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Abstract
First-order hyperbolic partial differential equations with two internal variables have
been used to model biological and epidemiological problems with two physiologi-
cal structures, such as chronological age and infection age in epidemic models, age
and another physiological character (maturation, size, stage) in population models,
and cell-age and molecular content (cyclin content, maturity level, plasmid copies,
telomere length) in cell population models. In this paper, we study nonlinear double
physiologically structured population models with two internal variables by applying
integrated semigroup theory and non-densely defined operators. We consider first a
semilinear model and then a nonlinear model, use the method of characteristic lines to
find the resolvent of the infinitesimal generator and the variation of constant formula,
apply Krasnoselskii’s fixed point theorem to obtain the existence of a steady state, and
study the stability of the steady state by estimating the essential growth bound of the
semigroup. Finally, we generalize the techniques to investigate a nonlinear age-size
structured model with size-dependent growth rate.
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1 Introduction

In modeling specific problems in biology and epidemiology, sometimes it is necessary
to take into account more than one physiological structures of the population, such as
chronological age and infection age of individuals (Gripenberg 1893; Hoppensteadt
1974; Inaba 2016; Laroche and Perasso 2016; Burie et al. 2017) in modeling infec-
tious diseases; age and size structures (Sinko and Streifer 1967; Gyllenberg andWebb
1987; Webb 2008), age and maturation structures (Dyson et al. 2000a, b), and age and
stage structures (McNair and Goulden 1991; Matucci 1995) in modeling population
dynamics; age and pair age structures (Inaba 2017) in population pair formation mod-
els; age and an aggregated variable (Doumic 2007), age and cyclin content (Bekkal
Brikci et al. 2008), age andmaturity level (Bernard et al. 2003), age and plasmid copies
(Stadler 2019), and age and telomere length (Kapitanov 2012) in modeling cell pop-
ulation kinetics. However, there are very few theoretical studies on the fundamental
properties of suchmodels with two physiological structures (Inaba 2016;Webb 1985).

Recently, we Kang et al. (2020) considered a linear first-order hyperbolic partial
differential equation that models the single-species population dynamics with two
physiological structures where both boundary conditions were non-trivial. By using
semigroup theory,we studied the basic properties anddynamics of themodel, including
the solution flow and its semigroup with an infinitesimal generator. Moreover, we
established the compactness of the solution trajectories, analyzed the spectrum of
the infinitesimal generator, and investigated stability of the zero steady state with
asynchronous exponential growth.

For the double physiologically structured population models, analyzing the
infinitesimal generator seems complicated, in particular in solving the characteristic
and resolvent equations. In this paper, we consider nonlinear physiologically struc-
tured population models with two internal variables and use different techniques,
namely integrated semigroups and non-densely defined operators, which enable us to
solve the characteristic equation directly and study the existence and stability of the
steady states,
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For the two physiological structures, define the state space by

E := L1((0, a+) × (0, s+)),

where a+ and s+ represent themaximums of two physiological structures respectively.
Herewe assume that they are finite. Consider the following nonlinear first-order hyper-
bolic partial differential equation with two internal variables a and s (representing two
physiological structures):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut (t, a, s) + ua(t, a, s) + us(t, a, s) = G(u(t, ·, ·))(a, s),

u(t, a, 0) = F(u(t, ·, ·))(a),

u(t, 0, s) = H(u(t, ·, ·))(s),
u(0, a, s) = φ(a, s),

(1.1)

where u(t, a, s) denotes the density of a population at time t with age a and another
physiological characteristic s, φ ∈ E is an initial data. Assume that G : E → E ,
F : E → L1(0, a+) and H : E → L1(0, s+) are uniformly bounded and Lipschitz
continuous functions. Notice that the second physiological characteristic s could be
the chronological age or infection age if (1.1) is an epidemic model; the maturation,
size, or stage variable if (1.1) is a population model; and cyclin content, maturity level,
plasmid copies, or telomere length if (1.1) models cell population dynamics.

In most of the previously developed models, it is assumed that one boundary condi-
tion is trivial based on valid biological assumptions. For example, in the chronological
age–infection age epidemic models, the infection age is always less than the chrono-
logical age, thus the boundary condition for those with zero chronological age but
positive infection age would always be zero; in the age-size population models, no
individuals would possess a positive age and a zero size; thus, the boundary condition
for those with positive chronological age but zero size should be always zero. There-
fore, it is natural for one to ask for the motivation of real-world applications with both
boundaries being non-trivial. Here, we discuss two potential applications in model-
ing infectious diseases and cell population kinetics. (a) Hethcote (1988, 1997, 1999)
used chronological age structured models to study the optimal age for vaccinations
and boosters in preventing pertussis and measles; such models can be extended to a
double physiologically structured system with one structure being the chronological
age of human population and another being the immunity age (the age since last immu-
nity build up). Under such consideration, the corresponding systemwould yield to two
non-trivial boundary conditions: Newbornswithmaternal immunitywould have a zero
chronological age but a nonzero immunity age; people who take a booster vaccine can
reset their immunity age to zero and thus would have a nonzero chronological age but
a zero immunity age. (b) Kapitanov (2012) studied cancer stem cell lineage popula-
tion dynamics by structuring the cell population with continuous cell age and discrete
telomere length, such a model, once derived with both structures being continuous,
would yield two non-trivial boundary conditions: since newly generated cells could
have telomere with any length and some aged cells would have 0-length telomere due
to telomere loss during cell differentiation.
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To analyze such systems, the idea is to rewrite the initial-boundary value problem
(1.1) as an abstract semilinear Cauchy problemwith non-dense domain (Thieme 1990;
Magal and Ruan 2018) and use integrated semigroup theory to discuss the problem.
Then, we use themethod of characteristic lines to find the resolvent of the infinitesimal
generator and the variation of constant formula and apply the Krasnoselskii’s fixed
point theorem to obtain the existence of a steady state. Finally, we study the stability
of the steady state by estimating the essential growth bound of the semigroup.

To present our idea and techniques, in next section we will set up the abstract
semilinear Cauchy problem with non-dense domain by using integrated semigroups.
In Sect. 3 we will study a semilinear model, and a nonlinear equation will be treated
in Sect. 4. In Sect. 5 we will extend the methods to study an age-size structured model
with size-dependent growth rate in two internal variables.

2 Integrated Semigroup Setting

We first recall some results on integrated semigroups and non-densely defined opera-
tors from Thieme (1990) and Magal and Ruan (2018). Let A be a differential operator
acting on E defined by

A(ψ)(a, s) := −ψa − ψs, D(A) := {ψ ∈ E : ψ ∈ W 1,1((0, a+) × (0, s+))}.

Then, A is densely defined in E . Now we introduce an extended state space as

X := L1(0, a+) × L1(0, s+) × E

and its closed subspace X0 := {0} × {0} × E . Define an operatorA acting on X such
that

A
⎛

⎝
0
0
ψ

⎞

⎠ :=
⎛

⎝
−ψ(a, 0)
−ψ(0, s)
−ψa − ψs

⎞

⎠ for

⎛

⎝
0
0
ψ

⎞

⎠ ∈ D(A) := {0} × {0} × D(A).

Remark 2.1 Note thatψ(a, 0) andψ(0, s) are well defined by the trace lemma for any
ψ ∈ W 1,1((0, a+) × (0, s+)).

Let X0+ := {0} × {0} × E+ be the positive cone of X0. Define a bounded operator
B : X0+ → X by

B
⎛

⎝
0
0
ψ

⎞

⎠ =
⎛

⎝
F(ψ)

H(ψ)

G(ψ)

⎞

⎠ for

⎛

⎝
0
0
ψ

⎞

⎠ ∈ X0+ .
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Under the above definitions, we can formally rewrite system (1.1) as an abstract
semilinear Cauchy problem with a non-densely defined operator on X :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du(t)
dt = Au(t) + Bu(t),

u(0) =
⎛

⎜
⎝

0

0

φ

⎞

⎟
⎠ ∈ X0+ .

(2.1)

Since u is the density of a population, we are interested in solutions of (2.1) such
that u(t) ∈ X0+ , t ≥ 0. Following Busenberg et al. (1991), we consider the following
system which is equivalent to (2.1):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du(t)
dt = (A − 1

ε
I
)
u(t) + 1

ε
(I + εB)u(t),

u(0) =
⎛

⎜
⎝

0

0

φ

⎞

⎟
⎠ ∈ X0+ ,

(2.2)

where ε is chosen so small that the operator I + εB maps X0+ into the positive cone
of X , denoted by X+. It is easily shown that this choice of ε is possible for our system
(2.1), since parameter functions G, F, H are assumed to be uniformly bounded. In
the following, we mainly consider system (2.2) and for the sake of simplicity we use
the following new notations:

A∗ = A − 1

ε
I , B∗ = 1

ε
(I + εB).

Since the operator A∗ is not densely defined, we cannot apply the classical Hille–
Yosida theory to solve (2.2) in the Banach space X . However, the operator A∗ can be
proved to be a Hille–Yosida operator.

Lemma 2.2 A∗ is a closed linear operator with non-dense domain and the following
holds: D(A∗) = X0,A∗ satisfies the Hille–Yosida estimate such that for all λ > − 1

ε
,

∥
∥
∥(λI − A∗)−1

∥
∥
∥
X

≤ 1

λ + 1
ε

(2.3)

and (λI − A∗)−1(X+) ⊂ X0+ for λ > 0.

Proof Let us study the resolvent of operator A∗, i.e.,

(λI − A∗)

⎛

⎝
0
0
ϕ

⎞

⎠ =
⎛

⎝
α

η

φ

⎞

⎠ ∈ X+.
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By the definition of A∗,

(λI − A∗)

⎛

⎝
0
0
ϕ

⎞

⎠ =
⎛

⎝
ϕ(a, 0)
ϕ(0, s)

∂ϕ
∂a + ∂ϕ

∂s + (
λ + 1

ε

)
ϕ

⎞

⎠ ,

we have

∂ϕ

∂a
+ ∂ϕ

∂s
+ (λ + 1/ε)ϕ = φ(a, s), (2.4)

ϕ(a, 0) = α(a), ϕ(0, s) = η(s). (2.5)

By the method of characteristic lines, we obtain the solution of (2.4)-(2.5) as follows:

ϕ(a, s) =
{

α(a − s)e−(λ+1/ε)s + ∫ s
0 e−σ(λ+1/ε)φ(a − σ, s − σ)dσ, a − s ≥ 0,

η(s − a)e−(λ+1/ε)a + ∫ a
0 e−σ(λ+1/ε)φ(a − σ, s − σ)dσ, a − s < 0.

(2.6)

Thus,

(λI − A∗)−1

⎛

⎝
α

η

φ

⎞

⎠ =
⎛

⎝
0
0

ϕ(a, s)

⎞

⎠

and

∥
∥
∥
∥
∥
∥
(λI − A∗)−1

⎛

⎝
α

η

φ

⎞

⎠

∥
∥
∥
∥
∥
∥
X

= ‖ϕ(a, s)‖E

≤
∣
∣
∣
∣
∣

∫ a+

0

∫ a

0
α(a − s)e−(λ+1/ε)sdsda

∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣

∫ a+

0

∫ a

0

∫ s

0
e−σ(λ+1/ε)φ(a − σ, s − σ)dσdsda

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

∫ s+

0

∫ s

0
η(s − a)e−(λ+1/ε)adads

∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣

∫ s+

0

∫ s

0

∫ a

0
e−σ(λ+1/ε)φ(a − σ, s − σ)dσdads

∣
∣
∣
∣
∣

≤
∫ a+

0

∫ a

0
|α(a − s)|e−(λ+1/ε)sdsda +

∫ a+

0

∫ a

0

∫ s

0
e−σ(λ+1/ε)|φ(a − σ, s − σ)|dσdsda

+
∫ s+

0

∫ s

0
|η(s − a)|e−(λ+1/ε)adads +

∫ s+

0

∫ s

0

∫ a

0
e−σ(λ+1/ε)|φ(a − σ, s − σ)|dσdads

≤ 1

λ + 1/ε
‖α‖L1(0,a+) + 1

λ + 1/ε
‖η‖L1(0,s+) + 1

λ + 1/ε
‖φ‖E

≤ 1

λ + 1/ε

∥
∥
∥
∥
∥
∥

⎛

⎝
α

η

φ

⎞

⎠

∥
∥
∥
∥
∥
∥
X

, (2.7)

which implies that
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∥
∥
∥(λI − A∗)−1

∥
∥
∥
X

≤ 1

λ + 1/ε

for λ > −1/ε. Hence,A∗ is a Hille–Yosida operator with M = 1 and ω = −1/ε < 0.
	


Thus, we can seek solutions in the weak sense: A function u(t) ∈ C1(0, T ; X) ∪
D(A∗) is called a classical solution of the Cauchy problem (2.2) if it is satisfied for
all t ∈ [0, T ). u(t) ∈ C(0, T ; X0) is called an integral solution of (2.2) if

∫ t
0 u(s)ds ∈

D(A∗) for all t ∈ [0, T ) and

u(t) = u(0) + A∗
∫ t

0
u(s)ds +

∫ t

0
B∗u(s)ds, (2.8)

which was introduced by Da Prato and Sinestrari (1987) and Bénilan et al. (1988).
It can be shown that an integral solution becomes a classical solution if u(0) ∈
D(A∗),A∗u(0) + B∗u(0) ∈ D(A∗) (Thieme 1990). Thus, in what follows, we are
mainly concerned with the integral solutions of (2.2).

Define the part A0 of A∗ in X0 by

A0 = A∗ on D(A0) =
⎧
⎨

⎩

⎛

⎝
0
0
ψ

⎞

⎠ ∈ D(A∗) : A∗

⎛

⎝
0
0
ψ

⎞

⎠ ∈ X0

⎫
⎬

⎭
.

Then, the following result holds (Thieme 1990; Magal and Ruan 2018).

Lemma 2.3 For the partA0, D(A0) = X0 holds andA0 generates a strongly contin-
uous semigroup {F0(t)}t≥0 on X0 and F0(X0+) ⊂ X0+ .

Using the semigroup {F0(t)}t≥0, we can formulate an extended variation of con-
stants formula for (2.2), see Thieme (1990) and Magal and Ruan (2018).

Proposition 2.4 A positive function u(t) ∈ C(0, T ; X0) is an integral solution for
(2.2) if and only if u(t) is the positive continuous solution of the variation of constants
formula on X0:

u(t) = F0(t)u(0) + lim
λ→∞

∫ t

0
F0(t − s)λ(λ − A∗)−1B∗u(s)ds. (2.9)

From Proposition 2.4, it is sufficient to solve the extended variation of constants
formula (2.9) to obtain an integral solution of (2.2). It can be seen from Inaba (2006)
that without any essential modification to the proof for the classical variation of con-
stants formula, if B∗ is a locally Lipschitz continuous and bounded perturbation, we
can apply the contraction mapping principle to show the existence of positive local
solutions for the extended variation of constants formula (2.9). Since the norm of the
local solution grows at most exponentially, a local solution can be extended to a global
solution. Hence, we conclude that problem (2.2) has a unique global positive integral
solution.
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Next let {F(t)}t≥0 be a semigroupon X0 induced by settingF(t)u(0) = u(t), where
u(t) is an integral solution of (2.2). Then, it follows that {F(t)}t≥0 is a C0-semigroup
generated by the partA∗+B∗ in X0 = D(A∗). LetB′∗[u∗]denote theFréchet derivative
at u∗, ω0(A) and ω1(A) represent the growth bound and the essential growth bound of
the semigroup generated by A, respectively. Thus, the principle of linearized stability
for this evolution system (2.2) with non-densely defined generator can be stated as
follows (Thieme 1990):

Proposition 2.5 Let B∗ be continuously Fréchet differentiable in X0, and let u∗ be a
steady state of problem (2.2). If ω0(A∗ + B′∗[u∗]) < 0, then for any ω > ω0(A∗ +
B′∗[u∗]), there exist numbers M > 0 and δ > 0 such that

∥
∥F(t)u − u∗∥∥ ≤ Meωt

∥
∥u − u∗∥∥

for all u ∈ X0 with ‖u − u∗‖ ≤ δ, t ≥ 0.

Corollary 2.6 Suppose that ω1(A∗ + B′∗[u∗]) < 0. If all eigenvalues of A∗ + B′∗[u∗]
have strictly negative real part, then there exist ω < 0, δ > 0, and M > 0 such that

∥
∥F(t)u − u∗∥∥ ≤ Meωt

∥
∥u − u∗∥∥

for all u ∈ X0 with ‖u − u∗‖ ≤ δ, t ≥ 0. If at least one eigenvalue of A∗ + B′∗[u∗]
has strictly positive real part, then u∗ is an unstable steady state.

In the following sections, we consider two nonlinear double physiologically struc-
tured populations models where the birth and death rates are dependent on the total
population, which reduce to the classic nonlinear single age-structured models if one
of the structures disappears, see Chapter 4 of Webb (1984), where the models with
nonlinear death rate were referred to as semilinear and those with nonlinear death and
birth rates were referred to as nonlinear. In fact, they are both semilinear in the PDE
sense, but we keep using the notations in Webb (1984) for consistence. Moreover,
such nonlinear models are common in population dynamics, in particular when the
birth rates β, χ and mortality rate μ depend on the total population. In the following
text, we put letters S and N in the superscripts to denote the semilinear and nonlinear
cases, respectively.

3 Semilinear Double Physiologically StructuredModels

In this section, we consider the following first-order semilinear hyperbolic equation
with two internal variables:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut (t, a, s) + ua(t, a, s) + us(t, a, s) = −μ(a, s, P(t))u(t, a, s),

u(t, a, 0) = ∫ a+
0

∫ s+
0 χ(a, x, s)u(t, x, s)dsdx,

u(t, 0, s) = ∫ s+
0

∫ a+
0 β(a, x, s)u(t, a, x)dadx,

u(0, a, s) = φ(a, s),

P(t) = ∫ s+
0

∫ a+
0 u(t, a, s)dads,

(3.1)
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where μ(a, s, P) denotes the mortality rate of the population at age a with charac-
teristic s and total population P(t); β(a, x, s) and χ(a, x, s) describe the boundary
conditions and are like birth rates in population dynamics or transmission rates in
epidemic dynamics.

Assumption 3.1 Assume that

(i) β : [0, a+)×[0, s+)×[0, s+) → [0,∞) and χ : [0, a+)×[0, a+)×[0, s+) →
[0,∞) are nonnegative L1 integrable and Lipschitz continuous;

(ii) μ : [0, a+) × [0, s+) → [0,∞) is nonnegative L1 integrable and Lipschitz
continuous; μ(a, s, Pψ) ≥ μ(a, s, 0) for all (a, s) ∈ (0, a+) × (0, s+) and
ψ ∈ D(A), denote μ := inf(a,s)∈(0,a+)×(0,s+) μ(a, s, 0) > 0; μ(a, s, P) is dif-
ferentiable with respect to P and denote

μ1(·, ·, P) := ∂μ(·, ·, P)

∂P
;

Moreover, μ1 is also L1 integrable and Lipschitz continuous;
(iii) The following limits

lim
h→0

∫ s+

0
|β(a, x, s + h) − β(a, x, s)|ds = 0 (3.2)

and

lim
h→0

∫ a+

0
|χ(a + h, x, s) − χ(a, x, s)|da = 0 (3.3)

hold uniformly for (a, x) ∈ (0, a+) × (0, s+) and (x, s) ∈ (0, a+) × (0, s+),

respectively;
(iv) There exist two nonnegative functions ε1(x), ε2(x) such that β(a, x, s) ≥

ε1(x) > 0 and χ(a, x, s) ≥ ε2(x) > 0 for all a, s ∈ (0, a+) × (0, s+), respec-
tively;

(v) In addition,

sup
(a,x)∈(0,a+)×(0,s+)

β(a, x, s) ≤ β(s), where β ∈ L1((0, s+)),

sup
(x,s)∈(0,a+)×(0,s+)

χ(a, x, s) ≤ χ(a), where χ ∈ L1((0, a+)).

These assumptions and Lemma 2.2 guarantee the global existence of the integral
solutions, see Thieme (1990). Thus, in what follows we mainly focus on the existence

and stability of the nontrivial steady states. Suppose that

⎛

⎝
0
0
ψ̂

⎞

⎠ is a steady state, i.e.,
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A
⎛

⎝
0
0
ψ̂

⎞

⎠+ B
⎛

⎝
0
0
ψ̂

⎞

⎠ = 0,

where

A
⎛

⎝
0
0
ψ

⎞

⎠ :=
⎛

⎝
−ψ(a, 0)
−ψ(0, s)
−ψa − ψs

⎞

⎠ , B
⎛

⎝
0
0
ψ

⎞

⎠ :=
⎛

⎝
F(ψ)

H(ψ)

G(ψ)

⎞

⎠ ,

in which

F(ψ)(a) =
∫ a+

0

∫ s+

0
χ(a, x, s)ψ(x, s)dsdx, (3.4)

H(ψ)(s) =
∫ s+

0

∫ a+

0
β(a, x, s)ψ(a, x)dadx, (3.5)

G(ψ)(a, s) = −μ(a, s, Pψ)ψ(a, s), Pψ :=
∫ s+

0

∫ a+

0
ψ(a, s)dads. (3.6)

3.1 Existence of Nontrivial Steady States

In this subsection, we study the existence of the nontrivial steady state ψ̂ �= 0. From
the definition, ψ̂ satisfies the following equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψa + ψs + μ(a, s, Pψ)ψ = 0

ψ(a, 0) = F(ψ)(a)

ψ(0, s) = H(ψ)(s)

Pψ = ∫ a+
0

∫ s+
0 ψ(a, s)dsda.

(3.7)

Solving the problem, we obtain

ψ̂(a, s) =
{

ψ̂(a − s, 0)�P̂ (a, s, s), a − s ≥ 0,

ψ̂(0, s − a)�P̂ (a, s, a), a − s < 0,
(3.8)

where �P̂ (a, s, σ ) = e− ∫ σ
0 μ(a−τ,s−τ,P̂)dτ and P̂ = Pψ̂ . Denote α̂(s) =

ψ̂(0, s), η̂(a) = ψ̂(a, 0). Plugging the solution into the boundary conditions, we
get

η̂(a) =
∫ a+

0

∫ x

0
χ(a, x, s)η̂(x − s)�P̂ (x, s, s)dsdx

+
∫ s+

0

∫ s

0
χ(a, x, s)α̂(s − x)�P̂ (x, s, x)dxds,
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α̂(s) =
∫ s+

0

∫ x

0
β(a, x, s)α̂(x − a)�P̂ (a, x, a)dadx

+
∫ a+

0

∫ a

0
β(a, x, s)η̂(a − x)�P̂ (a, x, x)dxda.

Define �S
0 : R × L1(0, a+) × L1(0, s+) → R × L1(0, a+) × L1(0, s+) by

�S
0

⎛

⎝
P̂
η̂

α̂

⎞

⎠ =
⎛

⎝�S
10

⎛

⎝
P̂
η̂

α̂

⎞

⎠ ,�S
20

⎛

⎝
P̂
η̂

α̂

⎞

⎠ ,�S
30

⎛

⎝
P̂
η̂

α̂

⎞

⎠

⎞

⎠ , (3.9)

where

�S
10

⎛

⎝
P̂
η̂

α̂

⎞

⎠ =
∫ a+

0

∫ a

0
η̂(a − s)�P̂ (a, s, s)dsda

+
∫ s+

0

∫ s

0
α̂(s − a)�P̂ (a, s, a)dads,

�S
20

⎛

⎝
P̂
η̂

α̂

⎞

⎠ =
∫ a+

0

∫ x

0
χ(a, x, s)η̂(x − s)�P̂ (x, s, s)dsdx

+
∫ s+

0

∫ s

0
χ(a, x, s)α̂(s − x)�P̂ (x, s, x)dxds,

�S
30

⎛

⎝
P̂
η̂

α̂

⎞

⎠ =
∫ s+

0

∫ x

0
β(a, x, s)α̂(x − a)�P̂ (a, x, a)dadx

+
∫ a+

0

∫ a

0
β(a, x, s)η̂(a − x)�P̂ (a, x, x)dxda.

It is obvious that�S
0 is bounded by Assumption 3.1-(v) and�S

0

⎛

⎝
0
0
0

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠. Denote

the positive cone ofR× L1(0, a+)× L1(0, s+) by Y+, i.e., Y+ := R+ × L1+(0, a+)×
L1+(0, s+). Now the existence of a nontrivial steady state is equivalent to the existence
of a nontrivial fixed point of the map �S

0 . Note that �S
0 is a nonlinear operator, we

cannot apply the theory in the linear case (Kang et al. 2020) to this one directly.
Fortunately, we have a fixed point theorem of Inaba (1990), which can be regarded
as a special case of the Krasnoselskii’s theorem, see (Krasnoselskii 1964, Theorem
4.11). The theorem is described as follows:

Theorem 3.2 (Inaba 1990) Let E be a real Banach space and E+ be its positive cone.
Let� be a positive operator from E+ to itself and T := � ′[0] be its Fréchet derivative
at 0. If
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(i) �(0) = 0;
(ii) � is compact and bounded;
(iii) T has a positive eigenvector v0 ∈ E+\{0} associated with an eigenvalue λ0 > 1;
(iv) T has no eigenvector in E+ associated with the eigenvalue 1,

then � has at least one nontrivial fixed point in E+.

In case where T is a majorant of � (that is, T is a linear operator such that �(φ) ≤
Tφ for any φ ∈ E+), the following theorem also holds (see Inaba 2014, Proposition
7.8).

Theorem 3.3 (Inaba 2014) Let E be a real Banach space and E+ be its positive
cone. Let � be a positive operator from E+ to itself and T be its compact and semi-
nonsupporting majorant. Then, � has no trivial fixed point in E+ provided r(T ) ≤ 1.

By some computations, we obtain the Fréchet derivative of �S
0 at (0, 0, 0)T , where

T represents the transpose,

T S

⎛

⎝
P
η

α

⎞

⎠ := �S
0
′
(0, 0, 0)T

⎛

⎝
P
η

α

⎞

⎠ =

⎛

⎜
⎜
⎜
⎝

0
∂�S

10
∂η̂

(0, 0, 0)T
∂�S

10
∂α̂

(0, 0, 0)T

0
∂�S

20
∂η̂

(0, 0, 0)T
∂�S

10
∂α̂

(0, 0, 0)T

0
∂�S

30
∂η̂

(0, 0, 0)T
∂�S

30
∂α̂

(0, 0, 0)T

⎞

⎟
⎟
⎟
⎠

⎛

⎝
P
η

α

⎞

⎠ ,

(3.10)

where

T S

⎛

⎝
P
η

α

⎞

⎠ =
⎛

⎝T S
1

⎛

⎝
P
η

α

⎞

⎠ , T S
2

⎛

⎝
P
η

α

⎞

⎠ , T S
3

⎛

⎝
P
η

α

⎞

⎠

⎞

⎠ ,

in which

T S
1

⎛

⎝
P
η

α

⎞

⎠ =
∫ a+

0

∫ a

0
η(a − s)�0(a, s, s)dsda

+
∫ s+

0

∫ s

0
α(s − a)�0(a, s, a)dads,

T S
2

⎛

⎝
P
η

α

⎞

⎠ =
∫ a+

0

∫ x

0
χ(a, x, s)η(x − s)�0(x, s, s)dsdx

+
∫ s+

0

∫ s

0
χ(a, x, s)α(s − x)�0(x, s, x)dxds,

T S
3

⎛

⎝
P
η

α

⎞

⎠ =
∫ a+

0

∫ a

0
β(a, x, s)η(a − x)�0(a, x, x)dxda
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+
∫ s+

0

∫ x

0
β(a, x, s)α(x − a)�0(a, x, a)dadx .

By Assumption 3.1-(ii), it is easy to check that �S
0

⎛

⎝
P
η

α

⎞

⎠ ≤ T S

⎛

⎝
P
η

α

⎞

⎠ , which implies

that T S is a majorant of �S
0 .

Proposition 3.4 Let �S
0 and T S be defined by (3.9) and (3.10), respectively.

(ii) If r(T S) ≤ 1, then �S
0 has only the trivial fixed point

⎛

⎝
0
0
0

⎞

⎠ in Y+;

(i) If r(T S) > 1, then �S
0 has at least one nontrivial fixed point

⎛

⎝
P̂
η̂

α̂

⎞

⎠ in Y+\{0}.

Proof Note that �S
0 is bounded. First let us prove that �S

0 is compact. Consider a
bounded set K ⊂ R × L1(0, a+) × L1(0, s+), note that

∣
∣
∣
∣
∣
∣
�S

10

⎛

⎝
P̂
η̂

α̂

⎞

⎠

∣
∣
∣
∣
∣
∣
≤ 1

μ

(∥
∥η̂
∥
∥
L1(0,a+)

+ ∥
∥α̂
∥
∥
L1(0,s+)

)
,

which is uniformly bounded in K . It follows that �S
10 : K → R is compact. We have

∥
∥
∥
∥
∥
∥
�S

20

⎛

⎝
P̂
η̂

α̂

⎞

⎠ (a + h) − �S
20

⎛

⎝
P̂
η̂

α̂

⎞

⎠ (a)

∥
∥
∥
∥
∥
∥
L1(0,a+)

≤ ∣
∣
∫ a+

0

∫ a+

0

∫ x

0
χ(a + h, x, s)η̂(x − s)�P̂ (x, s, s)dsdxda

+
∫ a+

0

∫ s+

0

∫ s

0
χ(a + h, x, s)α̂(s − x)�P̂ (x, s, x)dxdsda

−
∫ a+

0

∫ a+

0

∫ x

0
χ(a, x, s)η̂(x − s)�P̂ (x, s, s)dsdxda

+
∫ a+

0

∫ s+

0

∫ s

0
χ(a, x, s)α̂(s − x)�P̂ (x, s, x)dxdsda

∣
∣

≤
∫ a+

0

∫ a+

0

∫ x

0
|χ(a + h, x, s) − χ(a, x, s)|η̂(x − s)�P̂ (x, s, s)dsdxda

+
∫ a+

0

∫ s+

0

∫ s

0
|χ(a + h, x, s) − χ(a, x, s)|α̂(s − x)�P̂ (x, s, x)dxdsda

→ 0 as h → 0 (3.11)
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by Assumption 3.1-(iii). Similarly, we can show the convergence for �S
30, which

implies that �S
0 is a compact operator by Kolmogorov compactness criterion. More-

over, we can show that T S is also compact by using similar steps.
Next given r(T S) > 1, we show that T S is semi-nonsupporting via proving

that every proper eigenvector corresponding to the proper eigenvalue r(T S) lying
in Y+ is a quasi-interior point of Y+ and every proper eigenvector corresponding
to r(T S) lying in Y ∗+ is strictly positive (see Proposition A.2 and the definitions
of semi-nonsupporting, proper eigenvalue (eigenvector) and quasi-interior point in

“Appendix”). If

⎛

⎝
P
η

α

⎞

⎠ =
⎛

⎝
P
0
0

⎞

⎠ with P > 0, then T S

⎛

⎝
P
η

α

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠. It follows that

⎛

⎝
P
0
0

⎞

⎠ is not a proper eigenvector corresponding to the proper eigenvalue r(T S), oth-

erwise

⎛

⎝
0
0
0

⎞

⎠ = T S

⎛

⎝
P
0
0

⎞

⎠ = r(T S)

⎛

⎝
P
0
0

⎞

⎠ >

⎛

⎝
0
0
0

⎞

⎠ is a contradiction. Thus, we only

consider the points in Y+ which have the form of

⎛

⎝
P
η

α

⎞

⎠ with

(
η

α

)

�=
(
0
0

)

.

It is easy to see that T S
1 : Y+ → R is positive for all

(
η

α

)

∈ L1+(0, a+) ×

L1+(0, s+)\
{(

0
0

)}

and thus nonsupporting. Noting that T S
i

⎛

⎝
P
η

α

⎞

⎠ for i = 2, 3 do not

contain the terms of P . Thus, we can reduce it into a two-dimensional operator T̃ S ,
i.e.,

T̃ S
(

η

α

)

=
(

T S
2

(
η

α

)

, T S
3

(
η

α

))

.

Define a positive functional T̃ = (T2,T3) by

〈

T2,

(
η

α

)〉

:=
∫ a+

0

∫ x

0
ε1(x)�0(x, s, s)η(x − s)dsdx

+
∫ s+

0

∫ s

0
ε1(x)�0(x, s, x)α(s − x)dxds,

〈

T3,

(
η

α

)〉

:=
∫ s+

0

∫ x

0
ε2(x)�0(a, x, a)α(x − a)dadx

+
∫ a+

0

∫ a

0
ε2(x)�0(a, x, x)η(a − x)dxda. (3.12)
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From Assumption 3.1-(iv), T̃ is a strictly positive functional and we have

T̃ S
(

η

α

)

=
(

T S
2

(
η

α

)

, T S
3

(
η

α

))

≥
(〈

T2,

(
η

α

)〉

e2,

〈

T3,

(
η

α

)〉

e3

)

,

(3.13)

where

(
e2
e3

)

≡ 1 is a quasi-interior point in L1(0, a+) × L1(0, s+). Moreover, we

have

(T̃ S)2
(

η

α

)

= T̃ S
(

T S
2

(
η

α

)

, T S
3

(
η

α

))

=
(

T S
2

(

T S
2

(
η

α

)

, T S
3

(
η

α

))

, T S
3

(

T S
2

(
η

α

)

, T S
3

(
η

α

)))

,

where

T S
i

(

T S
2

(
η

α

)

, T S
3

(
η

α

))

≥
〈

Ti ,

(

T S
2

(
η

α

)

, T S
3

(
η

α

))〉

ei

≥
〈

Ti ,

(〈

T2,

(
η

α

)〉

e2,

〈

T3,

(
η

α

)〉

e3

)〉

ei

≥ min

{〈

T2,

(
η

α

)〉

,

〈

T3,

(
η

α

)〉} 〈

Ti ,

(
e2
e3

)〉

ei

:= min

〈

T̃ ,

(
η

α

)〉 〈

Ti ,

(
e2
e3

)〉

ei , i = 2, 3.

It follows that

(T̃ S)2
(

η

α

)

≥ min

〈

T̃ ,

(
η

α

)〉(〈

T2,

(
e2
e3

)〉

e2,

〈

T3,

(
e2
e3

)〉

e3

)

≥ min

〈

T̃ ,

(
η

α

)〉

min

〈

T̃ ,

(
e2
e3

)〉(
e2
e3

)

.

By induction for any integer n we have

(T̃ S)n+1
(

η

α

)

≥ min

〈

T̃ ,

(
η

α

)〉 [

min

〈

T̃ ,

(
e2
e3

)〉]n (e2
e3

)

.

Then, we obtain

〈

T , (T̃ S)n
(

η

α

)〉

> 0, n ≥ 1
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for every pair

(
η

α

)

∈ L1+(0, a+) × L1+(0, s+)\
{(

0
0

)}

,T ∈ (L1+(0, a+))∗ × (L1+(0, s+))∗\
{(

0
0

)}

;

that is, we know that T̃ S is a nonsupporting operator, thus semi-nonsupporting, which
implies that condition (A) holds in Proposition A.2 in “Appendix” for T̃ S . It follows
that

⎛

⎝
P
η

α

⎞

⎠ = [r(T S)]−1T S

⎛

⎝
P
η

α

⎞

⎠ is a quasi-interior point andF is strictly positive for

(
η

α

)

�=
(
0
0

)

implies that condition (A) also holds for T S . In summary, T S is a semi-nonsupporting
operator.

Now we prove (i). Since �S
0 is a positive operator from the positive cone Y+ into

itself and T S is the positive linear majorant of �S
0 , we can apply Theorem 3.3 to

conclude that �S
0 has no nontrivial fixed point in Y+ provided r(T S) ≤ 1.

Next, we prove (ii). Conditions (i) and (ii) of Theorem 3.2 follow from the above
arguments. We apply the theory of semi-nonsupporting operators (see Inaba 2014
or Marek 1970) to prove that r(T S) > 1 is an eigenvalue of operator T S with a
corresponding positive nonzero eigenvector and T S does not has any eigenvector
associated with eigenvalue 1. Hence, conditions (iii) and (iv) of Theorem 3.2 follow
and, consequently, �S

0 has at least one nontrivial fixed point in Y+. This completes the
proof. 	


The existence of a nontrivial fixed point of �S
0 implies the existence of a nontrivial

steady state solution ψ̂ ∈ D(A)\{0} of system (3.1). In conclusion, from Proposi-
tion 3.4, the following theorem can be obtained as one the main results of this paper.

Proposition 3.5 Let T S be defined in (3.10).

(i) If r(T S) ≤ 1, then system (3.1) has only the trivial steady state 0 in D(A);
(ii) If r(T S) > 1, then system (3.1) has at least one nontrivial steady state ψ̂ in

D(A)\{0}.

3.2 Stability

It is easy to see that

(G ′(ψ̂)ψ)(a, s) = −μ1(a, s, Pψ̂)Pψψ̂(a, s) − μ(a, s, Pψ̂)ψ(a, s).

Now define

X1

⎛

⎝
0
0
ψ

⎞

⎠ :=
⎛

⎝
0
0

−μ(a, s, Pψ̂)ψ

⎞

⎠ and X2

⎛

⎝
0
0
ψ

⎞

⎠ :=
⎛

⎝
F(ψ)

H(ψ)

C(ψ)

⎞

⎠ ,
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where C(ψ) := −μ1(·, ·, P̂)Pψψ̂, P̂ = Pψ̂ . Observe that C is a compact operator
in E , thus X2 is also compact in X . By the method of characteristic lines, we see that
A +X1 generates a nilpotent semigroup and its perturbed semigroup by the compact
operator X2 is eventually compact. Hence,

ω1(A + B′[ψ̂]) = ω1(A + X1 + X2) = ω1(A + X1) = −∞.

It follows that the stability of ψ̂ is determined by the eigenvalues of A + B′[ψ̂].
Accordingly, let λ ∈ C and let

B̂S

⎛

⎝
0
0
ψ

⎞

⎠ = λ

⎛

⎝
0
0
ψ

⎞

⎠ for

⎛

⎝
0
0
ψ

⎞

⎠ ∈ D(A) and ψ �= 0,

where B̂S := A + B′[ψ̂].
In the following, we study the stability of the steady state. From the definition of

B̂S , we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψa + ψs + λψ + μ(a, s, P̂)ψ + μ1(a, s, P̂)Pψψ̂ = 0

ψ(a, 0) = F(ψ)(a)

ψ(0, s) = H(ψ)(s)

Pψ = ∫ a+
0

∫ s+
0 ψ(a, s)dsda,

(3.14)

where P̂ = Pψ̂ . Solving the problem, we get

ψ(a, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ(a − s, 0)e−λs�P̂ (a, s, s)

− ∫ s
0 e−λσ �P̂ (a, s, σ )Pψμ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσ, a − s ≥ 0,

ψ(0, s − a)e−λa�P̂ (a, s, a)

− ∫ a
0 e−λσ �P̂ (a, s, σ )Pψμ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσ, a − s < 0,

(3.15)

where �P̂ (a, s, σ ) = e− ∫ σ
0 μ(a−τ,s−τ,P̂)dτ . Denote α(s) = ψ(0, s), η(a) = ψ(a, 0).

First we express Pψ in terms of α and η. By the definition of Pψ , we obtain

Pψ =
∫ a+

0

∫ a

0
η(a − s)e−λs�P̂ (a, s, s)dsda

−
∫ a+

0

∫ a

0

∫ s

0
e−λσ �P̂ (a, s, σ )Pψμ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσdsda

+
∫ s+

0

∫ s

0
α(s − a)e−λa�P̂ (a, s, a)dads

−
∫ s+

0

∫ s

0

∫ a

0
e−λσ �P̂ (a, s, σ )Pψμ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσdads,
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which implies that

Pψ

[

1 +
∫ a+

0

∫ a

0

∫ s

0
e−λσ �P̂ (a, s, σ )μ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσdsda

+
∫ s+

0

∫ s

0

∫ a

0
e−λσ �P̂ (a, s, σ )μ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσdads

]

=
∫ a+

0

∫ a

0
η(a − s)e−λs�P̂ (a, s, s)dsda +

∫ s+

0

∫ s

0
α(s − a)e−λa�P̂ (a, s, a)dads

:= Bλ(η, α) (3.16)

where Bλ : L1(0, a+) × L1(0, s+) → R is a functional in L1(0, a+) × L1(0, s+) for
all λ ∈ R. Denote

A(λ) =
∫ a+

0

∫ a

0

∫ s

0
e−λσ �P̂ (a, s, σ )μ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσdsda

+
∫ s+

0

∫ s

0

∫ a

0
e−λσ �P̂ (a, s, σ )μ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσdads.

(3.17)

It follows that Pψ = (1+ A(λ))−1Bλ(η, α). Now plugging (3.15) into the boundary
conditions, we obtain

η(a) =
∫ a+

0

∫ x

0
χ(a, x, s)η(x − s)e−λs�P̂ (x, s, s)dsdx

−Pψ

∫ a+

0

∫ x

0

∫ s

0
χ(a, x, s)e−λσ �P̂ (x, s, σ )

μ1(x − σ, s − σ, P̂)ψ̂(x − σ, s − σ)dσdsdx

+
∫ s+

0

∫ s

0
χ(a, x, s)α(s − x)e−λx�P̂ (x, s, x)dxds

−Pψ

∫ s+

0

∫ s

0

∫ x

0
χ(a, x, s)e−λσ �P̂ (x, s, σ )

μ1(x − σ, s − σ, P̂)ψ̂(x − σ, s − σ)dσdxds,

α(s) =
∫ s+

0

∫ x

0
β(a, x, s)α(x − a)e−λa�P̂ (a, x, a)dadx

−Pψ

∫ s+

0

∫ x

0

∫ a

0
β(a, x, s)e−λσ �P̂ (a, x, σ )

μ1(a − σ, x − σ, P̂)ψ̂(a − σ, x − σ)dσdadx

+
∫ a+

0

∫ a

0
β(a, x, s)η(a − x)e−λx�P̂ (a, x, x)dxda
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−Pψ

∫ a+

0

∫ a

0

∫ x

0
β(a, x, s)e−λσ �P̂ (a, x, σ )

μ1(a − σ, x − σ, P̂)ψ̂(a − σ, x − σ)dσdxda. (3.18)

Now define

�S
1λ(η, α)(a) =

∫ a+

0

∫ x

0
χ(a, x, s)η(x − s)e−λs�P̂ (x, s, s)dsdx

+
∫ s+

0

∫ s

0
χ(a, x, s)α(s − x)e−λx�P̂ (x, s, x)dxds,

�S
2λ(η, α)(s) =

∫ s+

0

∫ x

0
β(a, x, s)α(x − a)e−λa�P̂ (a, x, a)dadx

+
∫ a+

0

∫ a

0
β(a, x, s)η(a − x)e−λx�P̂ (a, x, x)dxda,

K S
1λ(a) =

∫ a+

0

∫ x

0

∫ s

0
χ(a, x, s)e−λσ �P̂ (x, s, σ )

μ1(x − σ, s − σ, P̂)ψ̂(x − σ, s − σ)dσdsdx,

K S
2λ(a) =

∫ s+

0

∫ s

0

∫ x

0
χ(a, x, s)e−λσ �P̂ (x, s, σ )

μ1(x − σ, s − σ, P̂)ψ̂(x − σ, s − σ)dσdxds,

K S
3λ(s) =

∫ s+

0

∫ x

0

∫ a

0
β(a, x, s)e−λσ �P̂ (a, x, σ )

μ1(a − σ, x − σ, P̂)ψ̂(a − σ, x − σ)dσdadx,

K S
4λ(s) =

∫ a+

0

∫ a

0

∫ x

0
β(a, x, s)e−λσ �P̂ (a, x, σ )

μ1(a − σ, x − σ, P̂)ψ̂(a − σ, x − σ)dσdxda.

Thus, the two equations in (3.18) become

{
η(a) = �S

1λ(η, α)(a) − (1 + A(λ))−1Bλ(η, α)(K S
1λ(a) + K S

2λ(a)),

α(s) = �S
2λ(η, α)(s) − (1 + A(λ))−1Bλ(η, α)(K S

3λ(s) + K S
4λ(s)).

(3.19)

Next, define

�S
λ := (�S

1λ,�
S
2λ)

and

MS
λ (a) = (1 + A(λ))−1(K S

1λ(a) + K S
2λ(a)), V S

λ (s) = (1 + A(λ))−1(K S
3λ(s) + K S

3λ(s)).
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Then, it follows that

(
η

α

)

=
(

�S
λ −

(
MS

λ (a)

V S
λ (s)

)

Bλ

)(
η

α

)

.

Denote

�S
λ := �S

λ −
(
MS

λ (a)

V S
λ (s)

)

Bλ.

Since MS
λ (a)Bλ and V S

λ (s)Bλ are compact by the L1 compactness criterion and �S
λ

is compact under Assumption 3.1-(iii), �S
λ is also compact in L1(0, a+) × L1(0, s+)

for all λ ∈ C.
In addition, under Assumption 3.1-(iv), it is easy to show that �S

λ and MS
λ (a)Bλ,

V S
λ (s)Bλ are nonsupporting, then �S

λ is also nonsupporting in L1(0, a+)× L1(0, s+)

for all λ ∈ R. Thus, we have the following results (see Kang et al. 2020).

Proposition 3.6 We have the following statements:

(i) �S := {λ ∈ C : 1 ∈ σ(�S
λ)} = {λ ∈ C : 1 ∈ σP (�S

λ)}, where σ(A) and σP (A)

denote the spectrum and point spectrum of the operator A, respectively;
(ii) There exists a unique real number λS

0 ∈ �S such that r(�S
λ0

) = 1 and λS
0 > 0 if

r(�S
0 ) > 1; λS

0 = 0 if r(�S
0 ) = 1; and λS

0 < 0 if r(�S
0 ) < 1;

(iii) λS
0 > sup{Reλ : λ ∈ �S\{λS

0 }};
(iv) λS

0 is the dominant eigenvalue of B̂S, i.e., λS
0 is greater than all real parts of the

eigenvalues of B̂S. Moreover, it is a simple eigenvalue of B̂S;
(v) {λ ∈ C : λ ∈ ρ(B̂S)} = {λ ∈ C : 1 ∈ ρ(�S

λ)}, where ρ(A) denotes the resolvent
set of A;

(vi) λS
0 = s(B̂S) := sup{Reλ : λ ∈ σ(B̂S)}.

Next, we can state the result on the stability of the steady state.

Theorem 3.7 The steady state ψ̂ �= 0 is locally exponentially asymptotically stable if
r(�S

0 ) < 1 and unstable if r(�S
0 ) > 1.

Remark 3.8 When ψ̂ = 0, it reduces to the linear case considered in Kang et al. (2020)
and �S

λ = Fλ.

4 Nonlinear Double Physiologically StructuredModels

In this section, we consider the following nonlinear equation with two internal
variables
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut (t, a, s) + ua(t, a, s) + us(t, a, s) = −μ(a, s, P(t))u(t, a, s)

u(t, a, 0) = ∫ a+
0

∫ s+
0 χ(a, x, s, P(t))u(t, x, s)dsdx

u(t, 0, s) = ∫ s+
0

∫ a+
0 β(a, x, s, P(t))u(t, a, x)dadx

u(0, a, s) = φ(a, s)

P(t) = ∫ s+
0

∫ a+
0 u(t, a, s)dads

(4.1)

Assume that μ, χ , and β are differentiable with respect to P , and denote their deriva-

tives by μ1(·, ·, P), χ1(·, ·, ·, P) and β1(·, ·, ·, P), respectively. Suppose that

⎛

⎝
0
0
ψ̂

⎞

⎠ is

a steady state, i.e.,

A
⎛

⎝
0
0
ψ̂

⎞

⎠+ B
⎛

⎝
0
0
ψ̂

⎞

⎠ = 0,

where

A
⎛

⎝
0
0
ψ

⎞

⎠ :=
⎛

⎝
−ψ(a, 0)
−ψ(0, s)
−ψa − ψs

⎞

⎠ and B
⎛

⎝
0
0
ψ

⎞

⎠ :=
⎛

⎝
F(ψ)

H(ψ)

G(ψ)

⎞

⎠ ,

in which

F(ψ)(a) =
∫ a+

0

∫ s+

0
χ(a, x, s, Pψ)ψ(x, s)dsdx,

H(ψ)(s) =
∫ s+

0

∫ a+

0
β(a, x, s, Pψ)ψ(a, x)dadx,

G(ψ)(a, s) = −μ(a, s, Pψ)ψ(a, s),

where Pψ := ∫ s+
0

∫ a+
0 ψ(a, s)dads. Further, we make the following assumption.

Assumption 4.1 Assumption 3.1 holds with χ(a, x, s) and β(a, x, s) being replaced
by χ(a, x, s, P) and β(a, x, s, P), respectively. Moreover, χ1 and β1 also satisfy
Assumption 3.1. Furthermore, β(a, x, s, Pψ) ≤ β(a, x, s, 0) and χ(a, x, s, Pψ) ≤
χ(a, x, s, 0) for all a, x, s ≥ 0 and ψ ∈ D(A).

We can obtain the global existence of integral solutions of (4.1) under Assumption
4.1. Here, we aremainly concernedwith the existence and stability of nontrivial steady
states of (4.1).
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4.1 Existence of Nontrivial Steady States

In this subsection, we study the existence of a nontrivial steady state ψ̂ �= 0. From the
definition, ψ̂ satisfies the following equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψa + ψs + μ(a, s, Pψ)ψ = 0

ψ(a, 0) = F(ψ)(a)

ψ(0, s) = H(ψ)(s)

Pψ = ∫ a+
0

∫ s+
0 ψ(a, s)dsda.

(4.2)

Solving the problem, we obtain

ψ̂(a, s) =
{

ψ̂(a − s, 0)�P̂ (a, s, s), a − s ≥ 0,

ψ̂(0, s − a)�P̂ (a, s, a), a − s < 0,
(4.3)

where �P̂ (a, s, σ ) = e− ∫ σ
0 μ(a−τ,s−τ,P̂)dτ and P̂ = Pψ̂ . Denote α̂(s) =

ψ̂(0, s), η̂(a) = ψ̂(a, 0). Plugging the solution into the boundary conditions, we
have

η̂(a) =
∫ a+

0

∫ x

0
χ(a, x, s, P̂)η̂(x − s)�P̂ (x, s, s)dsdx

+
∫ s+

0

∫ s

0
χ(a, x, s, P̂)α̂(s − x)�P̂ (x, s, x)dxds,

α̂(s) =
∫ s+

0

∫ x

0
β(a, x, s, P̂)α̂(x − a)�P̂ (a, x, a)dadx

+
∫ a+

0

∫ a

0
β(a, x, s, P̂)η̂(a − x)�P̂ (a, x, x)dxda.

Define �N
0 : R × L1(0, a+) × L1(0, s+) → R × L1(0, a+) × L1(0, s+) by

�N
0

⎛

⎝
P̂
η̂

α̂

⎞

⎠ =
⎛

⎝�N
10

⎛

⎝
P̂
η̂

α̂

⎞

⎠ ,�N
20

⎛

⎝
P̂
η̂

α̂

⎞

⎠ ,�N
30

⎛

⎝
P̂
η̂

α̂

⎞

⎠

⎞

⎠ , (4.4)

where

�N
10

⎛

⎝
P̂
η̂

α̂

⎞

⎠ =
∫ a+

0

∫ a

0
η̂(a − s)�P̂ (a, s, s)dsda

+
∫ s+

0

∫ s

0
α̂(s − a)�P̂ (a, s, a)dads,
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�N
20

⎛

⎝
P̂
η̂

α̂

⎞

⎠ =
∫ a+

0

∫ x

0
χ(a, x, s, P̂)η̂(x − s)�P̂ (x, s, s)dsdx

+
∫ s+

0

∫ s

0
χ(a, x, s, P̂)α̂(s − x)�P̂ (x, s, x)dxds,

�N
30

⎛

⎝
P̂
η̂

α̂

⎞

⎠ =
∫ s+

0

∫ x

0
β(a, x, s, P̂)α̂(x − a)�P̂ (a, x, a)dadx

+
∫ a+

0

∫ a

0
β(a, x, s, P̂)η̂(a − x)�P̂ (a, x, x)dxda.

Now the existence of a nontrivial steady state is equivalent to the existence of a
nontrivial fixed point of map �N

0 . Using a similar method as in dealing with the
semilinear case, we apply Theorems 3.2 and 3.3. Noting that the Fréchet derivative of
�N

0 at (0, 0, 0)T is given as follows:

T N

⎛

⎝
P
η

α

⎞

⎠ := �N
0

′
(0, 0, 0)

⎛

⎝
P
η

α

⎞

⎠ =
⎛

⎝T N
1

⎛

⎝
P
η

α

⎞

⎠ , T N
2

⎛

⎝
P
η

α

⎞

⎠ , T N
3

⎛

⎝
P
η

α

⎞

⎠

⎞

⎠ , (4.5)

in which

T N
1

⎛

⎝
P
η

α

⎞

⎠ =
∫ a+

0

∫ a

0
η(a − s)�0(a, s, s)dsda

+
∫ s+

0

∫ s

0
α(s − a)�0(a, s, a)dads,

T N
2

⎛

⎝
P
η

α

⎞

⎠ =
∫ a+

0

∫ x

0
χ(a, x, s, 0)η(x − s)�0(x, s, s)dsdx

+
∫ s+

0

∫ s

0
χ(a, x, s, 0)α(s − x)�0(x, s, x)dxds,

T N
3

⎛

⎝
P
η

α

⎞

⎠ =
∫ a+

0

∫ a

0
β(a, x, s, 0)η(a − x)�0(a, x, x)dxda

+
∫ s+

0

∫ x

0
β(a, x, s, 0)α(x − a)�0(a, x, a)dadx .

By Assumption 4.1, it is easy to check that �N
0

⎛

⎝
P
η

α

⎞

⎠ ≤ T N

⎛

⎝
P
η

α

⎞

⎠which implies that

T N is a majorant of �N
0 .
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Proposition 4.2 Let �N
0 and T N defined by (4.4) and (4.5), respectively.

(i) If r(T N ) ≤ 1, then �N
0 has only the trivial fixed point

⎛

⎝
0
0
0

⎞

⎠ in Y+;

(ii) If r(T N ) > 1, then �N
0 has at least one nontrivial fixed point

⎛

⎝
P̂
η̂

α̂

⎞

⎠ in Y+\{0}.

Proof The proof is similar to that of Proposition 3.4 once noting Assumption 4.1, so
we omit it. 	


Similarly, we have the following results on the existence of steady states.

Proposition 4.3 Let T N be defined in (4.5).

(i) If r(T N ) ≤ 1, then system (4.1) has only the trivial steady state 0 in D(A).
(i) If r(T N ) > 1, then system (4.1) has at least one nontrivial steady state ψ̂ in

D(A)\{0};

4.2 Stability

We can verify that

(F ′(ψ̂)ψ)(a) = Pψ

∫ a+

0

∫ s+

0
χ1(a, x, s, P̂)ψ̂(x, s)dsdx

+
∫ a+

0

∫ s+

0
χ(a, x, s, P̂)ψ(x, s)dsdx,

(H ′(ψ̂)ψ)(s) = Pψ

∫ s+

0

∫ a+

0
β1(a, x, s, P̂)ψ̂(a, x)dadx

+
∫ s+

0

∫ a+

0
β(a, x, s, P̂)ψ(a, x)dadx,

(G ′(ψ̂)ψ)(a, s) = −μ1(a, s, Pψ̂)Pψψ̂(a, s)

−μ(a, s, Pψ̂)ψ(a, s).

Now define

X1

⎛

⎝
0
0
ψ

⎞

⎠ :=
⎛

⎝
0
0

−μ(a, s, Pψ̂)ψ

⎞

⎠ , X2

⎛

⎝
0
0
ψ

⎞

⎠ :=
⎛

⎝
F ′(ψ̂)ψ

H ′(ψ̂)ψ

C(ψ)

⎞

⎠ ,

where C(ψ) := −μ1(·, ·, P̂)Pψψ̂, P̂ = Pψ̂. Observe that C is a compact oper-
ator in E and F ′, H ′ are also compact in L1(0, a+), L1(0, s+), respectively under
Assumption 4.1, thus X2 is also compact in X . By the method of characteristic lines,
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we see that A + X1 generates a nilpotent semigroup and its perturbed semigroup by
the compact operator X2 is eventually compact. Hence,

ω1(A + B′[ψ̂]) = ω1(A + X1 + X2) = ω(A + X1) = −∞.

It follows that the stability of ψ̂ is determined by the eigenvalues of A + B′[ψ̂]. Let

λ ∈ C and B̂N

⎛

⎝
0
0
ψ

⎞

⎠ = λ

⎛

⎝
0
0
ψ

⎞

⎠ for

⎛

⎝
0
0
ψ

⎞

⎠ ∈ D(A) and ψ �= 0,

where B̂N := A + B′[ψ̂]. Using the definition of B̂N , we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψa + ψs + λψ + μ(a, s, P̂)ψ + μ1(a, s, P̂)Pψψ̂ = 0

ψ(a, 0) = (F ′(ψ̂)ψ)(a)

ψ(0, s) = (H ′(ψ̂)ψ)(s)

Pψ = ∫ a+
0

∫ s+
0 ψ(a, s)dsda,

(4.6)

where P̂ = Pψ̂ . Solving the initial-boundary value problem, we obtain that

ψ(a, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ(a − s, 0)e−λs�P̂ (a, s, s)

− ∫ s
0 e−λσ �P̂ (a, s, σ )Pψμ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσ, a − s ≥ 0,

ψ(0, s − a)e−λa�P̂ (a, s, a)

− ∫ a
0 e−λσ �P̂ (a, s, σ )Pψμ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσ, a − s < 0,

(4.7)

where �P̂ (a, s, σ ) = e− ∫ σ
0 μ(a−τ,s−τ,P̂)dτ . Denote α(s) = ψ(0, s), η(a) = ψ(a, 0).

To evaluate Pψ , using the definition of Pψ yields that

Pψ =
∫ a+

0

∫ a

0
η(a − s)e−λs�P̂ (a, s, s)dsda

−
∫ a+

0

∫ a

0

∫ s

0
e−λσ �P̂ (a, s, σ )Pψμ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσdsda

+
∫ s+

0

∫ s

0
α(s − a)e−λa�P̂ (a, s, a)dads

−
∫ s+

0

∫ s

0

∫ a

0
e−λσ �P̂ (a, s, σ )Pψμ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσdads,
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which implies that

Pψ

[

1 +
∫ a+

0

∫ a

0

∫ s

0
e−λσ �P̂ (a, s, σ )μ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσdsda

+
∫ s+

0

∫ s

0

∫ a

0
e−λσ �P̂ (a, s, σ )μ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσdads

]

=
∫ a+

0

∫ a

0
η(a − s)e−λs�P̂ (a, s, s)dsda +

∫ s+

0

∫ s

0
α(s − a)e−λa�P̂ (a, s, a)dads

= Bλ(η, α), (4.8)

where Bλ : L1(0, a+)× L1(0, s+) → R is a functional in L1(0, a+)× L1(0, s+) and
for all λ ∈ R. Define

A(λ) =
∫ a+

0

∫ a

0

∫ s

0
e−λσ �P̂ (a, s, σ )μ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσdsda

+
∫ s+

0

∫ s

0

∫ a

0
e−λσ �P̂ (a, s, σ )μ1(a − σ, s − σ, P̂)ψ̂(a − σ, s − σ)dσdads.

(4.9)

It follows that Pψ = (1 + A(λ))−1Bλ(η, α). Substituting (4.7) in the boundary
conditions, we have

η(a) =
∫ a+

0

∫ x

0
χ(a, x, s, P̂)η(x − s)e−λs�P̂ (x, s, s)dsdx

− Pψ

∫ a+

0

∫ x

0

∫ s

0
χ(a, x, s, P̂)e−λσ �P̂ (x, s, σ )μ1(x − σ, s − σ, P̂)ψ̂(x − σ, s − σ)dσdsdx

+
∫ s+

0

∫ s

0
χ(a, x, s, P̂)α(s − x)e−λx�P̂ (x, s, x)dxds

− Pψ

∫ s+

0

∫ s

0

∫ x

0
χ(a, x, s, P̂)e−λσ �P̂ (x, s, σ )μ1(x − σ, s − σ, P̂)ψ̂(x − σ, s − σ)dσdxds

+ Pψ

∫ a+

0

∫ s+

0
χ1(a, x, s, P̂)ψ̂(x, s)dsdx,

α(s) =
∫ s+

0

∫ x

0
β(a, x, s, P̂)α(x − a)e−λa�P̂ (a, x, a)dadx

− Pψ

∫ s+

0

∫ x

0

∫ a

0
β(a, x, s, P̂)e−λσ �P̂ (a, x, σ )μ1(a − σ, x − σ, P̂)ψ̂(a − σ, x − σ)dσdadx

+
∫ a+

0

∫ a

0
β(a, x, s, P̂)η(a − x)e−λx�P̂ (a, x, x)dxda

− Pψ

∫ a+

0

∫ a

0

∫ x

0
β(a, x, s, P̂)e−λσ �P̂ (a, x, σ )μ1(a − σ, x − σ, P̂)ψ̂(a − σ, x − σ)dσdxda

+ Pψ

∫ s+

0

∫ a+

0
β1(a, x, s, P̂)ψ̂(a, x)dadx .
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Denote

�N
1λ(η, α)(a) =

∫ a+

0

∫ x

0
χ(a, x, s, P̂)η(x − s)e−λs�P̂ (x, s, s)dsdx

+
∫ s+

0

∫ s

0
χ(a, x, s, P̂)α(s − x)e−λx�P̂ (x, s, x)dxds,

�N
2λ(η, α)(s) =

∫ s+

0

∫ x

0
β(a, x, s, P̂)α(x − a)e−λa�P̂ (a, x, a)dadx

+
∫ a+

0

∫ a

0
β(a, x, s, P̂)η(a − x)e−λx�P̂ (a, x, x)dxda,

K N
1λ(a) =

∫ a+

0

∫ x

0

∫ s

0
χ(a, x, s, P̂)e−λσ �P̂ (x, s, σ )

μ1(x − σ, s − σ, P̂)ψ̂(x − σ, s − σ)dσdsdx,

K N
2λ(a) =

∫ s+

0

∫ s

0

∫ x

0
χ(a, x, s, P̂)e−λσ �P̂ (x, s, σ )

μ1(x − σ, s − σ, P̂)ψ̂(x − σ, s − σ)dσdxds,

K N
3λ(s) =

∫ s+

0

∫ x

0

∫ a

0
β(a, x, s, P̂)e−λσ �P̂ (a, x, σ )

μ1(a − σ, x − σ, P̂)ψ̂(a − σ, x − σ)dσdadx,

K N
4λ(s) =

∫ a+

0

∫ a

0

∫ x

0
β(a, x, s, P̂)e−λσ �P̂ (a, x, σ )

μ1(a − σ, x − σ, P̂)ψ̂(a − σ, x − σ)dσdxda,

K5(a) = Pψ

∫ a+

0

∫ s+

0
χ1(a, x, s, P̂)ψ̂dsdx,

K6(s) = Pψ

∫ s+

0

∫ a+

0
β1(a, x, s, P̂)ψ̂dadx .

Thus, η(s) and α(s) can be rewritten as follows:

{
η(a) = �N

1λ(η, α)(a) − (1 + A(λ))−1Bλ(η, α)(K N
1λ(a) + K N

2λ(a) − K5(a)),

α(s) = �N
2λ(η, α)(s) − (1 + A(λ))−1Bλ(η, α)(K N

3λ(s) + K N
4λ(s) − K6(s)).

(4.10)

Similarly, define

�N
λ := (�N

1λ,�
N
2λ)
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and

MN
λ (a) = (1 + A(λ))−1(K N

1λ(a) + K N
2λ(a) − K5(a)),

V N
λ (s) = (1 + A(λ))−1(K N

3λ(s) + K N
4λ(s) − K6(s)).

Then, system (4.10) becomes

(
η

α

)

=
(

�N
λ −

(
MN

λ (a)

V N
λ (s)

)

Bλ

)(
η

α

)

.

Further, define

�N
λ := �N

λ −
(
MN

λ (a)

V N
λ (s)

)

Bλ.

Since�N
λ , MN

λ (a)Bλ, and V N
λ (s)Bλ are compact,�N

λ is also compact in L1(0, a+)×
L1(0, s+) for all λ ∈ C under Assumption 4.1. Also we can show that�N

λ , MN
λ (a)Bλ,

andV N
λ (s)Bλ are nonsupporting underAssumption 4.1, then�N

λ is also nonsupporting
in L1(0, a+) × L1(0, s+) for all λ ∈ R. Thus, similar to Proposition 3.6 we have the
following results.

Proposition 4.4 We have the following statements

(i) �N := {λ ∈ C : 1 ∈ σ(�N
λ )} = {λ ∈ C : 1 ∈ σP (�N

λ )}, where σ(A) and σP (A)

denote the spectrum and point spectrum of the operator A, respectively;
(ii) There exists a unique real number λN

0 ∈ �N such that r(�′
λ0

) = 1 and λN
0 > 0

if r(�N
0 ) > 1; λN

0 = 0 if r(�N
0 ) = 1; and λN

0 < 0 if r(�N
0 ) < 1;

(iii) λN
0 > sup{Reλ : λ ∈ �N\{λN

0 }};
(iv) λN

0 is the dominant eigenvalue of B̂N , i.e., λN
0 is greater than all real parts of the

eigenvalues of B̂N . Moreover, it is a simple eigenvalue of B̂N ;
(v) {λ ∈ C : λ ∈ ρ(B̂N )} = {λ ∈ C : 1 ∈ ρ(�N

λ )}, where ρ(A) denote the resolvent
set of A;

(vi) λN
0 = s(B̂N ) := sup{Reλ : λ ∈ σ(B̂N )}.

Also similar to Theorem 3.7, we have the following result on the stability of the
steady state.

Theorem 4.5 The steady state ψ̂ is locally exponentially asymptotically stable if
r(�N

0 ) < 1 and unstable if r(�N
0 ) > 1.

5 Age-Size StructuredModels with Size-Dependent Growth Rate

Size is another very important physiological structure in population dynamics, and
size-structuredmodels have been investigated extensively in the literature, seeCushing
(1985, 1987, 1989), Calsina and Saldana (1995), Chu et al. (2009), Chu and Magal
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(2013), Farkas and Hagen (2007), Farkas et al. (2010), and Gwiazda et al. (2010). In
this section, we apply our analytical methods to a nonlinear age-size structured model
with a growth rate term g(s) in front of us motivated by Heijmans (1986), where the
function g accounts for the growth of the second variable which does not increase
at the same rate as age. Koijman and Metz (1984) considered a nonlinear age-size
structured model for the development of Daphnia magna whose mortality depends
on age, whereas whose fertility depends on the size. Later, Thieme (1988) formulated
the model in Heijmans (1986) as integral equations and discussed the well-posedness
of the problem. Tucker and Zimmerman (1988) studied a more general nonlinear
age-size structured model and established the well-posedness, existence and stability
of steady states. See also Sinko and Streifer (1967) and Webb (2008) for age-size
structured single-species population models and Gyllenberg and Webb (1987) for
age-size structure in populations with quiescence.

Once again, in the above-mentioned models, one zero boundary condition was
assumed. Here, we analyze a nonlinear age-size structured model with size-dependent
growth rate andwith generalized boundary conditions. Biologically speaking, the clas-
sical age-size structured population would always yield a trivial boundary condition,
but if the “size” structure represents telomere length or another physiological character
as illustrated in the introduction, then it is natural to assume that the changing rate of
telomere or physiological character has its own pace depending on the specific status.
Therefore, we consider the following model

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut (t, a, s) + ua(t, a, s) + g(s)us(t, a, s) = G(u(t, ·, ·))(a, s),

u(t, a, 0) = F(u(t, ·, ·))(a),

u(t, 0, s) = H(u(t, ·, ·))(s),
u(0, a, s) = φ(a, s).

(5.1)

Following the idea of Heijmans (1986), the characteristic curve through (t, a, s) is
determined by

x → (T (x, t), A(x, a), S(x, s)),

where x is an independent variable and T , A, S are solutions of the ODEs

dT

dx
= 1, T (0, t) = t; dA

dx
= 1, A(0, a) = a; dS

dx
= g(S), S(0, s) = s.

Thus,

T (x, t) = x + t, A(x, a) = x + a, S(x, s) = G−1(x + G(s)),

where G(s) = ∫ s
0

dξ
g(ξ)

, s ≥ 0, which can be interpreted as the time need to grow from

0 to s and G−1 denotes its inverse. Observe that G−1(a) = S(a, 0).
A classical technique to treat size-structured models is to formulate them as inte-

gral equations and apply corresponding theories to study the problems (Thieme 1988).
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Recently, semigroup theories, including integrated semigroup theory, have been devel-
oped to study size-structured models (Farkas et al. 2010; Chu et al. 2009; Chu and
Magal 2013). In this section, we employ the integrated semigroup method to treat the
age-size structured model (5.1). To do so, first we make an assumption on g(s). The
function g(s) represents the growth rate of size or volume for a population such as a
cell population. It is assumed to be continuous and there exist two constants M,m > 0
such that 0 < m ≤ g(s) ≤ M for all s ∈ [0, s+]. Obviously, G(s) is an increasing
positive function, and we assume that G(s+) ≤ a+. Now let t, a, x be fixed and let
u(x) = u(T (x, t), A(x, a), S(x, s)). Then

dm

dx
= G(u(x))(x).

Define an operator A acting on X by

A
⎛

⎝
0
0
ψ

⎞

⎠ :=
⎛

⎝
−ψ(a, 0)
−ψ(0, s)

−ψa − g(s)ψs

⎞

⎠ for

⎛

⎝
0
0
ψ

⎞

⎠ ∈ D(A) := {0} × {0} × D(B),

where B is a differential operator acting on E defined by

B(ψ)(a, s) := ψa + g(s)ψs, D(B) := {ψ ∈ E : ψ ∈ W 1,1((0, a+) × (0, s+))}.

Then, B is densely defined in E . First, we claim that A∗ := A − 1
ε
I is still a Hille–

Yosida operator.

Lemma 5.1 A∗ is a closed linear operator with non-dense domain and the following
holds: D(A∗) = X0,A∗ satisfies the Hille–Yosida estimate such that for all λ > − 1

ε
,

∥
∥
∥(λI − A∗)−1

∥
∥
∥
X

≤ M

λ + 1/ε

and (λ − A∗)−1(X+) ⊂ X0+ for λ > 0.

Proof Consider the resolvent of the operator A∗ as follows:

(λI − A∗)

⎛

⎝
0
0
ϕ

⎞

⎠ =
⎛

⎝
α

η

φ

⎞

⎠ ∈ X+.

By the definition of A∗,

(λI − A∗)

⎛

⎝
0
0
ϕ

⎞

⎠ =
⎛

⎝
ϕ(a, 0)
ϕ(0, s)

∂ϕ
∂a + g(s) ∂ϕ

∂s + (
λ + 1

ε

)
ϕ

⎞

⎠ ,
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we have

∂ϕ

∂a
+ g(s)

∂ϕ

∂s
+ (λ + 1/ε)ϕ = φ(a, s), (5.2)

ϕ(a, 0) = α(a), ϕ(0, s) = η(s). (5.3)

By the method of characteristic lines mentioned above, we have

dϕ

dx
= −(λ + 1/ε)ϕ(x) + φ(A(x, a), S(x, s)),

which has a solution

ϕ(x) = ϕ(0)e−(λ+1/ε)x +
∫ x

0
e−(x−σ)(λ+1/ε)φ(A(σ, a), S(σ, s))dσ. (5.4)

Let a′ = A(x, a), s′ = S(x, s). We consider two cases.

(i) Choose a = 0, then a′ = x, S(−a′, s′) = G−1(−a′ + G(s′)) = G−1(−x + x +
G(s)) = s. We deduce from (5.4) that

ϕ(a′, s′) = ϕ(0, S(−a′, s′))e−(λ+1/ε)a′

+
∫ a′

0
e−(a′−σ)(λ+1/ε)φ(σ, S(σ, S(−a′, s′)))dσ, a′ < G(s′).

(ii) Choose s = 0, then s′ = S(x, 0) = G−1(x + G(0)) = G−1(x), i.e., x = G(s′)
and a′ = x + a = G(s′) + a which implies that a = a′ −G(s′). Now we deduce
from (5.4) that

ϕ(a′, s′) = ϕ(a′ − G(s′), 0)e−(λ+1/ε)G(s′)

+
∫ G(s′)

0
e−(G(s′)−σ)(λ+1/ε)φ(σ + a′ − G(s′),G−1(σ ))dσ, a′ > G(s′).

Thus, the solution of (5.2), (5.3) is

ϕ(a, s) =
{

α(a − G(s))e−(λ+1/ε)G(s) + ∫ G(s)
0 e−(G(s)−σ)(λ+1/ε)φ(σ + a − G(s),G−1(σ ))dσ, a − G(s) ≥ 0,

η(S(−a, s))e−(λ+1/ε)a + ∫ a
0 e−(a−σ)(λ+1/ε)φ(σ, S(σ, S(−a, s)))dσ, a − G(s) < 0.

(5.5)

Thus, we have

(λI − A∗)−1

⎛

⎝
α

η

φ

⎞

⎠ =
⎛

⎝
0
0

ϕ(a, s)

⎞

⎠
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and

∥
∥
∥
∥
∥
∥
(λI − A∗)−1

⎛

⎝
α

η

φ

⎞

⎠

∥
∥
∥
∥
∥
∥
X

= ‖ϕ(a, s)‖E

≤
∣
∣
∣
∣
∣

∫ s+

0

∫ a+

G(s)
α(a − G(s))e−(λ+1/ε)G(s)dads

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

∫ s+

0

∫ a+

G(s)

∫ G(s)

0
e−(G(s)−σ)(λ+1/ε)φ(σ + a − G(s),G−1(σ ))dσdads

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

∫ s+

0

∫ G(s)

0
η(S(−a, s))e−(λ+1/ε)adads

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

∫ s+

0

∫ G(s)

0

∫ a

0
e−(a−σ)(λ+1/ε)φ(σ, S(σ, S(−a, s)))dσdads

∣
∣
∣
∣
∣

≤
∫ s+

0

∫ a+

0
|α(a − G(s))|e−(λ+1/ε)s/Mdads

+
∫ s+

0

∫ a+

G(s)

∫ G(s)

0
e−(G(s)−σ)(λ+1/ε)|φ(σ + a − G(s),G−1(σ ))|dσdads

+
∫ s+

0

∫ a+

0
|η(S(−a, s))|e−(λ+1/ε)adads

+
∫ s+

0

∫ G(s)

0

∫ a

0
e−(a−σ)(λ+1/ε)|φ(σ, S(σ, S(−a, s)))|dσdads

≤ M

λ + 1/ε
‖α‖L1(0,a+) + 1

λ + 1/ε
‖η‖L1(0,s+) + 1

λ + 1/ε
‖φ‖E

≤ max{1, M}
λ + 1/ε

∥
∥
∥
∥
∥
∥

⎛

⎝
α

η

φ

⎞

⎠

∥
∥
∥
∥
∥
∥
X

, (5.6)

which implies that

∥
∥
∥(λI − A∗)−1

∥
∥
∥
X

≤ max{1, M}
λ + 1/ε

for λ > −1/ε. Hence, A∗ is a Hille–Yosida operator with ω = −1/ε < 0. 	


Thus, by a similar argument as in Sect. 2, we can also establish the generalized
variation of constant formula and obtain the global existence of the integral solution..

Now, we analyze the principal eigenvalue for the linear problem of (5.1). Suppose
that

F(ψ)(a) =
∫ a+

0

∫ s+

0
χ(a, x, s)ψ(x, s)dsdx,
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H(ψ)(s) =
∫ s+

0

∫ a+

0
β(a, x, s)ψ(a, x)dadx,

G(ψ)(a, s) = −μ(a, s)ψ(a, s).

For χ(a, x, s) and β(a, x, s) satisfying Assumption 3.1-(v), denote

χsup :=
∫ a+

0
χ(a)da, βsup :=

∫ s+

0
β(s)ds.

Consider the operator A defined by

Aψ =
⎛

⎝
ψ(a, 0)
ψ(0, s)

−ψa − g(s)ψs − μ(a, s)ψ

⎞

⎠ .

To find the eigenvalue of A, via the characteristic equation A
⎛

⎝
0
0
ψ

⎞

⎠ = λ

⎛

⎝
0
0
ψ

⎞

⎠, we

have

⎧
⎪⎨

⎪⎩

ψa + g(s)ψs + μ(a, s)ψ + λψ = 0,

ψ(a, 0) = F(ψ)(a),

ψ(0, s) = H(ψ)(s).

(5.7)

Solving the equation by the method of characteristic curves as above, we obtain that

ψ(a, s) =
{

α(a − G(s))e−λG(s)�(G(s), a − G(s), 0), a − G(s) ≥ 0,

η(S(−a, s))e−λa�(a, 0, S(−a, s)), a − G(s) < 0,
(5.8)

where �(x, a, s) = e− ∫ x
0 μ(A(σ,a),S(σ,s))dσ and α(a) = ψ(a, 0), η(s) = ψ(0, s).

Plugging them into the boundary conditions, we get

α(a) =
∫ s+

0

∫ G(s)

0
χ(a, x, s)η(S(−x, s))e−λx�(x, 0, S(−x, s))dxds

+
∫ s+

0

∫ a+

G(s)
χ(a, x, s)α(x − G(s))e−λG(s)�(G(s), x − G(s), 0)dxds,

η(s) =
∫ s+

0

∫ G(x)

0
β(a, x, s)η(S(−a, x))e−λa�(a, 0, S(−a, x))dadx

+
∫ s+

0

∫ a+

G(x)
β(a, x, s)α(a − G(x))e−λG(x)�(G(x), a − G(x), 0)dadx .
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Next define �λ : L1(0, a+) × L1(0, s+) → L1(0, a+) × L1(0, s+) by �λ(α, η) =
(�1λ(α, η), �2λ(α, η)), where

�1λ(α, η)(a) =
∫ s+

0

∫ G(s)

0
χ(a, x, s)η(S(−x, s))e−λx�(x, 0, S(−x, s))dxds

+
∫ s+

0

∫ a+

G(s)
χ(a, x, s)α(x − G(s))e−λG(s)�(G(s), x − G(s), 0)dxds

�2λ(α, η)(s) =
∫ s+

0

∫ G(x)

0
β(a, x, s)η(S(−a, x))e−λa�(a, 0, S(−a, x))dadx,

+
∫ s+

0

∫ a+

G(x)
β(a, x, s)α(a − G(x))e−λG(x)�(G(x), a − G(x), 0)dadx .

By using similar arguments as in the previous sections, we can conclude that �λ is
compact for all λ ∈ C and nonsupporting for all λ ∈ R in L1(0, a+) × L1(0, s+)

under Assumption 3.1. It follows thatA has a principal eigenvalue λ0, which satisfies
r(�λ0) = 1 and is simple, see Kang et al. (2020). Next, we want to study the relation
between the basic reproduction numberR0 and g or G, whereR0 := r(�0), see also
Kang et al. (2020).

We have the following estimates

‖�1λ(α, η)‖ =
∫ a+

0

∫ s+

0

∫ G(s)

0
χ(a, x, s)η(S(−x, s))e−λx�(x, 0, S(−x, s))dxdsda

+
∫ a+

0

∫ s+

0

∫ a+

G(s)
χ(a, x, s)α(x − G(s))e−λG(s)�(G(s), x − G(s), 0)dxdsda

≤
∫ a+

0
χ(a)da

∫ s+

0
η(S(−x, s))ds

∫ G(s)

0
e−(λ+μ)xdx

+
∫ a+

0
χ(a)da

∫ a+

G(s)
α(x − G(s))dx

∫ s+

0
e−(λ+μ)G(s)ds

≤ χsup

λ + μ
‖η‖L1+(0,s+) + χsup ‖α‖L1+(0,a+)

M

λ + μ

≤ max{1, M}χsup

λ + μ
‖(α, η)‖ . (5.9)

Similarly, we have

‖�2λ(α, η)‖ ≤ max{1, M}βsup

λ + μ
‖(α, η)‖ .

Thus,

‖�λ‖ ≤ max{1, M}max{βsup, χsup}
λ + μ

.
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It follows from the well-known Gelfand’s formula that

r(�0) ≤ max{1, M}max{βsup, χsup}
μ

.

In summary, the basic reproduction number is bounded by the upper bound of g.
In this section, we only considered g dependent on the size s, which can be directly

treated by integrated semigroup setup, so that we can easily perform the change of
variables, solve the solution and give the estimate of basic reproduction number in
terms of g. In fact, there are many single size structured models which deal with more
complicated cases, see Cushing (1985, 1987, 1989), Calsina and Saldana (1995) and
Gwiazda et al. (2010), where g is a multivariate function about both size and the
total population. The methods adopted in this paper might not be directly applied
to study systems with more complicated size operators. Thus, other methods such
as formulating the size dynamics via integral operators could be used to treat such
problems.

6 Discussion

In this paper, we studied nonlinear double physiologically structured population mod-
els with two internal variables via the theory of non-densely defined operators and
integrated semigroups. Motivated by the theory of age-structured models with a sin-
gle internal variable inWebb (1984),we considered semilinear and nonlinear equations
and studied the existence and stability of nontrivial steady states for both kinds of non-
linear equations. Further, we generalized techniques to deal with a nonlinear age-size
structured model with a growth rate term g(s) in front of us and provided an analysis
for the principal eigenvalue of the non-densely defined operator in terms of the bound
of g(s).

It would be interesting to employ or extend our techniques to investigate non-
linear systems with two physiological structures, such as the chronological-age and
infection-age structured epidemic models (Hoppensteadt 1974; Inaba 2016; Laroche
and Perasso 2016; Burie et al. 2017), age and another physiological (maturation, size,
stage) structured populationmodels (Dyson et al. 2000a, b;McNair andGoulden 1991;
Matucci 1995), and cell-age and molecular content (cyclin content, maturity level,
plasmid copies, telomere length) structured cell population kinetics models (Bekkal
Brikci et al. 2008; Bernard et al. 2003; Kapitanov 2012; Stadler 2019). We leave these
for future consideration.

Acknowledgements We would like to thank the three anonymous reviewers for their helpful comments
and suggestions which helped us to improve the presentation of the paper.

A Appendix: Positive Operators

In this “Appendix”, we recall some definitions and results of positive operator theory
on ordered Banach spaces from Inaba (2006). For more complete exposition, we refer
to Heijmans (1986); Marek (1970), and Sawashima (1964).
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Let E be a real or complex Banach space and E∗ be its dual (the space of all linear
functionals on E). Write the value of f ∈ E∗ at ψ ∈ E as 〈 f , ψ〉. A nonempty closed
subset E+ is called a cone if the following hold: (i) E+ + E+ ⊂ E+, (ii) λE+ ⊂ E+
for λ ≥ 0, (iii) E+ ∩ (−E+) = {0}. Define the order in E such that x ≤ y if and
only if y − x ∈ E+ and x < y if and only if y − x ∈ E+\{0}. The cone E+ is
called total if the set {ψ − φ : ψ, φ ∈ E+} is dense in E . The dual cone E∗+ is the
subset of E∗ consisting of all positive linear functionals on E ; that is, f ∈ E∗+ if
and only if 〈 f , ψ〉 ≥ 0 for all ψ ∈ E+. ψ ∈ E+ is called a quasi-interior point if
〈 f , ψ〉 > 0 for all f ∈ E∗+\{0}. f ∈ E∗+ is said to be strictly positive if 〈 f , ψ〉 > 0
for all ψ ∈ E+\{0}. The cone E+ is called generating if E = E+ − E+ and is called
normal if E∗ = E∗+ − E∗+.

An ordered Banach space (E,≤) is called a Banach lattice if (i) any two elements
x, y ∈ E have a supremum x ∨ y = sup{x, y} and an infimum x ∧ y = inf{x, y} in
E; and (ii) |x | ≤ |y| implies ‖x‖ ≤ ‖y‖ for x, y ∈ E, where the modulus of x is
defined by |x | = x ∨ (−x).

Let B(E) be the set of bounded linear operators from E to E . T ∈ B(E) is said
to be positive if T (E+) ⊂ E+. For T , S ∈ B(E), we say T ≥ S if (T − S)(E+) ⊂
E+. A positive operator T ∈ B(E) is called semi-nonsupporting if for every pair
ψ ∈ E+\{0}, f ∈ E∗+\{0}, there exists a positive integer p = p(ψ, f ) such that
〈 f , T pψ〉 > 0. A positive operator T ∈ B(E) is called nonsupporting if for every
pair ψ ∈ E+\{0}, f ∈ E∗+\{0}, there exists a positive integer p = p(ψ, f ) such that
〈 f , T nψ〉 > 0 for all n ≥ p. The spectral radius of T ∈ B(E) is denoted by r(T ).
σ(T ) denotes the spectrum of T and σP (T ) denotes the point spectrum of T . If there
exists a nonzero x ∈ E which satisfies T x = λx , λ is called a proper value and x a
proper vector corresponding to λ.

From results in Sawashima (1964) and Inaba (2006), we state the following propo-
sitions.

Proposition A.1 Let E be a Banach space, and let T ∈ B(E) be compact and semi-
nonsupporting. Then, the following statements hold:

(i) r(T ) ∈ σP (T )\{0} and r(T ) is a simple pole of the resolvent λI − T ; that is,
r(T ) is an algebraically simple eigenvalue of T ;

(ii) The eigenspace of T corresponding to r(T ) is one-dimensional and the corre-
sponding eigenvector ψ ∈ E+ is a quasi-interior point. The relation Tφ = μφ

with φ ∈ E+ implies that φ = cψ for some constant c;
(iii) The eigenspace of T ∗ corresponding to r(T ) is also a one-dimensional subspace

of E∗ spanned by a strictly positive functional f ∈ E∗+.

Proposition A.2 Let E be a Banach space with positive cone E+ which is total. Let
T ∈ B(E) be positive and have the resolvent λI − T with the point r(T ) as its pole.
Then, T is a semi-nonsupporting operator if and only if r(T ) > 0 and T satisfies (A),
where

(A) Every proper eigenvector corresponding to the proper eigenvalue r(T ) lying in
E+ is a quasi-interior point of E+ and every proper eigenvector corresponding
to r(T ) lying in E∗+ is strictly positive.
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