong in 1997, another avian influ-

enza A virus (H7N9) crossed the species barrier in main-

land China in 2013 and 2014 and caused more than 400

human cases with a death rate of nearly 40 %. In this paper,

we take account of the incubation periods of avian influ-

enza A virus and construct a bird-to-human transmission

model with different time delays in the avian and human

populations combining the survival probability of the

infective avian and human populations at the latent time.

By analyzing the dynamical behavior of the model, we

obtain a threshold value for the prevalence of avian influ-

enza and investigate local and global asymptotical stability

of equilibria of the system.

Keywords Avian influenza � Incubation period � Time

delay � Basic reproduction number � Local and global

asymptotical stability

Introduction

Influenza is a viral infection that affects mainly the nose,

throat, bronchi and, occasionally, lungs. Infection usually

lasts for about a week and is characterized by sudden onset

of high fever, aching muscles, headache and severe

malaise, non-productive cough, sore throat and rhinitis

(WHO 2015). Avian influenza is an infectious disease of

avian caused by type A strains of the influenza virus. Avian

influenza viruses with all 16 haemagglutinin (H1–H16) and

all 9 neuraminidase (N1–N9) influenza A subtypes in the

majority of possible combinations have been isolated from

avian species (Alexander 2007).

The avian influenza A H7N9 virus has HA of the H7

subtype and NA of the N9 subtype (CDC 2014; WHO 2014)

and is a subgroup among this larger group of H7 viruses.

Avian influenza A H7 viruses are a group of influenza

viruses that normally circulate among birds, but have been

confirmed world-wide in people who have direct contact

with infected birds. Most infections have been mild

involving only conjunctivitis and mild upper respiratory

symptoms (CIDRAP 2013; WOAH 2013). H7N9 had pre-

viously been isolated only in birds and no human infections

with H7N9 viruses had ever been reported until the 2013

outbreak in mainland China (CIDRAP 2013; WOAH 2013).

Most of the reported cases of human infection have resulted

in severe respiratory illness (Li et al. 2014) with an

unusually high rate for a new infection and high death rate

(NHFPC 2015). Data (Bao et al. 2013; Chen et al. 2013)

indicate that the novel avian influenza A H7N9 virus was

most likely transmitted from the secondary wholesale

market to the retail live-poultry market and then to humans.

Mathematical modeling has become an important tool in

analyzing the epidemiological characteristics of infectious

diseases and can provide useful control measures (Ander-

son and May 1991; Keeling and Rohani 2008). Iwami et al.

(2007) proposed ordinary differential equation (ODE)

models to characterize the dynamical behavior of avian

influenza between human and avian populations. Since

then various models have been used to study different

& Shigui Ruan

ruan@math.miami.edu

1 School of Mathematics and Statistics, Central China Normal

University, Wuhan 430079, China

2 Department of Basic Education, Wenhua College,

Wuhan 430074, Hubei, China

3 Department of Mathematics, University of Miami,

Coral Gables, FL 33124-4250, USA

123

Theory Biosci. (2015) 134:75–82

DOI 10.1007/s12064-015-0212-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s12064-015-0212-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12064-015-0212-8&amp;domain=pdf


aspects of avian influenza transmitted by the H5N1 virus

(see Lucchetti et al. 2009; Iwami et al. 2009a, b; Jung et al.

2009; Gumel 2009; Agusto 2013; Ma and Wang 2010;

Bourouiba et al. 2011; Gourley et al. 2010; Tuncer and

Martcheva 2013). Chong et al. (2014) investigated the

effect of half-saturated incidence on the transmission

dynamics of avian influenza. Liu et al. (2015), we con-

structed avian influenza bird-to-human transmission mod-

els with different growth laws of the avian population

(logistic growth and with Allee effect) and analyzed their

dynamical behavior completely. We obtained a threshold

value for the prevalence of avian influenza and investigate

the local or global asymptotical stability of each equilib-

rium of these systems by linear analysis or combining

Liapunov function method and LaSalles invariance prin-

ciple, respectively. Moreover, we gave necessary and suf-

ficient conditions for the occurrence of periodic solutions

in the avian influenza system with Allee effect of the avian

population.

It should be noted that avian influenza virus has an

incubation period in both avian and human populations

which is the time between infection and symptom onset.

Current data for A(H7N9) infection indicate an incubation

period ranging from 2 to 8 days, with an average of 5 days

(Gao et al 2013). An omission in the above models is the

incubation periods of the avian influenza in both avian and

human populations. Time delays caused by latent periods

in hosts are used to model the mechanisms in the disease

dynamics (Cooke and Van Den Driessche 1996; Beretta

et al. 2001; Beretta and Takeuchi 1995; Ruan et al. 2008,

etc.). Samanta (2010) modified the mathematical model of

avian influenza transmission dynamics among birds and

humans by introducing time-dependent parameters and

distributed time delay due to the intracellular delay

between initial infection of a cell and the release of new

virus particles on the basis of Iwami et al. (2007) and

established some sufficient conditions on the permanence

and extinction of the disease and global asymptotic sta-

bility of the model. Gourley et al. (2010) formulated a

patch model with delay to describe the temporal evolution

of the migratory birds, which play a very important role in

spreading the avian influenza H5N1 virus globally, within

each stopover and to provided some qualitative analysis of

the long-term dynamics of such a model. Bourouiba et al.

(2011) proposed delayed avian influenza models to inves-

tigate the role of migratory birds in the spread of H5N1

avian influenza focusing on the interaction of a migratory

bird species with nonmigratory poultry.

Generally speaking, the rate of change of the infectives

at time t depends not only on the number at the previous

moment t � s, but also on the probability which the

infective individuals survived natural death (with the death

rate l), where s is the finite time delay representing the

incubation period. Inspired by Iwami et al. (2007) and

Beretta et al. (2001), we model the incubation periods in

both avian and human populations by introducing different

time delays and combining the survival probability of the

infectives. This is the first time that the incubation periods

in both avian and human populations are explicitly mod-

eled. The goal of this article is to study the effect of the

time delays on the transmission dynamics of the avian

influenza.

The paper is organized as follows. In Sect. 2, we take

explicit account of the incubation periods of avian influ-

enza within both the avian and human populations and

propose a delayed SI-SIR model. The local and global

analyses of the disease-free equilibrium and the endemic

equilibrium are presented in Sects. 3 and 4 on basis of the

parameter sa; respectively. In Sect. 5, we simulate the

number of infected human population. A brief discussion

about the biological interpretation and conclusion is given

in Sect. 6.

The delayed avian influenza model

We always assume that the avian influenza virus does not

spread from person to person and mutate. The avian

population is classified into two subclasses: susceptible

and infective, denoted by SaðtÞ and IaðtÞ; respectively,

and the human population is classified into three sub-

classes: susceptible, infective and recovered, denoted by

ShðtÞ, IhðtÞ, and RhðtÞ, respectively. In order to con-

struct the corresponding model, we make the following

assumptions:

(a) All new recruitments and newborns of the avian

population (the human population) are susceptible,

the rate is denoted by Pa (Ph respectively).

(b) The avian influenza virus is not contagious from an

infected human to a susceptible human. It is only

contagious from an infected avian to a susceptible

human.

(c) The incidence rate between the susceptible avian and

the infective avian depends not only on their

numbers at the previous moment t � sa, but also

on the probability which the infective avian popu-

lation survived natural death (with the death rate la);
similarly, the incidence rate between the susceptible

human and the infective avian depends not only on

their numbers at the previous moment t � sh but also
on the probability which the infective human pop-

ulation survived natural death (with the death rate

lh). Here sa � 0 (sh � 0) is a time delay describing

the latency of avian influenza virus on avian

population (human population); The incidence rate
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between the susceptible human and the infective

avian is bilinear.

(d) An infected avian remains in the state of disease and

cannot recover, but an infected human can recover

and the recovered human has permanent immunity.

Based on the above assumptions, we have the following

avian influenza model with incubation periods:

dSa

dt
¼ Pa � laSa � baSaIa;

dIa

dt
¼ bae

�lasaSaðt � saÞIaðt � saÞ � ðla þ daÞIaðtÞ;
dSh

dt
¼ Ph � lhSh � bhShIa;

dIh

dt
¼ bhe

�lhshShðt � shÞIaðt � shÞ � ðlh þ dh þ cÞIh;
dRh

dt
¼ cIh � lhRh;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð1Þ

where ba (bh) is the contact rate between the susceptible

avian and the infective avian (between the susceptible

human and the infective avian); la (lh) is the natural

death rate of the avian population (the human popula-

tion); da (dh) is the disease-related death rate of the

infected avian (the infected human); c is the recovery

rate of the infective human. The time sa (sh) is the latent

period of avian influenza virus on avian population

(human population), Saðt � saÞ (Iaðt � saÞ) represents the

numbers of the susceptible (infectious) avian population

at time t � sa, Shðt � shÞ (Iaðt � shÞ) represents the

numbers of the susceptible (infectious) human population

at time t � sh and e�lasa (e�lash) is the probability which

the infected avian (human) survives to time t (with the

death rate la, lh, respectively), all other parameters are

positive.

The initial conditions for system (1) take the form of

SaðhÞ ¼ u1ðhÞ; IaðhÞ ¼ u2ðhÞ; ShðhÞ ¼ u3ðhÞ; Ihð0Þ ¼ u4;Rhð0Þ ¼ u5;

uiðhÞ� 0; h 2 ½�s; 0�; uið0Þ� 0; i ¼ 1; 2; 3; u4 � 0;u5� 0;

�

ð2Þ

where U ¼ ðu1ðhÞ;u2ðhÞ;u3ðhÞ;u4;u5Þ 2 Cð½�s; 0�;R5
þÞ,

the Banach space of continuous functions mapping the

interval ½�s; 0� into R5
þ, s ¼ maxfsa; shg, R5

þ ¼
�
ðSa; Ia; Sh; Ih;RhÞ : Sa � 0; Ia � 0; Sh � 0; Ih � 0;Rh � 0

�
.

It is well known by the fundamental theory of functional

differential equations Hale (1977) that system (1) has a

unique solution ðSa; Ia; Sh; Ih;RhÞ satisfying the initial

conditions (2). It is easy to show that all solutions of system

(1) with initial conditions (2) are defined on ½0;þ1Þ and

remain positive for all t� 0:

Define the basic reproduction number by

R0 ¼
Pabae

�lasa

laðla þ daÞ
:

We can deduce a unique disease-free equilibrium given by

AðS�a; 0; S�h; 0; 0Þ from system (1), where

S�a ¼
Pa

la
; S�h ¼

Ph

lh
:

If R0 [ 1, we can also derive a unique endemic equilib-

rium given by BðS��a ; I��a ; S��h ; I��h ;R��
h Þ; where

S��a ¼ ðlaþ daÞelasa
ba

; I��a ¼ la
ba

ðR0� 1Þ; S��h ¼ Ph

bhI��a þlh
;

I��h ¼ bhe
�lhsh I��a S��h

lhþ dhþ c
; R��

h ¼ cI��h
lh

:

Remark 2.1 From the expression of R0 we have

R0 � 1 , sa � s�a; R0 [ 1 , 0� sa\s�a; where

s�a ¼
1

la
ln

Paba
laðla þ daÞ

:

It should be noted that the first four equations of system

(1) are independent of the fifth equation, so we only need to

consider the following subsystem:

dSa

dt
¼ Pa � laSa � baSaIa;

dIa

dt
¼ bae

�lasaSaðt � saÞIaðt � saÞ � ðla þ daÞIaðtÞ;
dSh

dt
¼ Ph � lhSh � bhShIa;

dIh

dt
¼ bhe

�lhshShðt � shÞIaðt � shÞ � ðlh þ dh þ cÞIh:

8
>>>>>>>><

>>>>>>>>:

ð3Þ

Obviously, system (3) always has a unique disease-free

equilibrium A1ðS�a; 0; S�h; 0Þ and also has a unique endemic

equilibrium B1ðS��a ; I��a ; S��h ; I��h Þ if 0� sa\s�a.
Next, we will study the property of these equilibria.

Local stability of the equilibria

In order to study the local stability of the equilibria, we first

recall some known results on the distribution of roots for

some transcendental equations.

Lemma 3.1 (Cooke and Grossman 1982) Let f ðk; sÞ ¼
kþ Aþ Be�ksa ; where A;B; sa are real numbers and

sa � 0. Then, as sa varies, the sum of the multiplicities of

zeros of f in the open right half-plane can change only if a

zero appears on or crosses the imaginary axis.

Lemma 3.2 (Ruan and Wei 2003) Let f ðk; sÞ ¼ k2 þ
AðsaÞkþ BðsaÞke�ksa þ CðsaÞ þ DðsaÞe�ksa ; where AðsaÞ;
BðsaÞ; CðsaÞ; DðsaÞ; sa are real-valued functions and

sa � 0. Then, as sa varies, the sum of the multiplicities of
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zeros of f in the open right half-plane can change only if a

zero appears on or crosses the imaginary axis.

Theorem 3.3 (1) The disease-free equilibrium

A1ðS�a; 0; S�h; 0Þ of system (3) is locally asymptotically stable

if sa � s�a and unstable if 0� sa\s�a; (2) the endemic

equilibrium B1ðS��a ; I��a ; S��h ; I��h Þ of system (3) is locally

asymptotically stable if 0� sa\s�a.

Proof (1) The matrix form of the linearized system of (3)

around the disease-free equilibrium A1ðS�a; 0; S�h; 0Þ takes

the form

dX

dt
¼ A1XðtÞ þ A2Xðt � saÞ þ A3Xðt � shÞ; ð4Þ

where

The characteristic equation of the linearized system (4) is

ðkþ lh þ dh þ cÞðkþ lhÞðkþ laÞ
ðkþ la þ da � bae

�lasaS�ae
�ksaÞ ¼ 0: ð5Þ

It should be noted that the characteristic equation (5)

always has three negative eigenvalues given by

k1 ¼ �ðlh þ dh þ cÞ\0; k2 ¼ �lh\0; k3 ¼ �la\0,

then the real parts of other eigenvalues of (5) are decided

by the following equation:

f ðkÞ ¼ kþ la þ da � baS
�
ae

�ðlaþkÞsa ¼ 0: ð6Þ

Clearly, if sa ¼ 0, thenR0 ¼ R�
0 ¼

baS
�
a

laþda
, the eigenvalue of

Eq. (6) is k ¼ ðla þ daÞðR�
0 � 1Þ\0.

We consider two cases.

Case I sa [ s�a (i.e., R0\1). Suppose k ¼ ixðx[ 0Þ is
a root of (6), separating the real and imaginary parts, we

have the following:

la þ da ¼ ðla þ daÞ cosðxsaÞ;
x ¼ �ðla þ daÞ sinðxsaÞ:

�

Squaring and adding both equations, we have ðla þ daÞ2 þ
x2 ¼ ðla þ daÞ2; which reduces to x ¼ 0. It implies that

all the eigenvalues have negative real part according to

Lemma 3.1, hence the disease-free equilibrium is locally

asymptotically stable.

Case II 0� sa\s�a (i.e., R0 [ 1). Obviously,

f ð0Þ ¼ la þ da � baS
�
ae

�lasa ¼ ðla þ daÞð1�R0Þ\0,

and f ðkÞ ! þ1 as k ! þ1; then there must exist a

k0 [ 0 such that f ðk0Þ ¼ 0. Hence, the characteristic

equation (6) has at least one root with positive real part.

Therefore, A1 is unstable.

(2) If 0� sa\s�a (i.e., R0 [ 1), the endemic equilibrium

B1ðS��a ; I��a ; S��h ; I��h Þ exists. The matrix form of linearized

system of (3) around the endemic equilibrium B1 is

dX

dt
¼ B1XðtÞ þ B2Xðt � saÞ þ B3Xðt � shÞ ð7Þ

XðtÞ ¼

SaðtÞ
IaðtÞ
ShðtÞ
IhðtÞ

0

B
B
B
@

1

C
C
C
A
; A1 ¼

�la � baS
�
a 0 0

0 � ðla þ daÞ 0 0

0 � bhS
�
h � lh 0

0 0 0 � ðlh þ dh þ cÞ

0

B
B
B
@

1

C
C
C
A
;

A2 ¼

0 0 0 0

0 bae
�lasaS�a 0 0

0 0 0 0

0 0 0 0

0

B
B
B
@

1

C
C
C
A
; A3 ¼

0 0 0 0

0 0 0

0 0 0 0

0 bhe
�lhshS�h 0 0

0

B
B
B
@

1

C
C
C
A
:
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with

The characteristic equation of (7) is

ðkþ lh þ dh þ cÞðkþ bhI
��
a þ lhÞðk2 þ Akþ Bke�ksa

þ C þ De�ksaÞ ¼ 0 ð8Þ

where AðsaÞ ¼ la þ da þ laR0; B ¼ �ðla þ daÞ;
CðsaÞ ¼ ðla þ daÞlaR0; D ¼ �laðla þ daÞ:

Since the characteristic equation (8) always has two

negative eigenvalues k ¼ �ðlh þ dh þ cÞ\0; k ¼
�ðbhI��a þ lhÞ\0; the real parts of other eigenvalues are

decided by the equation

k2 þ AðsaÞkþ Bke�ksa þ CðsaÞ þ De�ksa ¼ 0: ð9Þ

If sa ¼ 0, Eq. (9) reduces to

k2 þ laR0kþ laðla þ daÞðR0 � 1Þ ¼ 0; ð10Þ

where R0 ¼ R�
0 ¼

baS
�
a

laþda
, which is independent of the

parameter sa. Obviously, all the eigenvalues of system (10)

have negative real parts if R0 [ 1.

If sa [ 0, let k ¼ ix;x[ 0; be a root of (9), separating

real and imaginary parts, we have the following:

�x2 þ C ¼ �Bx sinðxsaÞ � D cosðxsaÞ;
Ax ¼ �Bx cosðxsaÞ þ D sinðxsaÞ:

�

Squaring and adding both equations we have

x4 þ Q1x
2 þ Q2 ¼ 0; ð11Þ

where Q1 ¼ A2 � 2C � B2 ¼ l2aR2
0 [ 0;Q2 ¼ C2 � D2 ¼

l2aðla þ daÞ2ðR2
0 � 1Þ: If R0 [ 1, then Q2 [ 0, hence the

Eq. (11) has no positive root, which implies that all

eigenvalues of Eq. (10) have negative real parts according

to Lemma 3.2. Hence, the endemic equilibrium B1 is

locally asymptotically stable for any sa 2
�
0; s�a

�
:h

Remark 3.4 If sa ¼ s�a (i.e., R0 ¼ 1), the endemic equi-

librium B1 coincides with the disease-free equilibrium A1

which is a saddle-node and is locally asymptotically stable

for positive trajectories.

Global stability of the equilibria

In order to prove the global stability of the equilibria, we

first consider the avian-only subsystem:

dSa

dt
¼ Pa � laSa � baSaIa;

dIa

dt
¼ bae

�lasaSaðt � saÞIaðt � saÞ � ðla þ daÞIaðtÞ:

8
><

>:

ð12Þ

It should be noted that the avian-only system (12) is

independent of the full system (1). System (12) always has

a unique disease-free disease AaðS�a; 0Þ and a unique

endemic equilibrium BaðS��a ; I��a Þ if 0� sa\s�a. Similarly,

we can derive that the disease-free disease Aa is locally

asymptotically stable if sa � s�a and the endemic equilib-

rium Ba is locally asymptotically stable if 0� sa\s�a. In
fact, the avian-only system (12) has been studied by Huang

et al. (2010) and we recall one of their results here.

XðtÞ ¼

SaðtÞ
IaðtÞ
ShðtÞ
IhðtÞ

0

B
B
B
@

1

C
C
C
A
; B1 ¼

�ðbaI��a þ laÞ � baS
��
a 0 0

0 � ðla þ daÞ 0 0

0 � bhS
��
h � ðbhI��a þ lhÞ 0

0 0 0 � ðlh þ dh þ cÞ

0

B
B
B
@

1

C
C
C
A
;

B2 ¼

0 0 0 0

bae
�lasa I��a bae

�lasaS��a 0 0

0 0 0 0

0 0 0 0

0

B
B
B
@

1

C
C
C
A
; B3 ¼

0 0 0 0

0 0 0

0 0 0 0

0 bhe
�lhshS��h bhe

�lhsh I��a 0

0

B
B
B
@

1

C
C
C
A
:
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Lemma 4.1 (Huang et al. 2010) (1) If sa � s�a, then the

disease-free equilibrium Aa is globally asymptotically

stable; (2) if 0� sa\s�a, then the endemic equilibrium Ba is

globally asymptotically stable.

Now we apply Lemma 4.1 to prove the global stability

of the disease-free equilibrium A1 and the endemic equi-

librium B1 of system (3).

Theorem 4.2 (1) If sa � s�a, then the disease-free equi-

librium A1ðS�a; 0; S�h; 0Þ of system (3) is globally asymptot-

ically stable; (2) if 0� sa\s�a, then the endemic

equilibrium B1ðS��a ; I��a ; S��h ; I��h Þ of system (3) is globally

asymptotically stable.

Proof

1. According to Lemma 4.1, the disease-free equilibrium

Aa of system (12) is globally asymptotically stable if

sa � s�a. To prove the global stability of the equilibrium

A1 of system (3), we only need to consider system (3)

with the avian components already at the endemic

steady state, given by

dSh

dt
¼ Ph � lhSh;

dIh

dt
¼ �ðlh þ dh þ cÞIh:

8
><

>:
ð13Þ

It is clear that Sh ! S�h and Ih ! 0 when t ! 1.

Hence, the disease-free equilibrium A1 of system (3) is

globally asymptotically stable.

2. Similarly, by Lemma 4.1, the endemic equilibrium Ba

of system (12) is globally asymptotically stable if

0� sa\s�a. To prove the global stability of the

equilibrium B1 of system (3), we once again consider

system (3) with the avian components already at the

endemic steady state, given by

dSh

dt
¼ Ph � bhI

��
a Sh � lhSh;

dIh

dt
¼ bhe

�lhsh I��a Shðt � shÞ � ðlh þ dh þ cÞIh:

8
><

>:

ð14Þ

By the first equation of system (14), we can easily

obtain that Sh ! S��h when t ! 1. Then, Shðt �
shÞ ! S��h , hence Ih ! I��h when t ! 1 from the

second equation of system (14). Hence, the endemic

equilibrium B1 of system (3) is globally asymptoti-

cally stable. h

Corollary 4.3

1. If sa � s�a, then the disease-free equilibrium

AðS�a; 0; S�h; 0; 0Þ of system (1) is globally asymptoti-

cally stable;

2. If 0� sa\s�a, then the endemic equilibrium

BðS��a ; I��a ; S��h ; I��h ;R��
h Þ of system (1) is globally

asymptotically stable.

Remark 4.4 The parameter sa (the time delay describing

the latent period in the avian population) is also a threshold

value that determines whether the avian influenza disap-

pears or not. If sa � s�a, the avian influenza disappears, but

if 0� sa\s�a, the avian influenza exists and becomes an

endemic disease.

Remark 4.5 The parameter sh (the time delay describing

the latent period in the human population) does not influ-

ence the stability of the equilibria.

Numerical simulations

In this section, we investigate the influence of the time

delays on the number of infected humans by performing

some numerical simulations.

We choose parameters Pa ¼ 350, la ¼ 0:01,

ba ¼ 7 � 10�6, da ¼ 0:05, Ph ¼ 100, bh ¼ 8� 10�7,

lh ¼ 3:91� 10�3, dh ¼ 0:3, c ¼ 0:01. The initial values

are fixed at ðSað0Þ; Iað0Þ; Shð0Þ; Ihð0Þ;Rhð0ÞÞ ¼
ð20;000; 1111; 20;000; 0; 0Þ: With these parameters, the

threshold value of time delay sa is s�a 	 141.

If sa\s�a, the endemic disease is prevalent, the solution

IhðtÞ is asymptotically stable and converges to the endemic

state value. By comparison, when we choose time delays as

sa ¼ 6; sh ¼ 4 and sa ¼ 0; sh ¼ 0; respectively, we

observe that the time delay indeed decreases the number of

infected humans slightly (see Fig. 1). When the time delay
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Fig. 1 The plot of IhðtÞ with or without time delay when sa is less

than s�a. The solution IhðtÞ is asymptotically stable and converges to

the endemic state value
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sh is fixed and the time delay sa takes different values, we
can see that the number of infected humans decreases when

the time delay sa increases (see Fig. 2). When the time

delay sa is fixed and the time delay sh takes different

values, we observe that the number of infected humans also

decreases when the time delay sh increases (see Fig. 3).

If sa [ s�a, the endemic disease disappears. For example,

when the time delay sa is fixed at 142, we can see that the

number of infected humans decreases with time delay sh
increasing and the solution IhðtÞ is asymptotically stable

and converges to the disease-free state value (see Fig. 4).

Discussion

In this paper, to study the transmission dynamics of avian

influenza from birds to humans we considered the incu-

bation periods of avian influenza within both the human

and the avian populations and constructed a delay differ-

ential equation model with different time delays. We

obtained a threshold value for the prevalence of avian

influenza and discussed the local and global asymptotical

stability of each equilibrium of the delay system. Our

results indicate that the asymptotic dynamics of the model

are completely determined by the threshold value s�a (or the
basic reproduction number): the disease-free equilibrium

exists and is locally asymptotically stable if sa � s�a (or the
basic reproduction number is no less than the unity); the

disease-free equilibrium becomes unstable and the endemic

equilibrium exists and is locally asymptotically stable if

0� sa\s�a (or the basic reproduction number is greater

than the unity). In other words, the avian influenza disap-

pears if sa � s�a, but is prevalent and becomes endemic

disease if 0� sa\s�a. Furthermore, we proved the globally

asymptotic stability of the positive steady state for all delay

values sa as long as sa\s�a (i.e., the reproduction number is

greater than one). Our numerical simulations (see Figs. 1,

2, 3) confirmed the result as well. Since the incubation

period of avian influenza virus in avian population is much

shorter than the threshold value, our theory result may

explain the present avian influenza’s prevalence.

Our results demonstrate that transmission dynamics of

the avian influenza is completely determined by the incu-

bation period in birds. It is interesting to note that the

incubation period of the avian virus in human population

does not affect the stability of the equilibria and thus the
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Fig. 2 The plots reveal that different values of the time delay sa
influence the change of IhðtÞ, where sa is less than s�a and sh ¼ 4. The

solution IhðtÞ is asymptotically stable and converges to the endemic

state value
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influence the changes of IhðtÞ, where sa ¼ 4\s�a. The solution IhðtÞ is
asymptotically stable and converges to the endemic state value
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transmission and outbreak of the disease, since infected

humans do not spread the virus any further. However, the

theoretical analyses and numerical simulations indicate that

prolong both the incubation periods within the human and

avian populations could reduce the numbers of the infected

human and may help to control the disease.

The roles of wild birds and domestic birds in the

transmission of the H5N1 avian influenza are different and

mathematical models have been proposed to include both

types of birds (Bourouiba et al. 2011; Gourley et al. 2010;

Lucchetti et al. 2009; Tuncer and Martcheva 2013). It will

be very interesting to include both wild birds and domestic

birds in modeling the bird-to-human transmission of the

H7N9 avian influenza; we leave this for future

consideration.
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