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Abstract

Stilianakis and Seydel (Bull. Math. Biol., 1999) proposed an ODE model that describes the T-cell dynamics of human
lymphotropic virus I (HTLV-I) infection and the development of adult T-cell leukemia (ATL). Their model consists of
components: uninfected healthy CD4+ T-cells, latently infected CD4+ T-cells, actively infected CD4+ T-cells, and ATL cells.
Mathematical analysis that completely determines the global dynamics of this model has been done by Wang et aMath.
Biosci., 2002). In this note, we first modify the parameters of the model to distinguish between contact and infectivit
Then we introduce a discrete time delay to the model to describe the time between emission of contagious particles
CD4+ T-cells and infection of pure cells. Using the results in Culshaw and Ruan (Math. Biosci., 2000) in the analysis of tim
delay with respect to cell-free viral spread of HIV, we study the effect of time delay on the stability of the endemically in
equilibrium. Numerical simulations are presented to illustrate the results.To cite this article: P. Katri, S. Ruan, C. R. Biologies
327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Dynamique de l’infection de cellules T CD4+ par le virus du lymphome humain de type I (HTLV-I). Un modèle
d’équations différentielles ordinaires (EDO) décrivant la dynamique de l’infection des cellules T CD4+ par le virus du lym-
phome humain de type I (HTLV-I) ainsi que le développement de cellules T adultes leucémiques (ATL) a été prop
Stilianakis et Seydel (Bull. Math. Biol., 1999). Il s’agit d’un modèle à quatre composants : cellules T CD4+ non infectées,
cellules T CD4+ en infection latente, cellules T CD4+ en infection active et cellules leucémiques. Une analyse mathéma
permettant la détermination complète de la dynamique globale de ce modèle a été faite par Wang et al. (Math. Biosci., 2002).
Dans le présent article, nous commençons par modifier les paramètres du modèle pour parvenir à distinguer les taux

✩ Research was supported by a start-up fund and a general research support award from the University of Miami.
* Corresponding author.

E-mail addresses:p.katri@math.miami.edu(P. Katri), ruan@math.miami.edu(S. Ruan).
1631-0691/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crvi.2004.05.011

http://http://france.elsevier.com/direct/CRASS3/
mailto:p.katri@math.miami.edu
mailto:ruan@math.miami.edu


1010 P. Katri, S. Ruan / C. R. Biologies 327 (2004) 1009–1016

de parti-
e

per-
ériques
des taux d’infection, puis nous introduisons un délai temporel discret, décrivant l’intervalle de temps entre l’émission
cules contagieuses par des cellules T CD4+ activement infectées et l’infection de cellules saines. L’utilisation des données d
Culshaw et Ruan (Math. Biosci., 2000) relatives à l’analyse de l’effet du délai temporel sur la propagation du VIH nous
met alors d’étudier l’effet du délai temporel sur la stabilité de l’equilibre d’infection endémique. Des simulations num
illustrent ces résultats.Pour citer cet article : P. Katri, S. Ruan, C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The year 2000 marked the 20th anniversary of
discovery of the first human retrovirus: human T-c
lymphotropic virus-I (HTLV-I) (see[1]). Its discov-
ery has had several notable implications. First,
retrovirus provided clear proof of a relationship b
tween viruses and cancer. Second, the obvious a
ciation of HTLV-I with a neurologic disease simila
to multiple sclerosis (MS) created an opportunity t
study the mechanisms that lead to chronic demyelina
ing disease. Finally, its identification clearly facilitat
the discovery and isolation of the human immuno
ficiency virus (HIV), which has caused a global e
demic of a rapidly progressing fatal illness: acquir
immune deficiency syndrome (AIDS)[2].

Infection with HTLV-I is now a global epidemic
affecting 10 million to 20 million people. This viru
has been linked to life-threatening, incurable disease
adult T-cell leukemia (ATL) and HTLV-I-associate
myelopathy/tropical spastic paraparesis (HAM/TS
These syndromes are important causes of mort
and morbidity in the areas where HTLV-I is endem
mainly in the tropics and subtropics[3]: Caribbean,
southern Japan, Central and South Africa, and So
America. The virus is also present in USA, especia
in southeastern United States, in certain immigr
groups. There is neither a vaccine against the virus
a satisfactory treatment for the malignancy or the
flammatory syndromes. The main transmission rou
of HTLV-I are sexual transmission, vertical transm
sion from mother to child, infection by blood tran
fusion, and needle-sharing among drug users[4]. Pri-
mary infection leads to a chronic infection that seem
to last life-long. However, only a small fraction of in
fected individuals progress to disease, about 3%
infected people develop symptoms of ATL and anot
-

3% develop symptoms of HAM/TSP. Coinfection wi
HTLV-I and HIV has been shown to accelerate the p
gression of AIDS[2,5,6], etc.

The transmission and dynamics of HTLV-I featu
several biological characteristics that are of interes
epidemiologists, mathematicians, and biologists,
for example,[5,7–13,20], etc. Like HIV, HTLV-I tar-
gets CD4+ T-cells, the most abundant white cells
the immune system, decreasing the body’s ability
fight infection. Primary infection leads to chronic i
fection, the proviral load of which can be extreme
high, approximately 30–50%[7]. Unlike in the case
of HIV infection, however, only a small percenta
of infected individuals develop the disease and 2–
percent of HTLV-I carriers develop symptoms of AT
[14]. Also, there is very little cell-free virus in th
plasma. Almost all viral genetic material resides,
DNA form, integrated within the host genome of i
fected cells. HTLV-I infection is achieved primari
through cell-to-cell contact[6].

HTLV-I is a single-stranded RNA retrovirus, th
activity of which produces a DNA copy of the vira
genome that is integrated into the DNA of the h
genome. After this takes place, the latency period
persist for a long period of time. Latently infected ce
contain the virus, but do not produce DNA and are
capable of contagion. When such cells are stimula
by antigen, they can becomeactive and infect health
cells. Actively infected cells may also convert to AT
cells[15].

Taking these factors into consideration, Stiliana
and Seydel[14] proposed a model that formulat
a system of nonlinear differential equations that
vides CD4+ T-cells into four compartments: unin
fected CD4+ T-cells, latently infected cells, activel
infected cells, and leukemia cells. An analogous mo
for HIV was proposed by Perelson et al.[16] and was
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simplified by Culshaw and Ruan[17] in their incorpo-
ration of a time delay to describe the time between
fection of a CD4+ T-cell and the emission of viral pa
ticles on a cellular level. In general, delay-different
equations exhibit more complicated dynamics th
systems of ODEs, since a time delay can destab
equilibria. Discrete delays have been used to mo
the intracellular delay in HIV models. A gamma di
tribution delay has been considered a more real
approach to model the intracellular delay (see[18] and
references cited therein). Most recently, Banks et
[19] developed methods for incorporating arbitra
variability for temporal delays in HIV pathogenes
into systems that cannot be reduced to a finite n
ber of coupled differential equations. The importan
of their method lies in the fact that delay can in fa
be introduced into various stages of cellular mutati
from healthy to latently infectious, latent to actively
infectious, and active to leukemic. This idea, howev
is not pursued here.

In this paper, we first alter the classic model p
posed by Stilianakis and Seydel[14] to distinguish,
in terms of parameters, between contact and infec
ity rates. This is done in order to take into accou
the probabilistic nature of infection (though stoch
tic modeling of HTLV-I infection, given the unusuall
high proviral load, has and should be pursued furth
The existence and stability of the infected equilibriu
are considered. We then incorporate a discrete dela
describe the time between the emission of contag
particles by actively infected cells and the infection
a CD4+ T-cell. In other words, we introduce a dela
into the stage when the cell mutates from healthy
latent. The biological rationale for introducing a del
at this stage lies in the fact that there is a waiting
riod between the time when the virus contacts the
and the time when the viral RNA is incorporated in
the DNA of the host genome. Since the proviral lo
varies from patient to patient and since there is a di
correlation between the development of disease
proviral load[7], it would be logical to consider tha
during the delayed time some mechanism, by cha
intervenes to prevent or enhance the speed with w
the cell will become latently infected. It would b
interesting, then, to compare a stochastic model
HTLV-I infection, where cellular contact by RNA i
a function of chance, with this model, since both try
account for the probabilistic nature of the infection.
The resulting model then is a system of four del
differential equations. To determine the dynamics
the delay model, we use the results in Culshaw
Ruan[17] to obtain analytic conditions on the par
meters under which the infected steady state is asy
tomatically stable for all delay. Numerical simulatio
are carried out to illustrate the obtained results.

2. The ODE model

We first modify the classic model[14] for the sys-
tem of non-linear differential equations to distinguis
in terms of parameters, between contact and infec
ity rates. The resulting ODE model is:

dT

dt
= λ − µTT − κTAT

(2.1)

dTL

dt
= κ1TAT − (µL + α)TL

dTA

dt
= αTL − (µA + ρ)TA

dTM

dt
= ρTA + βTM

(
1− TM

TMmax

)
− µMTM

where T (t) represents the concentration of heal
CD4+ T-cells at timet , TL(t) represents the conce
tration of latently infected CD4+ T-cells, TA(t) the
concentration of actively infected CD4+ T-cells, and
TM(t) the concentration of leukemic cells at timet .

To explain the parameters, we note thatλ is the
source of CD4+ T-cells from precursors,µT is the
natural death rate of CD4+ T-cells, κ is the rate at
which uninfected cells are contacted by actively in
fected cells. The parameterκ1 represents the rate o
infection of T-cells with virus from actively infected
cells.µL , µA andµM are blanket death terms for la
tently infected, actively infected and leukemic cells, t
reflect the assumption that we do not initially kno
whether the cells die naturally or by bursting. In a
dition, α and ρ represent the rates at which laten
infected and actively infected cells become actively
fected and leukemic, respectively. ATL cells grow a
rateβ of a classical logistic growth function.TMmax is
the maximal number that ATLcells proliferate. All pa-
rameters are assumed to be positive constants.
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In the absence of virus, the T-cell population ha
steady-state value:

(2.2)T0 = λ

µT

Thus reasonable initial conditions for infection by fr
virus only are:

(2.3)
T (0) = T0, TL(0) = 0

TA(0) = 0, TM(0) = 0

System(2.1) has two steady states: the uninfec
steady stateE0 = (T0,0,0,0) and the (positive) in-
fected steady stateE = (T , T L, T A, T M), where:

T = (µL + α)(µA + ρ)

ακ1

(2.4)
T L = λακ1 − µT(µL + α)(µA + ρ)

κα(µL + α)

T A = λακ1 − µT(µL + α)(µA + ρ)

κ(µL + α)(µA + ρ)

T 2
M − −(β − µM)TMmax

β
T M − ρT ATMmax

β
= 0

Following Stilianakis and Seydel[14], all T-cell
subpopulations at steady state must have non-neg
values. Ifβ − µM > 0, which means that the prolife
ation rate of abnormal cells is higher than their de
rate, disease may ensue. Ifβ −µM < 0, further behav-
ior of the system depends on the basic reproduc
number:

(2.5)R0 = ακ1T0

(µL + α)(µA + ρ)

where T0 equalsT . If we assume ATL cells pro
liferate at an uncontrollable rate, then(T ,0,0,0) =
( λ
µT

,0,0,0) is an unstable saddle point. If they do n
(2.5)determines whether infection will proceed to the
next steady state or not. IfR0 � 1, the infection-free
equilibrium is the only equilibrium and it is stable.
R0 > 1, E0 becomes unstable andE exists.

To discuss the local stability of the positive infect
steady statesE for R0 > 1, we consider the linearize
system of(2.1)atE. The Jacobian matrix atE is given
by:

A =



−(µT + κT A ) 0 −κT 0
κ1T A ) −(α + µL) κ1T 0

0 α −µA − ρ 0

0 0 ρ β(1− 2
T M

TMmax
) − µM




Denote:

(2.6)M ′ = β

(
1− 2

TM

TMmax

)
− µM

Then the eigenvalues ofA areM ′ (always negative
sinceT M is higher than the carrying capacityTMmax =
(β−µM)

β
, when infection is chronic) and the roots of t

characteristic equation of the linearized system:

(2.7)σ 3 + a1σ
2 + (a2 + a4)σ + (a3 + a5) = 0

where

a1 = κ2T A + κµL + κρ + κµT + ακ + κµA

a2 = κ2T AµL + κ2T Aα + µTκµL + κ2T AµA

+ κ2T Aρ + κµLµA + µTκα + µTκµA + κµLρ

+ καµA + καρ + µTκρ

a3 = µTκαρ + κ2T Aαρ + κ2T AαµA + µTκµLµA

+ µTκµLρ + µTκαµA + κ2T A(µLρ + µLµA)

a4 = −κ1αρ − κ1µLρ − κ1αµA − κ1µLµA

a5 = −(µTκ1αρ + µTκ1µLµA + µTκ1µLρ

+ µTκ1αµA)

We should point out that writing the coefficients
Eq. (2.7) as a2 + a4 and a3 + a5 is for the sake of
convenience and comparison, since the characte
equation(3.3) of the corresponding delay equation
Section3 has all fiveai ’s as coefficients.

By the Routh–Hurwitz criterion, it follows that a
eigenvalues of Eq.(2.7)have negative real parts if an
only if

(2.8)
a1 > 0, a3 + a5 > 0

a1(a2 + a4) − (a3 + a5) > 0

Proposition 1. The infected steady stateE is asymp-
totically stable ifR0 > 1 and the inequalities in(2.8)
are satisfied. This occurs if(a)κ > κ1, or (b) if κ = κ1.

For the parameter values given inTable 1, R0 =
1.25 if κ1 = 0.1. The contact and infectivity rates,κ

andκ1, are estimated by Stilianakis and Seydel[14]
on the basis of parameter estimates known from
HIV infection process. Adjustments are made to ta
into account the particulars of HTLV-I viral trans
mission. We first takeκ = κ1 = 0.1. Then all con-
ditions in (2.8) are satisfied and the infected stea
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Table 1
Variables and parameters for contagion

Parameters and variables Values

Dependent variables

T uninfected CD4+ T-cell population size 1000/mm3

TL latently infected CD4+ T-cell density 250/mm3

TA actively infected CD4+ T-cell density 1.5/mm3

TM leukemic CD4+ T-cell density 0

Parameters and constants

µT natural death rate of CD4+ T-cells 0.6 mm3/day
µL blanket death rate of latently infected CD4+ T-cells 0.006/day
µA blanket death rate of actively infected cells 0.05/day
µM death rate of leukemic cells 0.0005/day
κ1 rate uninfected CD4+ T-cells become latently infected varies
κ rate infected cells are contacted varies
β growth rate of leukemic CD4+ T-cell population 0.0003/day
α rate latently infected cells become actively infected 0.0004/day
ρ rate actively infected cells become leukemic 0.00004/day
TMmax maximal population level of leukemic CD4+ T-cells 2200/mm3

λ source term for uninfected CD4+ T-cells 6/day

Derived quantities

T0 CD4+ T-cell population for HTLV-I-negative persons 1000/mm3
es

-
of

es

in-
ly

s-
The
Fig. 1. Solutions of system(2.1)converge to the steady-state valu
whenκ1 = κ = 0.1; all other parameters are given inTable 1.

stateE = (800,187.5,1.5,1.3) is asymptotically sta
ble. Numerical simulations show that trajectories
system(2.1)approach to the steady state (seeFig. 1).
When κ1 = 0.1, κ = 0.5, the steady state becom
E = (800,37.38,0.3,0.6), which is still asymptoti-
cally stable. Varyingκ andκ1 (with κ1 < κ) will al-
ter the numbers of uninfected CD4+ T-cells, infected
cells, and leukemic cells. For example, fixκ = 0.5
and alterκ1 from 0.1 to 0.3, numerical simulations
show that the number of healthy CD4+ T-cells de-
creases dramatically, while the numbers of latently
fected cells and leukemiccells increase substantial
(seeFig. 2).

3. The delay model

In this section, we introduce a time delay into sy
tem(2.1)to represent the contagion eclipse phase.
model is given as follows:

dT

dt
= λ − µTT (t) − κTAT

(3.1)

dTL

dt
= κ1T (t − τ )TA(t − τ ) − (µL + α)TL

dTA

dt
= αTL − (µA + ρ)TA

dTM

dt
= ρTA + βTM

(
1− TM

T

)
− µMTM
Mmax
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Fig. 2. Whenκ = 0.5, κ1 changes from 0.1 to 0.3, all other para-
meters being given inTable 1, the number of healthy CD4+ T-cells
decreases while the numbers of latently infected cells and leuk
cells increase.

under the initial values

T (θ) = T0, TL(0) = 0

TA(0) = 0, TM(0) = 0, θ ∈ [−τ,0]
All parameters are the same as in system(2.1), except
that the positive constantτ represents the length of th
delay, in days.

We find, again, an uninfected steady stateE0 =
(T0,0,0,0) and an infected steady stateE = (T ,T L,

T A, T M), whereT ,T L, T A andT M are the same as i
Section2, given by(2.4). Since the uninfected stead
stateE0 is unstable whenτ = 0 andR0 > 1, incorpo-
ration of a delay will not change the instability. Thu
E0 is unstable ifR0 > 1, which is also the feasibility
condition for the infected steady stateE.

To study the stability of the steady statesE, define

x(t) = T (t) − T , y(t) = TL(t) − T L

z(t) = TA(t) − T A, w(t) = TM(t) − T M
Then the linearized system of(3.1)atE is given by

dx

dt
= −(µT + κT A)x(t) − κT z(t)

(3.2)

dy

dt
= κ1T Ax(t − τ ) − (µL + α)y(t) + κ1T z(t − τ )

dz

dt
= αy(t) − (µA + ρ)z(t)

dw

dt
= ρz(t) +

(
β − 2β

T M

TMmax

− µM

)
w(t)

We then express system(3.2) in matrix form as fol-
lows:

d

dt




x(t)

y(t)

z(t)

w(t)


 = A1




x(t)

y(t)

z(t)

w(t)


 + A2




x(t − τ )

y(t − τ )

z(t − τ )

w(t − τ )




whereA1 andA2 are 4× 4 matrices given by:

A1 =




−µT − κT A 0 −κT 0
0 −µL − α 0 0
0 α −(µA + ρ) 0
0 0 ρ M ′




A2 =




0 0 0 0
κ1T A 0 κ1T 0

0 0 0 0
0 0 0 0




whereM ′ is defined by(2.6). The characteristic equa
tion of system(3.2)is given by:

	(λ) = |λI − A1 − e−λτA2| = 0

that is,M ′ and the solution set to:

(3.3)

λ3 + a1 λ2 + a2 λ + a3 e−λτ + a4λe−λτ + a5 = 0

are the eigenvalues, whereai (i = 1, . . . ,5) are de-
fined in(2.7).

Following the arguments of Culshaw and Ru
[17], we have the following proposition.

Proposition 2. Suppose that

(i) a1 > 0, a3 + a5 > 0, a1(a2 + a4) − (a3 + a5) > 0,
(ii ) a2

5 − a2
3 � 0, a2

2 − 2a1a5 − a2
4 > 0.

Then the infected steady stateE of the delay mode
(3.1) is asymptotically stable for allτ � 0.
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Fig. 3. Whenκ1 = 0.1, κ = 0.5, τ = 1, all other parameters bein
given inTable 1, the steady stateE = (800,37.38,0.3,0.6) of sys-
tem(3.1) is asymptotically stable.

Notice that, for the parameter values given inTa-
ble 1, all conditions inProposition 2are satisfied
Thus, the infected steady stateE is asymptotically
stable for allτ � 0. Takeκ = 0.5, κ1 = 0.1, τ = 1,
and other parameter values given inTable 1, nu-
merical simulations show that the infected stea
stateE = (800,37.38,0.3,0.6) is asymptotically sta
ble (seeFig. 3). We can see that the time delay do
not induce instability and oscillations in system(3.1)
for the parameter values given inTable 1.

4. Discussion

Incorporating a time delay into the HTLV-I infec
tion model reproduces the mathematics of the inc
poration of delay into analogous HIV models, but b
cause contagion is achieved cell-to-cell, there are vary
ing biological repercussions.

We first modified the ODE model proposed by S
ianakis and Seydel[14] to distinguish between conta
and infectivity rates. As they did with their mode
we obtained a restriction on the number of activ
infected cells in order for infection to be sustaine
Under this restriction, the system has a positive e
librium, the infected steady state. By using stabi
analysis we obtained sufficient conditions on the pa
meters for the stability of the steady state. For para
ter values reported in[14] (κ = κ1), the stability con-
ditions are all satisfied and numerical simulations c
firmed the analysis. Confirming the biological int
ition, when infectivity rate is less than the contact ra
the endemic equilibria of infected cells are achieve
an equal or lower level than when both are equal.

We then introduced a time delay into the mod
which describes the time between infection of a CD+
T-cells and the emission of proviral particles by a
tively infected cells. The same restriction on the nu
ber of actively infected cells is required. By analy
ing the transcendental equation, we used the resul
Culshaw and Ruan[17] to derive stability conditions
for the infected steady statein terms of parameters an
independent of delay. Using the parameter value
Table 1, we carried some numerical simulations whi
confirmed the analysis. We observed that the time
lay does not induce instability and oscillations in t
model.

Since the majority (about 95%) of HTLV-I infecte
individuals develop no associated disease, the cu
view of HTLV-I is of a rather inactive infection. Th
virus is thought to be transcriptionally silent, replic
ing almost entirely by mitosis of the host cell. O
study confirms that HTLV-I is largely latent. The r
sults on asymptotic stability of the infected stea
state might be helpful in understanding the chronic
fection of the virus.
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