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Abstract. This paper is concerned with traveling wavefronts in a Lotka-
Volterra model with nonlocal delays for two cooperative species. By using

comparison principle, some existence and nonexistence results are obtained. If

the wave speed is larger than a threshold which can be formulated in terms of
basic parameters, we prove the asymptotic stability of traveling wavefronts by

the spectral analysis method together with squeezing technique.

1. Introduction. In this paper, we are interested in traveling wavefronts of the
following cooperative Lotka-Volterra system with nonlocal delays{

∂u1(x,t)
∂t = d1∆u1(x, t) + r1u1(x, t) [1− a1u1(x, t) + b1(g1 ∗ u2)(x, t)] ,

∂u2(x,t)
∂t = d2∆u2(x, t) + r2u2(x, t) [1− a2u2(x, t) + b2(g2 ∗ u1)(x, t)] ,

(1)

hereafter x ∈ R, t > 0, u = (u1, u2) ∈ R2, u1(x, t) and u2(x, t) denote the densities
of two cooperative species in location x ∈ R and at time t, and all parameters are
positive. The kernels (g1 ∗ u2)(x, t) and (g2 ∗ u1)(x, t) are defined by{

(g1 ∗ u2)(x, t) =
∫∞
−∞

∫ t
−∞G1(x− y, t− s)k1(t− s)u2(y, s)dyds,

(g2 ∗ u1)(x, t) =
∫∞
−∞

∫ t
−∞G2(x− y, t− s)k2(t− s)u1(y, s)dyds,

respectively, in which the kernel function ki denotes the impact factor of historical
behavior of species u3−i on species ui, and we assume that it takes the form of the
so-called weak kernel (see Ruan and Xiao [30]) as follows

ki(s) =
1

τi
e
− 1
τi
s
, i = 1, 2, s ≥ 0,

herein τi ≥ 0 is the average delay ([30]). For i = 1, 2, Gi is a weighting function
describing the distribution at past time of the individuals of the species u3−i who
are in position x at time t, and the species ui diffuses at diffusivity di; thus

∂Gi(x, t)

∂t
= d3−i

∂2Gi(x, t)

∂x2
, Gi(x, 0) = δ(x), x ∈ R, t > 0, i = 1, 2,
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where δ(x) is the general Dirac function, so that Gi is a fundamental solution of
the heat equation with diffusivity d3−i, i.e.,

Gi(x, t) =
1√

4d3−iπt
e
− x2

4d3−it , i = 1, 2.

For more details on the choice of kernel functions and the background of nonlocal
delay (spatial-temporal delay), we refer to Briton [3] for a single species population
model, Gourley and Ruan [8] for a competition model, Ruan and Xiao [30] for an
epidemic model, Gourley and Wu [9] and Ruan [28] for surveys on nonlocal delay
models.

Let θ = t− s and z = x− y, then

(gj ∗ ui)(x, t) =

∫ ∞
0

∫ ∞
−∞

1

τj
e
− 1
τj
θ 1√

4diπθ
e
− z2

4diθ ui(x− z, t− θ)dzdθ

for i, j = 1, 2. With these assumptions, (1) has a trivial equilibrium E0 = (0, 0),
two semitrivial spatially homogeneous equilibria E1 = (1/a1, 0) and E2 = (0, 1/a2) ,
and a positive spatially homogeneous equilibrium defined by

E∗ =

(
a2 + b1

a1a2 − b1b2
,

a1 + b2
a1a2 − b1b2

)
:= (k1, k2)

provided that
a1a2 > b1b2. (2)

From Li et al. [12], we know that the cooperative Lotka-Volterra system without
delay {

∂u1(x,t)
∂t = d1∆u1(x, t) + r1u1(x, t) [1− a1u1(x, t) + b1u2(x, t)] ,

∂u2(x,t)
∂t = d2∆u2(x, t) + r2u2(x, t) [1− a2u2(x, t) + b2u1(x, t)] ,

(3)

has a traveling wavefront with the speed c ≥ c∗ := max{2
√
d1r1, 2

√
d2r2} if (2)

holds. Here a traveling wavefront of (3) is a solution of the form u(x, t) = Φ(x+ ct)
for some c ∈ R accounting for the wave speed of propagation and Φ ∈ C2(R,R2)
being interpreted as the wave profile, from a stable equilibrium E∗ to one of the
unstable equilibria {E0, E1, E2}, which is called a monostable wavefront, see [5, 34].
In particular, Li et al. [12] showed that their results on minimal wave speed are
coincident with the so-called linear determinate conjecture [2, 38]. Notice that (3)
is also called a mutualist model, we refer to Huang [11], Mischaikow and Hutson
[25], and Volpert et al. [34] for the bistable wavefronts of mutualist models.

Recently, there are many results on the existence and persistence of traveling
wavefronts of reaction-diffusion systems with (nonlocal) delay, see, for example,
[6, 8, 9, 15, 17, 19, 26, 30, 35, 36, 39]. We should note that the results of Faria
et al. [6] and Ou and Wu [26] do not apply to (1) directly because (1) has four
equilibria (they required that the system considered has two equilibria). Using
the monotone iteration technique, Wang et al. [35] established the existence of
traveling wavefronts of reaction-diffusion systems with nonlocal delays under the
so-called (exponential) quasimonotone condition, by which the traveling wavefronts
of (1) were considered if c ≥ c0 := max

{
2
√
d1r1a1k1, 2

√
d2r2a2k2

}
, see Li and

Wang [14]. Similar results were established by Huang and Zou [10] for the discrete
delay version of (3). However, the results in [10, 14] did not give precise asymptotic
behavior of such traveling wavefronts as traveling wave coordinate x + ct → −∞,
which is necessary in studying the asymptotic stability of monostable wavefronts
(see [5, 21, 22, 23, 34]).
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Motivated by the linear determine conjecture [12, 38], it is also natural to ask
whether the constant c∗(< c0) is the minimal wave speed of (1). In this paper we
will address this problem. In order to establish the existence of traveling wavefronts
of (1), we first consider an abstract reaction-diffusion system with nonlocal delays by
modifying the techniques in [35] (less restrictive on upper-lower solutions than that
of [35]) and using Schauder’s fixed point theorem. We then obtain some existence
results of traveling wavefronts connecting E∗ with E0 if c > c∗. As a byproduct,
the precise asymptotic behavior of such traveling wavefronts is obtained. If c < c∗,
then we confirm that (1) has no traveling wavefronts by the theory of asymptotic
spreading. For (3), we also establish the existence of monostable wavefronts con-
necting E0 with E∗, which is different from [12, Theorem 4.2] (see Remark 2.12). In
particular, our parameters concerning with the existence, nonexistence and precise
asymptotic behavior of traveling wavefronts of (1) are dependent only on the real
roots of the following characteristic equations

d1λ
2 − cλ+ r1 = 0 and d2λ

2 − cλ+ r2 = 0.

We should point out that our existence results are invalid for arbitrary τ1, τ2 (The-
orem 2.8) or d1, d2, r1, r2 (Remark 2.9 and Theorem 2.10). However, if the wave
speed is larger than a threshold formulated in terms of d1, d2, r1 and r2, we may
obtain the existence of traveling wavefronts for any positive parameters satisfying
(2).

After the existence of monostable wavefronts of (1) is established, it is natural
to consider the stability of such monostable wavefronts, which is very important in
interpreting some phenomena in physics, biology and other applied subjects [34]. In
this respect, there are several methods, e.g., the spectral analysis [34], and energy
estimates [22, 23]. Another method is the so-called squeezing technique based on
the comparison principle and upper-lower solutions, see [4] for reaction-diffusion
equations, [21] for lattice dynamical systems, [31] for delayed reaction-diffusion
equations, and [9, 19, 36, 37] for nonlocal reaction-diffusion equations.

Since the time delays in (1) are infinite, it will be very difficult to discuss the
stability of traveling wavefronts via spectral analysis. Moreover, when the energy
method and squeezing technique are involved, we often need to improve the distance
between the traveling wavefronts and the solution of the corresponding Cauchy
type problem on the delayed interval as time increases (see, e.g., Ma and Zou [20,
Lemma 4.4], Smith and Zhao [31, Lemma 3.1]), this is impossible for (1) due to the
unboundedness of time delays. Motivated by the ideas of Gopalsamy [7] and Lin
and Li [16], we shall consider the stability of traveling wavefronts of (1) by studying
the following auxiliary undelayed system

∂u1(x,t)
∂t = d1∆u1(x, t) + r1u1(x, t) [1− a1u1(x, t) + b1u3(x, t)] ,

∂u2(x,t)
∂t = d2∆u2(x, t) + r2u2(x, t) [1− a2u2(x, t) + b2u4(x, t)] ,

∂u3(x,t)
∂t = d3∆u3(x, t) + 1

τ1
u2(x, t)− 1

τ1
u3(x, t),

∂u4(x,t)
∂t = d4∆u4(x, t) + 1

τ2
u1(x, t)− 1

τ2
u4(x, t),

(4)

where d3 = d2, d4 = d1, u3, u4 ∈ R, and the other parameters are the same as
in (1). Since the monostable and bistable wavefronts have significantly different
properties [5, 34], different techniques from those of [16] are required to study the
monostable wavefronts of (1). Utilizing the squeezing technique and spectral anal-
ysis, we establish two different results on the asymptotic stability of monostable
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traveling wavefronts of (1) if the wave speed is larger than the threshold that can
be formulated in terms of the basic parameters d1, d2, r1 and r2.

The rest of this paper is organized as follows. In Section 2, the existence and
asymptotic behavior of traveling wavefronts of (1) are proved by constructing upper-
lower solutions. The corresponding initial value problem of (1) is considered in
Section 3. In Section 4, we establish the asymptotic stability of traveling wavefronts
of (1). In Section 5, the nonexistence of traveling wavefronts of (1) is investigated
by the theory of asymptotic spreading.

2. Existence of traveling wavefronts. In this section, we consider the existence
and asymptotic behavior of traveling wavefronts of systems (1) and (4). This part
is motivated by Li et al. [13], Ma [18] and Wang et al. [35], Wu and Zou [40]. For
more results on this topic, we refer to Faria et al. [6], Gourley and Wu [9] and Ou
and Wu [26].

2.1. Preliminaries. In this paper, we shall use the standard partial ordering in
Rn. Moreover, let Φ(ξ) = (φ1(ξ), · · · , φn(ξ)) be a vector-valued function, then Φ(ξ)
is monotone if φi(ξ) is monotone for each i = 1, 2, · · · , n. We also denote Φ′(ξ) =
(φ′1(ξ), · · · , φ′n(ξ)) and Φ′′(ξ) = (φ′′1(ξ), · · · , φ′′n(ξ)) if φ′i(ξ) and φ′′i (ξ) exist for all
i = 1, · · · , n.

Consider the traveling wavefronts of the following reaction-diffusion system

∂u(x, t)

∂t
= D∆u(x, t) + f (u(x, t)) , (5)

where u ∈ Rn, D = diag(d1, · · · , dn) is a diagonal matrix with di > 0, i = 1, 2, · · · , n,
f : Rn → Rn is a continuous vector-valued function.

Definition 2.1. A traveling wave solution of (5) is a solution with special form
u(x, t) = Φ(x + ct) for some c > 0 accounting for the wave speed and the twice
differentiable vector-valued function Φ ∈ C2 (R,Rn) being interpreted as the wave
profile. Moreover, if Φ(ξ) is monotone in ξ ∈ R, then it is called a traveling wave-
front.

Remark 2.2. For the bistable model, c ≤ 0 is admissible ([34]). Since our main
attention in this paper is on monostable traveling wavefronts, we only consider the
case c > 0 in Definition 2.1.

Let ξ = x+ ct, then a traveling wavefront of (5) satisfies

DΦ′′(ξ)− cΦ′(ξ) + f (Φ(ξ)) = 0, ξ ∈ R.
Motivated by the meaning of traveling wavefronts in biology, physics and chemical
reaction [32, 34], we also require that Φ satisfy the following asymptotic boundary
conditions

lim
ξ→−∞

Φ(ξ) = Φ−, lim
ξ→∞

Φ(ξ) = Φ+ (6)

with f (Φ−) = f (Φ+) = 0.
A typical nonlocal delay system takes the form

∂u(x, t)

∂t
= D∆u(x, t) + f (u(x, t), (g ∗ u) (x, t)) , (7)

in which f = (f1, · · · , fn) : (Rn,Rn)→ Rn, g ∗ u ∈ Rn is defined by

(g ∗ u) (x, t) =

∫ ∞
0

∫ ∞
−∞

g(y, s)u(x− y, t− s)dyds
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and we also assume that g ∗ I = I with I = diag(1, 1, · · · , 1).
Similar to that of (5), if we denote the traveling wave solution of (7) as

u(x, t) = Φ(x+ ct) = (φ1(x+ ct), · · · , φn(x+ ct)),

then Φ(ξ) must satisfy the following functional differential system

DΦ′′(ξ)− cΦ′(ξ) + f (Φ(ξ), (g ∗ Φ) (ξ)) = 0 (8)

and the asymptotic behavior (6) with

f (Φ−,Φ−) = f (Φ+,Φ+) = 0,

herein (g ∗ Φ)(ξ) is defined by

(g ∗ Φ)(ξ) =

∫ ∞
0

∫ ∞
−∞

g(y, s)Φ(ξ − y − cs)dyds.

Without loss of generality, we shall consider the following asymptotic behavior

lim
t→−∞

Φ(ξ) = 0, lim
t→∞

Φ(ξ) = S (9)

where 0� S ∈ Rn with f(0, 0) = f(S,S) = 0.
In order to consider the existence of monotone solutions of (8) and (9), we need

the following quasimonotone condition (QM).

(QM) There exists a matrix β =diag(β1, β2, · · · , βn) , βi > 0, i = 1, 2, · · · , n, such
that

f (Φ(ξ), (g ∗ Φ) (ξ))− f (Ψ(ξ), (g ∗Ψ) (ξ)) + β (Φ(ξ)−Ψ(ξ)) ≥ 0

for any 0 ≤ Ψ(ξ) ≤ Φ(ξ) ≤ S, ξ ∈ R.

Definition 2.3. Assume that f satisfies (QM). Then a continuous vector-valued
function Φ(ξ) is called an upper (lower) solution of (8) if 0 ≤ Φ(ξ) ≤ S and
Φ′′(ξ),Φ′(ξ) are bounded for ξ ∈ R \ T and satisfy the following inequality

DΦ′′(ξ)− cΦ′(ξ) + f (Φ(ξ), (g ∗ Φ) (ξ)) ≤ (≥)0 for all ξ ∈ R \ T, (10)

where T = {T1, T2, · · · , Tm} and T1 < T2 < · · · < Tm.

Before proving the existence of solutions to (8) and (9), we introduce a Banach
space equipped with the exponential decay norm used by Ma [18] and an integral
operator used by Wang et al. [35]. Set

λi1 =
c−

√
c2 + 4βidi
2di

, λi2 =
c+

√
c2 + 4βidi
2di

for i = 1, 2, · · · , n.

For Φ(ξ) ∈ C(R,Rn) with 0 ≤ Φ(ξ) ≤ S, we define P = (P1, · · · , Pn) by

Pi (Φ) (ξ) =
1

di (λi2 − λi1)

[∫ ξ

−∞
eλi1(ξ−s) +

∫ ∞
ξ

eλi2(ξ−s)

]
Hi (Φ) (s)ds,

in which Hi (Φ) (ξ) are given by

Hi (Φ) (ξ) = βiφi(ξ) + fi (Φ(ξ), (g ∗ Φ) (ξ)) , i = 1, · · · , n.

It is clear that P is well defined and a fixed point of the operator P satisfies (8). We
also assume that the kernel function g satisfies the following integrable condition.
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(G) There exists a constant ν ∈ (0,mini=1,2,··· ,n {−λi1}) such that

G(ν) :=

∫ 0

−∞

∫ ∞
−∞

n‖g(y, θ)I‖eν|y+cθ|dydθ <∞, (11)

where ‖ · ‖ is the maximal norm of Rn × Rn.
Let | · | denote the supremum norm in Rn. Then

Bν (R,Rn) =

{
u : u(ξ) ∈ C (R,Rn) and sup

ξ∈R
|u(ξ)| e−ν|ξ| <∞

}
is a Banach space with norm ‖·‖ν defined by

‖u‖ν = sup
ξ∈R
|u(ξ)| e−ν|ξ| for u(ξ) ∈ Bν (R,Rn) .

Moreover, we assume that there exists a constant L > 0 such that

|f (u1, v1)− f (u2, v2)| ≤ L (|u1 − u2|+ |v1 − v2|) (12)

for any 0 ≤ u1, u2, v1, v2 ≤ S.

Theorem 2.4. Assume that (QM), (G) and (12) hold. If (8) has an upper solution
Φ(ξ) = (φ1, · · · , φn) and a lower solution Φ(ξ) = (φ

1
, · · · , φ

n
) satisfying

(a) sups≤ξ Φ(s) ≤ infs≥ξ Φ(s) for ξ ∈ R;

(b) f(u, u) 6= 0, u ∈ (0, infξ∈R Φ(ξ)] ∪ [supξ∈R Φ(ξ),S);

(c) Φ
′
(ξ+) ≤ Φ

′
(ξ−), Φ′(ξ+) ≥ Φ′(ξ−) for ξ ∈ T, where Φ′(ξ+) = limt→ξ+ Φ′(t)

and Φ′(ξ−) = limt→ξ−Φ′(t).

Then (8) and (9) has a monotone solution connecting 0 with S in the sense of

lim
ξ→−∞

Φ(ξ) = 0, lim
ξ→∞

Φ(ξ) = S.

Proof. It suffices to prove that the operator P has a fixed point satisfying (9). Now
we employ Schauder fixed point theorem to obtain this conclusion.

Define a set Γ by

Γ =

{
Φ = (φ1, · · · , φn) ∈ C (R,Rn)

∣∣∣∣ (i) Φ(ξ) ≤ Φ(ξ) ≤ Φ(ξ);
(ii) Φ(ξ) is nondecreasing for ξ ∈ R

}
.

By (a), Γ is nonempty. Moreover, it is evident that Γ is bounded, convex and closed
with respect to ‖ · ‖ν .

We know that P (Φ)(ξ) is a monotone operator for 0 ≤ Φ(ξ) ≤ S, i.e., P (Φ1)(ξ) ≤
P (Φ2)(ξ) for 0 ≤ Φ1(ξ) ≤ Φ2(ξ) ≤ S. Furthermore, PΓ ⊂ Γ. In fact, if Φ ∈ Γ such
that Φ(ξ) ≤ Φ(ξ + s) for any s ≥ 0 and ξ ∈ R, then the monotonicity of P implies
that

P (Φ)(ξ) ≤ P (Φ)(ξ + s), s ≥ 0, ξ ∈ R.
Thus the condition (ii) of Γ is true. In order to prove the condition (i) of Γ, it
suffices to verify that

Φ(ξ) ≤ P (Φ) (ξ) ≤ P
(
Φ
)

(ξ) ≤ Φ(ξ), ξ ∈ R (13)

since the monotonicity of P indicates that

P (Φ) (ξ) ≤ P (Φ)(ξ) ≤ P
(
Φ
)

(ξ), Φ(ξ) ≤ Φ(ξ) ≤ Φ(ξ).
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If ξ ∈ R \ T, then Definition 2.3 leads to

Pi(Φ)(ξ)

=
1

di(λi2 − λi1)

[∫ ξ

−∞
eλi1(ξ−s) +

∫ ∞
ξ

eλi2(ξ−s)

]
Hi(Φ)(s)ds

=
1

di(λi2 − λi1)

m+1∑
j=1

∫ Tj

Tj−1

min
{
eλi1(ξ−s), eλi2(ξ−s)

}
Hi(Φ)(s)ds

≥ 1

di(λi2 − λi1)

m+1∑
j=1

∫ Tj

Tj−1

min
{
eλi1(ξ−s), eλi2(ξ−s)

}
×
(
βiφi(s) + cφ′

i
(s)− diφ′′i (s)

)
ds

= φ
i
(ξ) +

1

λi2 − λi1

 m∑
j=1

min
{
eλi2(ξ−Ti), eλi1(ξ−Ti)

}(
φ′
i
(Tj+)− φ′

i
(Tj−)

)
≥ φ

i
(ξ), i = 1, 2, · · · , n,

where T0 = −∞, Tm+1 =∞. Then the continuity of Φ(ξ) and P (Φ)(ξ) implies that
P (Φ)(ξ) ≥ Φ(ξ) for any ξ ∈ R. Similarly, we can prove that (13) holds for all ξ ∈ R.

Assume that Φ,Ψ ∈ Γ. Then (G) and (12) indicate that

|Hi (Φ) (ξ)−Hi (Ψ) (ξ)| e−ν|ξ| ≤ [L+ βi + L|G(ν)|] ‖Φ−Ψ‖ν .
We further have the following estimate

[di (λi2 − λi1)] |Pi (Φ) (ξ)− Pi (Ψ) (ξ)| e−ν|ξ|

≤ e−ν|ξ|
[∫ ξ

−∞
eλi1(ξ−s) +

∫ ∞
ξ

eλi2(ξ−s)

]
|Hi (Φ) (s)−Hi (Ψ) (s)| ds

≤ [L+ βi + L|G(ν)|] ‖Φ−Ψ‖ν

[∫ ξ

−∞
e(λi1+ν)(ξ−s) +

∫ ∞
ξ

e(λi2−ν)(ξ−s)

]
ds

= [L+ βi + L|G(ν)|]
[

1

λi2 − ν
− 1

λi1 + ν

]
‖Φ−Ψ‖ν

for i = 1, · · · , n, which implies that P : Γ → Γ is continuous in the decay norm.
Furthermore, note that P (Φ)(ξ) → 0 is uniformly convergent as ξ → ±∞ in the
decay norm and P (Φ)(ξ) is equicontinuous and totally bounded, so P : Γ → Γ is
compact, hence, is completely continuous in the decay norm.

Thus, P has a fixed point Φ∗ in Γ by Schauder fixed point theorem, which makes
(8) true. Furthermore, the condition (b) and the monotonicity of Φ∗ imply that the
fixed point Φ∗ also satisfies (9). The proof is complete.

Remark 2.5. In Theorem 2.4, we do not require the monotonicity of upper and
lower solutions, which is weaker than the conditions in Wang et al. [35] and makes
the construction of upper and lower solutions easier.

2.2. Traveling wavefronts of (1). From the previous section we know that a
traveling wavefront of (1) must satisfy{

d1φ
′′
1(ξ)− cφ′1(ξ) + r1φ1(ξ) [1− a1φ1(ξ) + b1 (g1 ∗ φ2) (ξ)] = 0,

d2φ
′′
2(ξ)− cφ′2(ξ) + r2φ2(ξ) [1− a2φ2(ξ) + b2 (g2 ∗ φ1) (ξ)] = 0,

(14)
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and we are interested in the following asymptotic boundary conditions

lim
ξ→−∞

(φ1(ξ), φ2(ξ)) = (0, 0) , lim
ξ→∞

(φ1(ξ), φ2(ξ)) = (k1, k2) , (15)

where (g1 ∗ φ2) (ξ) and (g2 ∗ φ1) (ξ) are defined by(g1 ∗ φ2) (ξ) =
∫ +∞
0

∫∞
−∞

1
τ1
e−

θ
τ1

1√
4πd2θ

e−
s2

4d2θ φ2 (ξ − cθ − s) dsdθ,

(g2 ∗ φ1) (ξ) =
∫ +∞
0

∫∞
−∞

1
τ2
e−

θ
τ2

1√
4πd1θ

e−
s2

4d1θ φ1 (ξ − cθ − s) dsdθ.
(16)

For any given d1, d2, c, τ1, τ2, we always can choose ν > 0 such that

τ3−iνc+ diν
2τ3−i < 1, i = 1, 2,

which implies that g1 and g2 satisfy (G). Moreover, it is easy to see that f satisfies
(QM). Thus, in order to prove the existence of traveling wavefronts, it suffices to
construct proper upper and lower solutions of (14).

For c > c∗, let λi be the smaller positive root of diλ
2 − cλ + ri = 0. Now, we

define the following continuous functions

φ1(ξ) = min
{
k1
[
eλ1ξ + qeηλ1ξ

]
, k1
}
, φ

1
(ξ) = max

{
k1
[
eλ1ξ − qeηλ1ξ

]
, 0
}
,

φ2(ξ) = min
{
k2
[
eλ2ξ + qeηλ2ξ

]
, k2
}
, φ

2
(ξ) = max

{
k2
[
eλ2ξ − qeηλ2ξ

]
, 0
}
,

where 1 < η < 2 such that ηλ1 < λ1 + λ2, ηλ2 < λ1 + λ2 and

∆i(ηλi, c) := di (ηλi)
2 − cηλi + ri < 0, i = 1, 2,

and q ≥ max{q1, q2, 1} with

q1 = max

 −4r2
∆2(ηλ2, c)

,
−4r1

∆1(ηλ1, c)
,

(
−4r2

∆2(ηλ2, c)

) ηλ2
λ1

,

(
−4r1

∆1(ηλ1, c)

) ηλ1
λ2

 ,

q2 = max

{
− r2a2k2

∆2(ηλ2, c)
,− r1a1k1

∆1(ηλ1, c)

}
.

Without loss of generality, we assume that

φ1(ξ) =

{
k1[eλ1ξ + qeηλ1ξ], ξ < ξ1,

k1, ξ ≥ ξ1,
φ2(ξ) =

{
k2[eλ2ξ + qeηλ2ξ], ξ < ξ2,

k2, ξ ≥ ξ2,

φ
1
(ξ) =

{
k1[eλ1ξ − qeηλ1ξ], ξ < ξ3,

0, ξ ≥ ξ3,
φ
2
(ξ) =

{
k2[eλ2ξ − qeηλ2ξ], ξ < ξ4,

0, ξ ≥ ξ4.

Lemma 2.6. For any given c > c∗, assume that τ1 (τ2) is large enough if λ1(c) >
λ1(c) (λ1(c) < λ1(c)). Then

(
φ1, φ2

)
is an upper solution of (14).

Proof. It suffices to verify the definition of the upper solution. We first give esti-
mates of

(
g1 ∗ φ2

)
(ξ) and

(
g2 ∗ φ1

)
(ξ). It is clear that(

g2 ∗ φ1
)

(ξ) ≤
(
g2 ∗

(
eλ1· + qeηλ1·

))
(ξ)

= k1

∫ +∞

0

∫ ∞
−∞

1

τ2
e−

θ
τ2

1√
4πd1θ

e−
s2

4d1θ eλ1(ξ−cθ−s)dsdθ

+qk1

∫ +∞

0

∫ ∞
−∞

1

τ2
e−

θ
τ2

1√
4πd1θ

e−
s2

4d1θ eηλ1(ξ−cθ−s)dsdθ

= I1 + I2,
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in which the definitions of I1, I2 are clear. Then it follows that

I1 = k1

∫ +∞

0

∫ ∞
−∞

1

τ2
e−

θ
τ2

1√
4πd1θ

e−
s2

4d1θ eλ1(ξ−cθ−s)dsdθ

= k1e
λ1ξ

∫ +∞

0

∫ ∞
−∞

1

τ2
e−

θ
τ2
−λ1cθ 1√

4πd1θ
e−

s2

4d1θ
−λ1sdsdθ

= k1e
λ1ξ

∫ +∞

0

∫ ∞
−∞

1

τ2
e−

θ
τ2
−λ1cθ+d1λ

2
1θ

1√
4πd1θ

e−
(s+2d1λ1θ)

2

4d1θ dsdθ

= k1e
λ1ξ

∫ +∞

0

1

τ2
e−

θ
τ2
−r1θdθ

=
k1e

λ1ξ

1 + r1τ2

and

I2 = qk1

∫ +∞

0

∫ ∞
−∞

1

τ2
e−

θ
τ2

1√
4πd1θ

e−
s2

4d1θ eηλ1(ξ−cθ−s)dsdθ

= qk1e
ηλ1ξ

∫ +∞

0

∫ ∞
−∞

1

τ2
e−

θ
τ2
−cηλ1θ 1√

4πd1θ
e−

s2

4d1θ
−ηλ1sdsdθ

= qk1e
ηλ1ξ

∫ +∞

0

∫ ∞
−∞

1

τ2
e−

θ
τ2
−cηλ1θ+d1η

2λ2
1θ

1√
4πd1θ

e−
(s+2d1ηλ1θ)

2

4d1θ dsdθ

= qk1e
ηλ1ξ

∫ +∞

0

1

τ2
e−

θ
τ2
−cηλ1θ+d1η

2λ2
1θdθ

=
qk1e

ηλ1ξ

1 + τ2 (cηλ1 − d1η2λ21)
.

We now use the above estimate to confirm the inequality on φ2(ξ).
If ξ > ξ2, then φ2(ξ) = k2 and

(
g2 ∗ φ1

)
(ξ) ≤ k1, it is easy to see that

d2φ
′′
2(ξ)− cφ′2(ξ) + r2φ2(ξ)

(
1− a2φ2(ξ) + b2

(
g2 ∗ φ1

)
(ξ)
)

= r1k1
(
1− a1k1 + b1

(
g ∗ φ1

)
(ξ)
)
≤ 0.

If ξ < ξ2 < − ln q
ηλ2

< 0, then φ2(ξ) = k2
[
eλ2ξ + qeηλ2ξ

]
, and we shall show that

d2φ
′′
2(ξ)− cφ′2(ξ) + r2φ2(ξ)

(
1− a2φ2(ξ) + b2

(
g2 ∗ φ1

)
(ξ)
)

≤ ∆2(ηλ2, c)qk2e
ηλ2ξ + k2

(
eλ2ξ + qeηλ2ξ

)
×
[
−a2k2

(
eλ2ξ + qeηλ2ξ

)
+ b2

(
k1e

λ1ξ

1 + r1τ2
+

qk1e
ηλ1ξ

1 + τ2 (cηλ1 − d1η2λ21)

)]
≤ 0. (17)

If λ2 ≤ λ1, then a2k2 > b2k1 implies that

−a2k2
(
eλ2ξ + qeηλ2ξ

)
+ b2

(
k1e

λ1ξ

1 + r1τ2
+

qk1e
ηλ1ξ

1 + τ2 (cηλ1 − d1η2λ21)

)
< 0

and (17) is clear by the definition of q1. If λ2 > λ1 holds and τ2 is large enough
(e.g., r1τ2 ≥ qb1k2) such that

−a2φ2(ξ) + b2

(
k1e

λ1ξ

1 + r1τ2
+

qk1e
ηλ1ξ

1 + τ2 (cηλ1 − d1η2λ21)

)
≤ 2eλ1ξ, ξ = ξ2.
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Then

∆2(ηλ2, c)qk2e
ηλ2ξ + k2

(
eλ2ξ + qeηλ2ξ

)
×
[
−a2k2

(
eλ2ξ + qeηλ2ξ

)
+ b2

(
k1e

λ1ξ

1 + r1τ2
+

qk1e
ηλ1ξ

1 + τ2 (cηλ1 − d1η2λ21)

)]
≤ ∆2(ηλ2, c)qk2e

ηλ2ξ + 2r2k2e
λ1ξ
(
eλ2ξ + qeηλ2ξ

)
.

The definition of q1 implies that

−q∆2(ηλ2, c) ≥ 4r2, −∆2(ηλ2, c) ≥ 4r2e
λ1ξ2 ,

which further indicates that (17) holds and completes the verification on φ2(ξ).
In a similar way, we can confirm that (φ1(ξ), φ2(ξ)) is an upper solution of (8).

The proof is complete.

Lemma 2.7. (φ
1
, φ

2
) is a lower solution of (14).

Proof. We first verify the inequality on φ
2
(ξ). If ξ ≥ ξ4, then the result is clear.

Otherwise, ξ < ξ4 implies
(
g2 ∗ φ1

)
(ξ) ≥ 0 and

d2φ
′′
2
(ξ)− cφ′

2
(ξ) + r2φ2(ξ)

[
1− a2φ2(ξ) + b2

(
g2 ∗ φ1

)
(ξ)
]

≥ d2k2
(
eλ2ξ − qeηλ2ξ

)′′ − ck2 (eλ2ξ − qeηλ2ξ
)′′

+r2k2
(
eλ2ξ − qeηλ2ξ

) [
1− a2k2

(
eλ2ξ − qeηλ2ξ

)]
≥ −qk2∆2(ηλ2, c)e

ηλ2ξ − r2a2k22e2λ2ξ

≥ 0, ξ < ξ4 ≤ 0,

in which the last inequality can be seen from the definition of q2.
In a similar way, we can prove that (φ

1
(ξ), φ

2
(ξ)) is a lower solution of (14). The

proof is complete.

By what we have done, we may obtain the following result.

Theorem 2.8. Assume that c > c∗ holds and Lemma 2.6 is true. Then (14) has a
monotone solution (φ1(ξ), φ2(ξ)) satisfying (15) and

lim
ξ→−∞

(
e−λ1ξφ1(ξ), e−λ2ξφ2(ξ)

)
= (k1, k2) , (18)

lim
ξ→−∞

(
e−λ1ξφ′1(ξ), e−λ2ξφ′2(ξ)

)
= (k1λ1, k2λ2) . (19)

In Theorem 2.8, we have some requirements on τi. If the wave speed is large,
the requirements are not necessary. For the purpose, we further define constants

λ3 = c+
√
c2−4d1r1
2d1

, λ4 = c+
√
c2−4d2r2
2d2

and

Λ = (λ1,min{λ3, λ1 + λ2})
⋂

(λ2,min{λ4, λ1 + λ2}) .

Remark 2.9. For any given di, ri, i = 1, 2, there exists c ≥ c∗ such that Λ is
nonempty for all c > c. In addition, c = c∗ holds for some cases, such as d1 = d2.

Theorem 2.10. Assume that c > c∗ holds such that Λ is nonempty. Then the
results of Theorem 2.8 hold.
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Proof. Let λ ∈ Λ. Define continuous functions as follows

χ1(ξ) = min
{
k1
[
eλ1ξ + peλξ

]
, k1
}
, χ

1
(ξ) = max

{
k1
[
eλ1ξ − peηλ1ξ

]
, 0
}
,

χ2(ξ) = min
{
k2
[
eλ2ξ + peλξ

]
, k2
}
, χ

2
(ξ) = max

{
k2
[
eλ2ξ − peηλ2ξ

]
, 0
}
.

We shall prove that (χ1(ξ), χ2(ξ)), (χ
1
(ξ), χ

2
(ξ)) are a pair of upper and lower so-

lutions of (8) if p > 1 is large enough. We now verify the inequality on χ1(ξ). If
χ1(ξ) = k1, then the result is clear. If χ1(ξ) = k1

[
eλ1ξ + peλξ

]
, then (g1 ∗ χ2)(ξ) ≤

k2

[
eλ2ξ

1+r2τ1
+ peλξ

1+τ1(cλ−d2λ2)

]
such that

d1χ
′′
1(ξ)− cχ′1(ξ) + r1χ1(ξ) [1− a1χ1(ξ) + b1(g1 ∗ χ2)(ξ)]

≤ pk1∆1 (ηλ1, c) e
λξ + k1

[
eλ1ξ + peλξ

] {
−a1k1

[
eλ1ξ + peλξ

]
+b1k2

[
eλ2ξ

1 + r2τ1
+

peλξ

1 + τ1 (cλ− d2λ2)

]}
≤ pk1∆1 (ηλ1, c) e

λξ + k1
[
eλ1ξ + peλξ

]{
−a1k1eλ1ξ +

b1k2e
λ2ξ

1 + r2τ1

}
≤ pk1∆1 (ηλ1, c) e

λξ +
k1b1k2e

λ2ξ
[
eλ1ξ + peλξ

]
1 + r2τ1

.

Note that λ < min {λ1 + λ2, λ1 + λ} , then

p∆1 (ηλ1, c) e
λξ +

b1k2e
λ2ξ
[
eλ1ξ + peλξ

]
1 + r2τ1

≤ 0

is true if

p > max

{
2b1k2

−∆1 (ηλ1, c) (1 + r2τ1)
,

(
2b1k2

−∆1 (ηλ1, c) (1 + r2τ1)

) λ
λ2

, 1

}
.

The other part can be confirmed by a similar way, we also refer to Lin et al. [17]
for some estimates. Using Theorem 2.4, we complete the proof.

Note that Theorem 2.10 is independent of the size of τ1, τ2, letting τ1 = τ2 = 0
in Theorem 2.10, we immediately get the following result.

Theorem 2.11. Assume that c > c∗ holds such that Λ is nonempty. Then (3) has
a traveling wavefront connecting E0 with E∗.

Remark 2.12. Theorem 2.11 is different from that in Li et al. [12, Theorem 4.1]
since we knew the equilibria involved. Unfortunately, such a result cannot be proved
for arbitrary d1, d2, r1, r2, and we shall further consider the problem in our future
papers.

2.3. Traveling wavefronts of the auxiliary system. As we have mentioned
in Section 1, (1) can be rewritten as (4) formally. Let φ3(ξ) = (g1 ∗ φ2) (ξ) and
φ4(ξ) = (g2 ∗ φ1) (ξ). Then

cφ′1(ξ) = d1φ
′′
1(ξ) + r1φ1(ξ) [1− a1φ1(ξ) + b1φ3(ξ)] ,

cφ′2(ξ) = d2φ
′′
2(ξ) + r2φ2(ξ) [1− a2φ2(ξ) + b2φ4(ξ)] ,

cφ′3(ξ) = d3φ
′′
3(ξ) + 1

τ1
φ2(ξ)− 1

τ1
φ3(ξ),

cφ′4(ξ) = d4φ
′′
4(ξ) + 1

τ2
φ1(ξ)− 1

τ2
φ4(ξ),

(20)
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with the asymptotical boundary conditions{
limξ→−∞ (φ1(ξ), φ2(ξ), φ3(ξ), φ4(ξ)) = (0, 0, 0, 0) ,

limξ→∞ (φ1(ξ), φ2(ξ), φ3(ξ), φ4(ξ)) = (k1, k2, k3, k4) ,
(21)

where k3 = k2, k4 = k1.

Theorem 2.13. Assume that the conditions in Theorem 2.8 hold. Then (4) has a
traveling wavefront Φ = (φ1, φ2, φ3, φ4) satisfying (20) and (21). Furthermore,

lim
ξ→−∞

(
e−λ1ξφ1(ξ), e−λ2ξφ2(ξ), e−λ2ξφ3(ξ), e−λ1ξφ4(ξ)

)
=

(
k1, k2,

k2
1 + r2τ1

,
k1

1 + r1τ2

)
,

lim
ξ→−∞

(
e−λ1ξφ′1(ξ), e−λ2ξφ′2(ξ), e−λ2ξφ′3(ξ), e−λ1ξφ′4(ξ)

)
=

(
k1λ1, k2λ2,

k2λ2
1 + r2τ1

,
k1λ1

1 + r1τ2

)
.

Proof. We further define the continuous functions as follows

φ3(ξ) = min

{
k3

[
eλ2ξ

1 + r2τ1
+

qeηλ2ξ

1 + τ1 (cηλ2 − d2η2λ22)

]
, k3

}
,

φ4(ξ) = min

{
k4

[
eλ1ξ

1 + r1τ2
+

qeηλ1ξ

1 + τ2 (cηλ1 − d1η2λ21)

]
, k4

}
,

φ
3
(ξ) = max

{
k3

[
eλ2ξ

1 + r2τ1
− qeηλ2ξ

1 + τ1 (cηλ2 − d2η2λ22)

]
, 0

}
,

φ
4
(ξ) = max

{
k4

[
eλ1ξ

1 + r1τ2
− qeηλ1ξ

1 + τ2 (cηλ1 − d1η2λ21)

]
, 0

}
.

Then (φ1, φ2, φ3, φ4) and (φ
1
, φ

2
, φ

3
, φ

4
) are upper and lower solutions of (20), re-

spectively. By Lemma 2.6, we only consider the inequalities of φ3, φ4, φ3, φ4.

If φ3(ξ) = k3, then the result is clear. Otherwise, we see that

d2φ
′′
3(ξ)− cφ′3(ξ)− 1

τ1
φ3(ξ) +

1

τ1
φ2(ξ)

≤ −1 + τ1r2
τ1

φ3(ξ) +
1

τ1
φ2(ξ) +

∆2 (ηλ2, c) qk2e
ηλ2ξ

1 + τ1 (cηλ2 − d2η2λ22)

≤ k2
[

∆2 (ηλ2, c) qe
ηλ2ξ

1 + τ1 (cηλ2 − d2η2λ22)
+

1

τ1
qeηλ2ξ − 1 + τ1r2

τ1

qeηλ2ξ

1 + τ1 (cηλ2 − d2η2λ22)

]
= 0,

which confirm the inequality for φ3. In a similar way, we can finish the verification.
Clearly, Theorem 2.4 implies what we wanted. The proof is complete.

Similar to Theorem 2.11, we have the following result.

Theorem 2.14. Assume that c > c∗ holds such that Λ is nonempty. Then the
results of Theorem 2.13 hold.
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3. Initial value problem. In order to study the stability of traveling wavefronts
of (1), we need to consider the corresponding initial value problem of (1)

∂u1(x,t)
∂t = d1∆u1(x, t) + r1u1(x, t) [1− a1u1(x, t) + b1(g1 ∗ u2)(x, t)] ,

∂u2(x,t)
∂t = d2∆u2(x, t) + r2u2(x, t) [1− a2u2(x, t) + b2(g2 ∗ u1)(x, t)] ,

u1(x, s) = ψ1(x, s), u2(x, s) = ψ2(x, s),

(22)

in which x ∈ R, s ≤ 0, t > 0 and (ψ1(x, s), ψ2(x, s)) ∈ C(R × (−∞, 0],R2) and
E0 ≤ (ψ1(x, s), ψ2(x, s)) ≤ E∗ for all x ∈ R, t ≤ 0.

We first introduce some notations. For n = 1, 2 or 4, denote X = C(R,Rn) as

X = {u : u(x) is a bounded and uniformly continuous function from R to Rn} .

Then X is a Banach space under the general supremum norm ‖·‖. Define

X+ = {u ∈ X : u(x) ≥ 0, x ∈ R}

and

C[0,K] = {u(x) : u(x) ∈ C(R,R4) and 0 ≤ u(x) ≤ K for all x ∈ R}
with K = (k1, k2, k3, k4). Fix constants

β1 = 2r1a1k1, β2 = 2r2a2k2, β3 =
1

τ2
, β4 =

1

τ1
,

and T (t) = (T1(t), · · · , Tn(t)) : X → X as

Ti(t)ψi(x) =
e−βit√
4πdit

∫ ∞
−∞

e
− y2

4ditψi(x− y)dy,

where Ψ(x) = (ψ1(x), · · · , ψn(x)) ∈ X and t > 0. It is clear that T (t) is a real
analytic semigroup on X (see Pazy [27], Smith and Zhao [31] and Smoller [32]).

Using semigroup theory, upper and lower solutions technique and the theory of
abstract functional differential equations (see Martin and Smith [24], Ruan and Wu
[29]), we have the following result.

Theorem 3.1. For any x ∈ R and t > 0, (22) has a mild solution which is contin-
uous in x ∈ R, t > 0 and is given by{

u1(x, t) = T1(t)ψ1(x, 0) +
∫ t
0
T1(t− s)F1(u1, u2)(x, s)ds,

u2(x, t) = T2(t)ψ2(x, 0) +
∫ t
0
T2(t− s)F2(u1, u2)(x, s)ds,

in which F1 and F2 are defined by

F1(u1, u2)(x, t) = β1u1(x, t) + r1u1(x, t) [1− a1u1(x, t) + b1(g1 ∗ u2)(x, t)] ,

F2(u1, u2)(x, t) = β2u2(x, t) + r2u2(x, t) [1− a2u2(x, t) + b2(g2 ∗ u1)(x, t)] .

Moreover, assume that (v1(x, t), v2(x, t)) and (u1(x, t), u2(x, t)) are mild solutions
of (22) with initial values (ψ1(x, s), ψ2(x, s)) and (ϕ1(x, s), ϕ2(x, s)), respectively.
Then

E0 ≤ (v1(x, t), v2(x, t)) ≤ (u1(x, t), u2(x, t)) ≤ E∗, x ∈ R, t > 0

provided that

E0 ≤ (ψ1(x, s), ψ2(x, s)) ≤ (ϕ1(x, s), ϕ2(x, s)) ≤ E∗, x ∈ R, s ≤ 0.

In particular, the mild solution also satisfies the following property.
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Theorem 3.2. Assume that u1(x, t), u2(x, t) are defined by (22). Let

u3(x, t) = (g1 ∗ u2)(x, t), u4(x, t) = (g2 ∗ u1)(x, t) for all x ∈ R, t ≥ 0.

Then (u1(x, t), u2(x, t), u3(x, t), u4(x, t)) satisfies

∂u1(x,t)
∂t = d1∆u1(x, t) + r1u1(x, t) [1− a1u1(x, t) + b1u3(x, t)] ,

∂u2(x,t)
∂t = d2∆u2(x, t) + r2u2(x, t) [1− a2u2(x, t) + b2u4(x, t)] ,

∂u3(x,t)
∂t = d3∆u3(x, t) + 1

τ1
u2(x, t)− 1

τ1
u3(x, t),

∂u4(x,t)
∂t = d4∆u4(x, t) + 1

τ2
u1(x, t)− 1

τ2
u4(x, t),

(u1(x, 0), u2(x, 0), u3(x, 0), u4(x, 0)) = (ψ1(x), ψ2(x), ψ3(x), ψ4(x)) ,

(23)

in which ψ3(x) = (g1 ∗ ψ2)(x, 0), ψ4(x) = (g2 ∗ ψ1)(x, 0).

The proof of Theorem 3.2 is similar to that of Lin and Li [16], so we omit it here.
Moreover, since the solution of (23) is unique if (ψ1(x), ψ2(x), ψ3(x), ψ4(x)) ∈ X,
then Theorems 3.1 and 3.2 imply the following important fact.

Remark 3.3. The mild solution of (22) is also a classical solution that can be
formulated by (23) if ψ3(x) = (g1 ∗ ψ2)(x, 0), ψ4(x) = (g2 ∗ ψ1)(x, 0). Thus, we can
investigate some properties of (1) by those of (4), which is our main idea in the rest
of this paper.

Lemma 3.4. Assume that

u(x, t) = (u1(x, t), u2(x, t), u3(x, t), u4(x, t)),

v(x, t) = (v1(x, t), v2(x, t), v3(x, t), v4(x, t))

are solutions of (23) with the initial values

Ψ1(x) = (ψ1(x), ψ2(x), ψ3(x), ψ4(x)) and Ψ2(x) = (ϕ1(x), ϕ2(x), ϕ3(x), ϕ4(x)),

respectively. Then Ψ1(x),Ψ2(x) ∈ X+ with Ψ1(x) ≤ Ψ2(x), x ∈ R implies that

0 ≤ u(x, t) ≤ v(x, t) for all x ∈ R, t > 0.

Lemma 3.4 implies a weaker version of the comparison principle formulated by
Theorem 3.1, we give it as follows (we also refer to Ruan and Wu [29]).

Corollary 3.5. Assume that (v1(x, t), v2(x, t)) and (u1(x, t), u2(x, t)) are mild so-
lutions of (22) with initial value (ψ1(x, s), ψ2(x, s)) and (ϕ1(x, s), ϕ2(x, s)), respec-
tively. Then

0 ≤ (v1(x, t), v2(x, t)) ≤ (u1(x, t), u2(x, t)) ≤ E∗, x ∈ R, t > 0

provided that for all x ∈ R
0 ≤ (ψ1(x, 0), ψ2(x, 0)) ≤ (ϕ1(x, 0), ϕ2(x, 0)) ≤ E∗,
0 ≤ ((g2 ∗ ψ1) (x, 0), (g1 ∗ ψ2) (x, 0)) ≤ ((g2 ∗ ϕ1) (x, 0), (g1 ∗ ϕ2) (x, 0)) ≤ E∗.

Lemma 3.6. Assume that u and v are defined by Lemma 3.4. Then

ui(x, t)− vi(x, t) ≥
e−βi(t−t0)√
4πdi(t− t0)

e
− (J+1)2

4di(t−t0)

∫ z+1

z

[ui(y, t0)− vi(y, t0)] dy ≥ 0

for i = 1, 2, 3, 4, and any J ≥ 0, x, z ∈ R with |x− z| ≤ J, and t > t0 ≥ 0.

The proof is similar to that of Smith and Zhao [31, Theorem 2.2], so we omit it
here. Note that the norm of T (t) is less than 1, so the following lemma is clear by
the Gronwall’s inequality (we also refer to Wang et al. [37, Lemma 3.6]).
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Lemma 3.7. Assume that u, v are defined by Lemma 3.4 if Ψ2(x) ≤ K. Then there
exists a constant µ > 0 such that

ui(x, t)− vi(x, t) ≤ min

eµt
4∑
j=1

‖ψj (·)− ϕj (·)‖ , ki


for any x ∈ R, t ≥ 0, where ‖ · ‖ denotes the supremum norm in C(R,R).

Definition 3.8. Assume that a continuous vector-valued function

u(x, t) = (u1(x, t), u2(x, t), u3(x, t), u4(x, t)) ∈ X+ for t ∈ (0, T )

satisfies the inequalities

∂u1(x,t)
∂t ≥ d1∆u1(x, t) + r1u1(x, t) [1− a1u1(x, t) + b1u3(x, t)] ,

∂u2(x,t)
∂t ≥ d2∆u2(x, t) + r2u2(x, t) [1− a2u2(x, t) + b2u4(x, t)] ,

∂u3(x,t)
∂t ≥ d3∆u3(x, t) + 1

τ1
u2(x, t)− 1

τ1
u3(x, t),

∂u4(x,t)
∂t ≥ d4∆u4(x, t) + 1

τ2
u1(x, t)− 1

τ2
u4(x, t),

(u1 (x, 0) , u2 (x, 0) , u3 (x, 0) , u4 (x, 0)) ≥ (ψ1(x), ψ2(x), ψ3(x), ψ4(x))

(24)

for x ∈ R, t ∈ (0, T ). Then u(x, t) is called an upper solution of (23) on x ∈ R,
t ∈ (0, T ). By reversing all the inequalities in (24), we can define a lower solution.

Lemma 3.9. Assume that u(x, t) and u(x, t) are upper and lower solutions of
(23). Then u(x, 0) ≤ u(x, 0) implies that u(x, t) ≤ u(x, t) for all x ∈ R and t ∈
(0, T ). Furthermore, (23) has a unique classical solution u(x, t) satisfying u(x, t) ≤
u(x, t) ≤ u(x, t).

Lemma 3.10. Assume that v(x, t) and w(x, t) are two upper solutions of (23) and
u(x, t) is a lower solution of (23). Suppose that u(x, 0) ≤ min {v(x, 0), w(x, 0)} is
also true. Then Lemma 3.9 holds if we replace u(x, t) by min {v(x, t), w(x, t)} .

Remark 3.11. By Lemma 3.10, min {v(x, t), w(x, t)} is also called an upper solu-
tion of (23). Moreover, Lemmas 3.9 and 3.10 are clear and we refer to Martin and
Smith [24] and Smoller [32].

4. Asymptotical stability of traveling wavefronts. In this section, we always
assume that Λ is nonempty such that Theorems 2.10 and 2.14 hold, and we shall
prove the asymptotic stability of traveling wavefronts of (1) by proving the corre-
sponding results for (4). Two results on the stability of traveling wavefronts of (1)
will be given, one is global and another is local in suitable sense.

4.1. Globally asymptotic stability. In this part, we shall employ the squeezing
technique to prove the stability of traveling wavefronts of (23). Our main result in
this section is listed as follows.

Theorem 4.1. Assume that the initial value Ψ(x) of (23) satisfies

(i) Ψ(x) = (ψ1(x), ψ2(x), ψ3(x), ψ4(x)) ∈ C[0,K];

(ii) φ
i
(x) ≤ ψi(x) ≤ φi(x) for x ∈ R, i = 1, 2, 3, 4, herein φ

i
(x) and φi(x) are

defined by Theorem 2.10;
(iii) lim infx→∞ ψi(x) > 0 for i = 1, 2, 3, 4.

Let Φ = (φ1, φ2, φ3, φ4) be formulated by Theorem 2.14. Then

lim
t→∞

sup
x∈R

∣∣∣∣ ui(x, t)

φi(x+ ct)
− 1

∣∣∣∣ = 0 for i = 1, 2, 3, 4.
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Before proving Theorem 4.1, we establish some estimates formulated by the fol-
lowing lemmas, through which the conditions in Theorem 4.1 will be imposed.

Lemma 4.2. φi(ξ) is strictly monotone such that φ′i(ξ) > 0, ξ ∈ R, i = 1, 2, 3, 4.

Lemma 4.2 is clear by Lemma 3.6, and the proof is omit.

Lemma 4.3. Let δ1 = δ2 = 1, δ3 = δ4 ∈
(

1, 12

[
1 + min

{
a2k2
b2k1

, a1k1b1k2

}])
be given.

Then, for any ξ+ ∈ R and ε ∈ (0, ε] with given ε ∈ (0, 1),

ui(x, t) = min
{(

1 + εδie
−γt)φi (x+ ct+ ξ+ − εσe−γt

)
, ki
}

is an upper solution of (23) provided that σ > 0 is large enough and γ > 0 is small
enough.

Proof. It suffices to verify the definition of an upper solution. If ui(x, t) = ki for
some i = 1, 2, 3, 4, then the result is clear. Otherwise

∂ui(x, t)

∂t
=− εδiγe−γtφi (ς) + c

(
1 + εδie

−γt)φ′i (ς) + εσγe−γt
(
1 + εδie

−γt)φ′i (ς) ,

∆ui(x, t) =
(
1 + εδie

−γt)φ′′i (ς) ,

where ς = x+ ct+ ξ+ − εσe−γt. If i = 1, then

r1u1(x, t) [1− a1u1(x, t) + b1u3(x, t)]

=
(
1 + εδ1e

−γt)φ1 (ς) [1− a1φ1 (ς) + b1φ3 (ς)]

+
(
1 + εδ1e

−γt) e−γtφ1 (ς) [−a1εδ1φ1 (ς) + b1εδ3φ3 (ς)] .

Using the definition of traveling wavefronts, we need to verify that

−εδ1γφ1 (ς) + εσγ
(
1 + δ1e

−γt)φ′1 (ς)

≥
(
1 + εδ1e

−γt)φ1 (ς) [−a1εδ1φ1 (ς) + b1εδ3φ3 (ς)] . (25)

Let M > 0 be a sufficiently large constant. We now confirm (25) by three steps.
(i) If ς ≤ −M, then the asymptotic behavior of traveling wavefronts implies (25)

if σ > 0 is large enough.
(ii) If ς ≥ M, then −a1δ1φ1 (ς) + b1δ3φ3 (ς) → −a1δ1k1 + b1δ3k3 as ς → ∞, so

(25) holds provided that a1δ1k1 − b1δ3k3 > 0 and γ > 0 is small enough.
(iii) If |ς| ≤ M, then the fact that φ1 is strictly monotone and large σ > 0 is

large implies (25).
Similarly, we can prove that u2 is an upper solution since a2δ2k2 − b1δ4k4 > 0.
For i = 3, we need to prove that

−εδ3γφ3 (ς) + εσγ
(
1 + εδ3e

−γt)φ′3 (ς) ≥ ε

τ1
[−δ3φ3 (ς) + δ2φ2 (ς)] ,

which is clear if δ3 > δ2 holds, σ > 0 is large and γ > 0 is small.
In a similar way, u4 is the upper solution if δ4 > δ1. The proof is complete.

Lemma 4.4. Assume that the constants ε, δi, σ, γ are given by Lemma 4.3 such
that εδ3 = εδ4 < 1. Then for any ξ− ∈ R,

ui(x, t) =
(
1− εδie−γt

)
φi
(
x+ ct+ ξ− + εσe−γt

)
, i = 1, 2, 3, 4,

is a lower solution of (23).

The proof of Lemma 4.4 is similar to that of Lemma 4.3, so we omit it here.
From the proof of Lemmas 4.3-4.4, we also obtain the following important fact.

Remark 4.5. We can fix σ and γ which only depend on ε.
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Lemma 4.6. For any ε > 0, there exists ξ1 = ξ1 (ε) such that

sup
t≥0

ui (ξ − ct− 2ε, t) ≤ φi(ξ) ≤ inf
t≥0

ui(ξ − ct+ 2ε, t)

holds for any ξ ≤ ξ1 and i = 1, 2, 3, 4.

The proof of the lemma depends on the upper and lower solutions given in
Theorem 2.10 since (ii) holds, and we omit it here.

Lemma 4.7. There exist positive constants ε ∈ (0, 1) , δi, γ, σ and z0 such that(
1− εδie−γt

)
φi(ξ − z0 + εσe−γt) ≤ ui(x, t) ≤

(
1 + εδie

−γt)φi(ξ + z0 − εσe−γt)

holds for all x ∈ R and t ≥ 1. Then for all t ≥ 1, we obtain

1− εδie−γt ≤ inf
R

ui(· − ct, t)
φi(·+ z0)

≤ sup
R

ui(· − ct, t)
φi(· − z0)

≤ 1 + εδie
−γt.

Proof. From Lemmas 3.6, 4.3-4.6, we know that there exist constants ε ∈ (0, 1) , γ >
0, σ > 0 and z0 ≥ 0 such that(

1− εδie−γ
)
φi(ξ − z0 + εσe−γ) ≤ ui(ξ − c, 1) ≤

(
1 + εδie

−γ)φi(ξ + z0 − εσe−γ)

for all ξ ∈ R. Moreover, these constants can satisfy the conditions in Lemmas 4.3-
4.4 if z0 > 0 is large enough. Then Lemma 3.9 implies the conclusion. The proof is
complete.

Lemma 4.8. For any ε ∈ (0, 1) , there exists M0 > 0 such that

(1− εδi)φi (ξ + 3εσ) ≤ φi (ξ) ≤ (1 + εδi)φi (ξ − 3εσ) , ξ ≥M0.

Proof. Let us consider the function (1 + sδi)φi (ξ − 3sσ) , it is clear that

d

ds
{(1 + sδi)φi (ξ − 3sσ)} = δiφi (ξ − 3sσ)− 3σ (1 + sδi)φ

′
i (ξ − 3sσ) .

By asymptotic behavior of traveling wavefronts, there exists M0 > 0 such that

δiφi (ξ − 3sσ)− 3σ (1 + sδi)φ
′
i (ξ − 3sσ) ≥ 0

for all ξ ≥ M0 and i = 1, 2, 3, 4. Since (1 + sδi)φi (ξ − 3sσ)|s=0 = φi (ξ), then the
result is clear. The proof is complete.

Lemma 4.9. Let z and M be any given positive constants and

u+(x, t) =
(
u+1 (x, t), u+2 (x, t), u+3 (x, t), u+4 (x, t)

)
,

u−(x, t) =
(
u−1 (x, t), u−2 (x, t), u−3 (x, t), u−4 (x, t)

)
be the solutions of (4) with initial values

u+i (x, 0) = φi(x+ z)χ(x+M) + φi(x+ 2z) [1− χ(x+M)] ,

u−i (x, 0) = φi(x− z)χ(x+M) + φi(x− 2z) [1− χ(x+M)] ,

respectively, where x ∈ R, χ(y) = min{max{0,−y}, 1} for all y ∈ R. Then there
exists a constant ε ∈ (0,min{1/2, z/ (3σ)}) such that for any x ∈ [−M,∞),

u+i (x− c, 1) ≤ (1 + εδi)φi(x+ 2z − 3εσ),

u−i (x− c, 1) ≥ (1− εδi)φi(x− 2z + 3εσ).
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Proof. From the definition of χ(y), we know that u+i (x, 0) ≤ φi(x + 2z) on R and
u+i (x, 0) < φi(x + 2z) on a nonempty subset of R, so u+i (x − c, 1) < φi(x + 2z)
on R by the positivity of T (t) and comparison principle. Since u+i and φi are
continuous functions, they are also uniformly continuous on any bounded interval.
Furthermore, there exists a constant ε ∈ (0,min{1/2, z/ (3σ)}) such that

u+i (x− c, 1) ≤ (1 + εδi)φi(x+ 2z − 3εσ)

for x ∈ [−M,M0 − 2z], where M0 > 0 is defined as in Lemma 4.8. We further have

u+i (x− c, 1) < φi(x+ 2z) ≤ (1 + εδi)φi(x+ 2z − 3εσ)

on [M0 − 2z,+∞) by Lemma 4.8.
Similarly, we can prove that our result holds for u−i . The proof is complete.

We are now in the position to prove Theorem 4.1.

Proof of Theorem 4.1. Define

z+ := inf
{
z
∣∣z ∈ A+

}
, A+ =

{
z ≥ 0

∣∣∣∣∣ sup
i=1,2,3,4

lim sup
t→∞

sup
ξ∈R

ui (ξ − ct, t)
φi (ξ + 2z)

≤ 1

}
,

z− := inf
{
z
∣∣z ∈ A−} , A− =

{
z ≥ 0

∣∣∣∣ inf
i=1,2,3,4

lim inf
t→∞

inf
ξ∈R

ui (ξ − ct, t)
φi (ξ − 2z)

≥ 1

}
.

By what we have done in Lemma 4.7, 1
2z0 ∈ A

±, which implies that A± are well

defined. Thus [ 12z0,+∞) ⊂ A±, z± ∈ [0, 12z0]. If z± = 0, then we finish our proof.
Now we assume that z+ > 0. Fix z = z+, M = −ξ1(z+/2) + z+ and ε defined in
Lemma 4.9. Since z+ ∈ A+, there exists T ≥ 0 such that

sup
ξ∈R

ui(ξ − cT, T )

φi (ξ + 2z+)
≤ 1 +

ε

ki
,

where 4ε = mini=1,2,3,4{φi(−M − 3εσ)}× εe−µ and µ > 0 is defined by Lemma 3.7.
From Lemma 4.9, we obtain

ui(ξ − cT, T ) ≤ φi(ξ + 2z+) + ε = u+i (ξ, 0) + ε for ξ ∈ [−M,+∞).

Furthermore, Lemma 4.6 follows that

ui(ξ − cT, T ) ≤ φi(ξ + z+) ≤ u+i (ξ, 0) if ξ ∈ (−∞,−M ].

Therefore, by virtue of Lemma 3.7, we have

ui(ξ − cT, T + 1) < u+i (ξ, 1) + 4εeµ ≤ u+i (ξ, 1) + εφi(−M − 3εσ)

where ξ ∈ R, and Lemma 4.7 indicates that

ui(ξ − c (T + 1) , T + 1)

≤ u+i (ξ − c, 1) + εφi(−M − 3εσ)

≤ (1 + εδi)φi(ξ + 2z+ − 3εσ) + εδiφi(−M − 3εσ)

≤ (1 + 2εδi)φi(ξ + 2z+ − 3εσ)

if ξ ∈ [−M,+∞). On the other hand, since 3εσ ≤ z+, then

ui(ξ − c (T + 1) , T + 1) ≤ φi(ξ + z+) ≤ φi(ξ + 2z+ − 3εσ)

for all ξ ∈ (−∞,−M ], which further implies that

ui(ξ − c (T + 1) , T + 1) ≤ min{(1 + 2εδi)φi(ξ + 2z+ − 3εσ), ki}, ξ ∈ R.
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By comparison principle (also see Remark 4.5), it follows that

ui(ξ − c (T + 1 + t) , T + 1 + t)

≤ min{(1 + 2εδie
−γt)φi(ξ + 2z+ − εσ − 2εσe−γt), ki}

if ξ ∈ R and t ≥ 0, which asserts that

sup
i=1,2,3,4

lim sup
t→∞

sup
ξ∈R

ui (ξ − ct, t)
φi (ξ + 2z+ − εσ)

≤ 1.

Furthermore, the above inequalities imply z+−εσ/2 ∈ A+, which is a contradiction
and also means that z+ = 0.

Similarly, we can prove that z− = 0. The proof is complete. �

Theorem 4.10. Assume that the initial values (ψ1(x, s), ψ2(x, s)) satisfy

(i) E0 ≤ (ψ1(x, s), ψ2(x, s)) ≤ E∗;
(ii) φ

i
(x) ≤ ψi(x, 0) ≤ φi(x) for i = 1, 2, 3, 4 where ψ3(x, 0) = (g1 ∗ ψ2) (x, 0),

ψ4(x, 0) = (g2 ∗ ψ1) (x, 0);
(iii) lim infx→∞ ψi(x, 0) > 0, i = 1, 2.

Let Φ = (φ1, φ2) be given by Theorem 2.10. Then

sup
i=1,2

lim
t→∞

sup
x∈R

∣∣∣∣ ui(x, t)

φi(x+ ct)
− 1

∣∣∣∣ = 0.

As in the proof of Theorem 2.10 or as in 2.14, we can choose p > 1 large enough
and obtain following conclusion.

Theorem 4.11. Assume that the initial value Ψ(x) of (23) satisfies

(i) Ψ(x) = (ψ1(x), ψ2(x), ψ3(x), ψ4(x)) ∈ C[0,K];

(ii) limx→−∞ ψ1(x)e−λ1x = k1, limx→−∞ ψ2(x)e−λ2x = k2, limx→−∞ ψ3(x)e−λ2x

= k2
1+r2τ1

, limx→−∞ ψ4(x)e−λ1x = k1
1+r1τ2

.

(iii) lim infx→∞ ψi(x) > 0.

Let Φ = (φ1, φ2, φ3, φ4) be formulated by Theorem 2.14. Then

lim
t→∞

sup
x∈R

∣∣∣∣ ui(x, t)

φi(x+ ct)
− 1

∣∣∣∣ = 0 for i = 1, 2, 3, 4.

The proof of Theorem 4.11 is similar to that of Theorem 4.1, so we omit it here.
Moreover, Theorem 4.11 implies a natural stability result of traveling wavefronts of
(1). Since this is clear from Theorem 3.2, we omit it here.

Remark 4.12. Note that Theorem 2.14 is independent of the size of τ1 and τ2,
thus Theorem 4.11 also indicates the stability of traveling wavefronts of (3).

4.2. Locally exponential stability. In this subsection, we shall give a stability
result on traveling wavefronts of (1), which is different from that of Section 4.1.

Let σ > 0 and define a subset of uniformly continuous functions as follows

Cσ =

{
u(x) : u(x) ∈ C (R,Rn) , lim

x→±∞

∣∣u(x)
(
1 + e−σx

)∣∣ = 0

}
,

which is a Banach space with norm ‖·‖σ given by

‖u‖σ = sup
x∈R

∣∣u(x)
(
1 + e−σx

)∣∣ for u(x) ∈ Cσ.
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Theorem 4.13. Assume that c > c∗ such that Σ = (λ1, λ3)∩ (λ2, λ4) is nonempty.
Also suppose that Ψ(x) ∈ C[0,K], U(x) = Φ(x) − Ψ(x) ∈ Cν for some ν ∈ Σ and
n = 4. Then there exists a constant κ > 0 such that for any U(x) with ‖U(x)‖ν < κ,
the unique solution u(x, t) of (23) with initial value Ψ(x) satisfies

‖u(x, t)− Φ(x+ ct)‖ν ≤Me−bt,

where M > 0, b > 0 are constants independent of Ψ(x) and t > 0, and Φ =
(φ1, φ2, φ3, φ4) is formulated by Theorem 2.14.

Proof. Let f be the reaction term of (23). Then f ′(Φ) is given by
r1 (1− 2a1φ1 + b1φ3) 0 r1b1φ1 0

0 r2 (1− 2a2φ2 + b2φ4) 0 r2b2φ2
0 1

τ1
− 1
τ1

0
1
τ2

0 0 − 1
τ2

 .
It is easy to see that f ′(Φ) is irreducible in the functional sense due to the strict
monotonicity of traveling wavefronts (see Lemma 4.2). For the matrix

f ′(K) =


−r1a1k1 0 r1b1k1 0

0 −r2a2k2 0 r2b2k2
0 1

τ1
− 1
τ1

0
1
τ2

0 0 − 1
τ2

 ,
all of its eigenvalues have negative real parts. Moreover, consider the matrix

f ′(0) =


r1 0 0 0
0 r2 0 0
0 1

τ1
− 1
τ1

0
1
τ2

0 0 − 1
τ2

 ,
although the eigenvalues of f ′(0) have positive real part, all eigenvalues of Dν2 −
cν + f ′(0) have negative real part if ν ∈ Σ. By Volpert et al. [34, Theorem 5.4.1],
we see that the conclusion is true. The proof is complete.

Remark 4.14. Λ is nonempty if and only if Σ is nonempty.

Theorem 4.15. Assume that c > c∗ such that Theorem 2.10 holds, Σ is defined by
Theorem 4.13 and the initial values (ψ1(x, s), ψ2(x, s)) of (22) satisfy

(ψ1(x, 0)− φ1(x), ψ2(x, 0)− φ2(x)) ∈ Cν ,
((g1 ∗ ψ2)(x, 0)− (g1 ∗ φ2) (x), (g2 ∗ ψ1)(x, 0)− (g2 ∗ φ1) (x)) ∈ Cν ,

where ν ∈ Σ and n = 2. Then there exists ε > 0 small enough such that

‖(g1 ∗ ψ2)(x, 0)− φ3(x), (g2 ∗ ψ1)(x, 0)− φ4(x)‖ν
+ ‖ψ1(x, 0)− φ1(x), ψ2(x, 0)− φ2(x)‖ν < ε

implies that the unique bounded solution u(x, t) of (1) satisfies

‖u(x, t)− Φ(x+ ct)‖ν ≤Me−bt

where M > 0, b > 0 are constants independent of (ψ1(x, s), ψ2(x, s)) .

Remark 4.16. The results in subsections 4.1 and 4.2 indicate the asymptotic sta-
bility of traveling wavefronts in the weighted functional space due to the asymptotic
behavior of traveling wavefronts. And it is clear that the squeezing technique (see
Theorem 4.11) is a better method in the choice of weighted functional spaces while
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the spectral analysis (see Theorem 4.13) is a better one in the estimate of conver-
gence rates.

5. Nonexistence of traveling wavefronts. In this section, we prove that (1)
has no positive traveling wave solutions connecting E0 with E∗ if c < c∗. For the
purpose, we consider{

∂w(x,t)
∂t = d1∆w(x, t) + r1w(x, t) [1− a1w(x, t)] ,

w(x, 0) = w(x),
(26)

where all constants are positive, w ∈ R, x ∈ R, t > 0, and w(x) ∈ C(R,R). Then
the following result on asymptotic spreading is true (see [1, 15, 33, 38]).

Lemma 5.1. Assume that w(x) admits a nonempty compact support and w(x, t)
is defined by (26). Then

(i) limt→∞ sup|x|>ct w(x, t) = 0 holds for any c > 2
√
d1r1;

(ii) limt→∞ inf |x|<ct w(x, t) = 1
a1

holds for any c ∈
(
0, 2
√
d1r1

)
.

Theorem 5.2. Assume that d1r1 ≥ d2r2 holds and the wave speed c < 2
√
d1r1.

Then (1) has no traveling wavefronts connecting E0 with E∗.

Proof. We prove this by contradiction. If the stated statement is false, then there ex-
ists some c1 ∈ (0, c∗) such that (14)-(15) has a monotone solution (φ1(x+c1t), φ2(x+
c1t)). Then it is easy to choose a constant 0 < δ < min{ 1

a1
, 1
a2
} such that

(φ1(x), φ2(x)) ≥ (δ, δ)

for all x ∈ [−2, 2]. Moreover, φ1(x+ c1t) also satisfies

∂φ1(x+ c1t)

∂t
≥ d1∆φ1(x+ c1t) + r1φ1(x+ c1t) [1− a1φ1(x+ c1t)]

since (g1 ∗ φ2)(x, t) > 0 for all x ∈ R, t > 0. Let w(x, t) be defined by (26) if
w(x) > 0 such that

(a) w(x) = 0 if |x| ≥ 2;
(b) 0 < w(x) ≤ δ if |x| < 2.

Then Lemma 3.9 (which remains true if b1 = b2 = 0) implies that φ1(x + c1t) ≥
w(x, t) for all x ∈ R, t ≥ 0.

Let c = c1+c
∗

2 . Then Lemma 5.1 and the asymptotic behavior (15) indicate a
contradiction as x+ ct→ −∞. The proof is complete.

Similarly, we can prove the following result.

Theorem 5.3. Assume that c < c∗ holds. Then (1) has no positive traveling wave
solutions connecting E0 with E∗.

Remark 5.4. For some parameters, e.g., (d1, r1) ≥ (≤)(d2, r2), we have proved
that c∗ is the minimal wave speed such that (1) has (no) traveling wave solutions
connecting E0 with E∗ if c > (<)c∗.

Acknowledgments. Research of the first author was supported by the Research
Fund for Doctoral Programs of Higher Education (20090211120009) and FRFCU
(lzujbky-2010-67). Research of the second author was supported by the NSF of
China (10871085) and FRFCU (lzujbky-2010-k10). Research of the third author
was supported by the NSF (DMS-1022728).



22 GUO LIN, WAN-TONG LI AND SHIGUI RUAN

REFERENCES

[1] D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion,

and nerve pulse propagation, in “Partial Differential Equations and Related Topics” (ed. J.
A. Goldstein), Lecture Notes in Mathematics, 446, Springer, Berlin, (1975), 5–49.

[2] F. van den Bosch, J. A. J. Metz and O. Diekmann, The velocity of spatial population expan-
sion, J. Math. Biol., 28 (1990), 529–565.

[3] N. F. Britton, Spatial structures and periodic traveling waves in an integro-differential

reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663–1688.
[4] X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evo-

lution equation, Adv. Differential Equations, 2 (1997), 125–160.

[5] X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monos-
table dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233–258.

[6] T. Faria, W. Huang and J. Wu, Traveling waves for delayed reaction-diffusion equations with

global response, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229–261.
[7] K. Gopalsamy, Pursuit-evasion wave trains in prey-predator systems with diffusionally cou-

pled delays, Bull. Math. Biol., 42 (1980), 871–887.

[8] S. A. Gourley and S. Ruan, Convergence and travelling fronts in functional differential equa-
tions with nonlocal terms: A competition model, SIAM J. Math. Anal., 35 (2003), 806–822.

[9] S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and
disease spread, in “Nonlinear Dynamics and Evolution Equations” (eds. H. Brunner, X. Q.

Zhao and X. Zou), Fields Inst. Commun., 48, AMS, Providence, RI, (2006), 137–200.

[10] J. Huang and X. Zou, Traveling wavefronts in diffusive and cooperative Lotka-Volterra system
with delays, J. Math. Anal. Appl., 271 (2002), 455–466.

[11] W. Huang, Uniqueness of the bistable traveling wave for mutualist species, J. Dynam. Diff.

Eqns., 13 (2001), 147–183.
[12] B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for coop-

erative systems, Math. Biosci., 196 (2005), 82–98.

[13] W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-
diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006),

1253–1273.

[14] W.-T. Li and Z. Wang, Traveling fronts in diffusive and cooperative Lotka-Volterra system
with nonlocal delays, Z. Angew. Math. Phys., 58 (2007), 571–591.

[15] X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone
semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1–40.

[16] G. Lin and W.-T. Li, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type

system with nonlocal delays, J. Differential Equations, 244 (2008), 487–513.
[17] G. Lin, W.-T. Li and M. Ma, Traveling wave solutions in delayed reaction-diffusion systems

with applications to multi-species models, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010),
393–414.

[18] S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,

J. Differential Equations, 171 (2001), 294–314.

[19] S. Ma and J. Wu, Existence, uniqueness and asymptotic stability of traveling wavefronts in
a non-local delayed diffusion equation, J. Dynam. Diff. Eqns., 19 (2007), 391–436.

[20] S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with
global interaction, J. Differential Equations, 212 (2005), 129–190.

[21] S. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete

reaction-diffusion monostable equation with delay, J. Differential Equations, 217 (2005), 54–

87.
[22] M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-

diffusion equation. I. Local nonlinearity, J. Differential Equations, 247 (2009), 495–510.
[23] M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-

diffusion equation. II. Nonlocal nonlinearity, J. Differential Equations, 247 (2009), 511–529.

[24] R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion
systems, Trans. Amer. Math. Soc., 321 (1990), 1–44.

[25] K. Mischaikow and V. Hutson, Travelling waves for mutualist species, SIAM J. Math. Anal.,

24 (1993), 987–1008.
[26] C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations,

J. Differential Equations, 235 (2007), 219–261.

http://www.ams.org/mathscinet-getitem?mr=MR0427837&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1069010&return=pdf
http://dx.doi.org/10.1007/BF00164162
http://dx.doi.org/10.1007/BF00164162
http://www.ams.org/mathscinet-getitem?mr=MR1080515&return=pdf
http://dx.doi.org/10.1137/0150099
http://dx.doi.org/10.1137/0150099
http://www.ams.org/mathscinet-getitem?mr=MR1424765&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2217316&return=pdf
http://dx.doi.org/10.1137/050627824
http://dx.doi.org/10.1137/050627824
http://www.ams.org/mathscinet-getitem?mr=MR2189262&return=pdf
http://dx.doi.org/10.1098/rspa.2005.1554
http://dx.doi.org/10.1098/rspa.2005.1554
http://www.ams.org/mathscinet-getitem?mr=MR0661346&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2048407&return=pdf
http://dx.doi.org/10.1137/S003614100139991
http://dx.doi.org/10.1137/S003614100139991
http://www.ams.org/mathscinet-getitem?mr=MR2223351&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1923646&return=pdf
http://dx.doi.org/10.1016/S0022-247X(02)00135-X
http://dx.doi.org/10.1016/S0022-247X(02)00135-X
http://www.ams.org/mathscinet-getitem?mr=MR1822216&return=pdf
http://dx.doi.org/10.1023/A:1009048616476
http://www.ams.org/mathscinet-getitem?mr=MR2156610&return=pdf
http://dx.doi.org/10.1016/j.mbs.2005.03.008
http://dx.doi.org/10.1016/j.mbs.2005.03.008
http://www.ams.org/mathscinet-getitem?mr=MR2229998&return=pdf
http://dx.doi.org/10.1088/0951-7715/19/6/003
http://dx.doi.org/10.1088/0951-7715/19/6/003
http://www.ams.org/mathscinet-getitem?mr=MR2341686&return=pdf
http://dx.doi.org/10.1007/s00033-006-5125-4
http://dx.doi.org/10.1007/s00033-006-5125-4
http://www.ams.org/mathscinet-getitem?mr=MR2270161&return=pdf
http://dx.doi.org/10.1002/cpa.20154
http://dx.doi.org/10.1002/cpa.20154
http://www.ams.org/mathscinet-getitem?mr=MR2384482&return=pdf
http://dx.doi.org/10.1016/j.jde.2007.10.019
http://dx.doi.org/10.1016/j.jde.2007.10.019
http://www.ams.org/mathscinet-getitem?mr=MR2601236&return=pdf
http://dx.doi.org/10.3934/dcdsb.2010.13.393
http://dx.doi.org/10.3934/dcdsb.2010.13.393
http://www.ams.org/mathscinet-getitem?mr=MR1818651&return=pdf
http://dx.doi.org/10.1006/jdeq.2000.3846
http://www.ams.org/mathscinet-getitem?mr=MR2333414&return=pdf
http://dx.doi.org/10.1007/s10884-006-9065-7
http://dx.doi.org/10.1007/s10884-006-9065-7
http://www.ams.org/mathscinet-getitem?mr=MR2130550&return=pdf
http://dx.doi.org/10.1016/j.jde.2004.07.014
http://dx.doi.org/10.1016/j.jde.2004.07.014
http://www.ams.org/mathscinet-getitem?mr=MR2170528&return=pdf
http://dx.doi.org/10.1016/j.jde.2005.05.004
http://dx.doi.org/10.1016/j.jde.2005.05.004
http://www.ams.org/mathscinet-getitem?mr=MR2523688&return=pdf
http://dx.doi.org/10.1016/j.jde.2008.12.026
http://dx.doi.org/10.1016/j.jde.2008.12.026
http://www.ams.org/mathscinet-getitem?mr=MR2523689&return=pdf
http://dx.doi.org/10.1016/j.jde.2008.12.020
http://dx.doi.org/10.1016/j.jde.2008.12.020
http://www.ams.org/mathscinet-getitem?mr=MR0967316&return=pdf
http://dx.doi.org/10.2307/2001590
http://dx.doi.org/10.2307/2001590
http://www.ams.org/mathscinet-getitem?mr=MR1226860&return=pdf
http://dx.doi.org/10.1137/0524059
http://www.ams.org/mathscinet-getitem?mr=MR2309573&return=pdf
http://dx.doi.org/10.1016/j.jde.2006.12.010


MONOSTABLE WAVEFRONTS IN LOTKA-VOLTERRA SYSTEMS 23

[27] A. Pazy, “Semigroups of Linear Operators and Applications to Partial Differential Equations,”
Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.

[28] S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models, in “Mathematics for

Life Science and Medicine,” Biol. Med. Phys. Biomed. Eng., Springer, Berlin, (2007), 97–122.
[29] S. Ruan and J. Wu, Reaction-diffusion equations with infinite delay, Canad. Appl. Math.

Quart., 2 (1994), 485–550.
[30] S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-

disease model, Proc. R. Soc. Edinburgh Sect. A, 134 (2004), 991–1011.

[31] H. L. Smith and X.-Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-
diffusion equations, SIAM J. Math. Anal., 31 (2000), 514–534.

[32] J. Smoller, “Shock Waves and Reaction-Diffusion Equations,” 2nd edition, Fundamental Prin-

ciples of Mathematical Sciences, 258, Springer-Verlag, New York, 1994.
[33] H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral

equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430–

470.
[34] A. I. Volpert, V. A. Volpert and V. A. Volpert, “Traveling Wave Solutions of Parabolic

Systems,” Translations of Mathematical Monographs, 140, AMS, Providence, RI, 1994.

[35] Z. Wang, W.-T. Li and S. Ruan, Travelling wave fronts of reaction-diffusion systems with
spatio-temporal delays, J. Differential Equations, 222 (2006), 185–232.

[36] Z. Wang, W.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction
advection diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007), 153–

200.

[37] Z. Wang, W.-T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal
delayed effects, J. Dynam. Diff. Eqns., 20 (2008), 573–607.

[38] H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in

cooperative models, J. Math. Biol., 45 (2002), 183–218.
[39] J. Wu, “Theory and Applications of Partial Functional-Differential Equations,” Applied Math-

ematical Sciences, 119, Springer-Verlag, New York, 1996.

[40] J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam.
Diff. Eqns., 13 (2001), 651–687; Erratum, 20 (2008), 531–533.

Received January 2010; revised April 2011.

E-mail address: ling@lzu.edu.cn (G. Lin)

E-mail address: wtli@lzu.edu.cn (W.-T. Li)

E-mail address: ruan@math.miami.edu (S. Ruan)

http://www.ams.org/mathscinet-getitem?mr=MR0710486&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2309365&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1326902&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2099575&return=pdf
http://dx.doi.org/10.1017/S0308210500003590
http://dx.doi.org/10.1017/S0308210500003590
http://www.ams.org/mathscinet-getitem?mr=MR1740724&return=pdf
http://dx.doi.org/10.1137/S0036141098346785
http://dx.doi.org/10.1137/S0036141098346785
http://www.ams.org/mathscinet-getitem?mr=MR1301779&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2016819&return=pdf
http://dx.doi.org/10.1016/S0022-0396(03)00175-X
http://dx.doi.org/10.1016/S0022-0396(03)00175-X
http://www.ams.org/mathscinet-getitem?mr=MR1297766&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2200751&return=pdf
http://dx.doi.org/10.1016/j.jde.2005.08.010
http://dx.doi.org/10.1016/j.jde.2005.08.010
http://www.ams.org/mathscinet-getitem?mr=MR2334595&return=pdf
http://dx.doi.org/10.1016/j.jde.2007.03.025
http://dx.doi.org/10.1016/j.jde.2007.03.025
http://www.ams.org/mathscinet-getitem?mr=MR2429437&return=pdf
http://dx.doi.org/10.1007/s10884-008-9103-8
http://dx.doi.org/10.1007/s10884-008-9103-8
http://www.ams.org/mathscinet-getitem?mr=MR1930974&return=pdf
http://dx.doi.org/10.1007/s002850200145
http://dx.doi.org/10.1007/s002850200145
http://www.ams.org/mathscinet-getitem?mr=MR1415838&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1845097&return=pdf
mailto:ling@lzu.edu.cn (G. Lin)
mailto:wtli@lzu.edu.cn (W.-T. Li)
mailto:ruan@math.miami.edu (S. Ruan)

	1. Introduction
	2. Existence of traveling wavefronts
	2.1. Preliminaries
	2.2. Traveling wavefronts of (1)
	2.3. Traveling wavefronts of the auxiliary system

	3. Initial value problem
	4. Asymptotical stability of traveling wavefronts
	4.1. Globally asymptotic stability
	4.2. Locally exponential stability

	5. Nonexistence of traveling wavefronts
	Acknowledgments
	REFERENCES

