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Abstract. Schistosomiasis, a parasitic disease caused by Schistosoma Japon-

icum, is still one of the most serious parasitic diseases in China and remains
endemic in seven provinces, including Hubei, Anhui, Hunan, Jiangsu, Jiangxi,

Sichuan, and Yunnan. The monthly data of human schistosomiasis cases in

Hubei, Hunan, and Anhui provinces (lake and marshland regions) released by
the Chinese Center for Disease Control and Prevention (China CDC) display

a periodic pattern with more cases in late summer and early autumn. Based

on this observation, we construct a deterministic model with periodic trans-
mission rates to study the seasonal transmission dynamics of schistosomiasis in

these lake and marshland regions in China. We calculate the basic reproduc-

tion number R0, discuss the dynamical behavior of solutions to the model, and
use the model to fit the monthly data of human schistosomiasis cases in Hubei.

We also perform some sensitivity analysis of the basic reproduction number R0

in terms of model parameters. Our results indicate that treatment of at-risk
population groups, improving sanitation, hygiene education, and snail control

are effective measures in controlling human schistosomiasis in these lakes and

marshland regions.

1. Introduction. Human schistosomiasis, the third most devastating tropical dis-
ease in the world after malaria and intestinal helminthiasis, is a global public health
problem [42]. According to World Health Organization (WHO), the number of peo-
ple need preventive chemotherapy globally in 2013 was 262 million, of which 121.2
million were school-aged children [42, 43, 44].
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The major forms of human schistosomiasis are caused by species of the water-
borne flatworm or blood flukes called schistosomes [9, 44]. Schistosomiasis in main-
land China is caused by Schistosoma Japonicum (S. Japonicum). Though its trans-
mission had been interrupted successively in five of the twelve formerly endemic
provinces (see [8, 9] and the references therein), schistosomiasis is still one of the
most serious parasitic diseases in China and remains endemic in seven provinces,
including Hubei, Anhui, Hunan, Jiangsu and Jiangxi in the lake and marshland
regions with vast areas of Oncomelania hupensis habita, Sichuan and Yunnan in
the mountainous regions with diverse ecologies [8, 9]. The monthly data of schisto-
somiasis cases in Hubei, Hunan and Anhui recorded by Chinese Center for Disease
Control and Prevention (China CDC) [10] display a seasonal pattern. The cases in
the late summer and early autumn are significantly higher than in the spring and
winter (see Figure 1.).
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Figure 1. The human cases in Hunan, Anhui and Hubei from
January 2008 to December 2011.

Schistosomiasis is a parasitic disease caused by trematode flatworms of the genus
schistosoma [6]. The reproductive cycle of schistosomiasis starts with parasitic eggs
released into freshwater through faeces and urine, then some eggs hatch and became
miracidia under appropriate conditions, those miracidia swim and penetrate snails
as intermediate host. By escaping from the snail, the infective cercariae penetrate
the skin of the human host. For more details on the life cycle of schistosome, we refer
to [5, 7, 12, 16, 17, 23, 28, 30, 6]. To focus on the dynamics of S.Japonicum prop-
agating between human and the intermediate host snails, we consider a simplified
diagram for the life cycle given in Figure 2.

The earliest mathematical models for schistosomes were developed by Macdon-
ald [32] and Hairston [25]. Since then, a good number of mathematical model-
s involving the transmission dynamics of schistosomes have been proposed (see
[8, 12, 16, 17, 30] and the references therein). Garira et al. [19] proposed a dynamic
model of ordinary differential equations linking the within-host and between-host
dynamics of infections with free-living pathogens in the water environment. Wang
and Spear [48] explored the impact of infection-induced immunity on the trans-
mission of S. Japonicum in hilly and mountainous environments in China, and
underscored the need for improved diagnostic methods for disease control, espe-
cially in potentially re-emergent settings. Chen et al. [8] proposed an autonomous
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Figure 2. Simplified life cycle of human schistosomiasis.

mathematical model for controlling schistosomiasis in Hubei Province, China, fo-
cusing on the disease spread among people, intermediate hosts snails and cattle.
Feng et al. [16] estimated the parameters of a schistosome transmission system,
which described the distribution of schistosome parasites in a village in Brazil.

Schistosomiasis often occurs in most tropical and some subtropical regions of the
world. Environmental and climatic factors play an important role in the geograph-
ical distribution and transmission of schistosomiasis [44]. It was well known that
seasonality can cause population fluctuations ranging from annual cycles to multi
year oscillations, and even chaotic dynamics [2, 22]. From an applied viewpoint,
clarifying the mechanisms that link seasonal environmental changes to diseases dy-
namics may provide help in predicting the long-term health risks, in developing
an effective public health program, and in setting objectives and utilizing limited
resources more effectively (see [1, 31, 35] and the references therein). These consid-
erations indicate that seasonal models are needed in order to describe the periodic
incidence of schistosomiasis transmission. However, to the best of our knowledge,
there are few studies modeling the seasonality influence on the transmission of schis-
tosomiasis in mainland China [54].

More than 82% of infected persons lived in lake and marshland regions (such as
Dongting Lake and Poyang Lake) along the Yangtze River, where interruption of
transmission has been proven difficult [20, 58, 59]. The purpose of this paper is to
propose a periodic schistosomiasis model to investigate the seasonal transmission
dynamics and search for control strategies in these lake and marshland regions in
China. We analyze the dynamical behavior, evaluate the basic reproduction number
R0, use the model to simulate the human cases in Hubei, and forecast the monthly
tendency of schistosomiasis after January 2015. Moreover, we perform sensitivity
analysis of the basic reproduction number R0 in terms of key model parameters.
Finally, like Hubei Province, Anhui, Hunan, Jiangsu, and Jiangxi are located in the
lake and marshland regions in the central and eastern China, similar control and
prevention measures can also be designed and proposed for these provinces.

The paper is organized as follows. In Section 2, we introduce the periodic schis-
tosomiasis model. Some preliminary results are presented in Section 3, such as the
positivity and boundedness of solutions and calculation of the basic reproduction
number. The extinction and uniform persistence of the disease are discussed in
Sections 4 and 5, respectively. Simulations of the schistosomiasis data from Hubei



1282 Y. LI, Z. TENG, S. RUAN, M. LI AND X. FENG

Province are presented in Section 6. Conclussion and discussion are given in Section
7.

2. Mathematical modeling. To study the seasonal transmission dynamics of
schistosomiasis, we trace the life cycle of schistosome parasites in three different
environments: human biological environment, physical water environment, and snail
biological environment. The life cycle of schistosomiasis was given in Figure 2 and
its transmission diagram among humans, snails, and miracidia and cercariae is
illustrated in Figure 3.

Figure 3. Transmission diagram of schistosomiasis among human,
snail, and miracidia and cercariae in water.

We denote the total numbers of humans and snails by NH(t) and NV (t), respec-
tively, and classify each of them into two subclasses: susceptible and infectious,
with the numbers of humans denoted by SH(t) and IH(t), and snails sizes denoted
by SV (t) and IV (t), respectively. The miracidia and cercariae dynamics are in-
corporated and their densities are denoted by M(t) and P (t), respectively. The
mathematical model is derived based on the following basic assumptions:

(1) There is no vertical transmission of the disease.
(2) Susceptible humans are recruited at a positive constant rate ΛH .
(3) There are no immigrations of infectious humans.
(4) People living near rivers and lakes are more likely going swimming and fish-

ing in the summer and autumn, they are prone to infection for long contacting
with contaminated water. The river, lake, pond water freezes or dry in winter,
infected snail seldom or not produce larvae, then infection is not likely to hap-
pen. Due to these seasonal phenomena, we use two 12-month periodic functions
λH(t) = aH [1 + bH sin(π6 t + ϕH)] and λV (t) = aV [1 + bV sin(π6 t + ϕV )] (see [54])
to describe the transmission rates from cercariae to human and from miracidia to
snails, respectively, where positive constants aH , bH and ϕH represent the human
baseline transmission rate, its magnitude of forcing and the initial phase, respec-
tively, positive constants aV , bV and ϕV in λV (t) have the similar meanings as
constants in λH(t). We choose bilinear incidence rates (density-dependent or mass
action type) λH(t)SHP and λV (t)SVM (see [17]).

(5) It is clear that the snail population is seasonally changed in reality, the
recruited rate ΛV (t), natural death rate µV (t) and disease induced death rate αV (t)
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for the snail population are considered as 12-month periodic continuous functions.
For more simulation details, see Section 6.

(6) There is no immune response in both snail and human populations.
(7) Several effective control strategies, such as drug treatment, improving sanita-

tion and health education, the integrated strategies are considered here. We denote
these strategies by the natural recovery and treatment rate γH .

(8) We further assume that the human natural death rate µH , miracidia natu-
ral death rate µM and cercariae natural death rate µP are all positive constants.
Miracidia migration rate λM from human to snail and cercaria migration rate λP
from snail to human are also supposed to be positive constants.

The model is described by the following system of ordinary differential equations:

S′H(t) = ΛH − λH(t)SHP − µHSH + γHIH ,

I ′H(t) = λH(t)SHP − (µH + γH)IH ,

M ′(t) = λMIH − µMM,

S′V (t) = ΛV (t)− λV (t)SVM − µV (t)SV ,

I ′V (t) = λV (t)SVM − αV (t)IV ,

P ′(t) = λP IV − µPP.

(1)

3. Basic properties. We denote ω = 12 months. Based on the biological back-
ground of model (1), we only consider solutions of model (1) starting at t = 0 with
initial values:

S0
H > 0, I0

H ≥ 0, M0 ≥ 0, S0
V > 0, I0

V ≥ 0, P 0 ≥ 0. (2)

When IH = 0,M = 0, IV = 0 and P = 0, model (1) has a unique disease-

free periodic solution E0 = (ŜH , 0, 0, ŜV (t), 0, 0), where ŜH = ΛH

µH
, and ŜV (t) is

the globally asymptotically stable positive ω-periodic solution of equation S′V (t) =
ΛV (t)− µV (t)SV (t) (see Lemma 1 in [40]).

Now, we deduce the basic reproduction number R0 for model (1) following the
general calculation procedure in Wang and Zhao [50]. Firstly, we can validate that
model (1) satisfies the conditions (A1)− (A7) given in [50].

Denote

F (t) =


0 0 0 λH(t)ŜH

0 0 0 0

0 λV (t)ŜV (t) 0 0

0 0 0 0

 , V (t) =


µH + γH 0 0 0

−λM µM 0 0

0 0 αV (t) 0

0 0 −λP µp

 .

Let Y (t, s) be the 4× 4 matrix solution of the following initial value problem
dY (t, s)

dt
= −V (t)Y (t, s), ∀t ≥ s,

Y (s, s) = I,

where I is the 4× 4 identity matrix. Further, let Cω be the ordered Banach space
of all ω−periodic continuous functions from R to R4 with maximum norm ‖ · ‖
and positive cone C+

ω := {φ ∈ Cω : φ(t) ≥ 0,∀t ∈ R}. Suppose φ(s) ∈ C+
ω is

the initial distribution of infectious individuals, then F (s)φ(s) is the rate of new
infection produced by the infectious individuals who were introduced at time s, and
Y (t, s)F (s)φ(s) represents the distributions of those infectious individuals who were
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newly infected at time s and remain in the infected compartment at time t for t ≥ s.
Naturally, ∫ t

−∞
Y (t, s)F (s)φ(s)ds =

∫ +∞

0

Y (t, t− a)F (t− a)φ(t− a)da

is the distribution of accumulative new infections at time t produced by all those
infected individuals φ(s) introduced at time previous to t. Then, we define a linear
operator L : Cω → Cω as follows

(Lφ)(t) =

∫ +∞

0

Y (t, t− a)F (t− a)φ(t− a)da, ∀t ∈ R, φ ∈ Cω.

L is called the next infection operator.
Applying the results obtained in [50], the basic reproduction number R0 for

model (1) is defined as the spectral radius of operator L ([3, 4]); that is, R0 = ρ(L).
Employing Theorem 2.1 and Theorem 2.2 in Wang and Zhao [50], we can deduce

the following results with respect to R0 and the locally asymptotical stability of the
disease-free periodic solution E0 for model (1).

Lemma 3.1. On basic reproduction number R0, we have

(i) R0 < 1 if and only if ρ(ΦF−V (ω)) < 1;
(ii) R0 = 1 if and only if ρ(ΦF−V (ω)) = 1;

(iii) R0 > 1 if and only if ρ(ΦF−V (ω)) > 1.

Then E0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1, where
ΦF−V (t) is the monodromy matrix of the linear ω−periodic system dz

zt = [F (t) −
V (t)]z.

On the positivity and boundedness of solutions of model (1) with nonnegative
initial conditions (2), we have the following results.

Lemma 3.2. Let (SH(t), IH(t),M(t), SV (t), IV (t), P (t)) be the solution of mod-
el (1) with initial conditions (2). Then (SH(t), IH(t),M(t), SV (t), IV (t), P (t)) is
nonnegative for all t ≥ 0 and ultimately bounded. In particular, if S0

H > 0, I0
H >

0,M0 > 0, S0
V > 0, I0

V > 0 and P 0 > 0, then (SH(t), IH(t),M(t), SV (t), IV (t), P (t))
is also positive for all t > 0.

Proof. In fact, by the continuous dependence of solutions with respect to initial
values, we only need to prove that when S0

H > 0, I0
H > 0,M0 > 0, S0

V > 0, I0
V > 0

and P 0 > 0, (SH(t), IH(t),M(t), SV (t), IV (t), P (t)) is positive for all t > 0. Set

m(t) = min{SH(t), IH(t),M(t), SV (t), IV (t), P (t)}, ∀t > 0.

Clearly, m(0) > 0. Assuming that there exists a t1 > 0 such that m(t1) = 0 and
m(t) > 0 for all t ∈ [0, t1).

If m(t1) = SH(t1), since IH(t) > 0 for all t ∈ [0, t1), from the first equation of
model (1), it follows that S′H(t) ≥ −(λH(t)P + µH)SH for all t ∈ [0, t1]. Then

0 = SH(t1) ≥ S0
H exp

(
−
∫ t1

0

(λH(s)P + µH)ds
)
> 0,

which leads to a contradiction.
Similar contradictions can be deduced in the cases of m(t1) = IH(t1), m(t1) =

M(t1), m(t1) = SV (t1), m(t1) = IV (t1) and m(t1) = P (t1). Therefore, SH(t) > 0,
IH(t) > 0, M(t) > 0, SV (t) > 0, IV (t) > 0, and P (t) > 0 for all t > 0.
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Let NH(t) = SH(t)+IH(t). We have N ′H(t) = ΛH−µHNH(t) which implies that

NH(t) = ΛH

µH
+N0

H exp(−µHt), where N0
H = S0

H + I0
H . Hence, NH(t) is bounded for

all t ≥ 0 and

lim supt→∞NH(t) = ΛH

µH
:= BH , (3)

which implies that SH(t) and IH(t) are also bounded for t > 0. From the third
equation of model (1), we know that for any ε > 0 there is a T0 > 0 such that

M ′(t) = λMIH − µMM ≤ λM (BH + ε)− µMM, ∀t ≥ T0.

Then, we have M(t) ≤ λM (BH+ε)
µM

+M0 exp(−µM (t−T0)). Hence, M(t) is bounded

for t > 0 and by the arbitrariness of ε we also have

lim supt→∞M(t) ≤ λMBH

µM
. (4)

Set NV (t) = SV (t) + IV (t). From the forth and fifth equations of model (1) we
have N ′V (t) ≤ ΛV (t) − µV (t)NV (t). By the comparison principle and Lemma 1 in
[40], we can obtain

lim supt→∞(NV (t)− ŜV (t)) ≤ 0, (5)

which implies that SV (t) and IV (t) are bounded for t > 0.
Lastly, from the last equation of model (1), similar to the proof of (4) we obtain

lim supt→∞ P (t) ≤ λPBV

µP
, where BV = supt∈[0,ω] ŜV (t). This completes the proof.

Remark 3.3. Denote set Ω as follows

Ω = {(SH , IH ,M, SV , IV , P ) : 0 ≤ NH ≤ BH , 0 ≤M ≤
λMBH
µM

,

0 ≤ NV ≤ BV , 0 ≤ P ≤
λPBV
µP

}.

Lemma 3.2 implies that Ω is a positively invariant set with respect to model (1).

4. Extinction of disease.

Theorem 4.1. If R0 < 1, then the disease-free periodic solution E0 of model (1)
is globally asymptotically stable.

Proof. By considering the linearization system, we can prove that E0 is local-
ly asymptotically stable when R0 < 1, which is equivalent to ρ(ΦF−V (ω)) < 1
by Lemma 3.1. We can choose a small enough positive constant ε such that
ρ(ΦF−V+εN (ω)) < 1, where

N(t) =


0 0 0 λH(t)
0 0 0 0
0 λV (t) 0 0
0 0 0 0

 . (6)

Let (SH(t), IH(t),M(t), SV (t), IV (t), P (t)) be a positive solution of model (1). From
(3) and (5), for any given ε, there exists a t1 such that SH(t) ≤ ΛH

µH
+ ε and
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SV (t) ≤ ŜV (t) + ε for all t > t1. Then for all t > t1, from model (1) we obtain that
I ′H(t) ≤ λH(t)(

ΛH
µH

+ ε)P − (µH + γH)IH ,

M ′(t) = λMIH − µM (t)M,

I ′V (t) ≤ λV (t)(ŜV (t) + ε)M − αV (t)IV ,

P ′(t) = λP IV − µP (t)P.

(7)

Considering the following auxiliary system:

Ĩ ′H(t) = λH(t)(
ΛH
µH

+ ε)P̃ − (µH + γH)ĨH ,

M̃ ′(t) = λM ĨH − µM (t)M̃,

Ĩ ′V (t) = λV (t)(ŜV (t) + ε)M̃ − αV (t)ĨV ,

P̃ ′(t) = λP ĨV − µP (t)P̃ ,

that is

dh(t)

dt
= (F (t)− V (t) + εN)h(t), h(t) = (ĨH(t), M̃(t), ĨV (t), P̃ (t))T . (8)

By Lemma 2.1 in Zhang and Zhao [56], it follows that there exists a positive
ω−periodic function φ(t) = (φ1(t), φ2(t), φ3(t), φ4(t))T such that h(t) = eµtφ(t)
is a solution of system (8), where µ = 1

ω ln ρ(ΦF−V+εN (ω)).
Let J(t) = (IH(t),M(t), IV (t), P (t)). We can choose a small enough positive con-

stant η > 0 such that J(t1) ≤ ηφ(t1). Then, from (7) and the comparison principle,
we have J(t) ≤ ηeµtφ(t) for all t > t1. By ρ(ΦF−V+εN (ω)) < 1, it follows that µ < 0,
then limt→∞ J(t) = 0, which in turn implies that limt→∞(IH(t),M(t), IV (t), P (t)) =
(0, 0, 0, 0). Moreover, by the first and fourth equations in model (1), we obtain that

limt→∞ SH(t) = ΛH

µH
and limt→∞ SV (t) = ŜV (t). Therefore, E0 is globally attrac-

tive when R0 < 1. This completes the proof.

When λH(t) ≡ λH , λV (t) ≡ λV , ΛV (t) ≡ ΛV , µV (t) ≡ µV and αV (t) ≡ αV are
positive constants, model (1) reduces to an autonomous case. Using the method
given by van den Driessche and Watmough [41], we obtain the corresponding basic
reproduction number

R̃0 = ρ(FV −1) =
λHΛHλMλP

µHµMµP (µH + γH)
. (9)

As a corollary of Theorem 4.1, we have the following result.

Corollary 4.2. If R̃0 < 1, then for the autonomous model (1), the disease-free
equilibrium (ΛH

µH
, 0, 0, ΛV

µV
, 0, 0) is globally asymptotically stable.

5. Uniform persistence of disease.

Theorem 5.1. If R0 > 1, then model (1) is uniformly persistent; that is, there exists
a positive constant ε such that any solution (SH(t), IH(t),M(t), SV (t), IV (t), P (t))
of model (1) with initial conditions S0

H > 0, I0
H > 0, M0 > 0, S0

V > 0, I0
V > 0,

and P 0 > 0 satisfies

lim inf
t→∞

(SH(t), IH(t),M(t), SV (t), IV (t), P (t)) ≥ (ε, ε, ε, ε, ε, ε).
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Proof. By R0 > 1, which is equivalent to ρ(ΦF−V (ω)) > 1 by Lemma 3.1, we can
choose a small constant θ > 0 such that ρ(ΦF−V−θN (ω)) > 1, ΛH

µH
− θ > 0 and

ŜV (t)− θ > 0, where N(t) is given in (6).
For any small enough constant ε > 0, we consider the following two perturbed

equations

U ′ε(t) = ΛH − ελH(t)Uε(t)− µHUε(t) (10)

and

V ′ε (t) = ΛV (t)− ελV (t)Vε(t)− µV (t)Vε(t). (11)

Applying Lemma 2 in [39] and Lemma 1 in [40], equations (10) and (11) admit
globally uniformly attractive positive ω−periodic solutions U∗ε (t) and V ∗ε (t), re-
spectively. By the continuity of solutions with respect to parameter ε, for constant
θ > 0 given above, there exists a constant ε1 > 0 such that for all 0 < ε1 < ε and
t ∈ [0, ω],

U∗ε1(t) >
ΛH
µH
− θ

2
, V ∗ε1(t) > ŜV (t)− θ

2
. (12)

Since model (1) is ω−periodic, we can use the persistence theory of dynamical
systems given in [57] to discuss the permanence of model (1). Let

X = {(SH , IH ,M, SV , IV , P ) : SH > 0, IH ≥ 0,M ≥ 0, SV > 0, IV ≥ 0, P ≥ 0}
and

X0 = {(SH , IH ,M, SV , IV , P ) ∈ X : IH > 0,M > 0, IV > 0, P > 0}.
Then

∂X0 = X\X0 = {(SH , IH ,M, SV , IV , P ) ∈ X : IHMIV P = 0}.
By Lemma 3.2, X and X0 are positively invariant with respect to model (1), and
∂X0 is a relatively closed set in X.

Define P : X → X as the Poincaré map associated with model (1); that is

P (x0) = u(ω, x0), ∀ x0 ∈ X,
where u(t, x0) is the unique solution of model (1) with initial values u(0+, x0) = x0

and x0 = (S0
H , I

0
H ,M

0, S0
V , I

0
V , P

0). By Remark 3.3, the Poincaré map P is compact
and point dissipative on X. Therefore, Theorem 1.1.3 and (C1) of Theorem 1.3.1
in [57] hold.

Let M∂ = {x0 ∈ ∂X0 : Pn(x0) ∈ ∂X0, n = 1, 2, · · · }, where Pn = P (Pn−1),
n > 1, and P 1 = P . We firstly verify that

M∂ = {(SH , 0, 0, SV , 0, 0) : SH > 0, SV > 0}. (13)

If initial conditions (S0
H , I

0
H ,M

0, S0
V , I

0
V , P

0) = (S0
H , 0, 0, S

0
V , 0, 0) with S0

H > 0 and
S0
V > 0, then the solution (SH(t), IH(t),M(t), SV (t), IV (t), P (t)) ≡ (SH(t), 0, 0,
SV (t), 0, 0) with SH(t) > 0 and SV (t) > 0, it is clear that {(SH , 0, 0, SV , 0, 0) : SH >
0, SV > 0} ⊆ M∂ . On the other hand, if M∂\{(SH , 0, 0, SV , 0, 0) : SH > 0, SV >
0} 6= ∅, then there exists at least a point (S0

H , I
0
H ,M

0, S0
V , I

0
V , P

0) ∈ M∂ satisfying
I0
H > 0 or I0

V > 0 or M0 > 0 or P 0 > 0.
If I0

H > 0, from the second equation of model (1), we have for all t > 0 that

IH(t) ≥ I0
He
−(µH+αH+γH)t > 0.

Thus, by the third equation of model (1), M(t) > M0e−µM t ≥ 0 for all t > 0.
From S0

H > 0, we can obtain from the forth equation of model (1) that SH(t) > 0
for all t > 0. Therefore, by the fifth equation of model (1), we can easily get
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IV (t) > I0
V e
−

∫ t
0
αV (τ)dτ ≥ 0 for all t > 0. Furthermore, from the sixth equation

of model (1) we can obtain P (t) > P 0e−λP t ≥ 0 for all t > 0. Thus, we finally
obtain that (SH(t), IH(t),M(t), SV (t), IV (t), P (t)) > (0, 0, 0, 0, 0, 0) for all t > 0.
This shows that (S0

H , I
0
H ,M

0, S0
V , I

0
V , P

0) /∈M∂ , which leads to a contradiction.
Similarly, when I0

V > 0 orM0 > 0 or P 0 > 0, we can also prove that (SH(t), IH(t),
M(t), SV (t), IV (t), P (t)) > (0, 0, 0, 0, 0, 0) for all t > 0. This shows that (S0

H , I
0
H ,M

0,
S0
V , I

0
V , P

0) /∈ M∂ , which leads to a contradiction. Therefore, we have M∂ ⊆
{(SH , 0, 0, SV , 0, 0) : SH > 0, SV > 0}. Thus, we finally confirm that claim (13)
holds.

Model (1) can be simplified as a subsystem S′H(t) = ΛH − µHSH and S′V (t) =
ΛV (t) − µV (t)SV (t) on ∂X0. This shows that the map P has a global attractor

M1 = {(ΛH

µH
, 0, 0, ŜV (0), 0, 0)} on ∂X0. It is clear that on ∂X0, {M1} is isolated,

invariant, and does not form a cycle. Therefore, conditions (a) − (c) of (C ′2) in
Theorem 1.3.1 in [57] hold.

Secondly, let x0 = (S0
H , I

0
H ,M

0, S0
V , I

0
V , P

0) ∈ X0. By the continuity of solutions
with respect to the initial values, for any small enough ε1 > 0, there is a δ1 > 0, if
‖x0 −M1‖ ≤ δ1, we have

‖u(t, x0)− u(t,M1)‖ < ε1 for all t ∈ [0, ω]. (14)

where u(t, x0) = (SH(t), IH(t),M(t), SV (t), IV (t), P (t)) is the solution of model (1)
with initial values (SH(0), IH(0),M(0), SV (0), IV (0), P (0)) = x0 and u(t,M1) =

(ΛH

µH
, 0, 0, ŜV (t), 0, 0).

Now, we claim that

lim supn→∞ ‖ Pn(x0)−M1 ‖≥ δ1. (15)

Suppose (15) is not true, then we have lim supn→∞ ‖ Pn(x0)−M1 ‖< δ1 for some
x0 ∈ X0. For the sake of simplicity, we assume that

‖ Pn(x0)−M1 ‖< δ1, ∀ n ≥ 0. (16)

From (14) we obtain ‖u(t, Pn(x0)) − u(t,M1)‖ < ε1 for all n ≥ 0 and t ∈ [0, ω].

Then, for any t ≥ 0, let t = nω+t̃, where t̃ ∈ [0, ω) and n = [ tω ] is the greatest integer

less than or equal to t
ω , by (16), we have ‖u(t, x0) − u(t,M1)‖ = ‖u(t̃, Pn(x0)) −

u(t̃,M1)‖ < ε1. It follows that 0 ≤ IH(t) ≤ ε1, 0 ≤ IV (t) ≤ ε1, 0 ≤ M(t) ≤ ε1 and
0 ≤ P (t) ≤ ε1 for all t ≥ 0. Then, by the first and fourth equations of model (1) we
obtain that

S′H(t) ≥ ΛH − ε1λH(t)SH(t)− µHSH(t)

and

S′V (t) ≥ ΛV (t)− ε1λV (t)SV (t)− µV (t)SV (t)

for any t ≥ 0. By the comparison principle, we have for any t ≥ 0 that SH(t) ≥
Uε1(t) and SV (t) ≥ Vε1(t), where Uε1(t) and Vε1(t) are the solutions of systems
(10) and (11) with parameter ε1 satisfying initial conditions Uε1(0) = S0

H and
Vε1(t) = S0

V , respectively.
Since systems (10) and (11) with parameter ε1 have globally uniformly attractive

positive ω−periodic solutions U∗ε1(t) and V ∗ε1(t), respectively, there exists a t2 > 0
such that

Uε1(t) ≥ U∗ε1(t)− θ

2
, Vε1(t) ≥ V ∗ε1(t)− θ

2
(17)
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for all t ≥ t2. From (12) and (17), we obtain Uε1(t) > ΛH

µH
−θ and Vε1(t) > ŜV (t)−θ

for all t ≥ t2. Thus, we see that for all t > t2
I ′H(t) ≥ λH(t)(

ΛH
µH
− θ)P − (µH + γH)IH ,

M ′(t) = λMIH − µM (t)M,

I ′V (t) ≥ λV (t)(ŜV (t)− θ)M − αV (t)IV ,

P ′(t) = λP IV − µP (t)P.

(18)

Considering the following auxiliary system:

Ĩ ′H(t) = λH(t)(
ΛH
µH
− θ)P̃ − (µH + γH)ĨH ,

M̃ ′(t) = λM ĨH − µM (t)M̃,

Ĩ ′V (t) = λV (t)(ŜV (t)− θ)M̃ − αV (t)ĨV ,

P̃ ′(t) = λP ĨV − µP (t)P̃ ,

that is
dh

dt
= (F (t)− V (t) + θN(t))h(t), h(t) = (ĨH(t), M̃(t), ĨV (t), P̃ (t))T . (19)

By Lemma 2.1 in Zhang and Zhao [56], there exists a positive ω−periodic function
ψ(t) = (ψ1(t), ψ2(t), ψ3(t), ψ4(t))T such that h(t) = eµtψ(t) is a solution of system
(19), where µ = 1

ω ln ρ(ΦF−V+θN (ω)).
Denote L(t) = (IH(t),M(t), IV (t), P (t)). We can choose a small constant ξ >

0 such that L(t2) ≥ ξψ(t2). From (18), the comparison principle implies that
L(t) ≥ ξeµtψ(t) for all t > t2. By ρ(ΦF−V+θN (ω)) > 1, it follows that µ > 0,
then limt→∞ L(t) = ∞, that is limt→∞(IH(t),M(t), IV (t), P (t)) = (∞,∞,∞,∞),
which is a contradiction with (16). Hence, claim (15) holds. This shows that
W s(M1) ∩X0 = ∅. Therefore, condition (d) of (C ′2) in Theorem 1.3.1 in [57] holds.
Consequently, by Theorem 1.3.1 and 3.1.1 in [57], P is uniformly persistent with
respect to (X0, ∂X0).

Lastly, since model (1) is periodic, we obtain that model (1) is uniformly persis-
tent. From Remark 3.3, model (1) is also permanent. This completed the proof.

As a consequence of Theorem 5.1 and Remark 3.3, from the main results ob-
tained in [38] on the existence of positive periodic solutions for general population
dynamical systems, we have the following result.

Corollary 5.2. If R0 > 1, then model (1) admits at least a positive ω-periodic
solution.

By Corollary 5.2, model (1) has at least one positive ω-periodic solution when
R0 > 1. Here an important issue is to ascertain its stability, such as local stability
and global stability. Unfortunately, it is very difficult to establish the stability of the
periodic solutions for model (1) as a six-dimensional system, especially in the use
of Floquent theory in periodic linear systems and the Lyapunov method in stability
theory. We will discuss these problems in the future research.

Example 5.3. Set ΛH = 4×104, λH(t) = 0.8×10−11×(1+4.5 sin(πt6 +4.5)), µH =

5 × 10−4, αH = 6 × 10−5, γH = 0.03, λM = 20, µM = 30,ΛV (t) = 6000, λV (t) =
40 × 10−8 × (1 + 4.5 sin(πt6 + 4.5)), µV (t) = 2 × 10−2, αV (t) = 0.02, λP = 60 and
µP = 0.2 in model (1).
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The initial values are ~Vi(0) = ((8−0.00005i)×107, 100+30i, (1+0.5i)×104, (3+
0.5i) × 104, (1 + 0.5i) × 104, (1 + 0.5i) × 104), i = 1, 2, 3. The basic reproduction
number R0 = 1.8048 > 1, then the model admits at least a positive 12-periodic
solution by Corollary 5.2. Time series of IH(t) are shown in Figure 4, we guess that
the periodic solutions of model (1) are stable.
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Figure 4. The 12-periodic solutions in Example 5.3 when R0 =
1.8048 > 1.

6. Application to the control of schistosomiasis in Hubei Province. The
monthly reported human schistosomiasis data in Hubei from January 2008 to De-
cember 2014 from the China CDC [10] show a seasonal fluctuation, with a peak
in late summer to early autumn and a nadir in late winter. We use model (1) to
simulate these cases and estimate the values of parameters in λH(t) and λV (t) in
(1) by means of the least-square fitting. With the help of the optimization toolbox
−Fminsearch in MATLAB, the numerical fitted curve of human schistosomiasis
cases is shown in Figure 5. Sensitivity analysis of the main parameters and analysis
of control and prevention measures are given in Figure 8 and Figure 9, respectively.

6.1. Estimation of model parameters. We explain the parameter values as
follows:

(a) The average human lifespan is about 74 years in Hubei in 2008, which is
obtained from the National Bureau of Statistics of China [34]. Thus, the monthly
average death rate µH = 1

74×12 = 1.126×10−3. The natural death rate of miracidia

is 0.9 per day [18], then the natural monthly death rate µM = 0.9 × 30 = 27. A
portion k = 300 of eggs leave the infective human body with the faeces or urine and
enter the fresh water supply where they hatch into miracidia at a rate γ1 = 0.0232
per day [5, 33], so the monthly migration rate λM = 30kγ1 = 30×300×0.0232 = 209.
Existing data show that there are about 13.1% patients received treatments in
2008 [44], we select γH = 13.1%.

Similarly, the natural death rate of snails is 0.000596 per day [18, 36], so the
monthly rate µV = 0.000596×30 = 1.7880×10−2. Based on the daily data in [18, 33,
36], we obtain the monthly disease induced death rate of snails, migration rate and
natural death rate of cercariae as αV = 0.012, λP = 78 and µP = 0.12, respectively.
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Table 1. Descriptions and values of parameters in model (1)

Parameter Interpretation Value Unit Source

ΛH Recruiting of susceptible humans 2.431 × 104 month−1 [34]
µH Natural death rate of humans 1.126 × 10−3 month−1 [34]
aH The baseline transmission rate 8.00 × 10−14 month−1 Estimated
bH The magnitude of forcing 0.6 none [54]
ϕH The initial phase 4.978 none Estimated
γH Cure rate 0.131 month−1 [44]
λM Migration rate 209 month−1 [5],[33]
µM Natural death rate of miracidia 27 month−1 [18],[36]
ΛV Recruiting of susceptible snails 5.660 × 105 month−1 [8],[27],[53]
µV Natural death rate of snails 1.788 × 10−2 month−1 [33]
αV Disease induced death rate of snails 0.012 month−1 [18],[33]
aV The baseline transmission rate 1.974 × 10−8 month−1 Estimated
bV The magnitude of forcing 0.6 none [54]
ϕV The initial phase 4.407 none Estimated
λP Migration rate 78 month−1 [18],[33]
µP Natural death rate of cercariae 0.12 month−1 [18],[36]

(b) The total number of population was 5.699× 107 in Hubei at the end of 2007,
and 55.70% of them lived in the countryside [34]. Since people who live in the
countryside are vulnerable to infected water, the number of the initial susceptible
people in January 2008 was S0

H = 5.699 × 107 × 55.70% = 3.174 × 107. The
annual average birth rate is 9.19 over one thousand [34], then recruiting number of

susceptible humans in January 2008 was ΛH = 3.174×107×9.19×10−3

12 = 2.431 × 104.
The reported number of infected human cases in January 2008 was 124 [10], which
was set as the initial infected human population I0

H = 124. The snail area was
about 7.547 × 108 square meters, and the evaluated area of infected snails was
about 2.632 × 108 square meters at the end of 2007 [8]. The number of average
living snails in every square meters in Hubei was between 0.001 and 0.0082 [53],
so the initial total number of susceptible and infected snails were estimated as
Λ0
V = 7.547×108×0.001 = 7.547×105 and I0

V = 2.632×108×0.001 = 2.632×105,
respectively. After 3-6 months, the survival rate of snails were maintained more than
75% in the natural environment [27], we select the recruiting number of susceptible
snails in January 2008 as ΛV = 7.547×105×75% = 5.660×105. We derive the initial
miracidia value M0 and cercariae value P 0 reversely by the parameters λM and λP ,
respectively, so M0 = 124× 209 = 25916 and P 0 = 2.632× 105 × 78 = 2.052× 107.

(c) Due to the lack of information about periodic functions ΛV (t), µV (t) and
αV (t), we choose ΛV (t) = ΛV , µV (t) = µV and αV (t) = αV +µV as above constants.

(d) Parameters aH , ϕH , aV and ϕV are obtained by fitting model (1) to data and
are given in Table 1.

6.2. Numerical simulations. Based on these known parameter values, the fitted
values are aH = 8.0×10−14, ϕH = 4.978, aV = 1.974×10−8 and ϕV = 4.407, see Ta-
ble 1. However, the coefficient of determination (R2) is a statistic analysis indicator
of correlation between multiple variables, its value is between 0 and 1, the greater
the value of R2 the better of fitting the model (see [29]). Let yi(i = 1, 2 · · · , 84) be
the recorded data (that is, the reported monthly human schistosomiasis cases from
January 2008 to December 2014 from China CDC [10]), and ŷi(i = 1, 2 · · · , 84) be



1292 Y. LI, Z. TENG, S. RUAN, M. LI AND X. FENG

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

t(month)

I H(t)

 

 
reported cases
fitting  curve

Figure 5. Comparison between the reported human schistosomi-
asis cases in Hubei from January 2008 to December 2014 and the
simulation of IH(t) from model (1).

the estimated data through model (1), then

R2 =

∑84
1 (ŷi − ȳ)2∑84

1 (yi − ȳ)2 +
∑84

1 (ŷi − ȳ)2
= 0.6463,

where ȳ = 1
84

∑84
1 yi. In general, numerical estimation results indicate that our

model provides a relatively good match to the reported data. Moreover, we used
our model to forecast the disease development trend after December 2014 in Figure
6 (t ≥ 84). It can be seen that the number of predicted human schistosomiasis cases
will fluctuate periodically and decrease meanwhile after January 2015.
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Figure 6. Disease development trend by forecasting model (1).
The parameter and initial values are the same as in Figure 5.

The cure rate in 2008 was about γH = 13.1% [44], we calculate the basic repro-
duction number R0 = 1.2387 > 1. This shows that the number of infected humans
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IH(t) tends to a stable 12-periodic solution by Theorem 5.1 and Corollary 5.2, see
(a) in Figure 7. Data for 2014 show that 20.7% of people required for treatments
[44]. We set the current cure rate as γH = 20.7%, then R0 = 0.9971 < 1, and IH(t)
tends to 0 by Theorem 4.1, see (b) in Figure 7. Obviously, the cure rate plays an
important role in control of human schistosomiasis. We believe that the human
schistosomiasis can be relieved and conclude that the cases will be greatly reduced
in the next few years in Hubei if we continue to increase treatments.
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Figure 7. Tendency of human schistosomiasis cases with different
R0: (a) γH = 0.131, R0 = 1.2387; (b) γH = 0.207, R0 = 0.9971.
All other parameter values are the same as in Table 1.

6.3. Sensitivity analysis. We carry out some sensitivity analysis to investigate
the influence of parameters ΛV , γH , λM and λP on R0. From Figure 8, it is obvious
that R0 is a increasing function of ΛV , λM and λP , respectively, and a decreasing
function of γH . These indicate that R0 can be less than 1 in Hubei by reducing the
recruiting of susceptible snails ΛV , migration rate of cercaria λP , and migration
rate of miracidia λM to approximately less than 3000, 30 and 90, respectively, or
only increase the cure rate more than 25%.

Traditional strategies in controlling schistosomiasis include chemotherapy, health
education, livestock chemotherapy, and snail control in risk areas [8], relying more
on treating humans and animals. The sensitivity analysis demonstrate that these
are all important measures to control schistosomiasis infection in Hubei, see Figure
8. and Figure 9.

From (a) in Figure 8, we can see that R0 increases as the snails birth rate ΛV
increases. (b) in Figure 9. shows that the number of human schistosomiasis cases
decrease as the snails death rate µV increases. Thus, by reducing the month new
born snails or killing the snails near residential areas as much as possible, the
transmission cycle between humans and snails will be broken, and the number of
human schistosomiasis can be decreased.

The simulation results (b) and (c) in Figure 8. and (c-e) in Figure 9. also show
that virus migration rate λM from humans to physical water, λP from physical water
to humans and the baseline transmission rate aH between humans and cercariae
have an effect on reduction of the disease. These parameters can be decreased
through managing feces and improving sanitation, which aim at killing worm eggs
in feces, through hygiene education to give warnings not to swim, dig, water, mow
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Figure 8. The influence of parameters on R0: (a) versus ΛV , (b)
versus λM , (c) versus λP , (d) versus γH . Other parameter values
are unchanged as in Table 1.

grass, fish, laundry, wash dishes in the lakes with snails. These will ease the epidemic
prevalence.

Increasing cure rate γH can reduce human schistosomiasis cases (see (d) in Figure
8. and (f) in Figure 9.). It is recommended that treat groups at risk regularly
with praziquantel [26]. Groups targeted for treatment include school-aged children
in endemic areas, adults considered to be at risk in endemic areas, and people
with occupations involving contact with infested water, such as fishermen, farmers,
irrigation workers, women whose domestic tasks bring them in contact with infested
water, and entire communities living in highly endemic areas.

7. Conclusion and discussion. It was observed that the number of schistoso-
miasis cases arrives at peak in late summer to early autumn, and reaches nadir
in winter and spring in Hubei, Hunan, Anhui and other regions with similar ge-
ographic characteristics and environmental factors in China (see Figure 1), which
display a seasonal pattern in these epidemic provinces. For the sake of simplicity
and convenience, we only list data of three provinces in Figure 1. To investigate the
human schistosomiasis transmission dynamics and explore effective control and pre-
vention measures in these lake and marshland regions along the Yangtze River, we
developed a nonautonomous model to describe seasonal schistosomiasis incidence
rate by incorporating periodic transmission rates λH(t) and λV (t). We deduced the



THE SEASONAL TRANSMISSION OF SCHISTOSOMIASIS IN CHINA 1295

0 50 100 150 200
0

100

200

300

400

500

600

t(month)

I H
(t)

 

 
fitting and forcasting curve 
reported curve

Lambdav=5.66*105

Lambdav=5000

(a)

0 50 100 150 200
0

100

200

300

400

500

600

t(month)

I H
(t)

 

 
data1
data2

muv=1.788*10−2

dmuv=7.88*10−3

(b)

0 50 100 150 200
0

100

200

300

400

500

600

t(month)

I H
(t)

 

 
data1
data2
lambda

M
=209

lambda
M

=109

(c)

0 50 100 150 200
0

100

200

300

400

500

600

t(month)

I H
(t)

 

 
data1
data2
lambda

P
=78

lambda
P
=63

(d)

0 50 100 150 200
0

100

200

300

400

500

600

t(month)

I H
(t)

 

 
data1
data2

a
H

=8*10−14

a
H

=5*10−14

(e)

0 50 100 150 200
0

100

200

300

400

500

600

t(month)

I H
(t)

 

 
data1
data2
gamma

H
=0.131

gamma
H

=0.231

(f)

Figure 9. The influence of different values on IH(t): (a) different
values of ΛV , (b) different values of µV , (c) different values of λM ,
(d) different values of λP , (e) different values of aH , (f) different
values of γH . Interval t ∈ [0, 84] represents the period from June
2008 to December 2014.

basic reproduction number R0 and analyzed the dynamics of model (1) including
global stability of the disease-free periodic solution and uniform persistence of the
model. R0 was calculated following the procedure of Wang and Zhao [50], that is
R0 = ρ(L), where L is the next infection operator, which was developed from the
original definition of Bacaer and Guernaoui [4].
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Based on the data from China CDC [10], we used our model (1) to simulate
the monthly infected human data from January 2008 to December 2014 in Hubei,
the parameters in transmission functions λH(t) and λV (t) were estimated by least-
square fitting, see Figure 5. We also predicted the general tendency of the disease
by our model after January 2015 in Figure 6. It can be seen that the number of
predicted human schistosomiasis cases will decrease and fluctuate periodically after
January 2015. The Chinese Government once aimed to reach the criteria of trans-
mission control threshold of less than 1% in the lake and marshland provinces and
reach transmission interruption threshold in hilly provinces of Sichuan and Yunnan
by the end of 2015 [45]. We believe this periodic model gave a relatively good
match with the cases and current situation, see Figure 5 and Figure 6. Prevention
and control strategies that we put forward theoretically for Hubei province were
demonstrated in Figure 8 and Figure 9. Human schistosomiasis control is based on
improving sanitation, hygiene education, snail control, and large-scale treatment of
at-risk population groups.

Hubei, Hunan, Jiangxi, Jiangsu and Anhui provinces are located along the
Yangtze River in central China, where climate changes clearly all the year round.
Rivers and lakes water level rise in rainy spring and summer, then the area of snails
increase, farmers and students have more chances to contact with contaminated
water for agriculture work or routine life, so epidemics occur naturally in this peri-
od. With temperature declining in winter, people have less opportunities to contact
with water. Sun et.al [37] estimated that the lowest critical temperature for the
infection of snails with miracidia is 3.24 ◦C, and deduced that the infection rate
descends with temperature, so the epidemic outbreak descends in winter. In this
way, the infections are subjected to environmental change, fluctuating from season
to season [13].

To prevent and control the disease, the most basic work is to increase resi-
dents’ knowledge of schistosomiasis, including harm of the disease, the transmis-
sion through feces of infected people and livestock, how people contract the disease
(infection route), the snails as the intermediate host, etc. The best way to prevent
infection is to avoid contacting infested water, and once infected, drug treatment of
praziquantel is recommended [26].

In schistosomiasis epidemic seasons (April-October), schistosomiasis prevention
and control work is very hard. In addition to routine control approaches such as
chemotherapy, molluscicide treatment of snail habitats and health education, other
major interventions including agriculture mechanization (phasing out the cattle for
ploughing and other field work), prohibiting pasture in the grasslands along lake
and rivers, building safe grassland for grazing, raising livestock in herds, improving
sanitation through supplying safe water, constructing marsh gas pools, building
lavatories and latrines, and providing fecal matter containers for fishermen’s boats,
etc., could decrease the prevalence of schistosomiasis to a very low level (see Figure
9. and [46, 49]).

Duo to the increasing migration population and the changes in environments and
diet habits, schistosomiasis rebounded in some areas where it had formerly been
controlled or eliminated (see [60] and the references therein). Moreover, another
threat is that traveling causes new infections of other species of schistosomiasis, for
example, an increasing in the cases infected with S. haematobium or S. mansoni is
reported in those returning to China after the China-aided projects in Africa and
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labor services export to Africa [47]. So highly sensitive surveillance and response
system for those from overseas is necessary.

The model we set up is used to study the transmission dynamics and control of
schistosomiasis in the lake and marshland areas. For mountainous regions, such as
Sichuan and Yunnan provinces, the corresponding model needs further research. It
is widely acknowledged that the transmission processes of S. japonica is considerably
more complex in comparison to other schistosome species because its definitive
hosts include more than 40 animal reservoirs, such as cattle, dogs, pigs and rodents
[25]. The model should include the role of these hosts. We leave these for future
consideration.
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