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Abstract

In this paper, we develop some basic theory for age-structured population models with nonlocal diffu-
sion and nonlocal boundary conditions. We first apply the theory of integrated semigroups and non-densely 
defined operators to a linear equation, study the spectrum, and analyze the asymptotic behavior via asyn-
chronous exponential growth. Then we consider a semilinear equation with nonlocal diffusion and nonlocal 
boundary condition, use the method of characteristic lines to find the resolvent of the infinitesimal generator 
and the variation of constant formula, apply Krasnoselskii’s fixed point theorem to obtain the existence of 
nontrivial steady states, and establish the stability of steady states. Finally we generalize these results to a 
nonlinear equation with nonlocal diffusion and nonlocal boundary condition.
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1. Introduction

Spatial dispersal of individuals is crucial in determining the nonlinear dynamics of popula-
tion models. However, individuals need to be mature enough to disperse. So the age structure 
of the population also plays an important role in modeling population dynamics. Consequently, 
age-structured population models with diffusion arise very naturally in studying biological, epi-
demiological and medical problems. Since the pioneer work of Gurtin [19], Gurtin and MacCamy 
[20], and MacCamy [35], age-structured population models with Laplace diffusion have been ex-
tensively studied in the literature, we refer to Chan and Guo [8], Di Blasio [16], Guo and Chan 
[18], Hastings [21], Huyer [24], Langlais [32], Walker [40,42], Webb [43], and so on. Detailed 
results and references can be found in a survey by Webb [46].

On the other hand, there is an increasing interest in nonlocal diffusion problems modeled by 
convolution diffusion operators such as

L0v := d

∫
�

J (x − y)
[
v(y) − v(x)

]
dy,

where v belongs to a proper Banach space and � is a spatial region, see Bates et al. [3], Bates and 
Zhao [4], Cao et al. [7], Cortazar et al. [9], Coville [10], Coville et al. [11], García-Molián and 
Rossi [17], Hutson et al. [23], Kao et al. [30], Rawal and Shen [36], Yang et al. [47], Zhao and 
Ruan [48], and the references cited therein. We refer to the surveys of Bates [2] and Ruan [37] for 
applications of nonlocal diffusion equations in material science and epidemiology, respectively, 
and the monograph of Andreu-Vaillo et al. [1] for fundamental theories and results on nonlocal 
diffusion problems. As pointed out in Bates et al. [2], J (x −y) is viewed as the probability distri-
bution of jumping from location y to location x, namely the convolution 

∫
�

J (x −y)u(t, y)dy is 
the rate at which individuals are arriving to position x from other places and 

∫
�

J (y−x)u(t, x)dy

is the rate at which they are leaving location x to travel to other sites.
Recently, we (Kang et al. [29]) proposed a linear age-structured population model with non-

local diffusion, studied the semigroup of linear operators associated to the model, and used the 
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spectral properties of its infinitesimal generator to determine the stability of the zero steady state. 
In this paper we consider the following general nonlinear age-structured population model with 
nonlocal diffusion and nonlocal boundary condition:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut (t, a, x) + ua(t, a, x) = d(J ∗ u − u)(t, a, x) + G(u(t, ·, ·))(a, x),

t > 0,0 < a < a+, x ∈ �,

u(t,0, x) = F(u(t, ·, ·))(x), t > 0, x ∈ �,

u(t, a, x) = 0, t > 0,0 < a < a+, x /∈ �,

u(0, a, x) = φ(a, x), 0 < a < a+, x ∈ �,

(1.1)

where u(t, a, x) denotes the density of a population at time t with age a at position x ∈ �, where 
a+ denotes the maximum age which could be finite or infinite, � ⊂ RN is a bounded region 
and N ≥ 1 is an integer, φ ∈ E := L1((0, a+), Z) is an initial data and Z is an ordered Banach 
space that represents the distribution of a population with respect to a space structure in �. For 
the sake of deriving estimates and using duality, we assume that Z = L2(�) in this paper and 
point out that all results can be established for Z = Lp(�)(p ≥ 1) with necessary modifications. 
Moreover, assume that G : E → E and F : E → Z are uniformly bounded and locally Lipschitz 
continuous (which are reasonable from the point of view of population dynamics). The diffusion 
kernel J is a C0, compactly supported, nonnegative function with unit integral representing the 
spatial dispersal; i.e.,

∫
RN

J (x)dx = 1, J (x) ≥ 0, ∀x ∈RN.

Define

Lu := (J ∗ u − u) (t, a, x) =
∫
RN

J (x − y)u(t, a, y)dy − u(t, a, x)

with the Dirichlet boundary condition. The convolution 
∫
RN J (x − y)u(t, a, y)dy represents the 

rate at which individuals with age a are arriving at position x from other places at time t and ∫
RN J (y − x)u(t, a, x)dy is the rate at which they are leaving location x to travel to other sites. 

For the sake of simplicity, we assume that the diffusion rate d = 1.
To the best of our knowledge, the nonlinear age-structured model (1.1) with nonlocal diffu-

sion and nonlocal boundary conditions has not been studied in any literature. One of the technical 
challenges in analyzing such equations is that the semigroup generated by the associated operator 
is not compact for any t ≥ 0 (Andreu-Vaillo et al. [1]). In this paper, we develop some basic the-
ory for the nonlinear age-structured population model (1.1) with nonlocal diffusion and nonlocal 
boundary conditions. We first apply the theory of integrated semigroups and non-densely defined 
operators to the linear equations, study the spectrum, and analyze the asymptotic behavior via 
asynchronous exponential growth. Then we consider a semilinear equation with nonlocal diffu-
sion and nonlocal boundary condition, use the method of characteristic lines to find the resolvent 
of the infinitesimal generator and the variation of constant formula, apply Krasnoselskii’s fixed 
point theorem to obtain the existence of a steady state, and establish the stability of the steady 
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states. Finally we generalize these results to a nonlinear equation with nonlocal diffusion and 
nonlocal boundary condition.

We would like to mention that some results we obtain in this paper are parallel to those for 
age-structured models, including spectrum analysis (with asynchronous exponential growth) for 
linear models and existence and stability of nontrivial steady states for nonlinear models, see the 
classical book of Webb [44]. Some results are similar to those for age-structured models with 
Laplace diffusion, see for instance Guo and Chan [8,18], Delgado et al. [14,15] and Walker [40–
42]. Our contribution indeed is to extend those results for either age-structured models or age-
structured models with Laplace diffusion to age-structured model (1.1) with nonlocal diffusion. 
We overcame the lack of compactness of the evolution family generated by the nonlocal diffusion 
operator by assuming equicontinuity of the integral boundary conditions.

2. Preliminaries

In this section we provide some preliminary results, including the integrated semigroup set-
ting of the problem, existence of integral solutions, fixed point theorems, and the principle of 
linearized stability.

2.1. Integrated semigroup setting

First we recall some notations and results on integrated semigroup theory and non-densely 
defined operators from Thieme [39] and Magal and Ruan [33]. Let A be the sum of a differential 
operator and the nonlocal dispersal operator L acting on E defined by

Aψ := −ψa +Lψ, D(A) := W 1,1
(
(0, a+),Z

)
.

Then A is densely defined in E. Now we introduce an extended state space X by

X := Z × E

and its closed subspace X0 by X0 := {0} × E. Define an operator A acting on X by

A
(

0
ψ

)
:=

(
−ψ(0)

−ψa +Lψ

)
for

(
0
ψ

)
∈ D(A) := {0} × D(A).

Note that ψ(0) is well-defined for any ψ ∈ W 1,1((0, a+), Z) since the Sobolev embedding 
W 1,1((0, a+), Z) ↪→ C([0, a+), Z) holds and we write ψ(a)(x) = ψ(a, x). Throughout the pa-
per, we will hide the variable x by writing ψ(a).

Let X0+ := {0} × E+ be the positive cone of X0. Define a bounded operator B : X0+ → X by

B
(

0
ψ

)
=

(
F(ψ)

G(ψ)

)
for

(
0
ψ

)
∈ X0+.

Using the above notations, we rewrite system (1.1) as an abstract semilinear Cauchy problem 
with non-densely defined operator on X:
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⎧⎪⎪⎨
⎪⎪⎩

dU(t)
dt

= AU(t) +BU(t),

U(0) =
(

0

φ

)
∈ X0+ ,

(2.1)

where

U(t) =
(

0
u(t)

)
.

Following Busenberg et al. [6], we consider the following equivalent system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dU(t)
dt

=
(
A− 1

ε
I
)

U(t) + 1
ε
(I + εB)U(t)

U(0) =
(

0

φ

)
∈ X0+ ,

(2.2)

where ε is chosen so small that the operator I + εB maps X0+ into the positive cone of X, 
denoted by X+. Since parameter functions G and F are assumed to be uniformly bounded, it 
can be shown that this choice of ε is possible for our system (2.1). For the sake of simplicity we 
introduce new notations

A∗ = A− 1

ε
I, B∗ = 1

ε
(I + εB).

Since the operator A∗ is not densely defined, we cannot apply the classical Hille-Yosida theory 
to solve the ODE (2.2) in the Banach space X. However, we can show that the operator A∗ is a 
Hille-Yosida operator.

Lemma 2.1. A∗ is a closed linear operator with non-dense domain and the following holds: 
D(A∗) = X0, A∗ satisfies the Hille-Yosida estimate such that for all λ > −ζ0 − 1

ε
,

∥∥∥(λI −A∗)−1
∥∥∥

X
≤ 2

λ + ζ0 + 1
ε

, (2.3)

where ζ0 is the principle eigenvalue of −L under the Dirichlet boundary condition, and (λI −
A∗)−1(X+) ⊂ X0+ for λ > 0.

Before proving the above lemma, we recall a result related to the principal eigenvalue of −L
under the Dirichlet boundary condition (see Coville et al. [11], Hutson et al. [23], García-Molián 
and Rossi [17]).

Theorem 2.2 (García-Melián and Rossi [17]). The operator −L under Dirichlet boundary con-
dition admits an eigenvalue ζ0 associated with a positive eigenfunction ϕ0 ∈ L2(�). Moreover, it 
is simple and unique and satisfies 0 < ζ0 < 1. Furthermore, ζ0 can be variationally characterized 
as
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ζ0 = 1 −

⎛
⎜⎜⎝ sup

u∈L2(�),‖u‖
L2(�)

=1

∫
�

⎛
⎜⎝∫

�

J (x − y)u(y)dy

⎞
⎟⎠

2

dx

⎞
⎟⎟⎠

1/2

. (2.4)

Now we give a proof of Lemma 2.1.

Proof. Consider the resolvent of operator A∗, i.e.,

(λI −A∗)
(

0
ϕ

)
=

(
η

φ

)
∈ X.

By the definition of A∗,

(λI −A∗)
(

0
ϕ

)
=

⎛
⎝ ϕ(0)

∂ϕ
∂a

−Lϕ +
(
λ + 1

ε

)
ϕ

⎞
⎠ ,

we have

∂ϕ

∂a
= Lϕ − (λ + 1/ε)ϕ + φ(a), (2.5)

ϕ(0) = η. (2.6)

Solving problem (2.5)-(2.6), we obtain that

ϕ(a) = e−(λ+1/ε)aeLaη +
a∫

0

e−(λ+1/ε)(a−σ)eL(a−σ)φ(σ )dσ, (2.7)

where {eLa}a≥0 is the C0-semigroup generated by L. Thus,

(λI −A∗)−1

(
η

φ

)
=

(
0
ϕ

)

and

∥∥∥∥∥∥(λI −A∗)−1

(
η

φ

)∥∥∥∥∥∥
X

=∥∥ϕ
∥∥

E

≤ 2

a+∫
e−(λ+1/ε)a

⎡
⎢⎣∫ (

eLaη
)2

dx

⎤
⎥⎦

1
2

da
0 �
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+2

a+∫
0

⎡
⎢⎢⎣
∫
�

⎛
⎜⎝

a∫
0

e−(λ+1/ε)(a−σ)eL(a−σ)φ(σ )dσ

⎞
⎟⎠

2

dx

⎤
⎥⎥⎦

1
2

da

≤ 2

a+∫
0

e−(λ+1/ε)ae−ζ0ada
∥∥η

∥∥
Z

+2

a+∫
0

a∫
0

e−(λ+1/ε)(a−σ)e−ζ0(a−σ)

⎛
⎜⎝∫

�

|φ(σ)|2dx

⎞
⎟⎠

1
2

dσda

≤ 2

λ + ζ0 + 1/ε

∥∥η
∥∥

Z
+ 2

a+∫
0

a+∫
0

e−(λ+ζ0+1/ε)(a−σ)
∥∥φ(σ)

∥∥
Z

dσda

≤ 2

λ + ζ0 + 1/ε

∥∥∥∥∥∥
(

η

φ

)∥∥∥∥∥∥
X

, (2.8)

in which we used Minkowski inequality and an estimate of the semigroup 
∥∥∥eLa

∥∥∥
Z

≤ e−ζ0a, a ≥ 0, 

where ζ0 ∈ (0, 1) is the principle eigenvalue of −L with Dirichlet boundary condition. It follows 
that ∥∥∥(λI −A∗)−1

∥∥∥
X

≤ 2

λ + ζ0 + 1/ε

for λ > −ζ0 − 1/ε. Hence A∗ is a Hille-Yosida operator with M = 2 and ω = −ζ0 − 1/ε < 0. 

Moreover, if 

(
η

φ

)
∈ X+, we have 

(
0
ϕ

)
∈ X0+, which implies (λI − A∗)−1(X+) ⊂ X0+ for 

λ > 0. This completes the proof of Lemma 2.1. �
2.2. Integral solutions

Definition 2.3. A function u(t) ∈ C1(0, T ; X) ∪ D(A∗) is called a classical solution of the 
Cauchy problem (2.2) if it is satisfied for all t ∈ [0, T ). u(t) ∈ C(0, T ; X0) is called an inte-
gral solution of (2.2) (Da Prato and Sinestrari [13] and Benilan et al. [5]) if

t∫
0

u(s)ds ∈ D(A∗) for all t ∈ [0, T )

and

u(t) = u(0) +A∗
t∫
u(s)ds +

t∫
B∗u(s)ds. (2.9)
0 0
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It can be shown that an integral solution becomes a classical solution if u(0) ∈ D(A∗),
A∗u(0) + B∗u(0) ∈ D(A∗) (Thieme [39]). Thus, in what follows we focus on integral solutions 
of (2.2).

Define the part A0 of A∗ in X0 as A0 = A∗ on D(A0) =
⎧⎨
⎩
(

0
ψ

)
∈ D(A∗) : A∗

(
0
ψ

)
∈ X0

⎫⎬
⎭. 

Then the following result holds (Thieme [39] and Magal and Ruan [33]):

Lemma 2.4. For the part A0, D(A0) = X0 holds and A0 generates a strongly continuous semi-
group {S0(t)}t≥0 on X0 and S0(X0+) ⊂ X0+ .

Using the semigroup {S0(t)}t≥0, we can formulate an extended variation of constants formula 
for (2.2) (see Thieme [39] and Magal and Ruan [33]).

Proposition 2.5. A positive function u(t) ∈ C(0, T ; X0) is an integral solution for (2.2) if and 
only if u(t) is the positive continuous solution of the variation of constants formula on X0:

u(t) = S0(t)u(0) + lim
λ→∞

t∫
0

S0(t − s)λ(λI −A∗)−1B∗u(s)ds. (2.10)

To obtain an integral solution of (2.2), Proposition 2.5 implies that it is sufficient to solve the 
extended variation of constants formula (2.10). If B∗ is a locally Lipschitz continuous bounded 
perturbation, modifying the argument of Inaba [26] on the classical variation of constants for-
mula accordingly and applying the contraction mapping principle, we can show the existence of 
positive local solutions for the extended variation of constants formula (2.10). Since the norm of 
the local solution grows at most exponentially, a local solution can be extended to a global solu-
tion. Hence, we can conclude that the initial boundary value problem (2.2) has a unique global 
positive integral solution.

2.3. Fixed point theorems

In this subsection, we give the fixed point theorem from Inaba [25] (see also Inaba [27, Propo-
sition 7.7]).

Theorem 2.6 (Inaba [25]). Let E be a real Banach space and E+ be its positive cone. Let � be 
a positive operator from E+ to itself and T := �′[0] be its Fréchet derivative at 0. If

(i) �(0) = 0;
(ii) � is compact and bounded;

(iii) T has a positive eigenvector v0 ∈ E+ \ {0} associated with an eigenvalue λ0 > 1;
(iv) T has no eigenvector in E+ associated with the eigenvalue 1,

then � has at least one nontrivial fixed point in E+.

In the case where T is a majorant of � (that is, T is a linear operator such that �(φ) ≤ T φ

for any φ ∈ E+), the following theorem also holds (see Inaba [27, Proposition 7.8]).
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Theorem 2.7 (Inaba [27]). Let E be a real Banach space and E+ be its positive cone. Let � be 
a positive operator from E+ to itself and T be its compact and nonsupporting majorant. Then, 
� has no trivial fixed point in E+ provided r(T ) ≤ 1.

2.4. Principle of linearized stability

Let {S(t)}t≥0 be a semigroup on X0 induced by setting S(t)u(0) = u(t), where u(t) is an 
integral solution of (2.2). Then it follows that {S(t)}t≥0 is a C0-semigroup generated by the part 
A∗ + B∗ in X0 = D(A∗). Let ω0(A) and ω1(A) denote the growth bound and essential growth 
bound of the semigroup generated by A, respectively. The principle of linearized stability for 
the evolution system (2.2) with non-densely defined generator can be stated as follows (Thieme 
[39]).

Proposition 2.8. Let B∗ be continuously Fréchet differentiable in X0, let u∗ be a steady state, 
and let B′∗[u∗] denote the Fréchet derivative at u∗. If ω0(A∗ + B′∗[u∗]) < 0, then for any ω >

ω0(A∗ +B′∗[u∗]), there exist numbers M > 0 and δ > 0 such that

∥∥S(t)u − u∗∥∥ ≤ Meωt
∥∥u − u∗∥∥

for all u ∈ X0 with 
∥∥u − u∗∥∥ ≤ δ, t ≥ 0.

Corollary 2.9. Suppose that ω1(A∗ +B′∗[u∗]) < 0. If all eigenvalues of A∗ +B′∗[u∗] have strictly 
negative real part, then there exist ω < 0, δ > 0, M > 0 such that

∥∥S(t)u − u∗∥∥ ≤ Meωt
∥∥u − u∗∥∥

for all u ∈ X0 with 
∥∥u − u∗∥∥ ≤ δ, t ≥ 0. If at least one eigenvalue of A∗ + B′∗[u∗] has strictly 

positive real part, then u∗ is an unstable steady state

3. Linear equations

In this section, we apply the above techniques to a linear version of problem (1.1) with linear 
mortality and nonlocal boundary condition; namely,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut (t, a, x) + ua(t, a, x) = d(J ∗ u − u)(t, a, x) − μ(a, x)u(t, a, x),

t > 0,0 < a < a+, x ∈ �,

u(t,0, x) = ∫ a+
0

∫
�

β(a, x − y)u(t, a, y)dyda, t > 0, x ∈ �,

u(t, a, x) = 0, t > 0,0 < a < a+, x /∈ �,

u(0, a, x) = φ(a, x), 0 < a < a+, x ∈ �,

(3.1)

where μ denotes the death rate and β represents the birth rate. � ⊂ RN is bounded. In this 
section, we assume that a+ < ∞ in the proofs of all results. But a+ could be infinity and all 
proofs throughout this section hold with minor modifications when a+ = ∞, see Remark 3.9.
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3.1. Existence of solutions

Assumption 3.1. Assume that

(i) β ∈ L1((0, a+), Z) is bounded a.e. with respect to a and x, nonnegative and

lim‖h‖→0

∫
�

|β(a, x − y + h) − β(a, x − y)|2dx = 0

uniformly in a ∈ (0, a+) and y ∈ �;
(ii) There exists a positive function β ∈ L1(0, a+) such that

β(a, x) ≥ β(a) > 0 for almost all (a, x) ∈ (0, a+) × �;

(iii) μ is bounded a.e. with respect to a and x, measurable, positive and

a∫
0

μ(ρ)dρ < ∞ for a < a+ and

a+∫
0

μ(ρ)dρ = ∞,

in which μ(a) = infx∈� μ(a, x) and μ(a) = supx∈� μ(a, x).

We first give a lemma and its proof is similar to that of Lemma 1 in Guo and Chan [18]
(see also Kang et al. [29]). In the following, we will hide the spatial variable x in β and μ for 
consistence. Note that μ(a)(x) = μ(a, x) and β(a)(x) = β(a, x).

Lemma 3.2. For any 0 ≤ a0 < a+, there exists a unique mild solution u(a), 0 ≤ τ ≤ a ≤ a+ −a0, 
to the evolution equation on E for any initial function φ ∈ Z:

{
∂u(a)
∂a

= [−μ(a0 + a) +L]u(a)

u(τ) = φ.
(3.2)

Define the solution operator of the initial value problem (3.2) by

F(a0, τ, a)φ = u(a), ∀φ ∈ Z. (3.3)

Then {F(a0, τ, a)}0≤τ≤a≤a+−a0 is a family of uniformly linear bounded positive operators on E
and is strongly continuous in τ and a. Furthermore,

e− ∫ a
τ μ(a0+ρ)dρeL(a−τ) ≤ F(a0, τ, a) ≤ e− ∫ a

τ μ(a0+ρ)dρeL(a−τ), (3.4)

where μ(a) := infx∈� μ(a, x) and μ(a) := supx∈� μ(a, x).
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3.2. Spectral analysis

Define

X1

(
0
φ

)
=

(
0

−μφ

)
and X2

(
0
φ

)
=

(
F(φ)

0

)
.

Then B = X1 +X2. It can be shown that X2 : X → X is a compact operator under the Assump-
tion 3.1-(i) by Kolmogorov compactness theorem (see Lemma 3.3 in the following). Moreover, 
A +X1 generates a nilpotent semigroup F1(t) in X which is eventually compact via integrating 
along characteristics. Then it follows that its perturbed semigroup by the compact perturbation 
X2 is still eventually compact. Hence, we have ω1(A +B) = −∞. From Corollary 2.9, we only 
need to evaluate the eigenvalues of A +B.

Solving the eigenvalue problem (A +B) 

(
0
φ

)
= λ 

(
0
φ

)
, we obtain

⎧⎨
⎩

∂φ(a)
∂a

= −(λ + μ(a))φ(a) +Lφ(a),

φ(0) = ∫ a+
0

∫
�

β(a, · − y)φ(a)(y)dyda,
(3.5)

which has a solution by letting F(0, τ, a) =F(τ, a):

φ(a) = e−λaF(0, a)φ(0).

Define an operator Gλ : Z → Z for λ ∈ R by

Gλφ =
a+∫
0

∫
�

β(a, · − y)e−λa
(
F(0, a)φ

)
(y)dyda, ∀φ ∈ Z. (3.6)

Let B(E) be the set of bounded linear operators from E to E. T ∈ B(E) is said to be positive
if T (E+) ⊂ E+. T ∈ B(E) is said to be strongly positive if 〈f, T ψ〉 > 0 for every pair ψ ∈
E+ \ {0}, f ∈ E∗+ \ {0}. For T , S ∈ B(E), we say T ≥ S if (T − S)(E+) ⊂ E+. A positive 
operator T ∈ B(E) is said to be nonsupporting if for every pair ψ ∈ E+ \ {0} and f ∈ E∗+ \ {0}, 
there exists a positive integer p = p(ψ, f ) such that 〈f, T nψ〉 > 0 for all n ≥ p. r(T ) denotes 
the spectral radius of T ∈ B(E), σ(T ) denotes the spectrum of T , and σP (T ) denotes the point 
spectrum of T .

Lemma 3.3. Under Assumption 3.1, the operator Gλ is compact and nonsupporting.

Proof. We can see by Assumption 3.1-(i) that for φ ∈ K which is a uniformly bounded subset in 
Z,

∥∥Gλφ(· + h) − Gλ(φ)(·)∥∥

Z
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≤

⎡
⎢⎢⎣
∫
�

⎛
⎜⎝

a+∫
0

∫
�

∣∣β(a, x + h − y) − β(x − y)
∣∣ e−λa

(
F(0, a)φ

)
(y)dyda

⎞
⎟⎠

2

dx

⎤
⎥⎥⎦

1
2

≤
a+∫
0

∫
�

⎡
⎢⎣∫

�

∣∣β(a, x + h − y) − β(a, x − y)
∣∣2 dx

⎤
⎥⎦

1
2

e−λa
(
F(0, a)φ

)
(y)dyda

→ 0 as h → 0, (3.7)

where we used Minkowski inequality. Thus Gλ : Z → Z is compact by Kolmogorov compactness 
theorem. Now we would like to show that Gλ is nonsupporting.

Motivated by Inaba [26], for λ ∈ R, define a positive functional Oλ by

〈Oλ,ψ〉 :=
a+∫
0

∫
�

β(a)e−λa
(
F(0, a)ψ

)
(y)dyda,

where ψ ∈ L2+(�). From Assumption 3.1-(ii), Oλ is a strictly positive functional and we have

Gλψ ≥ 〈Oλ,ψ〉e, lim
λ→−∞〈Oλ, e〉 = +∞, (3.8)

where e ≡ 1 is a quasi-interior point in L2+(�). Moreover, for any integer n, we have

Gn+1
λ ψ ≥ 〈Oλ,ψ〉〈Oλ, e〉ne.

Then we obtain 〈O, Gn
λψ〉 > 0 for every pair ψ ∈ L2+ \ {0} and O ∈ (L2+)∗ \ {0}; that is, Gλ is a 

nonsupporting operator. �
Lemma 3.4. Let r(Gλ) denote the spectral radius of Gλ. Then the mapping λ → r(Gλ) : R →
(∞, 0) is continuous and strictly decreasing from +∞ to 0.

Proof. Since Gλ is compact, r(Gλ) is continuous with respect to λ. Also, since Gλ is nonsupport-
ing, by the theory of positive operators (Sawashima [38] and Marek [34]), we know that r(Gλ)

is a simple eigenvalue of Gλ corresponding to a positive eigenfunction �0 in Z (�0 is in fact a 
quasi-interior point of Z) and a simple pole of the resolvent of Gλ. Moreover, r(Gλ) is strictly 
decreasing with respect to λ. Furthermore, it is easy to see that lim

λ→∞ r(Gλ) = 0. For λ ∈R, let fλ

be a positive eigenfunctional corresponding to the eigenvalue r(Gλ) of the positive operator Gλ. 
Then we have

〈fλ,Gλe〉 = r(Gλ)〈fλ, e〉 ≥ 〈Oλ, e〉〈fλ, e〉.

Since fλ is strictly positive, we obtain r(Gλ) ≥ 〈Oλ, e〉. It follows from (3.8) that lim
λ→−∞ r(Gλ) =

+∞. �
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Next we give a lemma to relate the eigenvalues of Gλ to those of A + B inspired by Walker 
[42, Lemma 3.1].

Lemma 3.5. The following statements hold:

(i) Let λ ∈ C and let m ∈ N \ {0}. Then λ ∈ σp(A + B) with geometric multiplicity m if and 
only if 1 ∈ σp(Gλ) with geometric multiplicity m;

(ii) 1 ∈ ρ(Gλ) ⇒ λ ∈ ρ(A +B).

Proof. (i) Let λ ∈ C. Suppose that λ ∈ σp(A +B) has geometric multiplicity m so that there are 
m linearly independent elements

(
0
φ1

)
, ...,

(
0

φm

)
∈ D(A+B) with (λI −A−B)

(
0
φj

)
= 0 for j = 1, ...,m.

Then by solving the eigenvalue problem as above, we get

φj (a) = e−λaF(0, a)φj (0) with φj (0) = Gλφj (0).

Hence, φ1(0), ..., φm(0) are necessarily linearly independent eigenvectors of Gλ corresponding to 
the eigenvalue 1. Now suppose that 1 ∈ σp(Gλ) has geometric multiplicity m so that there are lin-
early independent ψ1, ..., ψm ∈ Z with Gλψj = ψj for j = 1, ..., m. Put φj = e−λaF(0, a)ψj ∈
E and note that for j = 1, ..., m,

∂aφj + λφj − (L− μ)φj = 0,

a+∫
0

∫
�

β(a, · − y)φj (a)(y)dyda = Gλψj = ψj = φj (0),

which is equivalent to

(A+B)

(
0
φj

)
= λ

(
0
φj

)
and

(
0
φj

)
∈ D(A+B).

Thus λ ∈ σp(A +B). If α1, ..., αm are any scalars, the unique solvability of the Cauchy problem

∂aφ + λφ − (L− μ)φ = 0, φ(0, x) =
m∑

j=1

αjψj

ensures that 

(
0
φ1

)
, ..., 

(
0

φm

)
are linearly independent. Hence, (i) is desired.
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(ii) Considering the resolvent equation (λI −A −B) 

(
0
φ

)
=

(
η

ψ

)
∈ X, we obtain

⎧⎨
⎩

∂φ(a)
∂a

= −(λ + μ(a))φ(a) +Lφ(a) + ψ(a),

φ(0) − ∫ a+
0

∫
�

β(a, · − y)φ(a)(y)dyda = η.
(3.9)

Solving the equation, one has

φ(a) = e−λaF(0, a)φ(0) +
a∫

0

e−λ(a−σ)F(σ, a)ψ(σ )dσ, (3.10)

and accordingly

φ(0) −
a+∫
0

∫
�

β(a, · − y)e−λa
(
F(0, a)φ(0)

)
(y)dyda

=
a+∫
0

∫
�

β(a, · − y)

a∫
0

e−λ(a−σ)
(
F(σ, a)ψ(σ )

)
(y)dσdyda + η,

which is equivalent to

(I − Gλ)φ(0) =
a+∫
0

∫
�

β(a, · − y)

a∫
0

e−λ(a−σ)
(
F(σ, a)ψ(σ )

)
(y)dσdyda + η. (3.11)

Thus if 1 ∈ ρ(Gλ), then

φ(0) = (I − Gλ)
−1

⎡
⎢⎣

a+∫
0

∫
�

β(a, · − y)

a∫
0

e−λ(a−σ)
(
F(σ, a)ψ(σ )

)
(y)dσdyda + η

⎤
⎥⎦ , (3.12)

which implies that

φ(a) = e−λaF(0, a)(I − Gλ)
−1

⎡
⎢⎣

a+∫
0

∫
�

β(a, · − y)

a∫
0

e−λ(a−σ)
(
F(σ, a)ψ(σ )

)
(y)dσdyda + η

⎤
⎥⎦

+
a∫

0

e−λ(a−σ)F(σ, a)ψ(σ )dσ. (3.13)

It follows that λ ∈ ρ(A +B) and the result is proved. �
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Lemma 3.6. Let λ0 ∈R be such that r(Gλ0) = 1. Then λ0 is a simple eigenvalue of A +B.

Proof. We prove the lemma using the idea of Walker [42]. According to Lemma 3.3, there is a 
quasi-interior eigenvector �0 ∈ Z of Gλ0 corresponding to the simple eigenvalue r(Gλ0) = 1. By 

Lemma 3.5, ker(A +B − λ0I ) is one-dimensional and spanned by φ :=
(

0
e−λ0aF(0, a)�0

)
. It 

thus remains to show that ker(A +B − λ0I )2 ⊂ ker(A +B − λ0I ). Since if it is true, λ0 will be 
a simple pole of the resolvent of A +B by definition and implies that λ0 is a simple eigenvalue 

of A +B. Let 

(
0
ψ

)
∈ ker(A +B − λ0I )2 and set

ϕ := (A+B − λ0I )

(
0
ψ

)
∈ ker(A+B − λ0I ).

Then ϕ = ξφ for some ξ ∈ R. Suppose ξ �= 0, without loss of generality assume that ξ > 0. 

Let τ > 0 be such that τ

(
0

�0

)
+

(
0

ψ(0)

)
∈ {0} × Z+ \

⎧⎨
⎩
(

0
0

)⎫⎬
⎭ and put q := τφ +

(
0
ψ

)
∈

D(A +B). Then (A +B − λ0I )q = ϕ and it follows that

q(a) = e−λ0aF(0, a)q(0) + ξ

a∫
0

e−λ0(a−σ)F(σ, a)e−λ0σF(0, σ )�0dσ

= e−λ0aF(0, a)q(0) + aξe−λ0aF(0, a)�0

and

q(0) =
a+∫
0

∫
�

β(a, · − y)q(a)(y)dyda.

Plugging the former into the second formula yields

(I − Gλ0)q(0) = ξ

a+∫
0

∫
�

β(a, · − y)ae−λ0a
(
F(0, a)�0

)
(y)dyda.

As q(0) and the right hand side are both positive and nonzero, we derive from Corollary 12.4 of 
Daners and Koch-Medina [12] a contradiction to r(Gλ0) = 1. Consequently, ξ = 0 and the claim 
follows because now ϕ = 0. �
3.3. Asymptotic behavior

Now we give the following theorem on the asymptotic behavior of the linear system.
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Theorem 3.7. Let {S(t)}t≥0 denote the C0-semigroup generated by the part of A + B in X0
and L(E) be the space of linear operators in E. For the linear age-structured model (3.1) with 
nonlocal diffusion and nonlocal boundary condition, there exists a unique real value λ0 (given 
by the real number λ0 such that r(Gλ0) = 1) such that the semigroup {S(t)}t≥0 is exponentially 
decreasing with decay rate λ0 < 0 or has asynchronous exponential growth with intrinsic growth 
constant λ0 > 0; that is, e−λ0tS(t) converges exponentially to some nonzero rank one projection 
in L(E) as t → ∞; namely,

e−λ0tS(t) → Pλ0 in L(E) as t → ∞.

Proof. First we show that λ0 = s(A +B) := sup{Reλ : λ ∈ σ(A +B)}, where s(A +B) denotes 
the spectral bound. Since λ0 ∈ R satisfies r(Gλ0) = 1, by Lemma 3.6 λ0 is a simple eigenvalue 
of A +B. Now let λ̂0 := s(A +B). Then λ̂0 ≥ λ0 and so λ̂0 > ω1(A +B) = −∞. Thus σ0(A +
B) = {λ̂0} by Webb [45, Proposition 2.5], which states that the peripheral spectrum σ0 of the 
generator of a strongly continuous positive semigroup in a Banach lattice consists exactly of the 
generator’s spectral bound provided that the latter is strictly greater than the essential growth 
bound. Then λ̂0 ∈ σ(A + B) and thus, by Lemma 3.5 and σp(Gλ) \ {0} = σ(Gλ) \ {0} since 
Gλ is compact, 1 ∈ σp(G

λ̂0
), which implies that 1 ≤ r(G

λ̂0
). However, due to λ̂0 ≥ λ0 we have 

r(G
λ̂0

) ≤ r(Gλ0) = 1, hence λ̂0 = λ0. Moreover, sup{Reλ : λ ∈ σe(A + B)} ≤ ω1(A + B) = −∞
implies that λ0 ∈ σp(A + B) \ σe(A + B). Thus λ0 is a simple pole of (λI − A − B)−1, where 
σe(A) represents the essential spectrum of A +B. Therefore, by Magal and Ruan [33, Theorem 
4.6.2], {S(t)}t≥0 has asynchronous exponential growth with intrinsic growth constant λ0. Now 
if R0 := r(G0) < 1, λ0 < 0, it follows that the zero steady state is globally exponentially stable; 
if R0 = 1, λ0 = 0, it follows that the solution u to (3.1) with φ ∈ E converges towards an steady 
state; if R0 > 1, λ0 > 0, it follows that the zero steady state is unstable and the solution u to (3.1)
with φ ∈ E is asymptotic to the stable age distribution eλ0tPλ0φ with λ0 > 0. �

Next we derive a formula for the projection Pλ0 : X0 → ker(A +B−λ0I ) inspired by Walker 
[42]. Observe that there is a quasi-interior element �0 ∈ Z such that

ker(I − Gλ0) = span{�0} and ker(A+B − λ0I ) = span

⎧⎨
⎩
(

0
e−λ0aF(0, a)�0

)⎫⎬
⎭ .

Let φ ∈ E be fixed and let c(φ) ∈R be such that

Pλ0φ =
(

0
c(φ)e−λ0aF(0, a)�0

)
.

Note that we only need to find the second component of Pλ0φ since the first one is always zero. 
Still denote the second component of Pλ0φ by Pλ0φ for convenience and recall that λ0 is a simple 
pole of the resolvent (A +B − λI)−1. Denote

Hλφ :=
a∫
e−λ(a−σ)F(σ, a)φ(σ )dσ.
0
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Then Hλφ is holomorphic in λ and it follows that from (3.13) and residue theorem that

Pλ0φ = lim
λ→λ0

(λ − λ0)e
−λ0aF(0, a)(I − Gλ)

−1Gλφ,

where

Gλφ =
a+∫
0

∫
�

β(a, · − y)

a∫
0

e−λ(a−σ)
(
F(σ, a)φ(σ )

)
(y)dσdyda.

Let w′ ∈ Z′ be a positive eigenfunctional of the dual operator G′
λ0

of Gλ0 corresponding to the 
eigenvalue r(Gλ0) = 1. Then for f ′ ∈ E′ defined by

〈f ′,ψ〉 := 〈w′,
a+∫
0

∫
�

β(a, · − y)ψ(a)(y)dyda〉, ψ ∈ E,

we have due to G′
λ0

w′ = w′ that

c(φ)〈w′,�0〉 = 〈f ′,Pλ0φ〉 = lim
λ→λ0

〈f ′, (λ − λ0)e
−λaF(0, a)(I − Gλ)

−1Gλφ〉

= lim
λ→λ0

〈w′, (λ − λ0)(I − (I − Gλ))(I − Gλ)
−1Gλφ〉

= lim
λ→λ0

〈w′, (λ − λ0)(I − Gλ)
−1Gλφ〉.

Write

Gλφ = d(Gλφ)�0 ⊕ (I − Gλ0)g(Gλφ). (3.14)

According to the decomposition Z = R · �0 ⊕ rg(I − Gλ0), it follows that

lim
λ→λ0

〈w′, (λ − λ0)(I − Gλ0)
−1Gλφ〉 = d(Gλ0φ) lim

λ→λ0
〈w′, (λ − λ0)(I − Gλ)

−1�0〉

due to the continuity of Gλ in λ. But it follows from (3.14) that

〈w′,Gλ0φ〉 = d(Gλ0φ)〈w′,�0〉
since G′

λ0
w′ = w′, whence d(Gλ0φ) = ξ 〈w′, Gλ0φ〉 with ξ−1 = 〈w′, �0〉. Similarly, decompos-

ing

Yλ := (λ − λ0)(I − Gλ)
−1�0,

we find

lim 〈w′, Yλ〉 =
(

lim d(Yλ)

)
〈w′,�0〉.
λ→λ0 λ→λ0
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Based on these observations, we derive

c(φ)〈w′,�0〉 = C0〈w′,Gλ0φ〉〈w′,�0〉

for some constant C0. Consequently,

Pλ0φ = C0〈w′,Gλ0φ〉e−λ0aF(0, a)�0.

Since Pλ0 is a projection, i.e. P 2
λ0

= Pλ0 , the constant C0 can be easily computed and we obtain
the following result.

Proposition 3.8. Under the assumptions of Theorem 3.7, the projection Pλ0 is given by

Pλ0φ = 〈w′,Gλ0φ〉
〈w′,

∫ a+
0

∫
�

aβ(a, · − y)e−λ0a
(
F(0, a)�0

)
(y)dyda〉

e−λ0aF(0, a)�0 (3.15)

for φ ∈ E, where

Gλ0φ =
a+∫
0

∫
�

β(a, · − y)

a∫
0

e−λ0(a−σ)
(
F(σ, a)φ(σ )

)
(y)dσdyda

and w′ ∈ Z′ is a positive eigenfunctional of the dual operator G′
λ0

of Gλ0 corresponding to the 
eigenvalue r(Gλ0) = 1.

Remark 3.9. Note that when a+ = ∞, in order to make Gλ be well-defined, λ will take values 
in the interval (−μ − ζ0, ∞). Thus, we need to assume that there exists a γ ∈ (−μ − ζ0, ∞)

such that r(Gγ ) > 1 to guarantee the existence of λ0 satisfying r(Gλ0) = 1. Such an additional 
assumption is motivated by Walker [42].

4. Semilinear equations

In the next two sections we consider semilinear and nonlinear equations derived from the 
classic nonlinear age-structured population models, where birth and death rates are dependent on 
the total population, see Webb [44], in which models with nonlinear death rate were referred to 
as semilinear and models with nonlinear death and birth rates were referred to as nonlinear. In 
fact, they are both semilinear in the PDE sense, but we keep using the notations in Webb [44]
for consistence. Throughout these two sections, we assume that the maximum age is finite; i.e. 
a+ < ∞. For a+ = ∞, the results can be proved similarly under an additional assumption, see 
Remark 3.9. In the following, we use subscripts S and N to represent semilinear equations and 
nonlinear equations, respectively.
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Consider the semilinear equation with nonlocal diffusion and nonlocal boundary condition:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut (t, a, x) + ua(t, a, x) = d(J ∗ u − u)(t, a, x) − μ(a, x,P )u(t, a, x),

t > 0,0 < a < a+, x ∈ �,

u(t,0, x) = ∫ a+
0

∫
�

β(a, x − y)u(t, a, y)dyda, t > 0, x ∈ �,

u(t, a, x) = 0, t > 0,0 < a < a+, x /∈ �,

u(0, a, x) = φ(a, x), 0 < a < a+, x ∈ �,

P (t) = ∫ a+
0

∫
�

u(t, a, x)dxda, t > 0.

(4.1)

Assumption 4.1.

(i) β(a, x) satisfies Assumption 3.1-(i) and (ii);
(ii) μ = μ(a, x, y) : [0, a+] × � ×R+ → R+ is bounded a.e. with respect to a, x and y, mea-

surable, positive and

a∫
0

μ(ρ)dρ < ∞ for a < a+ and

a+∫
0

μ(ρ)dρ = ∞,

in which μ(a) = inf(a,x)∈�×R μ(a, x, y) and μ(a) = sup(a,x)∈�×R μ(a, x, y). More-

over μ is differentiable with respect to y in R+ and denote μ1(·, ·, y) := ∂μ(·,·,y)
∂y

and 
μ(·, ·, y), μ1(·, ·, y) as functions of y belong to C(R+, L∞((0, a+) × �));

(iii) μ(a, x, y) ≥ μ(a, x, 0) for all (a, x) ∈ (0, a+) × � and y ∈R+.

In order to be consistent with previous notations, we shall hide the spatial variable in the 
following text to write ψ(a)(y) = ψ(a, y). Suppose that (0, ψ̂) is a steady state; i.e.,

A
(

0
ψ̂

)
+B

(
0
ψ̂

)
= 0,

where

A
(

0
ψ

)
:=

(
−ψ(0)

−ψa +Lψ

)
and B

(
0
ψ

)
:=

(
F(ψ)

G(ψ)

)
,

in which

F(ψ) =
a+∫
0

∫
�

β(a, · − y)ψ(a)(y)dyda, (4.2)

G(ψ)(a) = −μ(a,Pψ)ψ(a), (4.3)

where Pψ := ∫ a+
0

∫
�

ψ(a, x)dxda. Now we view P : E → R as an operator for the convenience 
of computation of Fréchet derivatives.
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Under the above Assumption 4.1, one can easily obtain the global existence of integral so-
lutions for (4.1). Thus, in what follows we mainly focus on the existence and stability of the 
nontrivial steady states.

4.1. Existence of nontrivial steady states

In this subsection we study the existence of the nontrivial steady state ψ̂ �= 0. By the definition, 
ψ̂ satisfies the following equations:⎧⎪⎪⎨

⎪⎪⎩
ψa −Lψ + μ(a,Pψ)ψ = 0,

ψ(0) = F(ψ),

Pψ = ∫ a+
0

∫
�

ψ(a)(x)dxda.

(4.4)

Solving the equations, we have

ψ̂(a) = F
P̂
(0, a)ψ̂(0), (4.5)

where FP (0, a) is the evolution family in Lemma 3.2, where μ(a0 + a) is changed into μ(a0 +
a, P) and P̂ = P ψ̂ (the existence of FP (0, a) is still guaranteed by Lemma 3.2). Plugging the 
solution ψ̂(a) into the boundary conditions, we obtain

ψ̂(0) =
a+∫
0

∫
�

β(a, · − y)
(
F

P̂
(0, a)ψ̂(0)

)
(y)dyda. (4.6)

Define �S : R × Z → R × Z by

�S

(
P̂

φ

)
:=

⎛
⎜⎝

∫ a+
0

∫
�

(
F

P̂
(0, a)φ

)
(x)dxda∫ a+

0

∫
�

β(a, · − y)
(
F

P̂
(0, a)φ

)
(y)dyda

⎞
⎟⎠ , ∀

(
P̂

φ

)
∈ R× Z. (4.7)

Denote Y+ := R+ × Z+, i.e. the positive cone of R × Z. Now the existence of nontrivial steady 
states is equivalent to the existence of nontrivial fixed points of map �S . Note that �S is a non-
linear operator, so we cannot use the theory for the linear case as above to deal with the problem. 
However, we still have a fixed point theorem for nonlinear operators which can be regarded as a 
special case of the Krasnoselskii’s theorem (see Krasnoselskii [31, Theorem 4.11]).

The Fréchet derivative of �S at 

(
P̂

φ

)
=

(
0
0

)
is given by, from Assumption 4.1-(ii),

TS

(
P̂

φ

)
:=

( ∫ a+
0

∫
�

(
F0(0, a)φ

)
(x)dxda∫ a+

0

∫
�

β(a, · − y)
(
F0(0, a)φ

)
(y)dyda

)
, ∀

(
P̂

φ

)
∈R× Z. (4.8)

Note that Ts is obtained by linearalizing (4.4), see the derivative of μ in (4.9). Moreover, it is a 

positive linear majorant of �S (that is, TS is a linear operator such that �S

(
P̂

φ

)
≤ TS

(
P̂

φ

)
for 
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any 

(
P̂

φ

)
∈ R+ × Z+) since F

P̂
(0, a) ≤ F0(0, a) by Assumption 4.1-(iii). We shall show that 

the spectral radius r(TS) of operator TS plays the role of a threshold value for the existence of 
nontrivial fixed points of operator �S ; that is, if r(TS) > 1, then �S has a positive nontrivial fixed 
point.

Proposition 4.2. Let �S and TS defined by (4.7) and (4.8), respectively.

(i) If r(TS) ≤ 1, then �S only has the trivial fixed point 

(
0
0

)
in Y+;

(ii) If r(TS) > 1, then �S has at least one nontrivial fixed point 

(
P̂

ψ̂

)
in Y+ \ {0}.

Proof. It is obvious that �S is bounded and �S

(
0
0

)
=

(
0
0

)
. Moreover,

a+∫
0

∫
�

(
F

P̂
(0, a)φ

)
(x)dxda < ∞, ∀

(
P̂

φ

)
∈R× Z,

which implies that �1
S is compact in R, where

�1
S

(
P̂

φ

)
:=

a+∫
0

∫
�

(
F

P̂
(0, a)φ

)
(x)dxda

and

�2
S

(
P̂

φ

)
:=

a+∫
0

∫
�

β(a, · − y)
(
F

P̂
(0, a)φ

)
(y)dyda.

One can use a similar proof as in Lemma 3.3 to conclude that �2
S is also compact. Thus �S is 

compact. For now conditions (i) and (ii) in Theorem 2.6 are satisfied.
By the same argument as above, we can show that TS is compact and nonsupporting by 

Lemma 3.3 and T 1
S (P̂ , φ)T := ∫ a+

0

∫
�

(
F0(0, a)φ

)
(x)dxda > 0 for φ ∈ Z+ \ {0}, where T 1

S

represents the first component of TS as above for �S and T represents the transpose.
First we prove (i). Since �S is a positive operator from the positive cone Y+ into itself and 

TS is a positive linear majorant of �S , we can apply Theorem 2.7 to conclude that �S has no 
nontrivial fixed point in Y+ provided r(TS) ≤ 1.

Let us prove (ii). We apply the theory of nonsupporting operators (see Inaba [27] or Marek 
[34]) to prove that r(TS) > 1 is an eigenvalue of operator TS with a corresponding positive 
nonzero eigenvector and TS does not have any eigenvector associated with eigenvalue 1. Hence, 
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conditions (iii) and (iv) of Theorem 2.6 follow and consequently, �S has at least one nontrivial 
fixed point in Y+. �

The existence of a nontrivial fixed point of �S implies that the existence of the nontrivial 
steady state solution ψ̂ ∈ D(A) \ {0} of system (4.1). In conclusion, from Proposition 4.2, the 
following theorem can be obtained as one the main results of this paper.

Proposition 4.3. Let TS be defined in (4.8).

(i) If r(TS) ≤ 1, then system (4.1) only has the trivial steady state 0 in D(A);
(ii) If r(TS) > 1, then system (4.1) has at least one nontrivial steady state ψ̂ in D(A) \ {0};

4.2. Stability

Let ψ̂ be the positive steady state obtained in the previous subsection. We can see that

(G′(ψ̂)ψ)(a) = −μ1(a,P ψ̂)Pψψ̂(a) − μ(a,P ψ̂)ψ(a). (4.9)

Now define

X1

(
0
ψ

)
:=

(
0

−μ(a,P ψ̂)ψ

)
and X2

(
0
ψ

)
:=

(
F(ψ)

C(ψ)

)
,

where C(ψ) := −μ1(·, P̂ )Pψψ̂ . Observe that C : E → E is a compact operator, thus X2 : X →
X is also a compact operator. By the method of characteristic lines, we see that A +X1 generates 
a nilpotent semigroup and its perturbed semigroup by the compact operator X2 is eventually 
compact. Hence,

ω1(A+B′[ψ̂]) = ω1(A+X1 +X2) = ω1(A+X1) = −∞.

It follows that the stability of ψ̂ is determined by the eigenvalues of A +B′[ψ̂]. Accordingly, let

λ ∈C and B̂S

(
0
ψ

)
= λ

(
0
ψ

)
for

(
0
ψ

)
∈ D(A) and ψ �= 0,

where B̂S := A +B′[ψ̂]. From the definition of B̂S , we obtain

⎧⎪⎪⎨
⎪⎪⎩

ψa + λψ −Lψ + μ(a, P̂ )ψ + μ1(a, P̂ )Pψψ̂ = 0,

ψ(0) = F(ψ),

Pψ = ∫ a+
0

∫
�

ψ(a)(x)dxda,

(4.10)

where P̂ = P ψ̂ . Solving the problem, we get
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ψ(a) = e−λaF
P̂
(0, a)ψ(0) −

a∫
0

e−λ(a−σ)F
P̂
(σ, a)μ1(σ, P̂ )Pψψ̂(σ )dσ. (4.11)

First we find Pψ in terms of ψ(0, x). By the definition of Pψ , we have

Pψ =
a+∫
0

∫
�

e−λa
(
F

P̂
(0, a)ψ(0)

)
(x)dxda

− Pψ

a+∫
0

∫
�

a∫
0

e−λ(a−σ)
(
F

P̂
(σ, a)μ1(σ, P̂ )ψ̂(σ )

)
(x)dσdxda,

which implies that

Pψ

⎛
⎜⎝1 +

a+∫
0

∫
�

a∫
0

e−λ(a−σ)
(
F

P̂
(σ, a)μ1(σ, P̂ )ψ̂(σ )

)
(x)dσdxda

⎞
⎟⎠

=
a+∫
0

∫
�

e−λa
(
F

P̂
(0, a)ψ(0)

)
(x)dxda. (4.12)

Now we define a functional Bλ : Z → R for all λ ∈C as follows:

Bλ(ψ) =
a+∫
0

∫
�

e−λa
(
F

P̂
(0, a)ψ

)
(x)dxda. (4.13)

Define

A(λ) =
a+∫
0

∫
�

a∫
0

e−λ(a−σ)
(
F

P̂
(σ, a)μ1(σ, P̂ )ψ̂(σ )

)
(x)dσdxda. (4.14)

Note that in order for A(λ) to be nonnegative, we require that μ1(a, P̂ ) ≥ 0 in Z for all 
a ∈ [0, a+]. We would like to mention that such an assumption on the sign of μ1(a, P̂ ) is 
not strict, see the Examples 4.11-4.13 in Webb [44] when μ = μ(P̂ ). It follows that Pψ =
(1 + A(λ))−1Bλ(ψ(0)). Now plugging (4.11) into the boundary condition, we obtain

ψ(0) =
a+∫ ∫

β(a, · − y)e−λa
(
F

P̂
(0, a)ψ(0)

)
(y)dyda
0 �
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−Pψ

a+∫
0

∫
�

β(a, · − y)

a∫
0

e−λ(a−σ)
(
F

P̂
(σ, a)μ1(σ, P̂ )ψ̂(σ )

)
(y)dσdyda. (4.15)

Now define �S(λ) : Z → Z and KS(λ) : � →R for all λ ∈C respectively, as follows

�S(λ)ψ =
a+∫
0

∫
�

β(a, · − y)e−λa
(
F

P̂
(0, a)ψ

)
(y)dyda,

KS(λ)(x) =
a+∫
0

∫
�

β(a, x − y)

a∫
0

e−λ(a−σ)
(
F

P̂
(σ, a)μ1(σ, P̂ )ψ̂(σ )

)
(y)dσdyda. (4.16)

Then (4.15) becomes

ψ(0) = �S(λ)ψ(0) − (1 + A(λ))−1Bλ(ψ(0))KS(λ). (4.17)

Next, define MS(λ) := (1 + A(λ))−1KS(λ). It follows that

ψ(0) = (�S(λ) − MS(λ)Bλ)ψ(0).

Denote �S(λ) := �S(λ) − MS(λ)Bλ. Since MS(λ)Bλ is compact under the Assumption 3.1-(i), 
�S(λ) : Z → Z is also compact for all λ ∈C.

In addition, under the Assumption 3.1-(ii), we can show that �S(λ) and MS(λ)Bλ are non-
supporting, then �S(λ) is also nonsupporting for all λ ∈ R. Thus we have the following results 
(see also Kang et al. [28]),

Proposition 4.4. Assuming μ1(a, P̂ ) ≥ 0, where P̂ = ∫ a+
0

∫
�

ψ̂(a)(x)dxda, we have the follow-
ing statements

(i) �S := {λ ∈ C : 1 ∈ σ(�S(λ))} = {λ ∈ C : 1 ∈ σP (�S(λ))}, where σ(A) and σP (A) denote 
the spectrum and point spectrum of the operator A, respectively;

(ii) There exists a unique real number λS ∈ �S such that r(�S(λS)) = 1 and λS > 0 if 
r(�S(0)) > 1; λS = 0 if r(�S(0)) = 1; and λS < 0 if r(�S(0)) < 1;

(iii) λS > sup{Reλ : λ ∈ �S \ {λS}};
(iv) λS is the dominant eigenvalue of B̂S , i.e. λS is greater than all real parts of the eigenvalues 

of B̂S . Moreover, it is a simple eigenvalue of B̂S;
(v) {λ ∈ C : 1 ∈ ρ(�S(λ))} ⇒ {λ ∈C : λ ∈ ρ(B̂S)}, where ρ(A) is the resolvent set of A;

(vi) λS = s(B̂S) := sup{Reλ : λ ∈ σ(B̂S)}.

Proof. Note that �S(λ) is strictly decreasing with respect to λ in the sense of positive oper-
ators, thus (ii) is true by the arguments in Section 2. We only show (iii). And (iii) implies 
the first part of (iv). The rest are based on the results in Section 2, so we omit them. For 
any λ ∈ �S , there is an eigenfunction ψλ such that �S(λ)ψλ = ψλ. Then we have |ψλ| =
|�S(λ)ψλ| ≤ �S(Reλ)|ψλ|. Let fReλ be the positive eigenfunctional corresponding to the eigen-
value r(�S(Reλ)) of �S(Reλ). We obtain that
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〈fReλ,�S(Reλ)|ψλ|〉 = r(�S(Reλ))〈fReλ, |ψλ|〉 ≥ 〈fReλ, |ψλ|〉.

Hence, r(�S(Reλ)) ≥ 1 and Reλ ≤ λS since r(�S(λ)) is strictly decreasing for λ ∈ R and 
r(�S(λS)) = 1. If Reλ = λS , then �S(λS)|ψλ| = |ψλ|. In fact, if �S(λS)|ψλ| > |ψλ|, taking 
duality pairing with the eigenfunctional fλS

corresponding to the eigenvalue r(�S(λS)) = 1 on 
both sides yields 〈fλS

, �S(λS)|ψλ|〉 = 〈fλS
, |ψλ|〉 > 〈fλS

, |ψλ|〉, which is a contradiction. Then 
we can write that |ψλ| = cψS , where ψS is the eigenfunction corresponding to the eigenvalue 
r(�S(λS)) = 1. Without loss of generality, we assume that c = 1 and write ψλ(x) = ψS(x)eiα(x)

for some real function α(x). Substituting this relation into

�S(λS)ψS = ψS = |ψλ| = |�S(λ)ψλ|,

we have

a+∫
0

∫
�

[
β(a, x − y) − 1

]
e−λSa

(
F

P̂
(0, a)ψS

)
(y)dyda

=

∣∣∣∣∣∣∣
a+∫
0

∫
�

[
β(a, x − y) − 1

]
e−(λS+Imλ)a

(
F

P̂
(0, a)ψS

)
(y)eiα(y)dyda

∣∣∣∣∣∣∣
and

KλS
(x)

1 + A(λS)
= |KλS+Imλ(x)|

|1 + A(λS + Imλ)| .

From Heijmans [22, Lemma 6.12], we obtain that −Imλa + α(y) = θ for some constant θ . 
By �S(λ)ψλ = ψλ, we have eiθ�S(λS)ψS = ψSeiα , so θ = α(x), which implies that Imλ = 0. 
Then, there is no element λ ∈ � such that Reλ = λS and λ �= λS . Therefore, the result (iii) is 
proved. �

In summary, we have the following theorem.

Theorem 4.5. Assume μ1(a, P̂ ) ≥ 0, where P̂ = ∫ a+
0

∫
�

ψ̂(a)(x)dxda, then the steady state 
ψ̂ �= 0 of system (4.1) is locally exponentially asymptotically stable if r(�S(0)) < 1 and unstable 
if r(�S(0)) > 1.

Remark 4.6. Note that Theorem 4.5 applies to any steady state, not only the steady state ψ̂
obtained in the previous subsection. However, when ψ̂(a) = F

P̂
(0, a)ψ̂(0) is constructed as in 

Section 4.1, we can further simplify the operators A(λ) and KS(λ). In order to obtain a more 
explicit operator, let us assume that μ(a, x, P) = μ(P ) as in [44]. By some computations, we 
have

A(λ) = μ1(P̂ )

λ

a+∫ ∫
(1 − e−λa)ψ̂(a)(x)dxda
0 �
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and

KS(λ)(x) = μ1(P̂ )

λ

a+∫
0

∫
�

β(a, x − y)(1 − e−λa)ψ̂(a)(y)dyda,

which not only present explicit expressions of A(λ) and KS(λ) but also indicate their dependence 
on μ1(P̂ ).

5. Nonlinear equations

Finally, we consider the following nonlinear equation with nonlocal diffusion and nonlocal 
boundary condition:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut (t, a, x) + ua(t, a, x) = d(J ∗ u − u)(t, a, x) − μ(a, x,P )u(t, a, x),

t > 0,0 < a < a+, x ∈ �,

u(t,0, x) = ∫ a+
0

∫
�

β(a, x − y,P )u(t, a, y)dyda, t > 0, x ∈ �,

u(t, a, x) = 0, t > 0,0 < a < a+, x /∈ �,

u(0, a, x) = φ(a, x), 0 < a < a+, x ∈ �,

P (t) = ∫ a+
0

∫
�

u(t, a, x)dxda, t > 0.

(5.1)

First we make the following assumptions.

Assumption 5.1.

(i) μ satisfies Assumption 4.1-(ii) and (iii);
(ii) β = β(a, x, z) : [0, a+] × � × R+ → R+ is bounded a.e. with respect to a, x and z, mea-

surable, positive and

lim‖h‖→0

∫
�

|β(a, x − y + h, z) − β(a, x − y, z)|2dx = 0

uniformly in a ∈ (0, a+), y ∈ � and z ∈R+;
(iii) There exists a positive function β ∈ L1(0, a+) such that

β(a, x, z) ≥ β(a) > 0 for almost all (a, x, z) ∈ (0, a+) × � ×R+;

(iv) β is differentiable with respect to z in R+ and denote β1(·, ·, z) := ∂β(·,·,z)
∂z

and β(·, ·, z),
β1(·, ·, z) as functions of z belong to C(R+, L∞((0, a+) × �));

(v) β(a, x, z) ≤ β(a, x, 0) for all (a, x) ∈ (0, a+) × � and z ∈ R+.
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Suppose that 

(
0
ψ̂

)
is a steady state; i.e.,

A
(

0
ψ̂

)
+B

(
0
ψ̂

)
= 0,

where

A
(

0
ψ

)
:=

(
−ψ(0)

−ψa +Lψ

)
and B

(
0
ψ

)
:=

(
F(ψ)

G(ψ)

)
,

in which

F(ψ) =
a+∫
0

∫
�

β(a, · − y,Pψ)ψ(a)(y)dyda, (5.2)

G(ψ)(a) = −μ(a,Pψ)ψ(a), (5.3)

where Pψ := ∫ a+
0

∫
�

ψ(a, x)dxda.
Similarly we can obtain the global existence of integral solutions of (5.1) under Assump-

tion 5.1. In the following we focus on the existence and stability of nontrivial equilibria of (5.1).

5.1. Existence of nontrivial steady states

In this subsection we study the existence of a nontrivial steady state ψ̂ �= 0. From the defini-
tion, ψ̂ satisfies the following equations:

⎧⎪⎪⎨
⎪⎪⎩

ψa −Lψ + μ(a,Pψ)ψ = 0,

ψ(0) = F(ψ),

Pψ = ∫ a+
0

∫
�

ψ(a)(x)dxda.

(5.4)

Solving the problem, we obtain

ψ̂(a) = F
P̂
(0, a)ψ̂(0), (5.5)

where FP (0, a) is the evolution family given in Lemma 3.2, where μ(a0 + a) is changed into 
μ(a0 + a, P) and P̂ = P ψ̂ . Plugging the solution into the boundary condition, we have

ψ̂(0) =
a+∫
0

∫
�

β(a, · − y, P̂ )
(
F

P̂
(0, a)ψ̂(0)

)
(y)dyda. (5.6)

Define �N :R × Z →R × Z by
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�N

(
P̂

φ

)
:=

⎛
⎜⎝

∫ a+
0

∫
�

(
F

P̂
(0, a)φ

)
(y)dyda∫ a+

0

∫
�

β(a, · − y, P̂ )
(
F

P̂
(0, a)φ

)
(y)dyda

⎞
⎟⎠ , ∀

(
P̂

φ

)
∈ R× Z. (5.7)

We can compute the Fréchet derivative of �N at 

(
P̂

φ

)
=

(
0
0

)
as follows

TN

(
P̂

φ

)
:=

( ∫ a+
0

∫
�

(
F0(0, a)φ

)
(x)dxda∫ a+

0

∫
�

β(a, · − y,0)
(
F0(0, a)φ

)
(y)dyda

)
, ∀

(
P̂

φ

)
∈R× Z. (5.8)

Once again the existence of nontrivial steady states is equivalent to the existence of nontrivial 
fixed points of map �N . Similar as in the semilinear case in the previous section, we have the 
following results.

Proposition 5.2. Let �N and TN defined by (5.7) and (5.8), respectively.

(i) If r(TN) ≤ 1, then �N has only the trivial fixed point 

(
0
0

)
in Y+;

(ii) If r(TN) > 1, then �N has at least one nontrivial fixed point 

(
P̂

ψ̂

)
in Y+ \ {0}.

Proposition 5.3. Let TN be defined in (5.8).

(i) If r(TN) ≤ 1, then system (5.1) only has the trivial steady state 0 in D(A);
(ii) If r(TN) > 1, then system (5.1) has at least one nontrivial steady state ψ̂ in D(A) \ {0}.

5.2. Stability

To study the stability of the steady state ψ̂ , we have

(G′(ψ̂)ψ)(a) = −μ1(a,P ψ̂)Pψψ̂(a) − μ(a,P ψ̂)ψ(a),

(F ′(ψ̂)ψ) = Pψ

a+∫
0

∫
�

β1(a, · − y, P̂ )ψ̂(a)(y)dyda +
a+∫
0

∫
�

β(a, · − y, P̂ )ψ(a)(y)dyda.

Define

X1

(
0
ψ

)
:=

(
0

−μ(a,P ψ̂)ψ

)
and X2

(
0
ψ

)
:=

(
F ′(ψ̂)ψ

C(ψ)

)
,

where C(ψ) := −μ1(·, ·, P̂ )Pψψ̂ . Note that C : E → E is a compact operator and also 
F ′(ψ̂)ψ : E → Z is a compact operator. Then X2 : X → X is also compact. By the method 
of characteristic lines, we know that A + X1 generates a nilpotent semigroup and its perturbed 
semigroup by the compact operator X2 is eventually compact. Thus,
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ω1(A+B′[ψ̂]) = ω1(A+X1 +X2) = ω1(A+X1) = −∞.

So the stability of ψ̂ is determined by the eigenvalues of A + B′[ψ̂]. Let λ ∈ C and let 

B̂N

(
0
ψ

)
= λ 

(
0
ψ

)
for 

(
0
ψ

)
∈ D(A) and ψ �= 0, where B̂N := A + B′[ψ̂]. By the definition 

of B̂N , we have

⎧⎪⎪⎨
⎪⎪⎩

ψa + λψ −Lψ + μ(a, P̂ )ψ + μ1(a, P̂ )Pψψ̂ = 0,

ψ(0) = F ′(ψ̂)ψ,

Pψ = ∫ a+
0

∫
�

ψ(a)(x)dxda,

(5.9)

where P̂ = P ψ̂ . Solving the problem yields

ψ(a) = e−λaF
P̂
(0, a)ψ(0) − Pψ

a∫
0

e−λ(a−σ)
(
F

P̂
(σ, a)μ1(σ, P̂ )ψ̂(σ )

)
(x)dσ. (5.10)

To find Pψ in terms of ψ(0), using the definition of Pψ , we obtain

Pψ =
a+∫
0

∫
�

e−λa
(
F

P̂
(0, a)ψ(0)

)
(x)dxda

− Pψ

a+∫
0

∫
�

a∫
0

e−λ(a−σ)
(
F

P̂
(σ, a)μ1(σ, P̂ )ψ̂(σ )

)
(x)dσdxda,

which implies that

Pψ

⎛
⎜⎝1 +

a+∫
0

∫
�

a∫
0

e−λ(a−σ)
(
F

P̂
(σ, a)μ1(σ, P̂ )ψ̂(σ )

)
(x)dσdxda

⎞
⎟⎠

=
a+∫
0

∫
�

e−λa
(
F

P̂
(0, a)ψ(0)

)
(x)dxda. (5.11)

Again we define a functional Bλ : Z →R for all λ ∈R as follows:

Bλψ =
a+∫
0

∫
�

e−λa
(
F

P̂
(0, a)ψ

)
(x)dxda. (5.12)

Once again, define
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A(λ) =
a+∫
0

∫
�

a∫
0

e−λ(a−σ)
(
F

P̂
(σ, a)μ1(σ, P̂ )ψ̂(σ )

)
(x)dσdxda. (5.13)

Similarly we require that μ1(a, P̂ ) ≥ 0 as in Section 4.2. We have that Pψ = (1 + A(λ))−1 ×
Bλ(ψ(0)). Now plugging (5.10) into the boundary condition, we obtain

ψ(0) =
a+∫
0

∫
�

β(a, · − y, P̂ )e−λa
(
F

P̂
(0, a)ψ(0)

)
(y)dyda

−Pψ

a+∫
0

∫
�

β(a, · − y, P̂ )

a∫
0

e−λ(a−σ)
(
F

P̂
(σ, a)μ1(σ, P̂ )ψ̂(σ )

)
(y)dσdyda

+Pψ

a+∫
0

∫
�

β1(a, · − y, P̂ )ψ̂(a)(y)dyda. (5.14)

Define �N : Z → Z, KN : � → R and Q : � →R by

(�N(λ)ψ) =
a+∫
0

∫
�

β(a, · − y, P̂ )e−λa
(
F

P̂
(0, a)ψ

)
(y)dyda,

KN(λ)(x) =
a+∫
0

∫
�

β(a, x − y, P̂ )

a∫
0

e−λ(a−σ)
(
F

P̂
(σ, a)μ1(σ, P̂ )ψ̂(σ )

)
(y)dσdyda,

Q(x) =
a+∫
0

∫
�

β1(a, x − y, P̂ )ψ̂(a)(y)dyda.

Then (5.14) becomes

ψ(0) = �N(λ)ψ(0) − (1 + A(λ))−1Bλ(ψ(0))
(
KN(λ) − Q

)
. (5.15)

Next, let MN(λ) := (1 + A(λ))−1(KN(λ) − Q). Then it follows that

ψ(0) = (
�N(λ) − MN(λ)Bλ

)
ψ(0).

Denote �N(λ) := �N(λ) − MN(λ)Bλ. Since MN(λ)Bλ is compact under the Assumption 5.1, it 
follows that �N(λ) : Z → Z is also compact for all λ ∈C.

Moreover, under the Assumption 5.1, we can see that �N(λ) and MN(λ)Bλ are nonsupporting, 
then �N(λ) is also nonsupporting for all λ ∈ R. Thus, we have the following conclusions based 
on the results in Section 2.
459



H. Kang and S. Ruan Journal of Differential Equations 278 (2021) 430–462
Proposition 5.4. Assuming that μ1(a, P̂ ) ≥ 0, where P̂ = ∫ a+
0

∫
�

ψ̂(a)(x)dxda, we have the 
following statements

(i) �N := {λ ∈ C : 1 ∈ σ(�N(λ))} = {λ ∈ C : 1 ∈ σP (�N(λ))}, where σ(A) and σP (A) de-
note the spectrum and point spectrum of the operator A, respectively;

(ii) There exists a unique real number λN ∈ �N such that r(�N(λN)) = 1 and λN > 0 if 
r(�N(0)) > 1; λN = 0 if r(�N(0)) = 1; and λN < 0 if r(�N(0)) < 1;

(iii) λN > sup{Reλ : λ ∈ �N \ {λN }};
(iv) λN is the dominant eigenvalue of B̂N ; i.e., λN is greater than all real parts of the eigenvalues 

of B̂N . Moreover, it is a simple eigenvalue of B̂N ;
(v) {λ ∈ C : 1 ∈ ρ(�N(λ))} ⇒ {λ ∈ C : λ ∈ ρ(B̂N)}, where ρ(A) denotes the resolvent set of 

A;
(vi) λN = s(B̂N ) := sup{Reλ : λ ∈ σ(B̂N)}.

Theorem 5.5. Assume that μ1(a, P̂ ) ≥ 0, where P̂ = ∫ a+
0

∫
�

ψ̂(a)(x)dxda, then the steady state 
ψ̂ �= 0 of problem (5.1) is locally exponentially asymptotically stable if r(�N(0)) < 1 and unsta-
ble if r(�N(0)) > 1.

Remark 5.6. Again the conclusions in Theorem 5.5 apply to any steady state, not only the one 
ψ̂ constructed in the previous subsection. However, when ψ̂(a) = F

P̂
(0, a)ψ̂(0) is constructed 

as in Section 5.1, we can further simplify the operators A(λ) and KN(λ) as Remark 4.6.

6. Discussion

In this paper, we studied the linear, semilinear, and nonlinear age-structured population mod-
els with nonlocal diffusion and nonlocal boundary conditions via the integrated semigroup theory 
and non-densely defined operators. For the linear case, we analyzed the spectrum of the infinites-
imal generator associated with the integrated semigroup and studied the asymptotic behavior by 
asynchronous exponential growth. We then considered the semilinear and nonlinear cases and 
established the existence and stability of nontrivial steady states.

Observe that we considered a nonlocal boundary condition in this paper, which looks compli-
cated compared with the regular boundary condition of the form

u(t,0, x) =
a+∫
0

β(a, x)u(t, a, x)da.

However, the nonlocal boundary condition problem has a good property, i.e., the compactness, 
under an appropriate condition. Since the semigroup or evolution family itself generated by non-
local diffusion does not have regularity, the constructed operator Gλ does not have compactness 
under the regular boundary condition. So we do not have much tools to carry out the spec-
trum analysis, see Kang et al. [29]. On the contrary, one will obtain the compactness and thus 
spectrum and asymptotic behavior if the nonlocal diffusion is changed to Laplace diffusion, see 
[8,18,42,41,14,15]. Recently we (Kang et al. [28]) coupled a second physiological structure to 
the classical age-structured models and analyzed the spectrum and asymptotic behavior under 
some appropriate boundary conditions. Combining our previous results in [28] with that in this 
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paper, we can see that no matter what extra structure is coupled into the classical age-structured 
models (age or size corresponding to the first order operator and spatial diffusion corresponding 
to the Laplace or nonlocal operator), one can always obtain some reasonable results as long as 
the boundary conditions satisfy certain suitable assumptions (for example equicontinuity).
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