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Abstract This paper is concerned with the traveling wave solutions of delayed reaction–
diffusion systems. By using Schauder’s fixed point theorem, the existence of traveling wave
solutions is reduced to the existence of generalized upper and lower solutions. Using the
technique of contracting rectangles, the asymptotic behavior of traveling wave solutions for
delayed diffusive systems is obtained. To illustrate our main results, the existence, nonexis-
tence and asymptotic behavior of positive traveling wave solutions of diffusive Lotka–Volterra
competition systems with distributed delays are established. The existence of nonmonotone
traveling wave solutions of diffusive Lotka–Volterra competition systems is also discussed.
In particular, it is proved that if there exists instantaneous self-limitation effect, then the large
delays appearing in the intra-specific competitive terms may not affect the existence and
asymptotic behavior of traveling wave solutions.

Keywords Nonmonotone traveling wave solutions · Contracting rectangle · Invariant
region · Generalized upper and lower solutions
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1 Introduction

In studying the nonlinear dynamics of delayed reaction–diffusion systems, one of the impor-
tant topics is the existence of traveling wave solutions because of their significant roles in
biological invasion and epidemic spreading, we refer to Ai [2], Gourley and Ruan [4], Fang
and Wu [5], Faria et al. [6], Faria and Trofimchuk [7,8], Huang and Zou [12], Kwong and Ou
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[14], Li et al. [15], Liang and Zhao [16], Lin et al. [17], Ma [18,19], Ma and Wu [20], Mei
[22], Ou and Wu [23], Schaaf [26], Smith and Zhao [29], Thieme and Zhao [31], Wang [33],
Wang et al. [34–36], Wu and Zou [38], and Yi et al. [40]. It has been shown that delay may
induce some differences of traveling wave solutions between the delayed and undelayed sys-
tems, for example, the minimal wave speed (see Schaaf [26], Zou [41]) and the monotonicity
of traveling wave solutions in scalar equations (see an example in Faria and Trofimchuk [7]).
In particular, the asymptotic behavior of traveling wave solutions, which is often formulated
by the asymptotic boundary conditions, plays a very crucial role since it describes the prop-
agation processes in different natural environments. For example, with proper asymptotic
boundary value conditions, the traveling wave solutions of two species diffusive competition
systems may reflect the coinvasion-coexistence of two invaders (see Ahmad and Lazer [1],
Li et al. [15], Lin et al. [17], Tang and Fife [30]), or exclusion between an invader and a
resident (see Gourley and Ruan [4], Huang [13]). Therefore, understanding the asymptotic
behavior is a fundamental issue in the study of traveling wave solutions. Moreover, very
detailed asymptotic behavior of traveling wave solutions has also been studied due to the
development in mathematical theory of delayed reaction–diffusion systems, such as in the
asymptotic stability and uniqueness of traveling wave solutions (see Mei et al. [22], Volpert
et al. [32], Wang et al. [36]).

To obtain the asymptotic behavior of traveling wave solutions in delayed reaction–
diffusion systems, there are several methods. The first is based on the monotonicity of trav-
eling wave solutions, which is often considered under the assumption of quasimonotonicity
in the sense of proper ordering (Huang and Zou [12], Ma [18], Wang et al. [34], Wu and
Zou [38]). The second is to construct proper auxiliary functions, such as the upper and lower
solutions (Li et al. [15], Lin et al. [17]). When these methods fail, a fluctuation technique is
utilized to study the asymptotic behavior of traveling wave solutions if the system satisfies the
locally quasimonotone condition near the unstable steady state (Ma [19], Wang [33]). Some
other results have also been presented for (fast) traveling wave solutions of scalar equations
(Faria and Trofimchuk [7,8], Kwong and Ou [14]).

Of course, before considering the asymptotic behavior of traveling wave solutions of
delayed systems, we must establish the existence of nontrivial traveling wave solutions. To
obtain the existence of traveling wave solutions of delayed systems, Wu and Zou [38] used a
monotone iteration scheme if a delayed system is cooperative in the sense of proper ordering,
see also Ma [18]. Li et al. [15] further considered the existence of traveling wave solutions
in competition systems by a cross iteration technique. Very recently, Ma [19] studied the
traveling wave solutions of a locally monotone delayed equation by constructing auxiliary
monotone equations, see also Wang [33], Yi et al. [40]. Moreover, by regarding the time delay
as a parameter, the existence of traveling wave solutions was also studied by the perturbation
method or Banach fixed point theorem, see Gourley and Ruan [4], Ou and Wu [23].

In this paper, we first study the existence and asymptotic behavior of traveling wave
solutions in the following delayed reaction–diffusion system

∂vi (x, t)

∂t
= di�vi (x, t)+ fi (vt (x)), (1.1)

where x ∈ R, t > 0, v = (v1, v2, . . . , vn) ∈ R
n, d1, d2, . . . , dn are positive con-

stants, vt (x) := v(x, t + s), s ∈ [−τ, 0] and τ > 0 is the time delay, therefore,
fi : C([−τ, 0],Rn) → R, here C([−τ, 0],Rn) is the space of continuous functions defined
on [−τ, 0] and valued in R

n, which is a Banach space equipped with the supremum norm.
To overcome the difficulty arising from the deficiency of comparison principle, we intro-

duce the definition of generalized upper and lower solutions of the corresponding wave system
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of delayed system (1.1). By using Schauder’s fixed point theorem, the existence of traveling
wave solutions is reduced to the existence of generalized upper and lower solutions. Moti-
vated by the idea of contracting rectangles in evolutionary systems, we establish an abstract
conclusion on the asymptotic behavior of positive traveling wave solutions in general partial
functional differential equations. Subsequently, we consider two scalar delayed equations
with diffusion in population dynamics (see Ma [19] and Zou [41]), which implies that our
methods can also be applied to some well studied models.

In population dynamics, the following Lotka–Volterra reaction–diffusion system with
distributed delay has been widely studied

∂ui (x, t)

∂t
= di�ui (x, t)+ ri ui (x, t)

⎡
⎣1 −

n∑
j=1

ci j

0∫

−τ
u j (x, t + s)dηi j (s)

⎤
⎦ , (1.2)

in which i ∈ {1, 2, . . . , n} =: I, x ∈ � ⊆ R
k, k ∈ N, t > 0, u = (u1, u2, . . . , un) ∈

R
n, ui (x, t) denotes the density of the i-th competitor at time t and in location x ∈ �, di >

0, ri > 0, cii > 0 and ci j ≥ 0 are constants for i, j ∈ I, i �= j. We also suppose that

ηi j (s) is nondecreasing on [−τ, 0] and ηi j (0)− ηi j (−τ) = 1,

which will be imposed throughout the paper. Let

ai = ηi i (0)− ηi i (0−), i ∈ I,

and set

ηi i (s) =
{
ηi i (s), s ∈ [−τ, 0),

ηi i (0−), s = 0,
ηi j (s) = ηi j (s), i, j ∈ I, i �= j.

Clearly, ai > 0 implies the existence of instantaneous self-limitation effect in population
dynamics.

The dynamics of (1.2) has been studied by several authors, for example, Gourley and
Ruan [4], Fang and Wu [5], Li et al. [15], Lin et al. [17], Martin and Smith [21] and Ruan
and Wu [25]. More precisely, when � is a bounded domain and (1.2) is equipped with the
Neumann boundary condition, Martin and Smith [21] proved that if the initial values of (1.2)
are positive and

n∑
j=1

ci j (c j j a j )
−1 < 2, i ∈ I, (1.3)

then the unique mild solution to (1.2) satisfies

ui (x, t) → u∗
i , t → ∞, i ∈ I, x ∈ �, (1.4)

hereafter u∗ = (u∗
1, u∗

2, . . . , u∗
n) is the unique spatially homogeneous positive steady state

of (1.2), of which the existence can be obtained by (1.3). It is well known that ai < 1 implies
the existence of time delay in intra-specific competition, which often leads to some significant
differences between the dynamics of delayed and undelayed models if the time delay is large.
For example, the following Logistic and Hutchinson equations

du(t)

dt
= u(t)(1 − u(t)),

du(t)

dt
= u(t)(1 − u(t − τ)), τ > 0

exhibit dramatically different dynamics, we refer to Ruan [24] for detailed analysis on these
two equations and Hale and Verduyn Lunel [11] and Wu [37] for fundamental theories on
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delayed equations. However, (1.4) does not depend on the size of delays and the distribution
of ηi i (s) for s ∈ [−τ, 0). Similar phenomena can be founded in the corresponding functional
differential equations, see Smith [28, Sect. 5.7].

In particular, Li et al. [15] and Lin et al. [17] have established the existence of traveling
wave solutions to (1.2), which models the invasion-coexistence scenario of multiple com-
petitors. However, these results only hold if there exists τ0 ∈ [0, τ ] small enough satisfying∫ 0
−τ0

dηi i (s) = 1, i ∈ I, which ensures the so-called exponentially monotone condition
such that the upper and lower solutions are admissible. If τ0 is large, then we cannot apply
these techniques and results to study the existence and asymptotic behavior of traveling wave
solutions of (1.2). In this paper, we shall consider the existence and further properties of
nontrivial traveling wave solutions of (1.2) with ai > 0, i ∈ I .

Using the results on the existence and asymptotic behavior of traveling wave solutions
in system (1.1), model (1.2) with � = R is studied by presenting the existence, nonex-
istence and asymptotic behavior of positive traveling wave solutions. In particular, due to
less requirements for auxiliary functions, we obtain some sufficient conditions on the exis-
tence of nonmonotone traveling wave solutions of (1.2) with ai = 1, i ∈ I . Note that these
conclusions remain true if τ = 0, we thus confirm the conjecture about the existence of
nonmonotone traveling wave solutions of competitive systems, which was proposed by Tang
and Fife [30, the last paragraph].

The rest of this paper is organized as follows. In Sect. 2, we list some preliminaries.
Using contracting rectangles, the asymptotic behavior of traveling wave solutions of general
partial functional differential equations (1.1) is established in Sect. 3, and is applied to two
examples considered by Ma [19] and Zou [41]. In Sect. 4, we introduce the generalized upper
and lower solutions and study the existence of traveling wave solutions in (1.1). In Sect. 5,
we investigate the traveling wave solutions of the Lotka–Volterra system (1.2), including the
existence, nonexistence, asymptotic behavior and monotonicity. This paper ends with a brief
discussion of our methods and results.

2 Preliminaries

In this paper, we shall use the standard partial ordering and interval notations in R
n .Namely,

if u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ R
n, then u ≥ vi f f ui ≥ vi , i ∈ I ; u >

vi f f u ≥ v but ui > vi for some i ∈ I ; u 	 vi f f ui > vi , i ∈ I. Moreover, X will be
interpreted as follows

X = {u : u is a bounded and uniformly continuous function from R to R
n},

which is a Banach space equipped with the supremum norm ‖ · ‖. If a, b ∈ R
n with a ≤ b,

then

X[a,b] = {u ∈ X : a ≤ u(x) ≤ b, x ∈ R}.

Let u(x) = (u1(x), . . . , un(x)), v(x) = (v1(x), . . . , vn(x)) ∈ X, then u(x) ≥ v(x) implies
that u(x) ≥ v(x) for all x ∈ R; u(x) > v(x) is interpreted as u(x) ≥ v(x) but u(x) > v(x)
for some x ∈ R; and u(x) 	 v(x) if u(x) > v(x) and for each i ∈ I, there exists xi ∈ R

such that ui (xi ) > vi (xi ).u(x) is a nonnegative, positive and strictly positive function iff
u(x) ≥ 0, u(x) > 0 and u(x) 	 0, respectively.
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Consider the Fisher equation
{
∂z(x,t)
∂t = d�z(x, t)+ r z(x, t) [1 − z(x, t)] ,

z(x, 0) = z(x) ∈ X[0,1]
(2.1)

with x ∈ R, t > 0, d > 0, r > 0 and n = 1 in the definition of X .

Lemma 2.1 For (2.1), we have the following conclusions.

(i) (2.1) admits a unique solution z(·, t) ∈ X[0,1] for all t > 0.
(ii) If z(·, t), z(·, t) ∈ X for t > 0 such that that

∂z(x, t)

∂t
≥ d�z(x, t)+ r z(x, t) [1 − z(x, t)] ,

∂z(x, t)

∂t
≤ d�z(x, t)+ r z(x, t)

[
1 − z(x, t)

]
,

then z(x, t)and z(x, t)are upper and lower solutions to (2.1), respectively. Furthermore,
we have

z(x, t) ≥ z(x, t) ≥ z(x, t)

if z(x, 0) ≥ z(x) ≥ z(x, 0).
(iii) If z(x) > 0 and c ∈ (0, 2

√
dr), then

lim inf
t→∞ inf|x |<ct

z(x, t) = lim sup
t→∞

sup
|x |<ct

z(x, t) = 1.

For (i) and (ii) of Lemma 2.1, we refer to Fife [9] and Ye et al. [39]. (iii) of Lemma 2.1 is
the classical theory of asymptotic spreading, see Aronson and Weinberger [3].

3 Asymptotic Behavior of Traveling Wave Solutions

Consider the following functional differential equation corresponding to (1.1)

dli (t)

dt
= fi (lt ), i ∈ I, (3.1)

in which l = (l1, l2, . . . , ln) ∈ R
n, fi is defined by (1.1) and satisfies the following assump-

tions:

H1 There exists E 	 0 such that fi (̂0) = fi (Ê) = 0, where ·̂ denotes the constant valued
function in C([−τ, 0],Rn) and E = (E1, E2, . . . , En) ∈ R

n;

H2 There exist E ≥ E ≥ E ≥ 0 such that [Ê, Ê] is a positively invariant ordered interval
of (3.1), where

E = (E1, E2, . . . , En), E = (E1, E2, . . . , En);

H3 If u ∈ C([−τ, 0],Rn) and 0̂ ≤ u(t + s) ≤ b̂(0) for s ∈ [−τ, 0], then fi (ut ) :
C([−τ, 0],Rn) → R is Lipschitz continuous in the sense of supremum norm, here b(0) ≤ E
is a constant vector clarified by (H4)–(H5);
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H4 There exists a one-parameter family of ordered intervals given by
∑

(y) = [̂a(y), b̂(y)]
such that a(0) ≤ E ≤ E ≤ b(0) and for 0 ≤ y1 ≤ y2 ≤ 1

0 ≤ a(0) ≤ a(y1) ≤ a(y2) ≤ a(1) = E = b(1) ≤ b(y2) ≤ b(y1) ≤ b(0),

where a(y) and b(y) are continuous in y ∈ [0, 1];
H5

∑
(y) is a strict contracting rectangle, namely, let

a(y) = (a1(y), a2(y), . . . , an(y)), b(y) = (b1(y), b2(y), . . . , bn(y)),

then for any y ∈ (0, 1) and u ∈∑(y), we have

fi (u) > 0( fi (u) < 0) if ui (0) = ai (y)(ui (0) = bi (y)), i ∈ I.

To continue our discussion, we now introduce the following definition of traveling wave
solutions of (1.1).

Definition 3.1 A traveling wave solution of (1.1) is a special solution

vi (x, t) = φi (x + ct), i ∈ I,

where c > 0 is the wave speed and � = (φ1, φ2, . . . , φn) ∈ C2(R,Rn) is the wave profile.

By the definition, � = (φ1, φ2, . . . , φn) satisfies

diφ
′′
i (ξ)− cφ′

i (ξ)+ f c
i (�ξ ) = 0, i ∈ I, ξ ∈ R; (3.2)

in which f c
i (�ξ ) : C([−cτ, 0],Rn) → R is defined by

f c
i (�ξ ) = fi (�(ξ + cs)), s ∈ [−τ, 0], i ∈ I.

Using the contracting rectangles, we present the following asymptotic boundary conditions
of traveling wave solutions.

Theorem 3.2 Assume (H1)–(H5). Let � ∈ X be a positive solution of (3.2) with

E 	 lim sup
ξ→∞

�(ξ) ≥ lim inf
ξ→∞ �(ξ) 	 E . (3.3)

Then limξ→∞�(ξ) = E if �′ and �′′ are uniformly bounded.

Proof Denote

lim sup
ξ→∞

�(ξ) = �+, lim inf
ξ→∞ �(ξ) = �−

with

�± = (φ±
1 , φ

±
2 , . . . , φ

±
n ).

Were the statement false, then�+ > �− holds and (3.3) implies that there exists y ∈ (0, 1)
such that

a(y) ≤ �− ≤ �+ ≤ b(y).
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In particular, let y1 ∈ (0, 1) be the largest y such that the above is true, then y1 is well defined.
Without loss of generality, we assume that

φ−
1 = a1(y1)

with a(y) = (a1(y), a2(y), . . . , an(y)).
Due to the uniform boundedness of φ′

1 and φ′′
1 , the fluctuation lemma of continuous

functions implies that there exists {ξm},m ∈ N, with limm→∞ ξm = ∞ such that

lim inf
ξ→∞ φ1(ξ) = lim

m→∞φ1(ξm) = a1(y1) ≤ lim sup
ξ→∞

φ1(ξ) ≤ b1(y1)

and

lim inf
m→∞ (d1φ

′′
1 (ξm)− cφ′

1(ξm)) ≥ 0.

At the same time, (H5) leads to

lim inf
m→∞ f c

1 (�ξm ) > 0,

and we obtain a contradiction between

lim inf
m→∞ (d1φ

′′
1 (ξm)− cφ′

1(ξm)+ f c
1 (�ξm )) > 0 (3.4)

and

lim inf
m→∞ (d1φ

′′
1 (ξm)− cφ′

1(ξm)+ f c
1 (�ξm )) = 0.

The proof is complete. ��
Remark 3.3 In fact, the proof of the existence of traveling wave solutions often implies the
uniform boundedness of�′ and�′′, so we will not discuss the boundedness in the following
two examples.

Now, we recall two scalar equations to give a simple illustration of the theorem. We first
consider the example in Zou [41].

Example 3.4 In (3.1), let

f (ut ) = u(t − τ)[1 − u(t)].
Then traveling wave solutions of the corresponding partial functional differential equation
has been established by Zou [41].

Define E = 0, E = 1 + k for any k > 0 and

a(s) = s, b(s) = (1 + k)(1 − s)+ s, s ∈ [0, 1].
Then [a(s), b(s)] is a contracting rectangle of the corresponding functional differential
equation such that Theorem 3.2 is applicable to the study of traveling wave solutions. Let
u(x, t) = ρ(x + ct) be a traveling wave solution of

∂u(x, t)

∂t
= �u(x, t)+ ru(x, t − τ)[1 − u(x, t)], r > 0.

If ρ(ξ), ξ ∈ R, is bounded and lim infξ→∞ ρ(ξ) > 0, then limξ→∞ ρ(ξ) = 1 by Theo-
rem 3.2.

If the quasimonotone condition does not hold, Ma [19] studied the traveling wave solutions
by constructing proper auxiliary systems. In particular, the traveling wave solutions of the
following example have been well studied.
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Example 3.5 Consider

∂w(x, t)

∂t
= �w(x, t)− w(x, t)+ e2w(x, t − τ)e−w(x,t−τ) (3.5)

and denote f (w) = e2we−w.

Using the results in Smith [28, Sect. 5.2], we can give two auxiliary quasimonotone equa-
tions to study the dynamics of the corresponding functional differential equations of (3.5).
In addition, Ma [19] presented two auxiliary quasimonotone equations of (3.5) and obtained
the convergence of traveling wave solutions. Let

w(x, t) = ρ(x + ct)

be a traveling wave solution of (3.5) and denote

lim inf
ξ→∞ ρ(ξ) = ρ−, lim sup

ξ→∞
ρ(ξ) = ρ+,

then the auxiliary equations in Ma [19] imply that

f (e) = e3−e ≤ ρ− ≤ ρ+ ≤ e (3.6)

and f (w) is monotone decreasing for w ∈ [e3−e, e]. If ρ+ = e, then a discussion similar to
that of (3.4) implies that f (ρ−) ≥ e by the monotonicity of f, which is impossible by (3.6).
By the monotonicity of f and (3.6), we further obtain that

e3−e < f ( f (e3−e)) ≤ ρ− ≤ ρ+ ≤ f (e3−e) = f ( f (e)) < e.

Let E = f ( f (e3−e)), E = f ( f (e)), then [Ê, Ê] defines an invariant region of the corre-
sponding functional differential equation of (3.5).

To continue our discussion, define

f 2(w) = f ( f (w)),

then f 2(w) satisfies the following properties:

(F1) f 2(w) is monotone increasing for w ∈ [e3−e, e];
(F2) f 2(w) > w,w ∈ [e3−e, 2) while f 2(w) < w,w ∈ (2, e].

For convenience, we give the graph of f 2 in Fig. 1.
Let k = 2, k1 = e3−e(< 2) and

a(s) = sk + (1 − s)k1 + εh(s), b(s) = f (sk + (1 − s)k1),

in which

2h(s) = f 2(sk + (1 − s)k1)− (sk + (1 − s)k1) > 0,

and ε < 1 is small such that

a(s) < 2, s ∈ (0, 1)

and

a(0) < f 2(e3−e) < f 2(e) = b(0).

By (F2), h(s) > 0, s ∈ (0, 1) and h(s) = 0, s = 1.
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Fig. 1 The graph of the composition map f 2

If w(0) = a(s) with a(s) ≤ w(−τ) ≤ b(s), then

−w(0)+ f (w(−τ))
≥ −a(s)+ f (b(s))

= −(sk + (1 − s)k1 + εh(s))+ f 2(sk + (1 − s)k1)

= (2 − ε)h(s) > 0, s ∈ (0, 1).

If w(0) = b(s) with a(s) ≤ w(−τ) ≤ b(s), then

−w(0)+ f (w(−τ))
≤ −b(s)+ f (a(s))

< −b(s)+ f (sk + (1 − s)k1)

= 0, s ∈ (0, 1),

which implies that [a(s), b(s)] satisfies (H5). Using Theorem 3.2, limξ→∞ ρ(ξ) = 2 holds.

4 Generalized Upper and Lower Solutions

In this section, we shall study the existence of traveling wave solutions of delayed system (1.1)
for any fixed c > 0, where f satisfies (H1)–(H3) in Sect. 3. We first introduce the generalized
upper and lower solutions of (3.2) as follows.

Definition 4.1 Assume that T ⊂ R contains finite points of R.Then� = (φ1, φ2, . . . , φn) ∈
X[0,E] and� = (φ

1
, φ

2
, . . . , φ

n
) ∈ X[0,E] are a pair of generalized upper and lower solutions

of (3.2) if for each ξ ∈ R \T, �
′′
(ξ),�

′
(ξ),�′′(ξ),�′(ξ) are bounded and continuous such

that

diφ
′′
i (ξ)− cφ

′
i (ξ)+ f c

i (�̃ξ ) ≤ 0 (4.1)
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with �̃(ξ) = (φ̃1(ξ), φ̃2(ξ), . . . , φ̃n(ξ)) ∈ X[0,E] satisfying

φ
j
(ξ + cs) ≤ φ̃ j (ξ + cs) ≤ φ j (ξ + cs), φ̃i (ξ) = φi (ξ), s ∈ [−τ, 0], i, j ∈ I,

and

diφ
′′
i
(ξ)− cφ′

i
(ξ)+ f c

i (�̂ξ ) ≥ 0 (4.2)

with �̂(ξ) = (φ̂1(ξ), φ̂2(ξ), . . . , φ̂n(ξ)) ∈ X[0,E] satisfying

φ
j
(ξ + cs) ≤ φ̂ j (ξ + cs) ≤ φ j (ξ + cs), φ̂i (ξ) = φ

i
(ξ), s ∈ [−τ, 0], i, j ∈ I.

Remark 4.2 If f is quasimonotone, then Definition 4.1 is equivalent to Ma [18, Definition
2.2], Wu and Zou [38, Definition 3.2]; if f is mixed quasimonotone, then Definition 4.1
becomes Lin et al. [17, Definition 3.1].

For any fixed ξ ∈ R, let β > 0 be a fixed constant such that

βφi (ξ)+ f c
i (�ξ )

is monotone increasing in φi (ξ), i ∈ I,� = (φ1, φ2, . . . , φn) ∈ X[0,E]. From (H3), β is
well defined.

Define constants

νi1(c) = c −√c2 + 4βdi

2di
, νi2(c) = c +√c2 + 4βdi

2di
, i ∈ I.

For the sake of simplicity, we denote νi1 = νi1(c), νi2 = νi2(c) without confusion. Then
νi1 < 0 < νi2 and

diν
2
i j − cνi j − β = 0, i ∈ I, j = 1, 2.

For � = (φ1, φ2, . . . , φn) ∈ X[0,E], define F = (F1, F2, . . . , Fn) : X → X by

Fi (�)(ξ) = 1

di (νi2 − νi1)

⎡
⎢⎣

ξ∫

−∞
eνi1(ξ−s) +

+∞∫

ξ

eνi2(ξ−s)

⎤
⎥⎦ Li (�)(s)ds, (4.3)

herein L(�)(s) = (L1(�)(s), L2(�)(s), . . . , Ln(�)(s)) is formulated by

Li (�)(ξ) = βφi (ξ)+ f c
i (�ξ ), i ∈ I.

Now, to prove the existence of (3.2), it is sufficient to seek after a fixed point of F (see Wu
and Zou [38]).

Let σ < mini∈I {−νi1} be a positive constant and | · | denote the supremum norm in R
n .

Define

Bσ
(
R,Rn) =

{
�(x) ∈ X : sup

x∈R

|�(x)| e−σ |x | < ∞
}

and

|�|σ = sup
x∈R

|�(x)| e−σ |x |.

Then it is easy to check that Bσ (R,Rn) is a Banach space with the decay norm |·|σ .
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Before giving our main conclusion of this section, we first present some calculations. If
φ(s) is twice differentiable, then

d

ds

[
e−νi j s ((c − diνi j )φ(s)− diφ

′(s)
)]

= e−νi j s [−νi j (c − diνi j )φ(s)+ diνi jφ
′(s)
]

+e−νi j s ((c − diνi j )φ
′(s)− diφ

′′(s)
)

= e−νi j s [−diφ
′′(s)+ cφ′(s)+ βφ(s)

]
(4.4)

because of diν
2
i j − cνi j − β = 0, i ∈ I, j = 1, 2.

If a bounded function φ(s) admits continuous and bounded derivatives φ′(s) and φ′′(s)
for s ∈ (a, b) with a < b, then

b∫

a

e−νi j s [−diφ
′′(s)+ cφ′(s)+ βφ(s)

]
ds

= e−νi j b ((c − diνi j )φ(b−)− diφ
′(b−))

−e−νi j a ((c − diνi j )φ(a+)− diφ
′(a+)) . (4.5)

Moreover, if ξ ∈ (a, b), then

1

di (νi2 − νi1)

⎡
⎢⎣

ξ∫

a

eνi1(ξ−s) +
b∫

ξ

eνi2(ξ−s)

⎤
⎥⎦ (βφi (s)+ cφ′

i (s)− diφ
′′
i (s))ds

= 1

di (νi2 − νi1)

[
eνi1(ξ−s) ((c − diνi1)φ(s)− diφ

′(s)
)]∣∣∣∣

ξ

a

+ 1

di (νi2 − νi1)

[
eνi2(ξ−s) ((c − diνi2)φ(s)− diφ

′(s)
)]∣∣∣∣

b

ξ

= φ
i
(ξ)+ e−νi2b

(
(c − diνi2)φ(b−)− diφ

′(b−))
di (νi2 − νi1)

−e−νi1a
(
(c − diνi1)φ(a+)− diφ

′(a+))
di (νi2 − νi1)

. (4.6)

Now we state and prove the main result of this section.

Theorem 4.3 Assume that � = (φ1, φ2, . . . , φn) ∈ X[0,E] and � = (φ
1
, φ

2
, . . . , φ

n
) ∈

X[0,E] are a pair of generalized upper and lower solutions of (3.2) such that

�(ξ) ≥ �(ξ), ξ ∈ R

and

φ
′
i (ξ+) ≤ φ

′
i (ξ−), φ′

i
(ξ+) ≥ φ′

i
(ξ−), ξ ∈ T, i ∈ I.

Then (3.2) has a solution � such that � ≤ � ≤ �.

Proof Let

� = {�(ξ) ∈ X : �(ξ) ≤ �(ξ) ≤ �(ξ)}.
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It is clear that � is nonempty and convex. Moreover, it is closed and bounded with respect
to the decay norm | · |σ . Choose � = (φ1, φ2, . . . , φn) ∈ �, then for each fixed ξ ∈ R, the
definition of β implies that

βφ
i
(ξ)+ f c

i (�̂ξ ) ≤ βφi (ξ)+ f c
i (�ξ ) ≤ βφi (ξ)+ f c

i (�̃ξ ) (4.7)

with �̃(ξ + cs) = (φ̃1(x + cs), φ̃2(x + cs), . . . , φ̃n(x + cs)) satisfying
{
φ̃ j (ξ + cs) = φ j (ξ + cs), j �= i, s ∈ [−τ, 0],
φ̃i (ξ + cs) = φi (ξ + cs), s ∈ [−τ, 0), φ̃i (ξ) = φi (ξ)

and �̂(ξ + cs) = (φ̂1(x + cs), φ̂2(x + cs), . . . , φ̂n(x + cs)) satisfying
{
φ̂ j (ξ + cs) = φ j (ξ + cs), j �= i, s ∈ [−τ, 0],
φ̂i (ξ + cs) = φi (ξ + cs), s ∈ [−τ, 0), φ̂i (ξ) = φ

i
(ξ).

By (4.3)–(4.7), we obtain

Fi (�)(ξ)

≥ 1

di (νi2 − νi1)

⎡
⎢⎣

ξ∫

−∞
eνi1(ξ−s) +

+∞∫

ξ

eνi2(ξ−s)

⎤
⎥⎦ (βφi

(s)+ cφ′
i
(s)− diφ

′′
i
(s))ds

= φ
i
(ξ)+

∑
Tj ∈T

min
{
eνi1(ξ−Tj ), eνi2(ξ−Tj )

}
νi2 − νi1

[
φ′

i
(Tj+)− φ′

i
(Tj−)

]

≥ φ
i
(ξ), ξ ∈ R \ T. (4.8)

Using the continuity of Fi (�)(ξ), φi
(ξ), we obtain

Fi (�)(ξ) ≥ φ
i
(ξ), ξ ∈ R.

In a similar way, we have

Fi (�)(ξ) ≤ φi (ξ), i ∈ I, ξ ∈ R,

and

F : � → �.

Moreover, similar to those in Huang and Zou [12], Li et al. [15, Lemma 3.6] and Ma [18],
F : � → � is completely continuous in the sense of the decay norm | · |σ . Using Schauder’s
fixed point theorem, we complete the proof. ��
Remark 4.4 Let � be a solution given by Theorem 4.3. From (4.8), we obtain

φi (ξ) > φ
i
(ξ), ξ ∈ R, i ∈ I

if one of the following statements is true: 1) for each i ∈ I, φ′
i
(ξ+) > φ′

i
(ξ−) for some

ξ ∈ T; 2) for each i ∈ I, (4.2) is strict on an nonempty interval. Similarly, we have

φi (ξ) < φi (ξ), ξ ∈ R, i ∈ I

if one of the following statements is true: (1) for each i ∈ I, φ
′
i (ξ+) < φ

′
i (ξ−) for some

ξ ∈ T; (2) for each i ∈ I, (4.1) is strict on an nonempty interval.

Remark 4.5 Let� be a solution given by Theorem 4.3. Since F(�)(ξ) = �(ξ), then�′(ξ)
and �′′(ξ) are uniformly bounded by the bounds of �(ξ).
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5 Traveling Wave Solutions of the Lotka–Volterra System (1.2)

In this section, we study the existence and nonexistence of traveling wave solutions of (1.2)
with � = R, ai > 0, i ∈ I . We first introduce some notations.

Let u(x, t) = �(x + ct) = (ψ1(x + ct), ψ2(x + ct), . . . , ψn(x + ct)) be a traveling wave
solution of (1.2). Then �(ξ) satisfies the following functional differential system

diψ
′′
i (ξ)− cψ ′

i (ξ)+ riψi (ξ)

⎡
⎣1 −

n∑
j=1

ci j

0∫

−τ
ψ j (ξ + cs)dηi j (s)

⎤
⎦ = 0, i ∈ I, ξ ∈ R.

(5.1)

Similar to those in Li et al. [15], Lin et al. [17], Martin and Smith [21], we consider the invasion
waves of all competitors which satisfy the following asymptotic boundary conditions

lim
ξ→−∞ψi (ξ) = 0, lim

ξ→∞ψi (ξ) = u∗
i . (5.2)

Remark 5.1 From the viewpoint of population dynamics, (5.1)–(5.2) formulate the synchro-
nous invasion of all competitors, we refer to Shigesada and Kawasaki [27, Chap. 7] for
the historical records of the expansion of the geographic range of several plants in North
American after the last ice age (16,000 years ago).

5.1 Existence of Traveling Wave Solutions

To construct upper and lower solutions, we define some constants. For any fixed c >

maxi∈I {2√
diri }, define constants γi1 and γi2 such that 0 < γi1 < γi2 and

diγ
2
i1 − cγi1 + ri = diγ

2
i2 − cγi2 + ri = 0 for i ∈ I. (5.3)

Assume that q > 1 holds and η satisfies

η ∈
(

1, min
i, j∈I

{
γi2

γi1
,
γi1 + γ j1

γi1

})
. (5.4)

Define continuous functions ψ
i
(ξ) and ψ i (ξ) as follows

ψ
i
(ξ) = max{eγi1ξ − qeηγi1ξ , 0}, ψ i (ξ) = min{eγi1ξ , (ai cii )

−1}, i ∈ I.

Lemma 5.2 If q > 1 is large, then ψ
i
(ξ) and ψ i (ξ) are generalized upper and lower

solutions of (5.1).

Proof By the monotonicity, it suffices to prove that

diψ
′′
i (ξ)− cψ

′
i (ξ)+ riψ i (ξ)

⎡
⎣1 − cii aiψ i (ξ)−

n∑
j=1

ci j

0∫

−τ
ψ

j
(ξ+ cs)dηi j (s)

⎤
⎦≤0, i ∈ I,

(5.5)
and

diψ
′′
i
(ξ)− cψ ′

i
(ξ)+riψ i

(ξ)

⎡
⎣1−cii aiψ i

(ξ)−
n∑

j=1

ci j

0∫

−τ
ψ j (ξ+ cs)dηi j (s)

⎤
⎦ ≥ 0, i ∈ I

(5.6)
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if ψ
i
(ξ) and ψ i (ξ), i ∈ I, are differentiable.

If ψ i (ξ) = eγi1ξ < (ai cii )
−1, then

diψ
′′
i (ξ)− cψ

′
i (ξ)+ riψ i (ξ)

⎡
⎣1 − cii aiψ i (ξ)−

n∑
j=1

ci j

0∫

−τ
ψ

j
(ξ + cs)dηi j (s)

⎤
⎦

≤ diψ
′′
i (ξ)− cψ

′
i (ξ)+ riψ i (ξ)

= eγi1ξ [diγ
2
i1 − cγi1 + ri ]

= 0.

If ψ i (ξ) = (ai cii )
−1 < eγi1ξ , then

diψ
′′
i (ξ)− cψ

′
i (ξ)+ riψ i (ξ)

⎡
⎣1 − cii aiψ i (ξ)−

n∑
j=1

ci j

0∫

−τ
ψ

j
(ξ + cs)dηi j (s)

⎤
⎦

≤ diψ
′′
i (ξ)− cψ

′
i (ξ)+ riψ i (ξ)

[
1 − cii aiψ i (ξ)

]

= 0,

and this completes the proof of (5.5).
If ψ

i
(ξ) = 0 > eγi1ξ − qeηγi1ξ , then

diψ
′′
i
(ξ)− cψ ′

i
(ξ)+ riψ i

(ξ)

⎡
⎣1 − cii aiψ i

(ξ)−
n∑

j=1

ci j

0∫

−τ
ψ j (ξ + cs)dηi j (s)

⎤
⎦ = 0.

If ψ
i
(ξ) = eγi1ξ − qeηγi1ξ > 0, then

diψ
′′
i
(ξ)− cψ ′

i
(ξ)+ riψ i

(ξ)

⎡
⎣1 − cii aiψ i

(ξ)−
n∑

j=1

ci j

0∫

−τ
ψ j (ξ + cs)dηi j (s)

⎤
⎦

= diψ
′′
i
(ξ)− cψ ′

i
(ξ)+ riψ i

(ξ)

−ri cii aiψ
2
i
(ξ)− riψ i

(ξ)

n∑
j=1

ci j

0∫

−τ
ψ j (ξ + cs)dηi j (s)

= −qeηγi1ξ [diη
2γ 2

i1 − cηγi1 + ri ]

−ri cii aiψ
2
i
(ξ)− riψ i

(ξ)

n∑
j=1

ci j

0∫

−τ
ψ j (ξ + cs)dηi j (s),

and the monotonicity of ψ j indicates that

−ri cii aiψ
2
i
(ξ)− riψ i

(ξ)

n∑
j=1

ci j

0∫

−τ
ψ j (ξ + cs)dηi j (s)

≥ −ri cii aiψ
2
i
(ξ)− riψ i

(ξ)

n∑
j=1

ci jψ j (ξ)
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≥ −ri cii ai e
2γi1ξ − ri

n∑
j=1

ci j e
(γi1+γ j1)ξ .

Therefore, we only need to verify that

− qeηγi1ξ [diη
2γ 2

i1 − cηγi1 + ri ] − ri cii ai e
2γi1ξ − ri

n∑
j=1

ci j e
(γi1+γ j1)ξ ≥ 0. (5.7)

Since q > 1, we have ξ < 0 and

eηγi1ξ > e2γi1ξ , eηγi1ξ > e(γi1+γ j1)ξ ,

which imply that (5.7) is true if

q >
−ri cii ai − ri

∑n
j=1 ci j

diη2γ 2
i1 − cηγi1 + ri

+ 1 > 1.

Let

q = max
i∈I

{−ri cii ai − ri
∑n

j=1 ci j

diη2γ 2
i1 − cηγi1 + ri

}
+ 2,

then (5.6) is true and we complete the proof. ��
From Lemma 5.2, Theorem 4.3 and Remark 4.4, we obtain the following result.

Theorem 5.3 For each c > maxi∈I {2√
diri }, (5.1) has a strictly positive solution � =

(ψ1, ψ2, . . . , ψn) such that

lim
ξ→−∞ψi (ξ)e

−γi1ξ = 1, ψ
i
(ξ) < ψi (ξ) < ψ i (ξ), ξ ∈ R, i ∈ I. (5.8)

5.2 Asymptotic Behavior of Traveling Wave Solutions

The following is the main conclusion of this subsection.

Theorem 5.4 Assume that (1.3) holds. If �(ξ) is formulated by Theorem 5.3, then (5.2) is
true.

Proof Note that�(x +ct) is a special classical solution of the following initial value problem
⎧⎨
⎩
∂ui (x, t)

∂t
= di�ui (x, t)+ ri ui (x, t)

[
1 −∑n

j=1 ci j
∫ 0
−τ u j (x, t + s)dηi j (s)

]
,

ui (x, s) = ψi (x + cs),
(5.9)

where x ∈ R, t > 0, s ∈ [−τ, 0]. The boundedness and smoothness of�(x + ct) imply that
ψi (x + ct) is an upper solution to the following Fisher equation

∂ui (x, t)

∂t
= di�ui (x, t)+ ri ui (x, t)

⎡
⎣2 −

n∑
j=1

ci j (c j j a j )
−1 − ai cii ui (x, t)

⎤
⎦ .

Thus Lemma 2.1 asserts that

lim inf
ξ→∞ ψi (ξ) ≥ 2 −

n∑
j=1

ci j (c j j a j )
−1 > 0, i ∈ I.
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Denote

lim inf
ξ→∞ ψi (ξ) = ψ−

i , lim sup
ξ→∞

ψi (ξ) = ψ+
i ,

then there exists s ∈ (0, 1] such that

ai (s) ≤ ψ−
i ≤ ψ+

i ≤ bi (s)

with

ai (s) = su∗
i , bi (s) = su∗

i + (1 − s)[(cii ai )
−1 + ε], ε > 0,

a(s) = (a1(s), a2(s), . . . , an(s)), b(s) = (b1(s), b2(s), . . . , bn(s)).

By Smith [28, Lemma 7.4], there exists a constant ε > 0 such that [a(s), b(s)] defines a
strictly contracting rectangle of the corresponding functional differential equations of (1.2).
Applying Theorem 3.2, we complete the proof. ��

Furthermore, from the proof of Theorem 5.4, we obtain the following result.

Theorem 5.5 Assume that�(ξ) = (ψ1(ξ), ψ2(ξ), . . . , ψn(ξ)) is a strictly positive solution
to (5.1) and satisfies

0 ≤ ψi (ξ) < (ai cii )
−1, i ∈ I, ξ ∈ R.

Then limξ→∞ ψi (ξ) = u∗
i if (1.3) holds.

5.3 Nonexistence of Traveling Wave Solutions

Theorem 5.6 Assume that 2
√

di0ri0 = maxi∈I {2√
diri } for some i0 ∈ I. If c < 2

√
di0ri0 ,

then (5.1) does not have a bounded positive solution � = (ψ1, ψ2, . . . , ψn) satisfying

lim
ξ→−∞ψi (ξ) = 0, lim inf

ξ→∞ ψi0(ξ) > 0, ξ ∈ R, i ∈ I. (5.10)

Moreover, if (1.3) holds, then (5.1) does not have a strictly positive solution such that

0 ≤ ψi (ξ) < (ai cii )
−1, i ∈ I, ξ ∈ R.

Proof Without loss of generality, we assume that 2
√

d1r1 = maxi∈I {2√
diri }. If (1.3) holds,

then (5.10) is obtained by Theorem 5.5. So we suppose that (5.10) is true. Were the statement
false, then there exists some c′ ∈ (0, 2

√
d1r1) such that (5.1) with c = c′ has a positive

solution � = (ψ1, ψ2, . . . , ψn). Then (5.10) implies that there exists M > 0 such that
ψ1(ξ) = ψ1(x + c′t) satisfies

{
∂w(x,t)
∂t ≥ d1�w(x, t)+ r ′

1w(x, t) [1 − Mw(x, t)] ,

w(x, 0) = ψ1(x),

where 4
√

d1r ′
1 = 2

√
d1r1 + c′. In fact, if ξ → −∞, then limξ→−∞ ψi (ξ) = 0 ensures the

admissibility of r ′
1. Otherwise, lim infξ→∞ ψ1(ξ) > 0 implies the admissibility of M (may

be large but finite). By the smoothness of ψ1(x + c′t), we know that ψ1(x + c′t) is an upper
solution to the following initial value problem

{
∂w(x,t)
∂t = d1�w(x, t)+ r ′

1w(x, t) [1 − Mw(x, t)] ,

w(x, 0) = ψ1(x).
(5.11)
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Let −2x = (2
√

d1r ′
1 +c′)t, then t → ∞ implies that x +c′t → −∞ such that u1(x, t) =

ψ1(x + c′t) → 0. At the same time,

−2x =
(

2
√

d1r ′
1 + c′

)
t < 4

√
d1r ′

1t

and Lemma 2.1 lead to lim inf t→∞ u1(x, t) ≥ 1/M in (5.11), a contradiction occurs. The
proof is complete. ��
Remark 5.7 Even if c < maxi∈I {2√

diri }, (5.1) may have a nontrivial positive solution
� = (ψ1, ψ2, . . . , ψn) such that maxi∈I lim infξ→−∞ ψi (ξ) > 0. We refer to Guo and
Liang [10], Huang [13] for some recent results of the corresponding undelayed eqnarrays.

Remark 5.8 Theorem 5.6 completes the discussions of Li et al. [15, Example 5.1] and Lin et
al. [17, Example 5.2] by presenting the nonexistence of traveling wave solutions. Therefore, it
also improves some results for undelayed systems by confirming the nonexistence of traveling
wave solutions without the requirement of monotonicity, for example, Ahmad and Lazer [1]
and Tang and Fife [30]. See next subsection.

5.4 Existence of Nonmonotone Traveling Wave Solutions

If τ = 0, Ahmad and Lazer [1], Tang and Fife [30] proved the existence of monotone
traveling wave solutions of (1.2). Recently, Fang and Wu [5] also confirmed the existence of
monotone traveling wave solutions if τ is small and n = 2. In particular, Tang and Fife [30]
thought that the monotonicity was a technical requirement and conjectured the existence of
nonmonotone traveling wave solutions if τ = 0 and n = 2.

In the previous section, we obtained the existence of traveling wave solutions connecting
0 with u∗.Because our requirement for the auxiliary functions was very weak, we can present
some sufficient conditions of the existence of nonmonotone traveling wave solutions if ai = 1
for all i ∈ I .

By rescaling, it suffices to consider (1.2) with cii = 1, i ∈ I. Then (1.3) implies that
ci j < 1, i �= j, i, j ∈ I, which further indicates that we can obtain a fixed q such that
Lemma 5.2 holds for any fixed c (so η can be a constant) and for all ci j < 1, i �= j, i, j ∈ I.

Therefore, for each fixed c, there exist mi > 0 (e.g., mi = supξ∈R
ψ

i
(ξ)) independent of

ci j such that

sup
ξ∈R

ψ
i
(ξ) ≥ mi , i ∈ I.

Let u∗ be the function of ci j with i �= j, i, j ∈ I, then there exist ci j with i �= j, i, j ∈ I,
such that (1.3) is true and

u∗
i ≤ mi

holds for some i ∈ I. (5.8) further indicates that

sup
ξ∈R

ψi (ξ) > u∗
i ,

and the existence of nonmonotone traveling wave solutions follows from (5.2).
To further illustrate our conclusions, we also give some numerical simulations. Take

{
0.0001φ′′

1 (ξ)− φ′
1(ξ)+ 0.1φ1(ξ) [1 − φ1(ξ)− 0.55φ2(ξ)] = 0,

0.05φ′′
2 (ξ)− φ′

2(ξ)+ 0.5φ2(ξ) [1 − φ2(ξ)− 0.75φ1(ξ)] = 0
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Fig. 2 The traveling wave solution u1(x, t)

such that

k1 ≈ 0.7659, k2 ≈ 0.4255.

Then the nonmonotonic traveling wave solutions are presented in Figs. 2 and 3.

5.5 Further Results for n = 1

It is difficult to consider the existence of (5.1)–(5.2) if c = maxi∈I {2√
diri }. But for n = 1,

we can obtain the existence of traveling wave solutions by passing to a limit function. When
n = 1, (1.2) becomes

∂v(x, t)

∂t
= d�v(x, t)+ rv(x, t)

⎡
⎣1 −

0∫

−τ
v(x, t + s)dζ (s)

⎤
⎦ , (5.12)

herein v ∈ R, d > 0, r > 0, x ∈ R, t > 0 and

ζ (s) is nondecreasing on [−τ, 0] and ζ (0)− ζ (−τ) = 1.

In particular, we shall suppose that τ is the real maximum delay involved in (5.12), namely,
there is no τ0 < τ such that

∫ 0
−τ0

dζ (s) = 1. Denote

b = ζ (0)− ζ (0−)
and set

ζ(s) =
{
ζ (s), s ∈ [−τ, 0),

ζ (0−), s = 0.
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Fig. 3 The traveling wave solution u2(x, t)

Then (1.3) implies that

b ∈ (1/2, 1] (5.13)

and (5.13) will be imposed in this subsection.
Let v(x, t) = φ(x + ct) be a traveling wave solution of (5.12). Then it satisfies

dφ′′(ξ)− cφ′(ξ)+ rφ(ξ)

⎡
⎣1 − bφ(ξ)−

0∫

−τ
φ(ξ + cs)dζ(s)

⎤
⎦ = 0, ξ ∈ R (5.14)

and the asymptotic boundary conditions

lim
ξ→−∞φ(ξ) = 0, lim

ξ→∞φ(ξ) = 1. (5.15)

Clearly, if c > 2
√

dr or c < 2
√

dr , then the existence or nonexistence of (5.14)–(5.15)
has been addressed by the previous results. The following result deals with the case when
c = 2

√
dr .

Theorem 5.9 When c = 2
√

dr , (5.12) also has a positive traveling wave solution connecting
0 with 1.

Proof Let {cn} be a decreasing sequence with cn < 4
√

dr and cn → 2
√

dr , n → ∞. Then
for each cn, (5.12) has a positive traveling wave solution connecting 0 with 1, denoted by
φn(ξ). It follows that 0 ≤ φn(ξ) ≤ 1/b, ξ ∈ R, n ∈ N. Note that a traveling wave solution
is invariant in the sense of phase shift, so we assume that

φn(0) = 2b − 1

8b
, φn(ξ) <

2b − 1

8b
, ξ < 0. (5.16)
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By (5.15), we know that (5.16) is admissible. For n ∈ N, ξ ∈ R, it is evident that φn(ξ) are
equicontinuous and bounded in the sense of the supremum norm. By Ascoli-Arzela lemma
and a nested subsequence argument, {φn(ξ)} has a subsequence, still denoted by {φn(ξ)},
such that

φn(ξ) → φ(ξ), n → ∞
for a continuous function φ(ξ). We see that the above convergence is pointwise on R and is
also uniform on any bounded interval of R.

Note that

min{eγ1(cn)(ξ−s), eγ2(cn)(ξ−s)} → min{eγ1(2
√

dr)(ξ−s), eγ2(2
√

dr)(ξ−s)}, n → ∞,

for any given ξ ∈ R, and the convergence in s is uniform for s ∈ R. Applying the dominated
convergence theorem in F, we know that φ(ξ) is a fixed point of F and a solution to (5.14).

By (5.15) and (5.16), φ also satisfies

φ(0) = 2b − 1

8b
, φ(ξ) ≤ 2b − 1

8b
, ξ < 0, φ ∈ X[0,1/b].

Namely, φ(ξ) is a positive solution to (5.14), which is uniformly continuous for ξ ∈ R. Now,
we are in a position to verify the asymptotic boundary conditions (5.15). Due to φ(0) > 0 and
Lemma 2.1, lim infξ→∞ φ(ξ) > 0 holds. By Theorem 5.5, we obtain limξ→∞ φ(ξ) = 1.

Define

lim sup
ξ→−∞

φ(ξ) = φ+, lim inf
ξ→−∞ φ(ξ) = φ−.

It is clear that

0 ≤ φ− ≤ φ+ ≤ 2b − 1

8b
.

If φ− > 0, then the dominated convergence theorem in F implies that

4φ− ≥ 4φ− + φ−(1 − bφ− − (1 − b)φ+),

which is impossible by (5.16). Hence, φ− = 0 follows.
If φ+ > 0, then there exist {ξ j }, j ∈ N with ξ j → −∞, j → ∞ such that φ(ξ j ) →

φ+, j → ∞. Using the uniform continuity of φ, there exists δ > 0 such that

2b − 1

8b
≥ φ(ξ) ≥ φ+/2, ξ ∈ (ξ j − δ, ξ j + δ), j → ∞. (5.17)

We now return to the Fisher equation
{
∂z(x,t)
∂t = d�z(x, t)+ r z(x, t) [1 − (1 − b)/b − bz(x, t)] ,

z(x, 0) = z(x),

of which an upper solution is φ(x + ct) if z(x) ≤ φ(x). Let z(x) satisfy

(z1) z(x) ∈ X,
(z2) z(x) = φ+/2, x ∈ [−δ/2, δ/2],
(z3) z(±δ) = 0 and z(x) is decreasing (increasing) if x ∈ (δ/2, δ)(x ∈ (−δ,−δ/2)),
(z4) z(x) = 0 if |x | > δ.
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Because of φ(0) = 2b−1
8b ≥ φ+ and the uniform continuity of φ(ξ), we see that δ > 0 is

admissible. Then there exists T > 0 such that

z(0, t) >
2b − 1

4b
> φ+, t ≥ T (see Lemma 2.1). (5.18)

For each j ∈ N, there exists j ′ ∈ N such that ξ j ′ < ξ j − 2
√

drT − 2δ. When ξ j and ξ j ′
satisfy (5.17), then (5.18) and Lemma 2.1 imply that

φ(ξ j ) >
2b − 1

4b
> φ+,

which is impossible by (5.17) and the arbitrariness of j . Therefore, φ+ = 0. The proof is
complete. ��

6 Discussion

Delay is a very common process in many biological and physical phenomena and many
important and realistic models with delay have been proposed to describe various problems
in applied subjects. The fundamental theory of delayed differential equations have been
well-developed, we refer to the monographs of Hale and Verduyn Lunel [11] and Wu [37].
It is well-known that the dynamics between the delayed and undelayed systems may be
significantly different; for instance, the delayed Logistic equation or Hutchinson equation
exhibits nontrivial periodic solutions while all the nonnegative solutions of the Logistic
equation converge to the positive steady state. Moreover, to study delayed systems, more
complex phase spaces than that of the corresponding undelayed systems are required. The
investigation of traveling wave solutions of delayed systems is also more difficult than that
of the corresponding undelayed systems, at least the phase plane method which is powerful
in studying undelayed systems meets some difficulties in the study of delayed systems.

Of course, if a system is (local) quasimonotone, then the classical theory established for
monotone semiflows is applicable and there are plentiful results. For example, the existence,
nonexistence, minimal wave speed, uniqueness and stability of traveling wave solutions have
been widely studied and many sharp results have been established, see Liang and Zhao [16],
Schaaf [26], Thieme and Zhao [31], Smith and Zhao [29], and Wang et al. [35,36]. If the
system is not quasimonotone, then the study becomes harder and some new phenomena can
occur, e.g., the existence of nonmonotone traveling wave solutions in scalar equations, see
Faria and Trofimchuk [7]. When the delay is small enough, some nice results on traveling
wave solutions can also be obtained by different techniques such as exponential ordering,
perturbation and so on, see Ai [2], Fang and Wu [6], Lin et al. [17], Ou and Wu [23], Wang
et al. [34], and Wu and Zou [38].

However, if the delay is large, these techniques cannot deal with the traveling wave solu-
tions of delayed systems including (1.2) and (5.12). In this paper, we applied generalized
upper and lower solutions to seek after the positive traveling wave solutions. Since these
systems do not satisfy the quasimonotone condition, the limit behavior of traveling wave
solutions cannot be obtained by the monotonicity of traveling wave solutions and the domi-
nated convergence theorem. In particular, for the case c = 2

√
dr in (5.12), the asymptotic

behavior of traveling wave solutions cannot be considered by the techniques of monotone
traveling wave solutions in Liang and Zhao [16] and Thieme and Zhao [31]. In this paper, we
studied the asymptotic behavior of traveling wave solutions of (1.2) and (5.12) by combining
the idea of contracting rectangles with the theory of asymptotic spreading.
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Our results imply that if there exists instantaneous self-limitation effect, then the large
delays appearing in the intra-specific competition terms may not affect the persistence of
traveling wave solutions. However, very likely large delay may also lead to some significant
differences between the traveling wave solutions of delayed and undelayed systems, e.g., the
nonexistence of monotone traveling wave solutions of (5.12), which will be investigated in
our future studies.
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