Available online at www.sciencedirect.com

Y SCIENGE@DIREGT“

ELSEVIER C. R. Biologies 327 (2004) 1009-1016

COMPTES RENDUS

BIOLOGIES

http://france.elsevier.com/direct/ CRASS3/

Biological modelling / Biomodélisation

Dynamics of human T-cell lymphotropic virus | (HTLV-I)
infection of CD4" T-cells”
Patricia Katri, Shigui Ruah

Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, USA
Received 27 February 2004; accepted 26 May 2004

Presented by Pierre Auger

This article is dedicated to the memory of Ovide Arino

Abstract

Stilianakis and SeydeBull. Math. Biol, 1999) proposed an ODE model that describes the T-cell dynamics of human T-cell
lymphotropic virus | (HTLV-I) infection and the development of adult T-cell leukemia (ATL). Their model consists of four
components: uninfected healthy CbZ-cells, latently infected CD# T-cells, actively infected CD#4 T-cells, and ATL cells.
Mathematical analysis that completely determines the global dynamics of this model has been done by WaiMp#t. al. (
Biosci, 2002). In this note, we first modify the parameters of the model to distinguish between contact and infectivity rates.
Then we introduce a discrete time delay to the model to describe the time between emission of contagious particles by active
CD4* T-cells and infection of pure cells. Using the results in Culshaw and RMath( Biosci, 2000) in the analysis of time
delay with respect to cell-free viral spread of HIV, we study the effect of time delay on the stability of the endemically infected
equilibrium. Numerical simulations are presented to illustrate the reJoltste thisarticle: P. Katri, S. Ruan, C. R. Biologies
327 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Dynamique de I’infection de cellules T CD4T par le virus du lymphome humain de type | (HTLV-l). Un modéle
d’équations différentielles ordinaires (EDO) décrivant la dynamique de I'infection des cellules T g&4e virus du lym-
phome humain de type | (HTLV-I) ainsi que le développement de cellules T adultes leucémiques (ATL) a été proposeé par
Stilianakis et SeydelRull. Math. Biol, 1999). Il s’agit d’'un modéle & quatre composants : cellules T €Rdn infectées,
cellules T CD4 en infection latente, cellules T CD4en infection active et cellules leucémiques. Une analyse mathématique
permettant la détermination compléte de la dynamique globale de ce modele a été faite par WaMpét.aRigsci, 2002).

Dans le présent article, nous commengons par modifier les paramétres du modele pour parvenir a distinguer les taux de conta
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des taux d'infection, puis nous introduisons un délai temporel discret, décrivant l'intervalle de temps entre I'émission de parti-
cules contagieuses par des cellules T Cx&tivement infectées et I'infection dellges saines. Ltilisation des données de
Culshaw et RuanMath. Biosci, 2000) relatives a I'analyse de I'effet du délai temporel sur la propagation du VIH nous per-
met alors d'étudier I'effet du délai temporel sur la stabilité de I'equilibre d’'infection endémique. Des simulations numériques

illustrent ces résultat®our citer cet article: P. Katri, S. Ruan, C. R. Biologies 327 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

3% develop symptoms of HAM/TSP. Coinfection with
HTLV-Iand HIV has been shown to accelerate the pro-

The year 2000 marked the 20th anniversary of the gression of AIDY2,5,6], etc.

discovery of the first human retrovirus: human T-cell
lymphotropic virus-I (HTLV-I) (se€[1]). Its discov-

The transmission and dynamics of HTLV-I feature
several biological characteristics that are of interest to

ery has had several notable implications. First, this epidemiologists, mathematicians, and biologists, see,

retrovirus provided clear proof of a relationship be-

for example[5,7-13,20] etc. Like HIV, HTLV-I tar-

tween viruses and cancer. Second, the obvious asso-gets CD4 T-cells, the most abundant white cells in

ciation of HTLV-I with a neurologic disease similar
to multiple sclerosis (MBcreated an opportunity to
study the mechanisms thaid to chronic demyelinat-
ing disease. Finally, its identification clearly facilitated
the discovery and isolation of the human immunode-
ficiency virus (HIV), which has caused a global epi-
demic of a rapidly progressing fatal illness: acquired
immune deficiency syndrome (AID$)].

Infection with HTLV-I is now a global epidemic,
affecting 10 million to 20 million people. This virus
has been linked to life-threaing, incurable diseases:
adult T-cell leukemia (ATL) and HTLV-I-associated
myelopathy/tropical spastic paraparesis (HAM/TSP).

the immune system, decreasing the body’s ability to
fight infection. Primary infection leads to chronic in-
fection, the proviral load of which can be extremely
high, approximately 30-50%]. Unlike in the case
of HIV infection, however, only a small percentage
of infected individuals develop the disease and 2-5%
percent of HTLV-I carriers develop symptoms of ATL
[14]. Also, there is very little cell-free virus in the
plasma. Almost all viral genetic material resides, in
DNA form, integrated within the host genome of in-
fected cells. HTLV-I infection is achieved primarily
through cell-to-cell contagg].

HTLV-Il is a single-stranded RNA retrovirus, the

These syndromes are important causes of mortality activity of which produces a DNA copy of the viral

and morbidity in the areas where HTLV-I is endemic, genome that is integrated into the DNA of the host
mainly in the tropics and subtropi¢8]: Caribbean, genome. After this takes place, the latency period can
southern Japan, Central and South Africa, and South persist for along period of time. Latently infected cells
America. The virus is also present in USA, especially contain the virus, but do not produce DNA and are in-
in southeastern United States, in certain immigrant capable of contagion. When such cells are stimulated
groups. There is neither a vaccine against the virus, nor by antigen, they can beconaetive and infect healthy

a satisfactory treatment for the malignancy or the in- cells. Actively infected cells may also convert to ATL
flammatory syndromes. The main transmission routes cells[15].

of HTLV-I are sexual transmission, vertical transmis- Taking these factors into consideration, Stilianakis
sion from mother to child, infection by blood trans- and Seydel[14] proposed a model that formulates
fusion, and needle-sharing among drug u$£}sPri- a system of nonlinear differential equations that di-
mary infection leads to a cbnic infection that seems  vides CD4" T-cells into four compartments: unin-
to last life-long. However, only a small fraction of in-  fected CD4 T-cells, latently infected cells, actively
fected individuals progress to disease, about 3% of infected cells, and leukemia cells. An analogous model
infected people develop symptoms of ATL and another for HIV was proposed by Perelson et HI6] and was
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simplified by Culshaw and Rudf7] in their incorpo- The resulting model then is a system of four delay-
ration of a time delay to describe the time between in- differential equations. To determine the dynamics of
fection of a CD4 T-cell and the emission of viral par-  the delay model, we use the results in Culshaw and
ticles on a cellular level. In general, delay-differential Ruan[17] to obtain analytic conditions on the para-
equations exhibit more complicated dynamics than meters under which the infected steady state is asymp-
systems of ODEs, since a time delay can destabilize tomatically stable for all delay. Numerical simulations
equilibria. Discrete delays have been used to model are carried out to illustrate the obtained results.

the intracellular delay in HIV models. A gamma dis-

tribution delay has been considered a more realistic

approachto model the_intracellular delay (§&8] and 2. The ODE model

references cited therein). Most recently, Banks et al.

[19] developed methods for incorporating arbitrary i . ]

variability for temporal delays in HIV pathogenesis Ve first modify the classic mod¢l4] for the sys-
into systems that cannot be reduced to a finite num- tem of non-linear differential equations to distinguish,
ber of coupled differential equations. The importance N terms of parameters, between contact and infectiv-
of their method lies in the fact that delay can in fact ity rates. The resulting ODE model is:

be introduced into various stages of cellular mutation; T

from _healthy to Ia@ently infeidnqs, IatgnF to actively =L _ 1T —kTaAT
infectious, and active to leukemic. This idea, however, dt
is not pursued here. d7.

In this paper, we first alter the classic model pro- ¢ k1TAT — (pL + )T 2.1)
posed by Stilianakis and Seydd4] to distinguish, dr '
in terms of parameters, between contact and infectiv- —2 — aT. — (ua + p)Ta
ity rates. This is done in order to take into account dr
the probabilistic nature of infection (though stochas- d7w Tm
. . - . . — = pT, Tmll-— — T
tic modeling of HTLV-I infection, given the unusually dr PTA+ Pl Minax Huim

high proviral load, has and should be pursued further). )

The existence and stability of the infected equilibrium Where 7'(t) represents the concentration of healthy
are considered. We then incorporate a discrete delay toCD4" T-cells at timer, 7i (1) represents the concen-
describe the time between the emission of contagious ration of latently infected CD4 T-cells, Ta (1) the
particles by actively infected cells and the infection of concentration of actively infected CD4T-cells, and

a CD4+ T-cell. In other words, we introduce a delay Im(7) the concentration of leukemic cells at time

into the stage when the cell mutates from healthy to ~ TO explain the parameters, we note thats the
latent. The biological rationale for introducing a delay Source of CD4 T-cells from precursorsyr is the

at this stage lies in the fact that there is a waiting pe- Natural death rate of CD4T-cells, « is the rate at
riod between the time when the virus contacts the cell Which uninfected cells ar contacted by actively in-
and the time when the viral RNA is incorporated into fected cells. The parametei represents the rate of
the DNA of the host genome. Since the proviral load infection of T-cells with vius from actively infected
varies from patient to patient and since there is a direct cells. 1, ua andum are blanket death terms for la-
correlation between the development of disease andtently infected, actively irécted and leukemic cells, to
proviral load[7], it would be logical to consider that ~ reflect the assumption that we do not initially know
during the delayed time some mechanism, by chance,whether the cells die naturally or by bursting. In ad-
intervenes to prevent or enhance the speed with which dition, « and p represent the rates at which latently
the cell will become latently infected. It would be infected and actively infected cells become actively in-
interesting, then, to compare a stochastic model for fected and leukemic, respectively. ATL cells grow at a
HTLV-I infection, where cellular contact by RNA is  ratep of a classical logistic growth functioi,,,, is

a function of chance, with this model, since both try to the maximal number that ATtells proliferate. All pa-
account for the probabilistic nature of the infection. rameters are assumed to be positive constants.
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In the absence of virus, the T-cell population has a Denote:

steady-state value: T

N M’:ﬁ(l—ZT )—MM (2.6)
To=— (2.2) Mmax

nr Then the eigenvalues of are M’ (always negative,
Thus reasonable initial conditions for infection by free  sinceT v is higher than the carrying capacify,,,, =
virus only are: (£l when infection is chronic) and the roots of the
7(0) = To, 7L(0)=0 23 characteristic equatiorf the linearized system:
Ta(0) =0, w(0)=0 . 02+ a10? + (a2 +aa)o + (az+as) =0 (2.7)

System(2.1) has two steady states: the uninfected where
steady state£o = (70,0,0,0) and the (positive) in-

S, 2 _ 2=
fected steady staté = (T, T, Ta, Twm), Where: a1=k“Ta+kuL +rp+rut+ak +rcua
_ 27 27 27
T (1L + @) (na + p) az=k« TA_ML +xTaa+ pricpuL +«Tapua
- aKl + 12T AP + KILIA + UTKA + T A + L p
T, — raky — pr(uL + o) (LA + o) + kapua + kap + UTKp
ey +a) (24)  ag=purkap +k°Taap + k2T aapa + UTK AL LA

= daky— pt(ul +a)(ua +p)
Ta=

+ kLo + prkapa + k2T A(LLp + ULiA)
k(uL +a)(ua + p)

aq = —K100p — K1ULP — K1ICUA — K1IL LA

72 —(,B_MM)TMmaxT OT ATMmax _0
- B M~ B = as = —(UTK100 + UTKLUL UA + UTKLUL O
Following Stilianakis and Seyddll4], all T-cell + uTk1aA)

subpopulations at steady state must have non-negativeie should point out that writing the coefficients in
values. If — um > 0, which means that the prolifer-  Eq. (2.7) asaz + a4 andas + as is for the sake of
ation rate of abnormal cells is higher than their death convenience and comparison, since the characteristic
rate, disease may ensueplf- um < O, furtherbehav-  equation(3.3) of the corresponding delay equation in
ior of the system depends on the basic reproduction Section3 has all fivea;'s as coefficients.

number: By the Routh—Hurwitz criterion, it follows that all
R ak1To 2.5) eigenvalues of Eq2.7) have negative real parts if and
0= . .
(BL+ ) (A + p) only if
where Tp equalsT. If we assume ATL cells pro- 41~ 0, az+as>0 2.8)
liferate at an uncontrollable rate, théi, 0,0, 0) = ai(az +aq) — (a3 +as) >0 '

(iT, 0,0, 0) is an unstable saddle point. If they do not,
(5.5)determines whether iattion will proceed to the  Proposition 1. The infected steady stafe is asymp-
next steady state or not. Ro < 1, the infection-free  totically stable ifRy > 1 and the inequalities ir2.8)

equilibrium is the only equilibriu@ and it is stable. If  gre satisfied. This occurs ®)k > k1, or (b)if Kk = k1.
Ro > 1, Eg becomes unstable aridexists.

To discuss the local stability of the positive infected For the parameter values given Table 1 Rg =
steady stateg for Ro > 1, we consider the linearized 125 if x; = 0.1. The contact and infectivity rates,

system of2.1)at E. The Jacobian matrix & is given and«1, are estimated by Stilianakis and Seyfist]

by: on the basis of parameter estimates known from the
—(ur+xTa) O T 0 HIV infection process. Adjustments are made to take
A aTp)  —@+u)  «T 0 into account the particulars of HTLV-I viral trans-
= 0 © o THATe T(I)\A mission. We first takec = k1 = 0.1. Then all con-
0 0 P P T ditions in (2.8) are satisfied and the infected steady
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Table 1
Variables and parameters for contagion
Parameters and variables Values
Dependent variables
T uninfected CD# T-cell population size 10(}(Bnm3
T latently infected CD# T-cell density 25§Dmm3
Ta actively infected CD# T-cell density 1.5$mm3
Tm leukemic CD4" T-cell density 0
Parameters and constants
UT natural death rate of CD4T-cells 0.6 mmi/day
UL blanket death rate of latently infected CbZ-cells 0.00@day
A blanket death rate of actively infected cells .08y
UM death rate of leukemic cells 0.00amy
K1 rate uninfected CD#4 T-cells become latently infected varies
K rate infected cells are contacted varies
B growth rate of leukemic CD# T-cell population 0.000&1ay
o rate latently infected cells become actively infected 0.0064
o rate actively infected cells become leukemic 0.000M4/
TMmax maximal population level of leukemic CD4T-cells 220gmm®
source term for uninfected CD4T-cells 6/day
Derived quantities
To CD4" T-cell population for HTLV-I-negative persons lQ@ﬁm3

1000

200 F

healthy cells T

latently infected cells T_L

50

100 150

t- time

(seeFig. 2).

actively infected cells T_A

3. Thedelay model

leukemic cells T_M

1 model is given as follows:

dr
— =A—utl(t) —«TpaT

When k1 = 0.1, « = 0.5, the steady state becomes
E = (800, 37.38,0.3,0.6), which is still asymptoti-
cally stable. Varyingc and«1 (with «1 < «) will al-

ter the numbers of uninfected CH4T-cells, infected
cells, and leukemic cells. For example, fix= 0.5
and alterx; from 0.1 to 0.3, numerical simulations

. show that the number of healthy CD4T-cells de-
creases dramatically, while the numbers of latently in-
fected cells and leukemicells increase substantially

In this section, we introduce a time delay into sys-
1 tem(2.1)to represent the contagion eclipse phase. The

o 50 100 150 200 250 300
t - time

Fig. 1. Solutions of systerf2.1) converge to the steady-state values
whenkq =« = 0.1; all other parameters are givenTable 1

stateE = (800, 187.5, 1.5, 1.3) is asymptotically sta-
ble. Numerical simulations show that trajectories of
system(2.1) approach to the steady state ($ég. 1).

dr

L T —OTA( —7) — (L + )Ty
dr (3.1)

dTa

F =oTL — (ua +0)Ta

dTwm

—ZPTA+,3TM<1— >_MMTM
dt Mmax
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1000

healthy cells

k=0.5.Kk1=0.2

latently infected cells N

P =
K=0.5.k1=0.3

3! N

00 -

k=0.5. k1=0.2 N

200 250 300

G ox ko2
3§ 8 & 8

N
&8
& o

w 3 3
c & & 8

- time

leukemic cells

50 100 150 200 250 300

Fig. 2. Whenk = 0.5, k1 changes from @ to 03, all other para-
meters being given ifiable 1 the number of healthy CD4 T-cells

decreases while the numbers of latently infected cells and leukemic

cells increase.

under the initial values

T () = To, T (0)=0
Ta(0) =0, Tm(0) =0, 6¢e[—-1,0]

All parameters are the same as in syst@m), except
that the positive constamtrepresents the length of the
delay, in days.

We find, again, an uninfected steady std#ig =
(To, 0,0, 0) and an infected steady stafe= (T, T,
Ta,Twm), WhereT, T, T andTy are the same as in
Section2, given by(2.4). Since the uninfected steady
stateEp is unstable when = 0 andRp > 1, incorpo-
ration of a delay will not change the instability. Thus,
Eg is unstable ifRg > 1, which is also the feasibility
condition for the infected steady stafie

To study the stability of the steady statEsdefine

y@)=Ti(t) —TL
w(t)=Tu(t) —Tw

x(t)y=T() — T,
2(t) =Ta(t) — Ta,

P. Katri, S. Ruan / C. R. Biologies 327 (2004) 1009-1016

Then the linearized system (8.1)at E is given by

dx = =
@ =—(ut+«Tp)x() —«Tz(t)
(;_y =k1Tax(t — 1) — (UL +)y(t) +k1Tz(t — 7)
g (3.2)
dz
@ =ay(t) — (ua + p)z(t)
dw Tw
- pz(t) + (ﬂ - 28 To MM)w(t)

We then express syste(B.2) in matrix form as fol-
lows:

x(t) x(1) x(t—1)
dlyo | _ (1) y(t—1)
dr | z(0) =4 2(1) +42 2(t—1)

w(t) w(t) w(t —1)

whereA; and Az are 4x 4 matrices given by:

—ut—kTA 0 —«T 0
A= 0 —UL — o 0 0
0 « —(ua+p) O
0 0 o M’
0O 00O
Ay = kiTa 0 k1T O
0O 00O
0O 0 0O

whereM’ is defined by(2.6). The characteristic equa-
tion of system(3.2)is given by:

AQ) =1 — A1 —e T Ay =0

that is,M’ and the solution set to:

AW tail+arr+aze T +ashe ™ +a5=0

(3.3)
are the eigenvalues, whetge (i = 1,...,5) are de-
fined in(2.7).

Following the arguments of Culshaw and Ruan
[17], we have the following proposition.

Proposition 2. Suppose that

(i) a1>0,az+as > 0, a1(az+ as) — (a3 +as) > 0,
(i) aé—a%} 0, a%— 2a1a5—a§ > 0.

Then the infected steady stafeof the delay model
(3.1)is asymptotically stable for ait > 0.
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1000

healthy cells T

800

200

latently infected cells T_L

[ 50 200

0.8

07

el
0.5 |

04

o1 |

03 actively infected cells T_A

02

o

[ 50 100 200 250 300

- time

Fig. 3. Whenkj = 0.1,k = 0.5, 7 = 1, all other parameters being
given inTable 1 the steady stat& = (800, 37.38, 0.3, 0.6) of sys-
tem(3.1)is asymptotically stable.

Notice that, for the parameter values givenTa
ble 1, all conditions inProposition 2are satisfied.
Thus, the infected steady stafe is asymptotically
stable for allz > 0. Takex = 0.5,x1 =0.1,7 =1,
and other parameter values given Table 1 nu-
merical simulations show that the infected steady
stateE = (800, 37.38, 0.3, 0.6) is asymptotically sta-
ble (seeFig. 3). We can see that the time delay does
not induce instability and oscillations in systéBi1)
for the parameter values givenTable 1

4. Discussion

Incorporating a time delay into the HTLV-I infec-

tion model reproduces the mathematics of the incor-

poration of delay into analogous HIV models, but be-
cause contagion is achievedlge-cell, there are vary-
ing biological repercussions.

We first modified the ODE model proposed by Stil-
ianakis and Seyd¢§l14] to distinguish between contact
and infectivity rates. As they did with their model,
we obtained a restriction on the number of actively
infected cells in order for infection to be sustained.

1015

Under this restriction, the system has a positive equi-
librium, the infected steady state. By using stability
analysis we obtained sufficient conditions on the para-
meters for the stability of the steady state. For parame-
ter values reported ifl4] (x = «1), the stability con-
ditions are all satisfied and numerical simulations con-
firmed the analysis. Confirming the biological intu-
ition, when infectivity rate is less than the contact rate,
the endemic equilibria of infected cells are achieved at
an equal or lower level than when both are equal.

We then introduced a time delay into the model
which describes the time between infection of a CD4
T-cells and the emission of proviral particles by ac-
tively infected cells. The same restriction on the num-
ber of actively infected cells is required. By analyz-
ing the transcendental equation, we used the results of
Culshaw and Ruafil7] to derive stability conditions
for the infected steady staiteterms of parameters and
independent of delay. Using the parameter values in
Table 1 we carried some numerical simulations which
confirmed the analysis. We observed that the time de-
lay does not induce instability and oscillations in the
model.

Since the majority (about 95%) of HTLV-I infected
individuals develop no associated disease, the current
view of HTLV-1 is of a rather inactive infection. The
virus is thought to be transcriptionally silent, replicat-
ing almost entirely by mitosis of the host cell. Our
study confirms that HTLV-I is largely latent. The re-
sults on asymptotic stability of the infected steady
state might be helpful in understanding the chronic in-
fection of the virus.

References

[1] B.J. Poiesz, F.W. Ruscetti, A.F. Gazdar, P.A. Bunn, J.D. Minna,
R.C. Gallo, Detection and isolation of type C retrovirus par-
ticles from fresh and cultured lymphocytes of a patient with
cutaneous T-cell lymphoma, Proc. Natl Acad. Sci. USA 77
(1980) 7415-7419.

[2] R.F. Edlich, J.A. Arnette, F.M. Williams, Global epidemic of
human T-cell lymphotropic virus type-lI (HTLV-I), J. Emerg.
Med. 18 (2000) 109-119.

[3] N.E. Mueller, W.A. Blattner, Retroviruses: HTLV, in: A.S.
Evans, R. Kaslow (Eds.), Viral Infections of Humans: Epi-
demiology and Control, Bhum Press, New York, 1996.

[4] W.A. Blattner, et al., The human type-C retrovirus, HTLV, in
Blacks from the Caribbean regioand relationship to adult T-
cell leukemia/lymphoma, Int. J. Cancer 30 (1982) 257-264.



1016 P. Katri, S. Ruan / C. R. Biologies 327 (2004) 1009-1016

[5] C.R.M. Bangham, The immune response to HTLV-l, Curr. in 202 HAM/TSP patients and 243 asymptomatic HTLV-I car-
Opin. Immunol. 12 (2000) 397-402. riers: high proviral load strongly predisposes to Ham/TSP,

[6] C.R.M. Bangham, The immune control and cell-to-cell spread A model of human immunodeficiency virus infection in helper-
of human T-lymphotropic virus type 1, J. Gen. Virol. 84 (12) T cell clones, J. Neurosci. 4 (1998) 586-593.

(2003) 3177-3189. [13] D. Wodarz, M.A. Nowak, C.R.M. Bangham, The dynamics of

[7] B. Asquith, C.R.M. Bangham, The dynamics of T-cell fratri- HTLV-I response and the CTL response, Immunol. Today 20
cide: application of a robust approach to mathematical model- (1999) 220-227.
ing in immunology, J. Theor. Biol. 222 (2003) 53-69. [14] N.I. Stilianakis, J. Seydel, Modeling the T-cell dynamics and

[8] C.R.M. Bangham, S.E. Hall, K.J.M. Jeffery, A.M. Vine, pathogenesis of HTLV-I infection, Bull. Math. Biol. 61 (1999)
A. Witkover, M.A. Nowak, D. Wodarz, K. Usku, M. Osame, 935-947.

Genetic control and dynamics tife cellular immune response [15] L. Wang, M.Y. Li, D. Kirschner, Mathematical analysis of the
to the human T-cell leukaemia virus, HTLV-I, Phil. Trans. R. global dynamics of a model for HTLV-I infection and ATL pro-
Soc. Lond. B 354 (1999) 691-700. gression, Math. Biosci. 179 (2002) 207-217.

[9] N. Eshima, M. Tabata, H. Kuchi, S. Karukaya, T. Taguchi, [16] A.S. Perelson, D.E. Kirsmer, R. De Boer, Dynamics of HIV
Analysis of the infection of human T-cell leukaemia virus infection of CD4t T cells, Math. Biosci. 114 (1993) 81—
type | based on a mathematical epidemic model, Stat. Med. 20 125.

(2001) 3891-3900. [17] R.V. Culshaw, S. Ruan, A delay-differential equation model
[10] T. Igakura, J.C. Stinchcombe, P.K.C. Goon, G.P. Taylor, J. We- of HIV infection of CD4" T-cells, Math. Biosci. 165 (2000)
ber, G.M. Griffiths, Y. Tanaka, M. Osame, C.R.M. Bangham, 27-39.
Spread of HTLV-I between lymphocytes by virus-induced po- [18] R.V. Culshaw, S. Ruan, G.F. Webb, A mathematical model of
larization of the cytoskelton, Science 299 (2003) 1713-1716. cell-to-cell spread of HIV that includes a time delay, J. Math.
[11] R. Kubota, Y. Furukawa, S. Izumo, K. Usuku, M. Osame, De- Biol. 46 (2003) 425-444.
generate specificity of HTLV-1 specific CD8T-cells during [19] H.T. Banks, D.M. Bortz, S.E. Holte, Incorporation of vari-
viral replication in patients with HTLV-I-associated myelopa- ability into the modelling of viral delays in HIV transmission
thy (HAM/TSP), Blood 101 (2003) 3074-3081. dynamics, Math. Biosci. 183 (2003) 63-91.
[12] M. Nagai, K. Usuku, W. Matsmoto, D. Kodama, N. Takenou- [20] M.A. Nowak, R.M. May, Virus Dynamics: Mathematical Prin-
chi, T. Moritoyo, S. Hashiguchi, M. Ichinose, C.R.M. Bang- ciples of Immunology and Virology, Oxford UP, Oxford, UK,

ham, S. Izumo, M. Osame, Analysis of HTLV-I proviral load 2000.



	Dynamics of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells
	Introduction
	The ODE model
	The delay model
	Discussion
	References


