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Abstract
In this paper, we study the spreading speed in an integrodifference system which
models invasion of predators into the habitat of the prey. Without the requirement of
comparison principle, we construct several auxiliary integrodifference equations and
use the results of monotone scalar equations to estimate the spreading speed of the
invading predators.We also present some numerical simulations to support our theoret-
ical results and demonstrate that the integrodifference predator–prey system exhibits
very complex dynamics. Our theory and numerical results imply that the invasion
of predators may have a rough constant speed. Moreover, our numerical simulations
indicate that the spatial contact of individuals and the overcompensatory phenomenon
of the prey may be conducive to the persistence of nonmonotone biological systems
and lead to instability of the predator-free state.
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1 Introduction

Discrete-time models may describe the evolutionary process of species with non-
overlapping generations, and there aremanywell-studied difference systemsmodeling
the interspecific and intraspecific actions among multiple species; we refer to some
classical references on discrete predator–prey models by Beddington et al. (1975),
Hastings (1984), Hofbauer et al. (1987), May (1974), Nicholson and Bailey (1935),
a very recent paper by Weide et al. (2019) and references cited therein. Among these
works, Hofbauer et al. (1987) studied the dynamics of the following coupled system

Ui,n+1 = Ui,n exp

⎛
⎝ri −

K∑
j=1

ai jU j,n

⎞
⎠ , Ui,0 > 0, (1)

in which Ui,n represents the density of the i th species in the system of the nth gener-
ation, i, j ∈ {1, 2, . . . , K }, K ∈ N is a constant, n + 1 ∈ N and other parameters are
given to formulate the ratios of interspecific and intraspecific actions. When K = 2,
model (1) takes the form as follows:

U1,n+1 = U1,n exp

⎛
⎝r1 −

2∑
j=1

a1 jU j,n

⎞
⎠ , U2,n+1 = U2,n exp

⎛
⎝r2 −

2∑
j=1

a2 jU j,n

⎞
⎠

(2)

with U1,0 > 0, U2,0 > 0. Clearly, by selecting different parameters, model (2) may
be of competitive type (if a12 < 0, a21 < 0), cooperative type (if a12 > 0, a21 > 0)
or predator–prey type (if a12a21 < 0). After scaling, one predator–prey system takes
the following form:

⎧⎪⎨
⎪⎩

un+1 = uner1(1−un−a1vn), n + 1 ∈ N

vn+1 = vner2(−1−vn+a2un), n + 1 ∈ N

u0 > 0, v0 > 0,

(3)

in which un and vn are the densities of the prey and predators at the nth generation,
respectively, r1 and r2 reflect their intrinsic growth rates, a1 ≥ 0 is related to the
predation rate (searching efficiency, handling time, attack coefficient, etc.) of the prey
by predators and a2 > 0 is the conversion rate of the prey into the growth of predators.

Themovement of living organisms is incredibly frequent and diverse. Different spa-
tiotemporal models have been constructed to describe how, when and where animals,
plants and microorganisms move (Nathan and Giuggioli 2013). When some species
with non-overlapping generations are concerned, their evolution processes may be
characterized by growth–dispersal; that is, the dispersal and the growth occur at dif-
ferent stages of the species. In their pioneer studies, Mollison (1977) and Weinberger
(1982) investigated the growth–dispersal phenomenon and proposed discrete-time
models equipping with spatial variables, which are integrodifference equations. More

123



Spreading Speed in a Predator–Prey System Page 3 of 28    53 

examples of integrodifference equations can be found in Bourgeois and LeBlanc
(2017), Carrillo and Fife (2005), Jacobsen et al. (2015), Kot (1992), Kot and Schaffer
(1986), Lui (1989b) and a recent book by Lutscher (2019). In particular, an integrod-
ifference system of predator-prey interaction was proposed by Neubert et al. (1995).
Equipping (3) with the effect of growth–dispersal in the spatial domain R, we obtain
the following integrodifference predator–prey model:

⎧⎪⎨
⎪⎩

un+1(x) = ∫
R

un(y)er1(1−un(y)−a1vn(y))k1(x, y)dy, x ∈ R, n + 1 ∈ N,

vn+1(x) = ∫
R

vn(y)er2(−1−vn(y)+a2un(y))k2(x, y)dy, x ∈ R, n + 1 ∈ N,

u0(x) = u(x), v0(x) = v(x), x ∈ R,

(4)

where un(x) and vn(x), respectively, denote the densities of the prey and predators at
location x of the nth generation, k1(x, y) and k2(x, y) formulate the spatial movement
law (Carrillo and Fife 2005; Turchin 1998) and may be interpreted as probability
functions to be clarified later, u(x) and v(x) define the initial distribution of the prey
and predators, respectively.

To understand the ecological interactions in natural world, one basic topic is to
explore how predators invade the habitat of the prey and how the energy transfers
among different species, see some natural phenomena and mathematical models in
Fagan and Bishop (2000), Murray (2003), Owen and Lewis (2001), Shigesada and
Kawasaki (1997). To model the invasion process, the initial data of the system should
satisfy proper conditions and we assume that

(A1) the initial function u(x) is positive and uniformly continuous such that

0 < lim inf
x∈R u(x) ≤ lim sup

x∈R
u(x) < ∞

and the initial function v(x) is nonnegative, continuous and has a nonempty
compact support.

Biologically, the assumption on the initial conditions states that the prey is the aborig-
ine distributed uniformly in the whole spaceRwhile predators are invaders occupying
a habitat with finite size. Besides thewell-studied travelingwave solutions of predator–
prey systems sinceDunbar (1983), the feature of the invasion process has been recently
characterized by the spreading speed that was first proposed by Aronson and Wein-
berger (1975) for scalar reaction-diffusion equations. In particular, Ducrot (2013,
2016) and Pan (2017) estimated the invasion speed of the predators in predator–prey
systems when these systems admit the comparison principle appealing to predator–
prey systems in Ye et al. (2011), and Lin et al. (2019) studied the spreading speed in
an epidemic model with local monotonicity induced by nonlocal delay.

When the spatial and temporal variables are x ∈ R and n ∈ N, the spreading speed
of a nonnegative function is defined as follows:

Definition 1.1 Let vn(x), n ∈ N, x ∈ R, be nonnegative. A constant c∗ is said to be
the spreading speed of vn(x) if
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(S1) lim infn→∞ inf |x |<cn vn(x) > 0 for any given c ∈ (0, c∗);
(S2) lim supn→∞ sup|x |>cn vn(x) = 0 for any given c > c∗.

In population dynamics, the spreading speed describes the observed phenomenon if
an observer were to move to the right or left at a fixed speed [that is, c in Definition 1.1
denotes the moving speed of the observer, see Weinberger et al. (2002)], so the speed
is useful to understand the spatial expansion of individuals and is an useful index
formulating population invasion (Murray 2003; Shigesada and Kawasaki 1997).

From the viewpoint of monotonicity of dynamical systems, a difference equation
that is the spatially homogeneous model of the corresponding integrodifference equa-
tion may be nonmonotone and still generates complex dynamics, which often models
the overcompensatory phenomenon in population dynamics [see Ali et al. (2003),
May (1974, 1976), Murray (2002, Section 2.3)]. For example, fix K = 1 in (1) and
consider

Un+1 = Une2(1−Un), U0 ∈ (0.5, 1) , n + 1 ∈ N,

then a larger U0 leads to a smaller U1, which is also the property of component un

by taking a1 = 0 in (3). Therefore, the above difference equation does not have
the classical comparison principle in its positive invariant interval [0, e/2]. For the
coupled system (1), it may have more complex dynamics and one may observe its
plentiful dynamics in Hofbauer et al. (1987). Furthermore, it is natural to believe that
(4) may admit rich spatiotemporal propagation modes. The purpose of this paper is
to investigate the integrodifference system (4) by estimating the invasion speed of
predators.

Tobetter present themathematical idea,wefirst investigate the casewhen r1 ∈ (0, 1]
such that

un+1 = uner1(1−un), u0 ∈ [0, 1]

is monotone and invariant. Under the assumption, one has un(x) ∈ [0, 1], n ∈ N, x ∈
R, but the second component may be nonmonotone in vn such that the comparison
principle does not hold. Then, we study the case when r1 ∈ (1, 2) such that the
above difference equation is not monotone, so the coupled system does not satisfy the
comparison principle. Since un(x) /∈ [0, 1], n ∈ N, x ∈ R, even the upper bound of
the spreading speed of v is not evident by the deficiency of the following inequality

vn+1(x) ≥
∫
R

vn(y)er2(a2−1−vn(y))k2(x, y)dy, x ∈ R, n = 0, 1, 2, . . . .

Therefore, the nonmonotonicity may be different from that in Lin et al. (2019). To
overcome the difficulty arising from the deficiency of comparison principle, our tech-
nique is to construct proper auxiliary equations and extract an auxiliary equation from
the coupled system. More precisely, for any given x ∈ R, we try to control un+1(x)

by

vn(y), vn−1(y), . . . , v0(y), u0(y), y ∈ R,

123



Spreading Speed in a Predator–Prey System Page 5 of 28    53 

and then, vn+1(x) satisfies some auxiliary inequalities of infinite delay. Although
the auxiliary equations are not monotone or subhomogeneous, we still confirm the
following spreading speed of predators

inf
λ>0

ln(er2(a2−1)
∫
R

eλyk2(0, y)dy)

λ
=: c∗ (5)

under proper conditions clarified later.
The rest of this paper is organized as follows. In Sect. 2, we recall some known

results on the asymptotic spreading of scalar integrodifference equations. To focus on
the mathematical idea, the case of r1 ∈ (0, 1] is studied in Sect. 3, and the case of
r1 ∈ (1, 2) is further investigated in Sect. 4. We provide some numerical examples in
Sect. 5 and give some discussions in Sect. 6.

2 Preliminaries

In this paper, we use the standard partial ordering in R2. That is, if

u = (u1, u2), v = (v1, v2) ∈ R
2,

then

u ≤ v if and only if u1 ≤ v1, u2 ≤ v2.

C(R,R) is the space of all uniformly continuous and bounded functions equipped
with compact open topology. When b > a ≥ 0, we also denote

C[a,b] = {u ∈ C : a ≤ u(x) ≤ b, x ∈ R},

and C+ is defined by

C+ = {u ∈ C : u(x) ≥ 0, x ∈ R}.

For the movement law, we make the following assumptions

(A2) ki (x, y) = ki (|x − y|), x, y ∈ R; ki (x) ≥ 0 a.e. x ∈ R is Lebesgue measurable
and integrable such that

∫
R

ki (x)dx = 1, i = 1, 2;
(A3) k2(x) > 0 a.e. x ∈ R, and there exists λ > 0 such that

∫
R

k2(x)eλxdx < +∞;
(A4) Let λ′ > 0 such that

er2(a2−1)
∫
R

eλ′ yk2(y)dy = eλ′c∗

or

inf
λ>0

ln(er2(a2−1)
∫
R

eλyk2(y)dy)

λ
= ln(er2(a2−1)

∫
R

eλ′ yk2(y)dy)

λ′ = c∗,
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then
∫
R

eλ′ yk1(y)dy < ∞.

We now present some results from Hsu and Zhao (2008) and consider

{
wn+1(x) = ∫

R
b(wn(y))k(x − y)dy, x ∈ R, n = 0, 1, 2, . . . ,

w0(x) = w(x), x ∈ R,
(6)

in which w(x) ∈ C+; the movement law k(x) is an even function, Lebesgue mea-
surable and integrable such that

∫
R

k(x)dx = 1, and there exists λ > 0 such that∫
R

k(x)eλxdx < ∞; and the so-called birth function b : R
+ → R

+ satisfies the
following condition:

(A5) There exists a constant B > 0 such that b : [0, B] → [0, B] is uniformly contin-
uous. Moreover, limu→0+ b(u)/u := b′(0) > 1 exists such that

0 < b(u) ≤ b′(0)u, u ∈ (0, B]

and

b(u) ≥ b′(0)u − L ′u1+α′
, u ∈ (0, B]

for some L ′ > 0 and α′ > 0.

The solution of (6) admits the following properties.

Lemma 2.1 Suppose that (A5) is true. The initial value problem (6) admits a unique
solution wn(x) ∈ C[0,B], n ∈ N, if w(x) ∈ C[0,B].
(1) Assume that b : [0, B] → [0, B] is nondecreasing. If ωn−1(x) ∈ C[0,B], n ∈ N,

such that
{

ωn+1(x) ≥ (≤)
∫
R

b(ωn(y))k(x − y)dy, n + 1 ∈ N, x ∈ R,

ω0(x) ≥ (≤)w(x), x ∈ R,
(7)

then ωn(x) ≥ (≤)wn(x), n ∈ N, x ∈ R.

(2) If w(x) ∈ C[0,B] admits a nonempty compact support, then

inf
λ>0

ln(b′(0)
∫
R

eλyk(y)dy)

λ
< ∞

is the spreading speed of wn(x).

Remark 2.2 If the inequality is≥ (≤) in (7), thenωn(x) is an upper (a lower) solution
of (6) when b : [0, B] → [0, B] is nondecreasing. This is the comparison principle
stated by Weinberger (1982, Proposition 4.1). Moreover, if the birth function is not
monotone, the spreading speed is confirmed by Hsu and Zhao (2008, Theorem 2.2).

By simple analysis, we give the following result on the existence of solutions to
(4).
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Fig. 1 The graphs of the function f (r) when a r ∈ (0, 1] and b r > 1 (Color figure online)

Lemma 2.3 Assume that (A1), (A2) hold. Then, the problem (4) has a unique solution
(un(x), vn(x)), where

un(x) ∈ C+, vn(x) ∈ C+,

and un(x), vn(x) are equicontinuous in n ∈ N, x ∈ R. In particular, if (A3) holds,
then one has

vn(x) > 0, n ∈ N, x ∈ R.

In the rest of this paper, for some U > 0 and f (u) = uer(1−u), we require that

f (u) = sup
0≤v≤u

[
ver(1−v)

]
, f (u) = inf

U≥v≥u

[
ver(1−v)

]
, u ∈ [0, U ].

Clearly, if U ≥ max{1/r , 1}, then there exists δ ∈ [0, 1/r ] such that

f (u) = f (u), u ∈ [0, 1/r ]; f (u) = er−1/r > f (u), u ∈ (1/r , U ]

and

f (u) = f (u), u ∈ [0, δ]; f (u) < f (u), u ∈ (δ, U ].

We now show these graphs in Fig. 1. When they are different, we use red line to
represent f while f is in green line. These functions have been utilized in Hsu and
Zhao (2008); Li et al. (2009).

3 The Case r1 ∈ (0, 1]
In this section, we always assume that a2 > 1 holds and r1 ∈ (0, 1] such that uer1(1−u)

is monotone in u ∈ [0, 1]. (un(x), vn(x)) is the unique solution defined by (4) and
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(A1). We first define

R =
{

a2 − 1, r2(a2 − 1) ≤ 1,

er2(a2−1)−1/r2, r2(a2 − 1) > 1.

Lemma 3.1 Assume that (A1)–(A3) hold and u(x) ∈ C[0,1], v(x) ∈ C[0,R]. Then,

un(x) ∈ C[0,1], vn(x) ∈ C[0,R], n ∈ N, (8)

and vn(x) satisfies

lim
n→∞ sup

|x |>cn
vn(x) = 0, c > c∗. (9)

Proof Under the assumption and by Lemma 2.3, we see that

{
un+1(x) ≤ ∫

R
un(y)er1(1−un(y))k1(x − y)dy, x ∈ R, n + 1 ∈ N,

u0(x) = u(x) ∈ C[0,1], x ∈ R,

such that

un(x) ∈ C[0,1], n ∈ N, x ∈ R.

Furthermore, we have

{
vn+1(x) ≤ ∫

R
vn(y)er2(a2−1−vn(y))k2(x − y)dy, x ∈ R, n + 1 ∈ N,

v0(x) = v(x), x ∈ R.

Clearly, [0, R] is an invariant interval of the difference equation

vn+1 = vner2(a2−1−vn), n + 1 ∈ N,

but it may be nonmonotone in the invariant interval. Let

b(v) = max
u∈[0,v]

[
uer2(a2−1−u)

]
, v ∈ [0, R].

Then, b(v) is monotone such that b
′
(0) = er2(a2−1) and

{
vn+1(x) ≤ ∫

R
b(vn(y))k2(x − y)dy, x ∈ R, n + 1 ∈ N,

v0(x) = v(x) ∈ C[0,R], x ∈ R.
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Let

{
wn+1(x) = ∫

R
b(wn(y))k2(x − y)dy, x ∈ R, n + 1 ∈ N,

w0(x) = v(x) ∈ C[0,R], x ∈ R.

So Lemma 2.1 implies that

0 ≤ vn(x) ≤ wn(x) ∈ C[0,R], n + 1 ∈ N, x ∈ R,

and (8) is true such that

lim
n→∞ sup

|x |>cn
wn(x) = lim

n→∞ sup
|x |>cn

vn(x) = 0, c > c∗.

The proof is complete. 	

Lemma 3.2 Define

F(u, v) = uer1(1−u−a1v), u ∈ [0, 2], v ∈ [0, R + 1]. (10)

Then, there exists a′
1 > 0 such that for each a1 ∈ (0, a′

1), we can fix δ = δ(a1) ∈ (0, 1)
with

0 <
∂ F(u, v)

∂u
< δ, u ∈ [1 − a1R, 1] ⊂ (0, 1], v ∈ [0, R].

Proof By direct calculations, we have

∂ F(u, v)

∂u
= (1 − r1u)F(u, v),

∂ F(u, v)

∂u

∣∣∣∣
(u,v)=(1,0)

= 1 − r1 < 1,

∂ F(u, v)

∂v
= −r1a1F(u, v),

∂ F(u, v)

∂v

∣∣∣∣
(u,v)=(1,0)

= −r1a1 < 0

and F(1, 0) = 1. By the continuity, there exists u ∈ (0, 1) such that

0 <
∂ F(u, v)

∂u
< 1,

∂ F(u, v)

∂v
≥ −r1a1

for u ∈ (u, 1], v ∈ [0, R]. So there exists a′
1 > 0 such that

∂ F(u, v)

∂u
< 1, u ∈ [1 − a1R, 1], v ∈ [0, R] (11)

for any a1 ∈ [0, a′
1). The proof is complete. 	
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Consider the initial value problem

{
vn+1(x) = ∫

R
vn(y)er2(−1−R)k2(x − y)dy, n + 1 ∈ N, x ∈ R,

v0(x) = v(x) ∈ C+, x ∈ R,

which is monotone and v(x) satisfies

v(x) = η, |x | < σ ; v(x) = 0, |x | ≥ σ

with given positive constants η, σ. Because of (A3), we further have the following
conclusion by the property of continuous functions on a bounded closed interval.

Lemma 3.3 Fix n′ ∈ N, then there exists ν = ν(n′, η, σ ) > 0 such that

vn(x) > ν, n = 1, 2, . . . , n′, |x | < 2n′(n′ + 1).

Lemma 3.4 Assume that (A1)–(A3) hold. Further suppose that v(x) ∈ C[0,R], u(x) =
1, x ∈ R, a1 ∈ [0, a′

1), c ∈ (0, c∗) are given. Then,

lim inf
n→∞ inf|x |<cn

vn(x) > 0. (12)

Proof Firstly, we fix ε > 0 such that

c < inf
λ>0

ln(er2(a2−1−4ε)
∫
R

eλyk2(y)dy)

λ
,

which is evidently admissible.
By Lemma 3.1, vn(x) ∈ C[0,R] such that

{
un+1(x) ≥ ∫

R
un(y)er1(1−un(y)−a1R)k1(x − y)dy, x ∈ R, n + 1 ∈ N,

u0(x) = 1, x ∈ R,

which implies

un(x) ∈ [1 − a1R, 1], vn(x) ∈ [0, R], n ∈ N, x ∈ R. (13)

In fact, (13) is true because xer1(1−a1R−x), x ∈ [1−a1R, 1], is increasing and satisfies

xer1(1−a1R−x) ≤ x, x ∈ [1 − a1R, 1].

Since

un(x) − 1 ≤ 0, n ∈ N, x ∈ R,
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we have

un+1(x) − 1 =
∫
R

un(y)er1(1−un(y)−a1vn(y))k1(x − y)dy − 1

=
∫
R

[
un(y)er1(1−un(y)−a1vn(y)) − 1

]
k1(x − y)dy

≥ δ

∫
R

[un(y) − 1] k1(x − y)dy − r1a1

∫
R

vn(y)k1(x − y)dy

for any n + 1 ∈ N, x ∈ R by Lemma 3.2.
Repeating the above process and utilizing u0(x) = 1, x ∈ R, we have

un+1(x) − 1

≥ δ2
∫
R

[∫
R

[
un−1(y) − 1

]
k1(x1 − y)dy

]
k1(x − x1)dx1

−r1a1

∫
R

vn(y)k1(x − y)dy

− (r1a1) δ

∫
R

[∫
R

vn−1(y)k1(x1 − y)dy

]
k1(x − x1)dx1

≥ δ3
∫
R

[∫
R

[∫
R

[
un−2(y) − 1

]
k1(x2 − y)dy

]
k1(x2 − x1)dx2

]
k1(x − x1)dx1

−r1a1

∫
R

vn(y)k1(x − y)dy

− (r1a1) δ

∫
R

[∫
R

vn−1(y)k1(x1 − y)dy

]
k1(x − x1)dx1

− (r1a1) δ2
∫
R

[∫
R

[∫
R

vn−2(y)k1(x2 − y)dy

]
k1(x2 − x1)dx2

]
k1(x − x1)dx1

≥ · · ·
≥ δn+1

∫
R

[
· · ·

[∫
R

[u0(y) − 1] k1(xn − y)dy

]
· · ·

]
k1(x − x1)dx1

−r1a1

∫
R

vn(y)k1(x − y)dy

− (r1a1) δ

∫
R

[∫
R

vn−1(y)k1(x1 − y)dy

]
k1(x − x1)dx1

− · · ·
− (r1a1) δn

∫
R

· · ·
∫
R

v0(y)k1(xn − y)dy · · · k1(x − x1)dx1

= −r1a1

∫
R

vn(y)k1(x − y)dy

− (r1a1) δ

∫
R

[∫
R

vn−1(y)k1(x1 − y)dy

]
k1(x − x1)dx1

− · · ·
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− (r1a1) δn
∫
R

· · ·
∫
R

v0(y)k1(xn − y)dy · · · k1(x − x1)dx1

= −(r1a1)
n+1∑
j=1

δ j−1
∫
R j

vn+1− j (y)

j∏
i=1

k1(x j−1 − x j )dx j−i+1

=: Hn+1(v)(x)

for any n + 1 ∈ N, x ∈ R with x j = y, x0 = x . So we have

vn+1(x) =
∫
R

vn(y)er2(−1−vn(y)+a2un(y))k2(x − y)dy

=
∫
R

vn(y)er2(a2−1−vn(y)+a2(un(y)−1))k2(x − y)dy

≥
∫
R

vn(y)er2(a2−1−vn(y)+a2Hn(v)(y))k2(x − y)dy (14)

for any n + 1 ∈ N, x ∈ R. According to (13),

0 ≥ Hn+1(v)(x) ≥ −Rr1a1
[
1 + δ + δ2 + · · · + δn

]
≥ −Rr1a1

1 − δ
(15)

for any n + 1 ∈ N.

By the fact that δ < 1, if n is large (since we study the asymptotic spreading
involving long time behavior), then there exists N ∈ N independent on n such that

Hn(v)(x) ≥ −ε/a2 − (r1a1)
N∑

j=1

δ j−1
∫

[−N ,N ] j
vn+1− j (y)

j∏
i=1

k1(x j−1 − x j )dx j−i+1

= : −ε/a2 + Hn,N (v)(x)

for x ∈ R, n > N . If a2Hn(v)(y) ≥ −2ε for some n ∈ {0, 1, . . .}, x ∈ R, then

vn(y)er2(a2−1−vn(y)+a2Hn(v)(y)) ≥ vn(y)er2(a2−1−2ε−vn(y)).

Otherwise, a2Hn(v)(y) ≤ −2ε implies that Hn,N (v)(y) ≤ −ε/a2 and

(r1a1)
N∑

j=1

δ j−1
∫

[−N ,N ] j
vn+1− j (y)

j∏
i=1

k1(x j−1 − x j )dx j−i+1 ≥ ε/a2.

Since k1 is Lebesgue integrable and vm(·) ∈ C[0,R], m + 1 ∈ N, there exists η > 0
depending on ε and some y′ ∈ R, N ′ ≤ N , N ′ ∈ N such that

vn−N ′(y′) > 2η, |y − y′| < 2N (N + 1).
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By the equicontinuity, we may further select σ > 0 such that

vn−N ′(z) > η, |z − y′| ≤ σ.

Clearly, we have

vn+1(x) =
∫
R

vn(y)er2(−1−vn(y)+a2un(y))k2(x − y)dy

≥
∫
R

vn(y)er2(−1−R)k2(x − y)dy

for n = 0, 1, . . . , x ∈ R. Therefore, Lemma 3.3 and (15) imply that there exist
μ > 0, M > 0 such that vn(y) ≥ μ and a2Hn(v)(y) satisfies

a2Hn(v)(y) ≥ −Rr1a1a2
1 − δ

= −−Rr1a1a2
μ(1 − δ)

μ ≥ −−Rr1a1a2
μ(1 − δ)

vn(y) =: −Mvn(y)

and

{
vn+1(x) ≥ ∫

R
vn(y)er2(a2−1−2ε−(1+M)vn(y))k2(x − y)dy,

vN+1(x) > 0

for x ∈ R, n ≥ N + 1. Further, define

b(x) = inf
u∈[x,R]

[
uer2(a2−1−2ε−(1+M)u)

]
,

then b(x), x ∈ [0, R], is continuous and nondecreasing such that

b′(0) = lim
x→0+

b(x)

x
= er2(a2−1−2ε) > 1

and

b(x) ≤ b′(0)x, x ∈ [0, R].

That is, vn(x) satisfies

{
vn+1(x) ≥ ∫

R
b(vn(y))k2(x − y)dy,

vN+1(x) > 0

for x ∈ R, n ≥ N + 1. By the selection of ε, (12) holds due to Lemma 2.1. The proof
is complete. 	


Summarizing what we have done, we have the following conclusion.
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Theorem 3.5 Assume that (A1)–(A3) hold, u(x) = 1, x ∈ R, v(x) ∈ C[0,R], un(x)

and vn(x), n ∈ N, x ∈ R, are defined by (4). If a1 > 0 such that

∂ F(u, v)

∂u
< 1, u ∈ [1 − a1R, 1] ⊂ (0, 1], v ∈ [0, R], (16)

then c∗ defined by (5) is the spreading speed of vn(x), n ∈ N, x ∈ R.

Before ending this section, we further consider the initial value problem

⎧⎪⎨
⎪⎩

un+1(x) = ∫
R

un(y)er1(1−un(y)−a1vn(y))k1(x − y)dy, x ∈ R, n + 1 ∈ N,

vn+1(x) = ∫
R

vn(y)er2(−1−vn(y)+a2un(y))k2(x − y)dy, x ∈ R, n + 1 ∈ N,

u0(x) ∈ C[1−a1R,1], v0(x) ∈ C[0,R], x ∈ R,

(17)

in which v(x) admits nonempty compact support and the other parameters are the
same as those in the previous model.

Corollary 3.6 Assume that (A1)–(A3) hold, un(x) and vn(x), n ∈ N, x ∈ R, are
defined by (17). If a1 > 0 such that (16) holds, then c∗ defined by (5) is the spreading
speed of vn(x), n ∈ N, x ∈ R.

Proof Evidently, (13) still holds. Note that

∣∣∣∣δn+1
∫
R

[
· · ·

[∫
R

[u0(y) − 1] k1(xn − y)dy

]
· · ·

]
k1(x − x1)dx1

∣∣∣∣
≤ δn+1 → 0, n → ∞,

and the convergence is uniform in x . Therefore, we have

un+1(x) − 1 ≥ −δn+1 + Hn+1(v)(x)

for any n + 1 ∈ N, x ∈ R, and

vn+1(x) ≥
∫
R

vn(y)er2(a2−1−vn(y)−a2δn+a2Hn(v)(y))k2(x − y)dy

for any n + 1 ∈ N, x ∈ R. By the fact that δ < 1, if n is large, we know that there
exists N ∈ N independent on n such that δn < ε/a2 and

−δn + Hn(v)(x) ≥ −2ε/a2 + Hn,N (v)(x), n > N .

If −a2δn + a2Hn(v)(y) ≥ −3ε, then

vn(y)er2(a2−1−vn(y)+a2Hn(v)(y)) ≥ vn(y)er2(a2−1−3ε−vn(y)).
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Otherwise, −a2δn + a2Hn(v)(y) ≤ −3ε implies Hn,N (v)(y) ≤ −ε/a2. Combining
these with a discussion similar to that after (15), we obtain

{
vn+1(x) ≥ ∫

R
vn(y)er2(a2−1−3ε−(1+M)vn(y))k2(x − y)dy,

vN+1(x) > 0

for x ∈ R, n ≥ N + 1. The proof is complete. 	


4 The Case r1 ∈ (1, 2)

In this section, we always assume that (A1)–(A4) are satisfied and a2 > 1 holds. To
state our main result, we first introduce some constants as follows. Define

D = er2(a2−1)−1/r2, R1 = er1−1

r1
= sup

x>0

(
xer1(1−x)

)

and

R2 = sup
x∈[0,a2R1−1]

(
xer2(a2R1−1−x)

)
=

{
a2R1 − 1, r2(a2R1 − 1) ≤ 1,
er2(a2R1−1)−1

r2
, r2(a2R1 − 1) > 1.

Consider the following initial value problem

⎧⎪⎨
⎪⎩

un+1 = uner1(1−un−a1vn), n + 1 ∈ N,

vn+1 = vner2(−1−vn+a2un), n + 1 ∈ N,

u0 > 0, v0 > 0.

(18)

Then, it is clear that

un ∈ (0, R1], vn ∈ (0, R2], n ∈ N

if u0 ∈ (0, R1], v0 ∈ (0, R2].
Since

un+1 ≥ uner1(1−un−a1R2), n + 1 ∈ N,

it follows that there exists R > 0 such that

un ≥ R, n ∈ N (19)

if 1 − a1R2 > 0, u0 ≥ R. In fact, let

b(u) = inf
x∈[u,R1]

(
xer1(1−x−a1R2)

)
, u ∈ [0, R1],
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then b(u), u ∈ [0, R1], is monotone and there exists R ∈ (0, R1] such that

b(u) = R, u ∈ [R, R1]; b(u) < R, u ∈ [0, R).

In summary, we see that

[R, R1] × [0, R2]

is a positively invariant region of (18), which further implies the following invariance
result.

Lemma 4.1 Assume that 1 − a1R2 > 0, u(x) ∈ C[R,R1], v(x) ∈ C[0,R2]. Then

un(x) ∈ C[R,R1], vn(x) ∈ C[0,R2]. (20)

Consider

F(u, v) = uer1(1−u−a1v), u ∈ [R, R1], v ∈ [0, R2],

we have the following conclusion similar to Lemma 3.2.

Lemma 4.2 There exists a′
1 > 0 such that for each a1 ∈ (0, a′

1), we can fix δ =
δ(a1) ∈ (0, 1), L = L(a1) > 0, V > D with

(1) |F(u1, v1)− F(u2, v2)| ≤ δ|u1 − u2|+ L|v1 − v2|, (ui , vi ) ∈ [R, R1]× [0, R2];
(2) they satisfy

r2LV < 1 − δ, V ≥ De
r2a2LV
1−δ ; (21)

(3) denote
∫
R

eλ′x k1(x)dy = eλ′b, then δeλ′(b−c∗) < 1, a2Leλ′(b−c∗) ≤ 1−δeλ′(b−c∗).

Remark 4.3 Regarding R and R1 as functions of r1 and a1, we have

lim
r1→1,a1→0

R = lim
r1→1,a1→0

R1 = 1.

Then, we obtain the existence of δ at least for r1 − 1 > 0, a1 ≥ 0 being small enough.
In particular, if r1 − 1 → 0, a1 → 0, then δ → 0, L → 0. Since a1 represents the
predation rates of predators, the condition implies that the capture ratio is small when
predators appear, which means a small perturbation of the prey around the predator-
free steady state 1.

Lemma 4.4 Assume that 1− a1R2 > 0, u(x) = 1, x ∈ R, v(x) ∈ C[0,R2]. Then, there
exists a′

1 > 0 such that a1 ∈ [0, a′
1) implies

lim inf
n→∞ inf|x |<cn

vn(x) > 0, c ∈ (0, c∗).
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Proof We prove the result by fixing c ∈ (0, c∗). By direct calculation, we obtain

|un+1(x) − 1| =
∣∣∣∣
∫
R

un(y)er1(1−un(y)−a1vn(y))k1(x − y)dy − 1

∣∣∣∣

≤
∫
R

∣∣∣un(y)er1(1−un(y)−a1vn(y)) − 1
∣∣∣ k1(x − y)dy

≤ δ

∫
R

|un(y) − 1| k1(x − y)dy + L
∫
R

vn(y)k1(x − y)dy

for any n + 1 ∈ N, x ∈ R. Thus, we have

|un+1(x) − 1|
≤ δ2

∫
R

|un−1(y) − 1| k1(x − y)dy + L
∫
R

vn(y)k1(x − y)dy

+Lδ

∫
R

[∫
R

vn−1(y)k1(x1 − y)dy

]
k1(x − x1)dx1

≤ · · ·
≤ δn+1

∫
R

|u0(y) − 1| k1(x − y)dy + L
∫
R

vn(y)k1(x − y)dy

+Lδ

∫
R

[∫
R

vn−1(y)k1(x1 − y)dy

]
k1(x − x1)dx1

+ · · ·
+Lδn

∫
R

· · ·
∫
R

v0(y)k1(xn − y)dy · · · k1(x − x1)dx1

= L
n+1∑
j=1

δ j−1
∫
R j

vn+1− j (y)

j∏
i=1

k1(x j−1 − x j )dx j−i+1

=: Hn+1(v)(x)

for any n + 1 ∈ N, x ∈ R with x j = y, x0 = x, which further leads to

vn+1(x) =
∫
R

vn(y)er2(−1−vn(y)+a2un(y))k2(x − y)dy

=
∫
R

vn(y)er2(a2−1−vn(y)+a2(un(y)−1))k2(x − y)dy

≥
∫
R

vn(y)er2(a2−1−vn(y)−a2Hn(v)(y))k2(x − y)dy

for any n + 1 ∈ N, x ∈ R. Because δ ∈ (0, 1), Hn(x) is finite for any x ∈ R, n ∈ N.

Similar to the discussion after (14) in Sect. 3, we complete the proof. 	
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Lemma 4.5 Assume that u(x) = 1, x ∈ R, v(x) ∈ C[0,R2], and a1 ∈ (0, a′
1) such that

Lemma 4.2 holds. Then,

lim sup
n→∞

sup
|x |>cn

vn(x) = 0, c > c∗ (22)

Proof By the estimation of Hn in the proof of Lemma 4.4, we see that

vn+1(x) =
∫
R

vn(y)er2(−1−vn(y)+a2un(y))k2(x − y)dy

≤
∫
R

vn(y)er2(a2−1−vn(y)+a2Hn(v)(y))k2(x − y)dy

≤
∫
R

F(vn(y))er2a2Hn(v)(y)k2(x − y)dy,

in which

F(v) = sup
x≤v

[
xer2(a2−1−x)

]
, v ≥ 0.

Evidently, we see that

F(v) =
{

ver2(a2−1−v), v ∈ [0, 1/r2],
D, v ≥ 1/r2.

Since F is nondecreasing and Hn is monotone increasing, then

Vn+1(x) =
∫
R

F(Vn(y))er2a2Hn(V)(y)k2(x − y)dy (23)

is monotone, and vn(x) is the lower solution of the above equation if

V0(x) ≥ v(x), x ∈ R.

Therefore, if

lim sup
n→∞

sup
|x |>cn

Vn(x) = 0, c > c∗,

then (22) holds. To study the spreading speed of (23), the main difficulty is that (23) is
not subhomogeneous. For the complexity of the propagation threshold of an equation
that is not subhomogeneous, see examples by Hadeler and Rothe (1975), Weinberger
et al. (2007).

Again by the monotonicity, it suffices to construct Vn(x) such that

Vn+1(x) ≥
∫
R

F(Vn(y))er2a2Hn(V )(y)k2(x − y)dy, n + 1 ∈ N, x ∈ R
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with

lim sup
n→∞

sup
|x |>cn

Vn(x) = 0, V0(x) ≥ v(x), x ∈ R, c > c∗.

Further, define a continuous function

Vn(x) = min{eλ′(x+c∗n)+P , eλ′(−x+c∗n)+P , V }, n + 1 ∈ N,

where P > 0 such that

V0(x) ≥ v(x), x ∈ R.

By (21), the result is clear if Vn+1(x) = V for some n ∈ N, x ∈ R since

r2a2Hn−1(V )(y) ≤ r2a2LV [1 + δ + · · · + δn−1] ≤ r2a2LV

1 − δ
.

When Vn+1(x) = eλ′(x+c∗n+c∗+P), then Vn(y) ≤ eλ′(y+c∗n+P) such that

Hn+1(v)(x) ≤ Leλ′(x+c∗n−c∗+P)eλ′b + Lδeλ′(x+c∗n−2c∗+P)e2λ
′b + · · ·

≤ Leλ′(x+c∗n−c∗+P)eλ′b

1 − δeλ′(b−c∗) (24)

by (3) of Lemma 4.2. If Vn(y) = eλ′(y+c∗n+P) ≤ 1/r2, then (3) of Lemma 4.2 implies
that

F(Vn(y))er2a2Hn(V )(y) ≤ Vn(y)er2(a2−1−Vn(y)+a2Hn(V )(y)) ≤ Vn(y)er2(a2−1)

since

− Vn(y) + a2Hn(V )(y) ≤ −eλ′(y+c∗n+P) + a2Leλ′(y+c∗n−c∗+P)eλ′b

1 − δeλ′(b−c)

= eλ′(y+c∗n+P)

[
−1 + a2Leλ′(b−c∗)

1 − δeλ′(b−c∗)

]
. (25)

Otherwise, Vn(y) ≥ 1/r2 such that

F(Vn(y))er2a2Hn(V )(y) = Der2a2Hn(V )(y)

= Vn(y)er2(a2−1) Der2a2Hn(V )(y)

Vn(y)er2(a2−1)

≤ Vn(y)er2(a2−1)

≤ eλ′(y+c∗n+P)er2(a2−1)
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if

Der2a2Hn(V )(y) ≤ Vn(y)er2(a2−1).

Since Vn(y) ≥ 1/r2, the above inequality holds if

De
r2LV
1−δ ≤ er2(a2−1)/r2 = De

by (2) of Lemma 4.2. From the definition of λ′, we see that

eλ′(x+c∗n+c∗+P) = er2(a2−1)
∫
R

eλ′(y+c∗n+P)k2(x − y)dy

and confirm (22). We now complete the proof. 	

Summarizing the above discussions, we obtain the following conclusion.

Theorem 4.6 Assume that u(x) = 1, v(x) ∈ C[0,R2], x ∈ R, and un(x), vn(x), n ∈
N, x ∈ R, are defined by (4). If a1 > 0 such that Lemma 4.2 holds, then c∗ is the
spreading speed of vn(x), n ∈ N, x ∈ R.

When u(x) ∈ C[R,R1], we may come to a similar conclusion motivated by Sect. 3.
Since the process and the result are similar to that in Sect. 3, we omit them. Note that
(21) involves several parameters, we may further simplify the condition under proper
assumptions. For example, we make the following assumption.

(2’) r2(a2 − 1) + a2L
1−δ

≤ 1.

Corollary 4.7 Theorem 4.6 remains true if (2) of Lemma 4.2 is replaced by (2’).

Proof Since (2) of Lemma 4.2 only appears in the study of (23), we define a new
monotone equation

Vn+1(x) =
∫
R

Vn(y)er2(a2−1−Vn(y)+a2Hn(V)(y))k2(x − y)dy (26)

with

0 ≤ Vn(x) ≤ 1/r1,V0(x) ≥ v(x), x ∈ R, n = 0, 1, 2, . . . .

Further, define

Vn(x) = min{eλ′(x+c∗n)+P , eλ′(−x+c∗n)+P , 1/r2}, n + 1 ∈ N.

We prove that Vn(x) is an upper solution of (26) when V0(x) ≥ v(x), x ∈ R. In fact,
when Vn+1(x) = 1

r2
, since Vi (y) ≤ 1/r2, i ∈ {0, 1, . . . , n}, y ∈ R, we have

r2a2Hn−1(V )(y) ≤ r2a2L[1 + δ + · · · + δn−1]/r2 ≤ a2L

1 − δ
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and the monotonicity implies that

∫
R

Vn(y)er2(a2−1−Vn(y)+a2Hn(V )(y))k2(x − y)dy

≤
∫
R

1

r2
er2(a2−1−1/r2+a2Hn(V )(y))k2(x − y)dy

≤
∫
R

1

r2
er2(a2−1−1/r2)+a2L/(1−δ)k2(x − y)dy

≤ 1

r2
= Vn+1(x).

At the same time, if

Vn+1(x) = eλ′(x+c∗n+c∗)+P < 1/r2

such that

− Vn(y) + a2Hn(V )(y) ≤ 0, y ∈ R, n + 1 ∈ N, (27)

then
∫
R

Vn(y)er2(a2−1−Vn(y)+a2Hn(V )(y))k2(x − y)dy

≤
∫
R

Vn(y)er2(a2−1)k2(x − y)dy

≤
∫
R

er2(a2−1)+λ′(y+c∗n)+P k2(x − y)dy

= eλ′(y+c∗n+c∗)+P ,

and it suffices to verify (27). Because the proof of (27) is similar to (25), we omit the
details and complete the proof. 	


5 Numerical Simulations

In this section, we present some numerical results on the asymptotic spreading of the
predator–prey system by using MATLAB. By taking the Gaussian type kernel, we
simulate several different cases. Firstly, we have

inf
λ>0

ln

(
er

∫
R

eλye
−y2

D dy/
√

π D

)

λ
= √

Dr , r > 0, D > 0.

To characterize the invasion process, the level sets of unknown functions are useful
to characterize the changes of habitat. If Un(x) is the unknown function, λ ∈ R, we
denote the level sets
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Fig. 2 Snapshots of the solution (un(x), vn(x)) of model (28) (Color figure online)

Table 1 Approximate level sets
in (28)

Time 60 80 100 120

L�u
n (0.9) −0.283 −0.382 −0.479 −0.58

L�v
n (0.2) −0.289 −0.388 −0.484 −0.584

�U
n (λ) = {x : Un(x) = λ}

and

L�U
n (λ) = inf

x∈R{x : Un(x) = λ}.

Then, for some λ > 0, the movement of L�v
n(λ) may reflect the expansion of the

predators on the left side while the movement of L�u
n (λ) may reflect the atrophy of

the prey on the left side.

Example 5.1 Firstly, we consider the following model

⎧⎨
⎩

un+1(x) = 1√
0.0004π

∫
R

e− (x−y)2

0.0004 un(y)e(1−un(y)−0.5vn(y))dy,

vn+1(x) = 1√
0.000025π

∫
R

e− (x−y)2

0.000025 vn(y)e(−1−vn(y)+2un(y))dy.

(28)

By (5), we have

c∗ = √
0.000025 = 0.005,

and it has a positive steady state (0.75, 0.5).We now present the snapshots of solutions
un(x) and vn(x) in Fig. 2 and some approximate level sets in Table 1.

From Fig. 2 and Table 1, we see that predators vn(x) invade the habitat of the prey
un(x) almost at a constant speed 0.005, which coincides with our analytical results.
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Fig. 3 Snapshots of the solution (un(x), vn(x)) of model (29) (Color figure online)

Table 2 Approximate level sets
in (29)

Time 60 80 100 120

L�u
n (0.9) −0.283 −0.38 −0.481 −0.58

L�v
n (0.2) −0.287 −0.386 −0.487 −0.585

Note that (28) is monotone, the solution rapidly converges to its constant steady state
on any compact interval of the habitat.

Example 5.2 We consider the case r1 ∈ (1, 2) in the following system

⎧⎨
⎩

un+1(x) = 1√
0.0004π

∫
R

e− (x−y)2

0.0004 un(y)e1.5(1−un(y)−0.5vn(y))dy,

vn+1(x) = 1√
0.000025π

∫
R

e− (x−y)2

0.000025 vn(y)e(−1−vn(y)+2un(y))dy.

(29)

Then, (5) implies that

c∗ = √
0.000025 = 0.005,

and the system has a positive steady state (0.75, 0.5). We now present the graphs of
un(x) and vn(x) in Fig. 3 and some approximate level sets in Table 2, by which we
see that the predators vn invade the habitat of the prey un almost at a constant speed
0.005. Note that the steady state 1 is stable in un+1 = une1.5(1−un), u0 > 0, but the
oscillation of un is possible. In Fig. 3, a slight oscillation of un(x) occurs compared
with that in Fig. 2.

Example 5.3 We consider the case that cannot be studied by the results in Sects. 3, 4

⎧⎨
⎩

un+1(x) = 1√
0.0004π

∫
R

e− (x−y)2

0.0004 un(y)e2.5(1−un(y)−0.5vn(y))dy,

vn+1(x) = 1√
0.000025π

∫
R

e− (x−y)2

0.000025 vn(y)e(−1−vn(y)+3un(y))dy.

(30)
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Fig. 4 Snapshots of the solution (un(x), vn(x)) of model (30) (Color figure online)

Table 3 Approximate level sets
in (30)

Time 50 60 70 80

L�u
n (1.4) −0.345 −0.41 −0.489 −0.551

L�u
n (1.2) −0.341 −0.391 −0.483 −0.533

L�u
n (1.0) −0.335 −0.36 −0.476 −0.531

L�u
n (0.8) −0.303 −0.359 −0.472 −0.529

L�v
n (0.2) −0.353 −0.424 −0.496 −0.567

We now give the graphs of un(x) and vn(x) in Fig. 4 and level sets in Table 3. Here
the spreading speed is almost 0.007, which is close to the speed determined by (5) or
the equation

vn+1(x) = 1√
0.000025π

∫
R

e− (x−y)2

0.000025 vn(y)e(2−vn(y))dy.

The numerical results are similar to those in Sects. 3, 4, but this could not be determined
by the conclusions in Sects. 3, 4. Note that the steady state 1 is unstable in un+1 =
une2.5(1−un), u0 > 0, and we may observe spatial oscillation in Fig. 4, which is
different from that in Figs. 2, 3. To formulate the oscillation, we use several different
level sets in Table 3, which do not move synchronously. But the average speeds of
moving level sets are very close.

Example 5.4 Finally, we consider

⎧⎨
⎩

un+1(x) = 1√
0.0004π

∫
R

e− (x−y)2

0.0004 un(y)e4.5(1−un(y)−0.5vn(y))dy,

vn+1(x) = 1√
0.000025π

∫
R

e− (x−y)2

0.000025 vn(y)e(−1−vn(y)+0.95un(y))dy.

(31)

We simulate the case in Fig. 5, from which the invasion is also successful for large r1
although a2 < 1. However, the corresponding difference system does not admit such
a persistence dynamics, see Fig. 6.
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Fig. 5 Snapshots of the solution (un(x), vn(x)) of model (31) (Color figure online)
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Fig. 6 Snapshots of the solutions un+1 = une4.5(1−un−0.5vn ), vn+1 = vne−1−vn+0.95un with u0 =
1, v0 = 0.2. In the left (right) graph,weplot from (u100, v100) to (u200, v200) ((u400, v400) to (u500, v500)),
and the red cycle denotes the mean from (u100, v100) to (u200, v200) ((u400, v400) to (u500, v500)) (Color
figure online)

6 Discussion

Spreading speeds of monotone semiflows have been widely studied by Fang and Zhao
(2014), Liang and Zhao (2007), Lui (1989a) and Weinberger et al. (2002). Note that
the overcompensatory is universal in population dynamics, there are many mathemat-
ical models involving nonmonotone or local monotone birth functions. If a system is
locally monotone such that it can be controlled by two systems generating monotone
semiflows and admitting the same spreading speed, then some results on spatial prop-
agation were established by Bourgeois et al. (2018), Hsu and Zhao (2008), Li et al.
(2009),Wang and Castillo-Chavez (2012) and Yi et al. (2013). Moreover, the interspe-
cific action leads to many coupled systems that do not generate monotone semiflows,
and the predator–prey systems and competitive systems are typical nonmonotone sys-
tems. When a competitive system admitting comparison principle is concerned, we
refer to Lin et al. (2011). In this paper, we studied a predator–prey system without
comparison principle. The difficulty in studying (4) is that it does not satisfy compari-
son principle and cannot be controlled by twomonotone semiflows admitting the same
spreading speeds. We hope our method can be generalized to analyze other coupled
systems including epidemic models.
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Define

E = (e1, e2) :=
(

1 + a1
1 + a1a2

,
a2 − 1

1 + a1a2

)
,

which is the unique spatial homogeneous positive steady state of (4) if a2 > 1.
From some numerical examples, we observed the convergence of un(x) and vn(x)

in any compact domain. When the system is monotone, the convergence is evident
by the dominated convergence theorem or Fatou lemma. We also want to know the
convergence in any compact interval when the system is not monotone. In particular,
very likely (4) admits nontrivial periodic solutions, is it possible to find the relationship
between the long time behavior of un(x) and vn(x) and the nonconstant periodic
solutions of (4) if x ∈ R lies in any given bounded interval? For the topic, we refer to
Bourgeois et al. (2018) for some results on scalar equations.

If a1 = 0, u0(x) = 1, x ∈ R, in (4), then un(x) = 1, n ∈ N, x ∈ R. So vn(x)

satisfies

{
vn+1(x) = ∫

R
vn(y)er2(a2−1−vn(y))k2(x − y)dy, x ∈ R, n + 1 ∈ N,

v0(x) = v(x), x ∈ R.

Evidently, we have

lim
n→∞ sup

x∈R
vn(x) = 0 if a2 ∈ (0, 1). (32)

However, our numerical result implies that a1 > 0, a2 ∈ (0, 1) may lead to the
persistence of predators vn(x). That is, the consumption of the prey leads to the
nonhomogeneous of spatial distribution of individuals, which further leads to the per-
sistence of the predators. But in the corresponding nonmonotone difference system,
we did not observe similar persistence phenomena. Moreover, in the monotone case of
the prey component (r1 ∈ (0, 1)), the extinction of predators or (32) is also clear when
a1 > 0, a2 ∈ (0, 1). So, we conjecture that instability of the predator-free steady state
and persistence of system is the coupled effect of spatial dispersal and overcompensat-
ing that happen at different stages. More precisely, because of the overcompensation,
the local consumption of the prey leads to its relative small density at the current gen-
eration and its relative large density in the next generation. Then, the spatial contact
leads to relative more resource for the nearby predators, and this makes the system
persistent. Therefore, this may imply dispersal-driven instability of the predator-free
state, andwe refer toNeubert et al. (1995, Section 4) for the dispersal-driven instability
of the positive steady state. Evidently, if a threshold on asymptotic spreading exists,
this threshold cannot be given by (5). These are challenging questions and deserve
further consideration.
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