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Abstract

In this paper we develop fundamental theories for a scalar first-order hyperbolic partial
differential equation with two internal variables which models single-species population
dynamics with two physiological structures such as age—age, age—maturation, age—size, and
age—stage. Classical techniques of treating structured models with a single internal variable
are generalized to study the double physiologically structured model. First, the semigroup
is defined based on the solutions and its infinitesimal generator is determined. Then, the
compactness of solution trajectories is established. Finally, spectrum theory is employed to
investigate stability of the zero steady state and asynchronous exponential growth of solu-
tions is studied when the zero steady state is unstable.

Keywords Physiological structure - Semigroup theory - Infinitesimal generator - Spectrum
theory - Asynchronous exponential growth
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1 Introduction

In populations dynamics, structured models bridge the gap between the individual level
and the population level and allow us to study the dynamics of populations from properties
of individuals or vice versa (Metz and Diekmann [40]). In order to parametrize the state
of individuals as well as to distinguish individuals from one another, we usually take their
physiological conditions or physical characteristics such as age, maturation, size, stage, sta-
tus, location, and movement into consideration and determine their birth, growth and death
rates, interactions with each other and with environment, infectivity, and so on. The goal of
studying structured population models is to understand how these physiological conditions
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or physical characteristics affect the dynamical properties of these models and thus the
outcomes and consequences of the biological and epidemiological processes (Magal and
Ruan [34]).

Age structure is the most important characteristic in population dynamics. It is well
known for a long time that the age-structure of a population affects the nonlinear dynamics
of the species in ecology and the transmission dynamics of infectious diseases in epide-
miology. In modeling specific diseases, the age could be chronological age (the age of the
population), infection age (the time elapsed since infection), recovery age (the time elapsed
since the last infection), class age (the length of time in the present group), etc. The the-
ory of age-structured models has been well developed, and we refer to the classical mono-
graphs of Anita [1], Iannelli [23], Inaba [26], and Webb [52] on this subject. Models with
other physiological structures, such as size and stage, have also been extensively studied in
the literature (Barfield et al. [3], Cushing [7], Ebenman and Persson [17], Manly [36], Metz
and Diekmann [40]).

There are some models taking into account the combined effects of two age characteris-
tics. Hoppensteadt [22] proposed a double age-structured epidemic model for a population
consisted of susceptible, infectious, quarantined infectious, and immune classes by keep-
ing track of the chronological ages of the individuals as well as their class ages (i.e., the
length of time since entering their present state). Existence and uniqueness of solutions to
the model were considered. In order to determine the likely success of isolating sympto-
matic individuals and tracing and quarantining their contacts, Fraser et al. [19] studied a
double age-structured model involving individuals who were infected time 7 ago by people
who themselves were infected time 7’ ago. They concluded direct estimation of the propor-
tion of asymptomatic and presymptomatic infections is achievable by contact tracing and
should be a priority during an outbreak of a novel infectious agent. Kapitanov [29] con-
sidered the coinfection of HIV and tuberculosis in which each disease progresses through
several stages. He suggested modeling these stages through a time since-infection tracking
transmission rate function and introduced a double age-structured model. By incorporat-
ing the chronological ages of the individuals into the Kermack and McKendrick’s origi-
nal infection-age structured endemic model, Inaba [25] developed a double age-structured
susceptible—infectious—recovered model and studied some basic properties of the model.
Burie et al. [6] investigated an age and infection age structured model for the propagation
of fungal diseases in plants and analyzed the asymptotic behavior of the model. Laroche
and Perasso [33] studied a generic epidemic model structured by age and, for infected,
the time remaining before the end of the incubation where they show detectable clinical
signs. Population dynamical models with age and size structures (Sinko and Streifer [44],
Webb [55]), age and maturation structures (Dyson et al. [15, 16]), age and stage struc-
tures (McNair and Goulden [39], Matucci [38], Delgado et al. [10], Walker [48]), and age
and an aggregated variable (Doumic [13]) have also been proposed and studied by many
researchers.

Though many epidemic and populations models with two physiological structures have
been proposed in the literature (as mentioned above), there are very few theoretical stud-
ies on the fundamental properties of such equations. By considering the property of the
disease-free steady state of a susceptible—infectious—recovered model with chronological
and class ages, Inaba [25] obtained a scalar equation with two age structures and provided
some analysis of the model, including global stability of the disease-free steady state, using
the strongly continuous semigroup theory. Webb [53] investigated a scalar structured popu-
lation model with nonlinear boundary conditions in which individuals are distinguished
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by age and another physical characteristic and proved that populations structured by two
internal variables converge to stable distributions.

Motivated by the studies of Inaba [25] and Webb [53], in this paper we aim to develop
fundamental results and theories for a scalar equation with two physiological structures and
to generalize the techniques in treating single age-structured models (Iannelli [23], Inaba [26],
Webb [51, 52]) to study structured models with two internal variables. Consider the following
first-order hyperbolic partial differential equation with two internal variables a and a’ (which
models single-species population dynamics with two physiological structures)

ou(t,a,a’) 4 ou(t,a,a’) 4 ou(t,a,a’)

or da od’ (1.1)
= —u(a,du(t,a,d), t>0,(ad) e 0,a")x(0,a")

under the initial condition
u(0,a,a") = ¢p(a,a’), ae 0,a"),d €(0,a") (1.2)

and boundary conditions

u(t,0,ad) = / / pd, a,s)u(t,a,s)dads, t>0,a" €(0,a"), (1.3)
o Jo

u(t,a,0) = / / f'(a,s,d)u(t,s,a)dsdd', t>0,a € (0,a"). (1.4)
o Jo

Here u(t, a, ') denotes the density of a population at time ¢ with age a and another charac-
teristic a’ (age, size, maturation, stage, etc.), the function ¢ represents the initial distribu-
tion of the population with respect to age a and another physiological characteristic a’.
u(a,d’) denotes the mortality rate of the population at age a with characteristic «’. Bound-
ary condition (1.3) accounts for the input at time ¢ of individuals of age 0 with characteris-
tic @’ and boundary condition (1.4) describes the input at time ¢ of individuals of age a with
characteristic ¢’ at level 0. Here a* represents the maximum age or characteristic and could
be infinity.

By using semigroup theory, we study the basic properties and dynamics of model (1.1)
under the initial condition (1.2) and boundary conditions (1.3)—(1.4), including the solution
flow u(t, a, d’) and its semigroup {S()} 5 with infinitesimal generator A. Moreover, we estab-
lish the compactness of the solution trajectories, analyze the spectrum of A, investigate stabil-
ity of the zero equilibrium, and discuss the asynchronous exponential growth of the solutions
when the zero equilibrium is unstable. We study the initial-boundary value problem in the
two cases: a* < oo and a* = co. First, we show that for a* < co the semigroup {S(r)} 5, with
infinitesimal generator A is eventually compact, while for a* = oo the semigroup {S(1)} 5 is
quasi-compact. Next, we study the existence and uniqueness of the principal and simple eigen-
value and spectral bound of A under extra assumptions (see Assumption 2.1(iii)’ and (5.7)) for
a® = oo. Finally, we establish the same threshold dynamics for these two cases.
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2 The semigroup

In this section we investigate the existence and uniqueness of solutions to the initial-bound-
ary value problem (1.1)—(1.4) via theory of integral functions. By using the method of
characteristic lines we obtain the following expression for the density u(t, a, a’)

1 0.
Pla—t,d — t)e"fo Hi—ttas—t+a)ds 4 g g < gt or t<d <a<at
ut,a,a’) =< ult—a,0,d — u)e_/o Hs.sta'—a)ds a<t<d <at or a<d <tia<d <at
U,
ult—ad,a—ad, O)e_/o uta—d'$)ds ol c g <t <a<at or d <t<a<at.

@.1)

Assumption 2.1 Assume that

G p,p :[0,a*)x[0,a%)x[0,a*) = [0, o) are nonnegative L' integrable and Lipschitz
continuous, and g : [0,a*) X [0,a*) = [0, o) is also nonnegative L! integrable and
Lipschitz continuous.

(i) The following limits

+

}Lm(l)/ |p(@ + h,a,s)— B, a,s)|dd’ =0
—~vJo

and

at

}ziirol ; |f'(a+h,s,d)— p'(a,s,a')|da =0
hold uniformly for (a, s) € (0,at) x (0,a™) and (s,da’) € (0,a*) x (0,a™), respectively.

(iii) There exist two nonnegative functions ¢, (s), €,(s) such that g(da’, a, s) > €,;(s) > 0 and
p'(a,s,d') > e,(s) > 0foralld’,a € (0,a*)and a,d’ € (0,a"), respectively.

(i)’ p, ' are separable such that f(a’, a, s) = ,(a")p,(a, s) and f'(a,s,a’) = p|(a)B;(s,a’)
with f,(a"), | (@) > O a.e. in LY(0,a"), ie., i, p| are quasi-interior points in L'(0,a")
and f,(a, s), ﬂé(s, a') satisfy Assumption 2.1(iii), so that there exist two nonnegative
functions €, (s) and €,(s) such that f,(a,s) > €,;(s) > 0 and ﬁé(s, d') = e,(s) > 0 for all
a € (0,a™)and @’ € (0,a™), respectively.

(iv) In addition,

sup p(d.a,s) < B(a’), where g e L'(0,a")),
(a,5)€(0,a+)x(0,a*)

sup B (a,s,d') < P'(a), where p' € L'(0,a")).

(s,a’)e(0,a*)x(0,a*)

Denote
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Buup = / Bla)da, p, = / P(a)da
0 0

and fi,, := max{f,. B, }
(v) For u(a,a"), denote

= sup ula,a"), pu= u(a,a’) > 0.

in
(a,a")E0,at)x(0,a") — (a,a")e(0,a*)x(0,a*)

Remark 2.2 1n fact, we only use the Lipschitz continuity of f, ' and u with respect to their
own components to show compactness of solution trajectories in Sect. 4, for other sections
L' integrability is enough. Moreover, (iii) and (iii)’ are used for cases a* < co and a* = o,
respectively.

2.1 A priori estimate
We use boundary conditions (1.3) and (1.4) and the above solution flow to obtain equa-
tions for the fertility rate functions by(t,a’) 1= u(t,0, a'),b(’b(t, a) 1= u(t,a,0), where

by, b:iz 1 (0,00) X (0,a™) » R satisfy the following integral equations, respectively, see
Fig. lafort < a* (including a* = oo and 7 < a* < o0) and Fig. 1b for ¢ > a* when a* < oo:

at—t at—t
by(t,d') = / / ha, $)B(d,a+ 1,5 + Dpa, s)e™ Jo Hotaotdo 4,4
0 0
t a*t
+ / / ha,s)p(d’, a,s)by(t —a,s — a)e™ o weots=adogeqy  (2.2)
0 a

t at
+ / / a,s)pd, a, s)b;ﬁ(t —5,a — s)e~ Jo Hotamsole g4
0 s

and
a' - a'
! b
a<t<a' Et<a<a’ F T d i
: t<a'<a P
o [ a<a'<a* P
a<a'<t E a'<t<a , + E i
! a'<a<a o
a<a<t | P
0 t a 0 at t 2
(a) t<at. (b) t>at.

Fig. 1 Integration regions for (2.2)—(2.3)
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at—t at—t
bl (t,a) = / / Wd,s)f (@,s+t,d + OP(s, a e Jo mersotd)dogyl g
0 0
t a*t ,
+ / / nd,s)p (a,s, a')b;)(t —d,s—d)e i wots=dodoqeqy (2.3)
0 a

t pat )
+ / / nd,s)p (a,s, a’)b¢(t —s,d — s)e~Jo weotd=sdogyqg
0 K

where h(a, s) is a cut-off function defined by h(a,s) = 1if a,s € (0,a™) and h(a,s) =0
otherwise.
Now adding up (2.2) and (2.3) and denoting X (¢, @) = by(t, a) + b(’j’(t, a), we obtain

X(t,a) < / / [F(a,p,s)+ G(a,s,p))X(t —p,s — p)dsdp
0 Jp

at—t at—t
+ / H(a,p, s, )¢(p, s)dpds
0 0 (2.4)

t at—p
=/ / [F(a,t —p,s+t—p)+ Ga,s+t—p,t—p)X(p,s)dsdp
o Jo

at—t at—t
+ / / H(a, p, s, )¢(p, s)dpds,
0 0

where

Fa,p,s) = Bla,p,s)e™h HO7r N 4 fl(a, s, p)e™ o Horp e,
Ga,5,p) = Bla, s, p)e™ o oD 4 i (q,p, s)e Iy 1o,
H(a,p,s,t) =[fla,p+t,s+1)+ ' (a,p+ts+ t)]e_/<; Hlotpots)do
Denote Y(t) = /oa+ X(t,a)da and define E := L. ((0,a") x (0,a")). Integrating (2.4) on

[0, a™) with respect to a, we obtain

a*t t at—p
Y(z)g/ / / [Fla,t —p,s+t—p)+ Gla,s+t—p,t—p)lX(p,s)dsdpda
0 o Jo

at at—t at—t
+ / / / H(a,p,s, H¢(p, s)dpdsda
0 0 0

+

< / / X(p. s)ds / 20B(@) + F(a)ldadp
0 0 0
+ / / / (B@) + 7 (a)ldagh(p, $)dpds
0 0 0

< Hmax / Y(p)dp + 2 9l -
0
2.5)
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Hence, by Gronwall’s inequality, we have the following estimate:

Y(©) < 2Bl @l e *Pmss’, 2.6)

which implies that foa by(t, a)da, foa b;(z, a)da <2, || Pl getPm.

2.2 Existence and uniqueness of solutions

Now we prove that there exists a unique solution
(by(t, @), b:ﬁ(t’ a)) € C((0, oo),L}r(O, a*)) x C((0, oo),Lfr(O, a%)) to system (2.2)—(2.3). By
(2.2) and (2.3), after changing variables, we obtain

t at—t+p
by(t,a) = / / fila,t=p,s+1t—p)by(p,s)dsdp
o Jo
t at—t+s
+ / / gla,p+t—s,t— s)b;)(s,p)dpds 2.7)
o Jo

at—t at—t
+ / / h(a,p, s, )p(p, s)dpds
0 0

and
t at—t+p
bo= [ [ hai-p s pbo.ss
o Jo
t at—t+s
+ / / gla,t—s,p+1t— s)b¢(s,p)dpds (2.8)
o Jo
at—t at—t
+ / / h2(a,S,P’ t)¢(s?p)dpds7
0 0
where

fi(@.p.s) = h(p. $)B(a, p,s)e” o woT+sio,
g1(a.p.s) = h(p.s)p(a. p. s)e~ I notr=sorde,
hy(a,p,s,t) = h(p,s)fla,p + 1,5 + e~ s plotp.o+side
f(@.5.p) = h(p. ) (@, s, p)e™ iy 1orspoxe,
g,(a.5.p) = h(p.$)f'(a.s. p)e™ ho HoT3r=940,
hy(a, s, p. 1) = h(p, $)B'(a,s + t,p + )e~ Jo Hetsotp)s
Denote M = C([0, T1], L}r(O, a*)) and define
FiMXM—->MxXM
by F(by, b;) = (F (b, b;ﬁ), Fo(by, b;)), where
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t at—t+p
9\1(b¢,b:l)) = [) /0 fila,t = p,s+1t—p)by(p,s)dsdp
t at—t+s
+ / / gla,p+it—s,t— s)b;)(s,p)dpds (2.9)
o Jo

at—t at—t
+ / / hy(a,p, s, )P(p, s)dpds
0 0

and
t pat—r+p
Fy(by, by) = / / fla,t=p+s,t=p)b,(p,s)dsdp
o Jo
t pat—tts
+ / / 8(a,t—s,p+1—5)by(s,p)dpds (2.10)
0o Jo

at—t at—t
; / / (a5, p, Db(s. p)dpds.
0 0

First it is easy to see that .% is linear and bounded. In fact,
at at t pat—t+p
sup / F1(by, b:b)da = / / / fila,t = p,s +1t—p)b,(p,s)dsdpda
0 o Jo Jo

t€[0,T]
a* t at—t+s
+ / / / gi1(a,p+1—s,t=s)by(s, p)dpdsda
o Jo Jo

a*t at—t at—t
+/ / / hi(a,p,s, t)¢(p, s)dpdsda
o Jo 0
< / B(a)da / / by(p. s)dsdp
0 o Jo
+ / Ba)da / / b:ﬁ(s, p)dpds
0 o Jo
+ / B(a)da / / $(p, s)dpds
0 o Jo
S ﬂsup/ / b¢(l77 s)dep
o Jo

t at
+ ﬂsup/o /0 byy(s. p)dpds + By, llll £

(2.11)
Similarly,
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a*t t a*t
sup/0 92(b¢,b;>)da§ﬁs’up/0/0 b;(p,s)dsdp

t€[0,T]
. . (2.12)
+ By A by(s, p)dpds + B, 19l
< B TGl + b llag] + By Dl -

Thus, .# maps M X M into itself for any 7 > 0.
Next, we claim that .% is a contractive operator in M X M when T is sufficiently small.
Indeed, by similar estimates as in (2.11),

+

a
su |.Z,(by, b)) — F,(b,,b,)|da
IE[O,I)T]/() e e

t pa*
< sup [ﬁsup// |b¢(PvS)—E¢(P75)|deP
0 Jo

1€[0,T]

(2.13)

t pat
+ Baup / / |6/, (s, p) = Bl,(s, p)|dpds]
0 Jo
< ﬂsupT”bqs - Bd)“M + ﬁﬂupT”b:ﬁ - E;,“M

Similarly, we have

+

a
S[l(l)PT] / |¢6/\2(b¢, b;,) - yz(bd,,b;,ﬂda < ﬂéupT”bd; = byl + ﬁ;upT”b;, - bfi,”M-
t€l0,71.Jo

Now let T be sufficiently small, then
. 1 .
1Py, b)) = Tl Bplssr < 511y b)) = By Bl
It follows that .% is contractive, which implies that there exists a unique fixed point to .%
in M X M, i.e., there exists a unique solution to system (2.2)—(2.3) for ¢ € [0, T']. But since
we have (2.6), it allows us to conclude that the solution (by(t,a), b;)(t, a)) exists globally. In
fact, we can extend the solution from 7 to 2T with initial data at 7, and by the same argu-

ment as above to conclude the existence and uniqueness of the solution on [7, 27]. Con-
tinuing this procedure, we obtain the global existence.

2.3 Semigroup generated by the solution flow

Define the family of linear operators {S(#)} . in E by the following formula:
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4 ’
Pla—t,d — t)e’/O Hi—ttas—t+a)ds 4 g g <qt or t<d <a<a'

a ’
SOP)a,d') =9 byt —a,d - aye=ho ‘/‘(‘Y’H’“ —ayds a<t<d <at or a<d <ta<d <a*
a !’ o
b;)(t —d,a- a’)e’/o Hsta—d' s gl g et g <a<at or d <t<a<at.
(2.14)

We have the following theorem.

Theorem 2.3 Let Assumption 2.1 hold. Then {S(1)} 5 defined in (2.14) is a strongly con-
tinuous semigroup of bounded linear operators in E. Furthermore, {S(t)},5( is a positive
semigroup in E.

Proof First we can see that the positivity of {S()},5, follows immediately from the space

M of by, b:/) and the space E of ¢p. Next we prove the semigroup property. Motivated by
Webb [55], we prove that for ¢ € E,

By )¢(1) = Byt + 1), B'S(,l>¢(t) =B (t+1), (2.15)

— ! / — 1/ N,
whereBS(,])d)(t) = bs(,])¢(t,a ), Bs(tl)qb(t) = bS(tl)d)(t’ a);ie.,

/

byt d)=b,t+1,d), bs(t])d)(t, a) = b(’ﬁ(t +1,,a). (2.16)

Observe from (2.2), (2.3) and (2.14) that
at—t at—t .
by g1, d)= / / h(a, s)B(d ,a+t,s + DS, P(a, s)e” Jo meraotdo g, 4
0 0
t at
+ / / ha,s)pd, a, )byt — a5 = a)e™ Jo Heots—adogoq,
0 a
t a*t .
+ / / a,s)pd, a, s)bg(tmb(t —s5,a — s)e” Jo Hota=soe g4
0 K
at—t at—t . ,
bt @) = / / hd',5)B (a,s + t,d + DS(t))d(s,a e~ o oo+ 4g/ 4
0 0
t a*t ’
+ / / h(d,$)f (a,s, a’)b’s(,])¢(t —d,s—d)e o wers—dodogeqy
0 a
t a*t s )
+ / / nd,s)p (a,s, a’)bs(tl)d,(t —s,d — s)e” o weord =)o gy
0 s

2.17)
‘We have
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at—1—1 at—t1—1
bylt+1.d") = /0 /0 h(a,s)p(a,a+t+1,s+1+1)d(a, s)e= " woras o g
1+t a*
+ /0 A h(a,s)B(d’,a, )byt + 1, —a,s — a)e” i woots—ado 4gqq
1+, at
+ /0 / a,s)p(d ,a, s)b:l)(t +1, —s,a—s)e” Jo meta=se)o g
at—t at—t
= /, '/tl h(a—t,,s —t)Bd,a+1t,s+t)pla—1t,s—1t )e_/nml Hlota=tots=h)do qgdg
1 at—t
+ /0 /a ha+1t,s+0pd,a+1t,s+0by(t, —a,s —aye” B wets—ado 4o q,
1 at—t
+ /0 /3 ha+t,s+0)pd.a+ts+ t)b;s(t1 —s,a—s)e” R noramsoda 4,4
t a*
+ /0 /u h(a,$)p(d’,a,$)by(t + 1, — a,s — a)e” ' woots—ado qgqq
t a*
+ /0 / ha,s)p(d ,a, s)b:,)(t +1, —s,a—s)e” Jo wora=s.o)do g4
at—t at—t
= /O /O ha, B . a + 1,5 + DSt )d(a, s)e o He+ao+d0 4aqg
1 a*t
+ /0 /a h(a,s)p(d ,a,5)by(t + 1, —a,s — a)e” Jy oots=adoqgq,
t a*
+ /0 [ Wa,s)p(d ,a, s)b;)(t +1, —s,a—s)e” Jo meta=so)da g
, at—r—1, at—r-1
by(t+1,a) = /0 /0 hd,)f (a,s+t+1t,d +1+1)d(s,a )e” [ worsorado g1 g
1+ a*t ’
+ /0 /a, wd,s)p (a,s, a')b;(t +t,—d,s— e o mots=a oo qgq
1+ a*
+ /0 /s hd,$)B' (@, s,a byt + 1, —5,d" - s)e™ Jo mootd =)o g1 4 ¢
at—t at—t
= / / hd + 1,5+ 0@ s+ 1,0 +0P(s — ty,d —t)e o Hors=tord =)o 4 g
1 at—t
+ /0 /a, hd +t,s+0p (a,s+ta + t)b;s(lI —d.,s—a)e K Hots—a'0)o goqq!
1 at—t
+ /0 [ hd +1,s+0pf (@, s+1,d +0by(t; —s,d" —s)e” R wootd' =)o g1 g g
t at
+ /0 /a, wd,s)p (a,s, a’)b;,(t +t,—d,s—d)e” i Hlots=d' .0)o §q
t a*t
+ /0 ./: hd',$)B'(@,s,a byt + 1, —5,d" —s)e” Jo uoo+d =)o 4/ 4
a*t—t at—t
= /0 /0 h(@ \$)p' (. s+ t.d + DSt )p(s, e b oo+ 4! g
t a*
+ /0 /u/ hd,)f (a,s, a’)b(’b(t +t,—d,s—d)e” K uots=d' .00 4sdq!

t at
* /o / hd',$)B' (@, s, byt + 1, —5,d" —s)e” Jo weo+d =s)do gt g
(2.18)
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By the uniqueness of solutions to (2.2) and (2.3), we then obtain (2.16), which implies that
(SOS)P)0,d") = (St + 1)$)(0,d), 1.1, 20
and
SOS1)P)a,0) = (S +1)$)a,0), 1,1, 2 0.
For¢p € E,0<t<tjandt+1t <aort+t <d,
SOSEP)a.a) = (St)p)a = t,a = r)e™ o #omrras—rra)ds
=a—t—t,d —1—t)e o Ho-nrasts—i+a=nds
o J us=r+as—r+a')ds (2.19)
=dla—(t+1,).d — (t+1))e o Ho=@HtTas=(+n)ra)ds
= (S(t + t))$)a,d").
Fort<a<d <t+1,
(SOS)B)aa') = (S()P)a— t,a’ = e o #mrranmrrdrds
=by(t; —(a—1),d —a)e
=byt+1, —a,d —a)e” Jo wssta~ayds

= (St + 1)) (a,d).

(s s+d —a)d.ve— /(: u(s—t+a,s—t+a')ds

(2.20)
Fort<d <a<t+1,

(SOSU)GNaa) = (SU))a— 1,a’ = e~ b womrrasrea)s

— b:ﬁ(f] _ (a/ —f),a— a/)e— /”" - /4(s+a—a’,s)dse— f[)/ u(s—t+a,s—t+a'yds

d . ! O\ds
— b;b(l‘ + tl _ a/’a _ a/)e—fo u(s+a—d ,s)ds

= (8(t + 1,)p)(a. d).
2.21)
Fora < d <t,by (2.16)
SOSE)P)a, ") = by, 4t —a,d’ — a)e” o' uGss+d'~a)ds
= by(t+1 —a,d — a)e” Jo st —ads (2.22)

= (S +1)P)a,a").
Ford' < a < t, by (2.16)
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(SOS(t)d)a,d') = blsol)qb(’ —d,a—d)e S w(s+a—a 5)ds
=by(t+1,—d,a—d)e Jo wsra=ds)ds (2.23)
= (S(t + t,)P)(a, ).

Thus,
S+ t)p=ESOSH ), t,t, >0, ¢ EE.

Now we need to prove the strong continuity property. We have
IS¢ — ¢l = / / [(S(p)(a,a’) — ¢(a,a’)|dadd’
o Jo
at at . ,
< / / |p(a —t, d — He™ Jo u(s—t+a.s—t+a')ds _ #(a, a’)ldada'
t t
t a* . ,
+ / / |by(t —a,a' — a)e™ o mesta=ads _ gy g/\|dd'da
0 a

t a*t ,
+ / / |b;5(t —d,a—d)e b Hora=d 90 _ gy gy dadd
0 a

=141+ 11,
(2.24)

where

I< / / |pla —t,a’ — 1) — ¢p(a,d’)|dadd’

e o (2.25)
+ / / |¢(a -, d — t)||e_f0 pu(s—t+a,s—t+a’)ds _ l|dada'
t t

-0 as t—-0F

by the absolute continuity and boundedness of ¢ € E and continuity of the exponential
function e%’. Next observe that

t a*t
Il < / / |by(t = a,d’ —a) = by(0,d" — a)| + |by(0,a" — a) — ¢(a,a’)|dd'da
0 a

t at
+/ / |by(t —a,a’ — a)||e” o westa=ads _ 1144/ da
0 a

-0 as t—0"
(2.26)

by the boundary condition b,(0,a’) = u(0,0,a’) = ¢(0,a’) and absolute continuity and
boundedness of by, in C((0, o0), L}r(O, a*)) with continuity of the exponential function e,
Similarly, we can show that IIl — 0 asz — 0. It follows that

tlirgi SHp=¢, VPEeEL.

@ Springer



416 H. Kang et al.

This completes the proof. a

2.4 Solutions of the initial-boundary value problem

In the previous subsections we established the global existence and uniqueness of the solu-
tion for (2.1). In this subsection we claim that the solution of (2.14) is indeed a solution of
(1.1)—(1.4).

Proposition 2.4 Let T > 0 and let ¢ € L}r((O, at) x (0,a™)). If u is a solution of (2.1) on
[0, T1, then it is a solution of (1.1)—(1.4) on [0, T].

Proof First, u(0,-,-) = ¢ since u(t,-,-) satisfies (2.1) at t = 0. Next, let 0 <t < T and
0 < h < T-t. From (2.1) we have

at at
/ / |h_] [u(t +h,a+h,d +h)—ut,a,d)] + ua,a)ut,a,d)|dadd
0 0

at at
— / / |h_l¢(ll -1, ad - l)[e_ /OHH pu(s—t+a,s—t+a')ds _ P /Ol u(.v—t+a,.\—t+u’)dx]
t t
' ’
+ u(a, a’)d)(a —1 ad — t)e'/u H(s—t+a,s—t+d )dsldada/
! ll+ a+h a
+ / / |h_1u(t —a,0, Ll/ _ a)[e_/l) pu(s,s+a'—a)ds __ 6_/0 ;4(,&,.\'+a’—u)dS]
0 Ja
+ pa,dult — a,0,d — a)e™fo Hostd=ads |44/ dq
! at d +h d
+ / / |h_lu(t _ a/ a— al 0)[6_/0 u(s+a—d s)ds _ e—fn [A(Y'HI—(I/,S)dS]
0 Ja
ul N R
+ua,dut —da—d, 0y Jo #ored I8 dadg’

a* at
= / / |¢(C! -1, a’ — l‘)l |h—1 [e_ fr’*‘" pu(s—t+a,s—t+a')ds _ l] + M(d, a/)| |e— /0' M(s—t+a,s—l+a’)dx|dadal
t t
1 a* a+h , a /
+/ / |u(t—a,0,a’ _a)llhfl[effﬂ u(s,s+a' —ayds __ 1]+;4(a,a’)||e’/” u(s.s+a 7a)dslda/da
0 Ja

! a+ a’ +h a
+ / / u(t - a/’a _ a/, 0)| |h71[€7/“’ M u(s+a—d' $)ds _ 11+ ﬂ(a,al)”e—fn M(r+afa’,s)ds|dada/v
(U

2.27)
Letting 7 — 0, by continuity of the exponential function e~", the above expression will
approach zero by the uniform boundedness of b(z,a’), b’ (¢, a) in C((0, oo),Llr(O, a™)) and ¢
in E. Hence, (1.1) holds.
Next,let0 <r< TandletO < h < T —twith0 < h < a'. From (2.1) we have

Jh
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h at at at
K / / |u(t + h,x,a") - / / p(d . a, s)u(t,a,s)dads|da’ dx
o Jo o Jo

h at )
= / / |t + = 2,0, = x)e= o o =0

/ / B(d ,a, s)u(t, a,s)dads|da’ dx

h
=h! / / |/ / B(d —x,a,s)u(t + h — x, a, s)dadse™ Jo #e-s+a'=0ds

/ / pd,a,s)ut,a, s)dads|da'dx

=n! / / l/a /a p@ —x,a,s)ult+h—x,a,s)
o Jo

—B(d', a, s)u(t, a, s)dads|e” Jo mls.s+d =xds

a a*
+ / / p(d ., a,5)u(t, a, s)dads[e™ o o599 _ 1 ]1dg’ dx
0 0

a* a*t
< sup / / / pd —x,a,)u(t+h—x,a,s) — pd,a,s)ut,a,s)dadsdd’
o Jo

0<x<h J O

+ sup [e™# — 1]/ / / pd, a,s)u(t,a,s)dadsda’
0<x<h 0 0 0

=141
(2.28)
where

at at at
1< sup |/ / / |p@ - x,a,s) — p(d,a,s)||u(t+ h - x,a,s)|dadsdd’
o Jo Jo

0<x<h

+/ / / |8, a,$)|lu(t + h — x,a,5) — u(t,a,s)|dadsdd’ |
o Jo Jo

< sup |/ |pd —x,a,5)— p(d ,a, s)|da'/ / u(t + h —x,a, s)dads
0 o Jo

0<x<h

at at at
+ / p(a")dd' / / lu(t + h — x,a,s) — u(t,a,s)|dads|
0 o Jo

(2.29)
and

< sup[e ™ —1] / B(d)dd’ / / u(t, a, s)dada. (2.30)
0<x<h 0 o Jo

Letting & — 0 yields that T — 0 by the equicontinuity of # with respect to @’ in Assumption

2.1(ii), continuity of u(z, -, -) in E with respect to 7, and the uniform boundedness of u(z, -, -)

in E and f in Assumption 2.1, while II — 0 by uniform boundedness of u(t, -, -) in E and f

in Assumption 2.1 with continuity of exponential functions.
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Similarly, we can show that

h at a*t at
lim A~ / / |u(t + h,a,x) - / / p'(a,s,a"u(t,s,a’)dsda’ |dadx = 0.
h—0 o Jo o Jo

This completes the proof. O

3 The infinitesimal generator

The infinitesimal generator of the strongly continuous semigroup {S(#)} - is defined as the
(unbounded) linear operator A in X by (see Hille and Phillips [21])

Ag = lim 17 (S()p — )
with ¢ € D(A), where
DA)={peX: tlir(g (S — ¢p) exists}.

One would intuitively imagine that the infinitesimal generator would follow similarly to the
single age-structured systems (Webb [52]) as B¢ = —% - % — u¢ with domain

D(B)=1¢ € WH([0,a%)) : / / pd,a,s)¢(a, s)dads
0

0
=¢(O,a'),//ﬂ’(a,s,a’)d)(s,a’)dsda’ = ¢(a,0) 7.
00

However, it is unlikely to show the weak differentiability of ¢ € D(A); thus, we cannot
conclude A = B. The key reason for A and B being different lies in the fact that A takes
the directional derivative along (1, 1) in the L! sense, while B takes partial derivatives with
respect to both variables in the L' sense. Indeed, the characterization of the infinitesimal
generator A is a bit more complicated than the single age-structured case, and here, we
adopt the description of A as pointed out in Webb [53, Remark 3.1] and provide a proof.

Proposition 3.1 If ¢ € D(A), there exists y € E such that fora > 0,a’ > 0:

/¢(s,a’)ds+/d)(a,s’)ds’+//)((s,s’)dsds’ :/]—'(q,’))(s)ds+/g(ti))(s’)ds’,
0 0 00 0 0

G.1)
where F()a) := [ [ B'(a,s,a)p(s,a)dsdd’ and Gp)(a@') = [i* [ B(d,a, )d(a, s)dads.

Proof Let ¢ € D(A), fort > 0, define y, € E, ¢, € E by
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(@.d) E forae. a<tord <t
a,a )= _rt _ i)
& Uda—t,a — tye™ Jons—rras=i+a)ds _ gcq ¢ o' —p)], forae.a>t anda’ >t

and

b (a.d) = 0, forae. a<tord <t
ATl ea—t,d —t)— ¢pa,a’)], forae.a>tandd >t

respectively. Then, we have

”Xt + H(a7 a’)¢(a’ a/)“E

- / ' / ' [(ﬁ(a —td -n& o
t t

t
t at t a*t
+ / / |u(a,a)p(a,a")|da’da + / / |u(a, a")¢(a,a")|dadd’
0 a 0 a

< / ’ / @)@ - .d — 1) da,a)ldadd

a* a* e fo’ u(s—t+a,s—t+a')ds _ 1
+ / / lp(a —t,a" — 1) [ + u(a, a’)] dadd’
t t

t

t a*t t a*t
+/ / |y(a,a’)¢(a,a’)|da’da+/ / |u(a, a)d(a,a)|dadd
0 a 0 Jda

-0 as t—-0"

s—t+a’)ds _

dadd’

1] + ula,d)bla, )

(3.2)
by the differentiability of exponential functions and the boundedness and absolute continu-
ity of ¢p in E.

Next, observe that
I|¢t + X _A¢”E

5// |A¢(a,a')|da'da+// |A¢(a,a’)|dadd’

/ / ¢(a—l a —t)e fou(s t+a,s—t+a')ds _ ¢(a a)

/ / |Ag(a,a’)|da da+/ / |A¢(a,a’)|dadd

+ / / |7 (S — p] — A(a, d')|dadd’

-0 as t—-0F

— A¢(a, d')|dadd’

(3.3)

by the definition of A. Thus, we have lim,_ . ¢,(a,d’) = Ap(a,d’) + u(a,d’ )¢(a,d’) a.e. in
[0,a™] X [0, a*]. In addition we get for any a,a’ > 0 that
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a+t d' +t a

lim ! / / d(s, s)ds'ds — 1 / / (s, s')ds'ds
-0t
t t 0 0
= 1i%1 t_l//qb(s+l,s’+t)—¢(s,s')ds'ds (3.4)
t—0+
0 0

a

=- / / [Ag(s, s') + u(s, s")P(s, s)]ds"ds.
0

0

We further observe that for a.e. a € [0, a*],

Il [S()p — 1 — Al

t a
0

By the fact that /| [ |Ad(a,a’)|da’da — O as 1 — 0%, we have

! [by(t =", = s")e” Jo wrrs=s'ndr _ g Y] — Adb(s, s)|dsds’.

t a
t_l / / |b;,)(l _ s/’s _ S')e_foy u(r+s—s' rdr _ ¢(S, s')|dsds' S 0ast— 0+. (3'5)
0

Then

! / / P(s, s")dsds’ — / F($)(s)ds|
0 Jo 0

t a
<! / / |bGs, ) — FBH)|dsds’
o Jo
t ra " ,
< [_1 / / |¢)(S, Sl) _ b:b(t _ S/,S _ Sl)e—fo H(r+s—s ,r)drldsdsl
o Jo
t a J
+¢7! / / AGEESRES s") (e~ Jo Hrks=sndr _ 1) |dsds’
o Jo
t a
+1! / / |b;)(t—s',s—s') —b:b(t—s’,s)|dsds’
o Jo

t a

+1! / / |B,(t = 5", 5) = F(g)(s)|dsds’
0 Jo

=L +L+1+]1,

where I, converges to 0 as 7 — 0% because of (3.5). Next note that b;} e ([0, 00), LL(O, at))
and b:ﬁ(O, ) = FP)(-), we have

a+

lim |b;)(t, a) — F(p)a)|da = 0. (3.6)

t—0* 0

Hence, we can find 6 > 0 such that
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a
sup /
t€[0,61 J 0O

Therefore, by Assumption 2.1(v),

+

b (t,ayda < 2 / ’ Fp)a)da.
0

+

a
I, < sup / Ib:b(t —, 5=l =e*)ds = Oast — 0.
0

s'€[0,1]

Clearly, I, — 0 ast — 0*. Further,

L < sup / |b;)(t -5, s—5)— b(’l)(t -5, 5)|ds
s'€l0,6] JO
< sup / |b;}(t -5, 5s—5") = Fp)s—s)|ds
s'€l0,t] JO
+ sup / | F(PD)(s) — b;(t -5, 5)|ds
s'€l0,t] JO

+ sup /0 | F(p)(s = s) — F(p)(s)|ds = 0 as t = 07,
0

s'€[0,¢]

where the first two terms converge to 0 as + — 0% because of (3.6) and the last term con-
verges to 0 due to the continuity of the L' function F(¢) with respect to translation. So we
have

t a
[11%1 1! / / (s, s")dsds’ = /0 a]—'(r,b)(s)ds. (3.7)
0 0
Similarly
t d a
,li%l ! / / ¢(s,s")ds'ds = / G(P)(sHds'. 3.8)
0 0 0
a‘it b ey a’ir U, S
I I e +--4
oS E— 0 I S
0 :t B :a+t ° 0 :t :a :a+t s
(a) LHS of (3.13). (b) RHS of (3.13).

Fig.2 Illustration of equality (3.13)
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Next we observe that foa /Oa/ ¢(s, s')ds’ds is differentiable with respect to the variable a for
all a,a’ > 0, thus

a+t a da
liron ! / ¢(s,s")ds'ds = P(a, sHds', (3.9)
1=0* a 0 0
and similarly
a a' +t a
lirél ! / / P(s, s )ds'ds = / ¢(s, d’)ds. (3.10)
1-0% o Ja 0

Further, it is easy for us to have the following estimates:

lim ¢~ //¢(ss)dsds— R hmt / qb(ss)dsds-O, 3.11)

a+t t a+t  pd+t
lirgl ! / / (s, 5)ds’ds = 0, 1i151 ! / / @(s,5)ds’ds = 0. (3.12)
1=0% a 0 1=0* a a

Note that the integration of ¢ on [0, a + ] X [0,a’ + t] can be approached in different ways
(see Fig. 2) and we have the following equality for any a,a’ > 0:

a t t da t t
_1(/ /¢(s,s')ds'ds+// (,b(s,s’)ds'ds—/ / P(s, s")ds'ds
o Jo 0o Jo o Jo
att  pt t pd+t at+t  pd+t
+/ / q,’)(s,s’)ds’ds+/ / ¢(s,s’)ds’ds+/ / P(s, s")ds'ds)
a 0 0 a t t
a a a+t da
=r'( / / (s, s)ds'ds + / / (s, s")ds'ds
o Jo a 0
a d +t a+t a+t
+/ / d)(s,s’)ds’ds+/ $(s,5')ds’ds).
0 a’ a a

(3.13)
Lett — 0% and apply (3.4)—(3.12), we have (3.1) for a.e. a,a’ > 0 with y = A¢ + ud.
O
Remark 3.2 Based on (3.1), one can easily derive a description of operator A:
0
(Ap)(a,d") = - a((b(a a)+—/ P(s,d')ds) — u(a,d")p(a,d)
(3.14)

=——(¢( a)+—/ P(a,s")ds") — p(a,d)p(a,d).

From (3.1) we can conclude that
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D) C {¢ €E: (a,d)— / ¢(s,d’)ds s absolutely continuous ina’ fora > 0,
0

(a,d) — [% / @(s,a’)ds + ¢(a, a')] is absolutely continuous inafor a.e.a’ > 0,
a Jo

a
lim 9 / P(s,a’)ds + ¢p(a,a’)| = G(¢p)(d)forae.a’ > 0,
a—0* | da’ 0
o
(a,d) = / ¢(a, s)ds is absolutely continuous in a fora’ > 0,
0

a/
(a,d) = |:0i / P(a, s)ds + ¢(a,a’):| is absolutely continuous in a’ for a.e.a > 0,
a Jo

a' =0+

and 9 [i /“ (s, )ds + ¢(a, a')] € E}
oa |dd [,

lim [% /u @(a, s)ds + ¢(a, a’):| = F(¢p)(a)fora.e.a >0,
0

(3.15)
Moreover, Webb [53] claimed that the inclusion is in fact an equality. Furthermore, ¢ € D(A)
if and only there exists y € E such that fora > 0,a’ > 0, (3.1) holds. If in addition ¢ is suf-
ficiently smooth, then A = B and ¢(a, 0) = F(¢p)(a),a > 0,$(0,d") = G(¢)(d'),d’ > 0.

4 Compactness of solution trajectories

First we introduce the @-measure of non-compactness of a bounded linear operator in the
Banach space X from Nussbaum [41] or Webb [52]. If T is a bounded linear operator in the
Banach space X, then the Kuratowski measure of non-compactness of T, denoted by a[TT],
is the infimum of € > 0 such that a[T(M)] < ea[M] for all bounded sets M in X, where
a[M]is the measure of non-compactness of M. The following result is proved in Webb [52,
Proposition 4.9]:

Proposition 4.1 Let T, and T, be bounded linear operator in Banach space X. The fol-
lowing hold:

@ T <|Tyf;
(i) o[T\T,] < a[T}]a[T,];
(i) o[T, + T,] < a[T)] + a[T5];
@iv) a[T,]1=0ifand only if T, is compact.

To establish the compactness of solution trajectories, we need the following proposition
which was proved by Webb [50].

Proposition 4.2 (Webb [50]) Let {S(1)} 5o be a dynamical system in the Banach space X
satisfying

1) S@® =S,@) + S, for eacht > 0, where S,(1), S,(t) are mappings from X to X;
) ||S,0x|| < c(t,r) for all t>0 and all x€ X such that ||x|| <r, where
¢ : Rt x RY - R*is a continuous function such that for allr > 0,1im c(t,r)=0;

—o0
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(ii1) S,(¢) is compact (that is, maps bounded sets into precompact sets) for t sufficiently
large.

If the trajectory y(x,) of x, € X is bounded, then it is also precompact.
We now apply this proposition to show that bounded trajectories of {S(¢)},,, are precom-
pact. Define

4 ’
Ppla—td — t)e’/O His—ttas—i+a)ds 4 g gl < gt or t<d <a<at

A otherwise

Sila,d’) = {

@ g o
bd,(t—a,a’—a)e_/o Hesta—a)ds o o r gl <qt or a<d <ta<d <a‘*

A otherwise

S,pla,a’) = {

d ’
V. (t—d,a—d)e Jo wora=d' s ot o p ot g <ca<at or d <t<a<at
Sy(0d(a,a) = { ot )

A otherwise.

Proposition 4.3 If y > 0, then S,(t) satisfies the hypothesis (ii) of Proposition 4.2 and
S, (1), S;() satisfy (iii) of Proposition 4.2.

Proof We assume a* < oo throughout this proof, the conclusion also holds for a* = oo and
the corresponding proof is presented in Appendix, Proposition A.1.
Obviously S;(#),t > 0,i = 1,2, 3, are mappings from E to E. We have

1Sl < / / e h us—tas—t+a)ds b g — ¢ o' — 1)|dadd’
t t
a e 4.1)
< / / e ¥ pla—t,d —t)|dadd
t t
<e ol

Now we show that S,(¢) is compact for ¢ > 2a*, it is equivalent to show that for a bounded
set K of E,

a' a
at w2 i E
: LV
I | I v
: L
i i i P
0 [ : 0 ! P
K—h at a k—h t-h t ?
(a) at < oo. (b) a" =oo.

Fig. 3 Integration regions for (4.4) and (A.3)
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lim / ’ / ’ |S,(Dd(a + h,d + k) = Sy(1)p(a, a')|dadd’ = 0,
0 0

W 4.2)
k—0
lim S,(H¢(a,a’)|dada’ = 0
h—at /h ,/k | 200 )| 4.3)
k—a*

uniformly for ¢ € K (which can be found in Dunford and Schwartz [14, Theorem 21,
p. 301]). Without loss of generality, assume that k > & and &, k — 0%, we have

/ / |S,(Dp(a+ h,a' + k) — Sy()p(a,a")|dd'da
o Jo

< / / |S,(Dp(a + h,a’ + k) — Sy(1)p(a,a’)|dd’ da
0 a

/

region I
at a
+ / / 1S,(0b(a+ h.d + k)|da’da @4
k=h Ja+h—k
reg?(:n I
k—h a
+ / / |S2(t)d>(a +h,d + k)|da'da,
0 0
reg;); I

as illustrated in Fig. 3a: S,(t)¢p(a,a’) is non-trivial for points (a,a’) in regions I, and
S,(Op(a + h,a’ + k) is non-trivial for points (a,a’) in regions I, II, and III. First recall from
(2.7) and (2.8) that when a* < co and t > a*,

t at—t+p
by(t,a) = / / fila,t —p,s+1—pb,p,s)dsdp
e 70 (4.5)

t at—t+s
+ / / gla,p+i—s,1— s)b;ﬁ(s,p)dpds
t—at JO

and

t at—t+p
by(t,a) = / / fa,t=p+s.t=p)b,(p,s)dsdp
t—at JO 6
t at—t+s (4 )
+ / / 8(a, 1t —s,p +1—5)by(s, p)dpds.
t—at JO

‘We then show
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/ / |S,(Dla + h,d' + k) — Sy(D(a, d’)|dd’da
0 a
< / / |byt —a—h,d" +k—a—h)—by(t—a,d —a)|e” K wsstd thma-ids g 4
0 a

at a*
- / / |by(t —a,a" — a)le” S wGsstalth=aids _ = fi uisstd =045 g/ da

0 a

=141,
where
a* at
< / / b¢(l —a, a/ _ a)|e_ _/OMM y(s,s+a’—a)d5[1 _ efO‘H'h y(s,s+a’—a)—y(s,s+a’+k—a—h)d5]

0 a

+e /0" y(s,s+a’—a)d5[1 —e faMh y(s,s+u’—a)dS] |da'da
at at
< / / by(t—a,d — a)( max{1 - e Kulk=ha® K (=ha® _ 1y 4 (1 = e‘ﬁh))da'da
0
‘ at at
< ( max{1 — e—K;,(k—h)aJ', Kutk=ha* _ 11+ - e—ﬁh)) / / b¢(t —a, s)dsda
0 0
a+
< 2l max( 1 — e B Kb )y (1 gy / ¢l da
0

based on our prior estimate in Sect. 2.1 and with K, being the Lipschitz constant for .
Thus, IT — 0 uniformly for ¢ € K as h,k — 0*.
Next, we need to show that

at at
lim / / |by(t —a—h,d" +k—a—h)—by(t—a,d —a)|dd'da = 0.
h—0Jo a

k—0

4.7

By (4.5) and (4.6), we have (note that we consider ¢t > 2a%)
at  pat
/ / lby(t—a—h,d +k—a—h) —byt—a,d —a)lddda
0 a
at at t—a—h at—t+a+h+p
g/ / |/ / fild +k—a—ht—a—h—p,s+t—a—h—p)by(p,s)dsdp
0 a t—a—h—at JO

t—a at—t+a+p
—/ / fild —a,t—a—p,s+1—a—p)hby(p.s)dsdp|dd’da
t—a—at JO

at at t—a—h at —t+ath+s
+/ / |/ / gl(a’+k—a—h,p+t—a—h—s,t—a—h—s)b;)(s,p)dpds
0 a t—a—h—at JO

1—a at—t+a+ts
—/ / g (d —a,p+t—a—s,t—a—s)b;)(s,p)dpds|da’da
t—a—a*t JO
=1+,

where
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at at t—a—h at—t+a+p
JIS/ / (/ / lfitd +k—a—ht—a—h—p,s+t—a—h—p)
0 a t—a—a* JO

—fild —a.t—a—p.s+1t—a—p)by(p,s)dsdp

t—a—h at—t+a+h+p
+/ / fl(a’+k—a—h,t—a—h—p,s+t—a—h—p)bd,(p,s)dsdp
r- a

—a—a*t Jat—t+a+p

t—a at—t+a+p
+/ / fl(a’—a,t—a—p,s+t—a—p)b¢(p,s)dsdp
t—a—h JO

t—a—a* at—t+a+p+h
+/ / fitd +k—a—ht—a—h-p,s+t—a—h-pbyp,s)dsdp)dd da
t 0

—a—at—h

1l 2 3 4
=LA+
in which

lfid +k—a—-ht—a—h—ps+t—a—h—-p)—fi(d —a,t—a—p,s+1t—a—p)|
s+i—a—p

<Ip@+k—a—ht—a—h—p,s+t—a—h-p)(l—e Jraratotiio)
+1p(d +k—-a—ht—a—-h—-p,s+t—a—-h—-p)—pfd —at—a—p,s+t—a—p)|
< pld +k—a—h)(1 —e™) +3max{k, h}K,

by Assumption 2.1(i) on f being Lipschitz continuous and K, as the Lipschitz constant.
Thus,

t—a—h

at at B ) at—t+a+p
Jl < /0 /a [B@ +k—a—h)(1 - ™)+ 3max(k, h} K] ( / /0 by(p, s)dsdp)dd’da

—a—at

s/a / [ +k-a-h —e“’1)+3max“"h”<ﬁ](/
0 a t

—a—a

t—a—h

n zﬂmax ||¢||E€4ﬂ““"‘pdp)da’da

t
< a1 = ™)y + 3max(kmKy (@] ([ sl dlleorap)
0
— 0 uniformly for ¢ € K as h,k — 0"

based on the assumption of a* < co. From (4.5) we first estimate that

x+h x+h t at—i+p B t at—t+s B
/ b¢(t,a)da§/ (/ / ﬂ(a)b¢(p,s)dsdp+/ / ﬁ(a)b;b(s,p)dpds)da
X x 0 0 0 0

x+h

<( [ Fa@da) (1l / ot dp)

x 0
— 0, as h — 0% uniformly for ¢ € K, x > 0.
4.8)

Then, we have

at at _ t—a—h at—t+a+p+h
i< /0 / B +k—a—h)( / by(p.s)dsdp)dd’da
a 2

—a—a* Jat—t+a+p

a*t at t—a—h at—t+a+p+h
<( / pa"dd’) ( / / by(p. s)dsdpda)
0 0 t—a—a* Jat—t+a+p

— 0, as h,k — 0T uniformly for ¢ € K

and
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a a i—a at—t+a+p
J]3 < / / B _a)(/ / b¢(P,S)dsdp)da’da
0 a t—a—h JO
a a* t—a
< (/ ﬂ_(a’)da’)(/ / 2ﬂmax”¢“EeﬂmXPdpda>
0 0 t—a—h

— 0, as i,k — 0% uniformly for ¢ € K.

Similarly, one can show that J‘l1 — 0. Therefore, we have J; — 0 as i, k - 0% uniformly for
¢ € K. The fact that J, — 0 uniformly for ¢ € K as h,k — 0% can be proved by a similar
argument.

Therefore, we know that the first term in (4.4) goes to 0 uniformly for ¢ € K. Secondly,
based on estimate in (4.8) we have

/ / |S,(Dpla + h,d’ + k)|dd’ da
k—h J a+h—k

5/ / by(t—a—h,d +k—a—hddda
0 Jarh-k

< / | p(@")dd’ | (4111l Brnax / P dp)da
0 0

a+h—k

a _ t
< sup | / ladd'| - a* - (411l B / b dp)
O<a<t a—h+k 0

— 0 as h,k — 0% uniformly for ¢ € K.

Moreover,
k—h a
/ / |S,()p(a + h,a’ + k)|dd’ da
0 0
k—h a
S/ / b¢(t—a—h,a’+k—a—h)da'da
0 0

k=h  pa* k—=h
< / / by(t—a—h,s)dsda < ZﬂmaxlqullE/ eMPnan(i=a=h) qq
0 0 0

— 0 as h,k — 0" uniformly for ¢ € K,

we thus have (4.2). For (4.3),

/ / |Sz(l)¢(a,a/)|dada’ 5/ / by(t — a, s)dsda
h k . A
Kl+
<Al [ a0
h

as h,k — a* uniformly for ¢ € K. We can show that {S;(r)}» is compact for sufficiently
large ¢ in the same way. a

Remark 4.4 Similarly, in the case of a* = oo and with Assumption 2.1(iii)’, one can show

that S;(¥), S,(), and S5(¢) satisfy the hypothesis of Proposition 4.2, see Appendix. In par-
ticular, when a* < o0, {S,(f)} 5 and {S5(#)} 5, are eventually compact, while in the case
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of a* = co we can actually show that {S,(#)} 5o and {S5(#)} 5, are compact for all 7 > 0.
Figure 3b illustrates the estimation similar to (4.4) for all # > 0.

Now we have shown that if at < oo, for sufficiently large ¢t > a,
a[S®] < alS,(O] + a[S,(O] + a[S;()H]=0+0+0=0,

which implies that the semigroup {S(#)},,, is eventually compact, hence the essential
growth bound

»,(4) := lim 1~ log(a[S(1)]) = —oo, (4.9)
while if a* = oo,
a[S()] < a[S;(1)] + a[S,(D] + a[S;(N] < e +0+0=¢"2, >0,
which implies the estimate of the essential growth bound
®,(4) := lim ' log(alS@)]) < —p.

Moreover, the essential spectral radius of A satisfies that
r,(S(0) = explow,;(A)f] <e™# <1, t>0.

It follows that {S(#)}, is quasi-compact. The following theorem from Engel and Nagel
[18, Theorem 2.5, Chapter VI] will be used to show the stability of an equilibrium for a C,
-semigroup.

Theorem 4.5 (Engel and Nagel [18]) Let {S(1)} 5 be a positive strongly continuous semi-
group with generator A on a Banach lattice LF(Q, u), 1 < p < co. Then s(A) = w, where

s(A) :=sup{Reld : 1 €0(A)}
is the spectral bound of A and

@, := lim og(IS®)ID

is the growth bound of A.

5 Spectrum analysis

In order to study the spectral theory, we introduce some definitions and results in positive
operator theory on ordered Banach spaces from Inaba [24]. For more complete exposition,
we refer to Daners and Koch-Medina [8], Heijmans [20], Marek [37], and Sawashima [43].

Let E be a real or complex Banach space and E* be its dual (the space of all linear
functionals on E). Write the value of f € E* at w € E as (f,y). A non-empty closed
subset E, is called a cone if the following hold: (1) E, +E,  C E,, (2) AE, CE_ for
A>0,(3) E,n(=E,) = {0}. Let us define the order in E such that x <y if and only if
y—x€E, and x <yifand only if y—x € E, \ {0}. The cone E, is called total if the set
{w—¢ :w,¢ €E,}is dense in E. The dual cone E is the subset of E* consisting of all
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positive linear functionals on E; that is, f € E7 if and only if (f,y) > 0 for all y € E,.
v € E, is called a quasi-interior point if (f,y) > 0 for all f € E; \ {0}. f € E7 is said to
be strictly positive if (f,y) > 0 for all y € E, \ {0}. The cone E, is called generating if
E=E, — E, and is called normal if E* = E} — E7.

An ordered Banach space (E, <) is called a Banach lattice if (1) any two elements
X,y € E have a supremum x V y = sup{x, y} and an infimum x A y = inf{x,y} in E; and (2)
[x| < |y|implies ||x|| < ||y| for x,y € E, where the modulus of x is defined by |x| = x V (—x).

Let B(E) be the set of bounded linear operators from E to E. T € B(E) is said to be
positive if T(E,) C E,. T € B(E) is said to be strongly positive if {f, Ty’) > 0 for every pair
v e E N\{0},f € E;\ {0}.ForT,S € B(E), wesay T > Sif (T — S)E,) C E,. A positive
operator T € B(E) is called non-supporting if for every pair w € E_\ {0},f € E} \ {0},
there exists a positive integer p = p(y,f) such that (f, T"yw) > 0 for all n > p. The spec-
tral radius and spectral bound of T € B(E) are denoted as r(T) and s(7), respectively. o(T)
denotes the spectrum of T and o,(T) denotes the point spectrum of T.

From results in Sawashima [43], Marek [37], and Inaba [24], we state the following
proposition.

Proposition 5.1 Ler E be a Banach lattice and let T € B(E) be compact and non-sup-
porting. Then the following statements hold:

(1) r(T) € op(T)\ {0} and r(T) is a simple pole of the resolvent, that is r(T) is an alge-
braically simple eigenvalue of T,

(i) The eigenspace of T corresponding to r(T) is one-dimensional, and the correspond-
ing eigenvector y € E_ is a quasi-interior point. The relationT¢ = up withp € E,
implies that ¢ = cy for some constant c;

(iii) The eigenspace of T* corresponding to r(T) is also a one-dimensional subspace of
E* spanned by a strictly positive functional f € E*,;

(iv) LetS,T € B(E) be compact and non-supporting. Then S < T,S # T and r(T) #0

imply r(S) < r(T).

5.1 Point spectrum and stability analysis

In this subsection we study the spectrum of A. Note that we will not solve the charac-
teristic or resolvent equation of A directly, since A with its domain D(A) seems very
complicated as shown in Sect. 3. But thanks to the solution flow {S(#)} .o, we can still
characterize the eigenfunctions or resolvent solutions of A, see the following theorems
from Webb [53]. Moreover, we only consider the case at < oo in this section but the
main results presented here remain true in the case at = oo (see Remark 5.8).

Theorem 5.2 (Webb [53]) Let F and G be defined in Proposition 3.1. Then ¢p € D(A) and
A = A for some A € Cif and only if ¢ (in the complexification of E) satisfies

e (a,d',d\Fp)a—d), ae.a>d

ple )= { e Hlla,d, G —a),  ae.d >a, oD

where
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t
(a,d’,t) = exp [—/ ula—r,d —1)dr|.
0

Theorem 5.3 (Webb [53]) Let A€ p(A) (the resolvent set of A) such that
Red > f, + B, — i, lety € E and satisfy ¢ = (Al — A)~" . Then

ba,d) = e (a,d ,d)F)a—d)+ /Oa/ e *M(a,d,0)w(a —o,d —o)do, ae.a>d
’ e *I(a,d',a)G(p)(d — a) + foa e **(a,d,0)y(a—o0,d — o)do, ae.da >a,
5.2)

where f,, + /. > is from the norm of linear boundary conditions.

Plugging (5.1) into the integral conditions F(¢) and G(¢) defined in Proposition 3.1,
we obtain

G(p)d') = / / p(d', a, s)¢(a, s)dads
o Jo
= / ’ / ’ B, a, )[I(a, s, s)e™ ™ F(p)(a — s)dsda
o Jo
+/“ /S B, a,)(a, s, a)e"*G(¢p)(s — a)dads,
o (5.3)
f((],’))(a):/ / f(a,s, d)p(s,a)dsdd
o Jo
=/ / B(a,s,d(s,d, s)e ¥ G(p)d — s)dsdd’
o Jo

+ / / B (a,s,d)I(s,d',d Ve ™ F(p)(s — a’)dd'ds.
0 0

Denote
a(t) = G(P)®), n@) = F)®),
fild,a,s) = pd,a,9)(a,s,s), fo(d,a,s)=pd,a s)(a,s,a),
fila,s,d") = p(a,s,d)(s,d,s), fila,s,d)=p(a,s,d)(s,d,ad).
So

a(t) = / / fit,a, s)na — s)e Mdsda + / / Lt a,s)als — a)e *dads,
o Jo o Jo

n(®) :/ / fit,s,dYa(@ — s)e"*dsdd +/ / fut.s,d (s — a' e dd'ds.
o Jo o Jo
64

If we can solve non-trivial @ and 7 from the above equations, we would find the non-trivial
solution of the characteristic equation. In the following context, the function space that

appeared is itself or its complexification based on the values of 1in R or C.
Define F; : L'(0,a*) x L'(0,a*) — L'(0,a*) x L'(0,a*), 4 € C, by

Fl(a’ ’7) = (Flj.(a’ ’1)9 FZA(“? 7]))’
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where

Fi(a,n) = / / fit,a,s)n(a — s)e dsda + / / Lt a,s)als — a)e *dads
o Jo o Jo

and

Fy(a, ) = / / £t s, aHa(d — s)e™dsdd’ +/ / fu(t,s,d)n(s — a"e " dd' ds.
o Jo o Jo

Now the problem becomes finding a non-trivial fixed point of F; in LY(0,a*) x L'(0,a™").
Furthermore, it is easy to check that F/; maps L'(0,a%) x L'(0, a™) into itself since

1F1 (0 M i.ar) = / / / If, (2, a, s)n(a — s)e=* |dsdadt
o Jo Jo

+/ / / £ (2, @, s)a(s — a)e™*|dadsdt
o Jo Jo

< [ B [ na-sida [ 5:5)
0 0 0

+ B(H)dt / la(s — a)|ds / e~ Rettmag,
0 0 0

ﬂ%up +
<P 1= ef(ReAJrﬁ)a a, )
_Re/1+ﬁ[ 1l e, |
Similarly, for F,,, we also have the following estimate:

!
sup

Reat i~ e R (). (5.6)

1Fs (Dl 0.y <

In the following we give some properties of F',.

Lemma 5.4 Let Assumption 2.1 hold. Then the operator F, is compact for all A € C and
non-supporting for all A € R.

Proof For the compactness of F,, it is equivalent to show that for a bounded set K of
LY(0,a*) x L'(0,a™),

}111% / |F; (@, n)(t + h) = F;(a,n)(®]ds = 0 uniformly for (a,n) € L'(0,a*) x L'(0,a™),
—~YJo

where i = 1,2. Now let us consider F|,, that is,
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| / / / fi(t + h,a,s)e™*n(a — s)dsdadt

0 0 0
+ / / / ot + hya, s)e*a(s — a)dadsdt

0 0 0
- / / / fi(t,a, s)e *n(a — s)dsdads

0 0 0

a*t at s (57)

_/ / / ot a,s)e *a(s — a)dadsdi|

0 0 0

a*t a*t a
< / / / lfi(t+ h,a,s) = fi(t,a,s)| |e_’1‘“| |n(a — s)|dsdadt
0 0 0

+ / / / o (2 + R, a, 8) = f(t, @, 5)||e™*||a(s — a)|dadsdt
0 0 0
-0 as h—-0

by Assumption 2.1(ii) on #, #’. Similarly, we can show the convergence for F,,, which
implies that F, is a compact operator for all A € C.
Next, for 4 € R, define a positive functional ., = (%, .%,,) by

(F, (@, n) :=/ / el(s)H(a,s,s)e_“n(a—s)dsda
o Jo

+/ / e, ()I(a, s, a)e Ma(s — a)dads,
o Jo

N , (5.8)
a a
(P, (@) 1= / / e (I(s,d', s)e M a(d — s)dsdd’
o Jo
+ / / & OI(s,d’,a e *n(s — a')dd' ds.
o Jo
From Assumption 2.1(iii), .%, is a strictly positive functional and we have
Fyla,n) = (Fy(a,n), Fypla.m) = (F (@, m)ey, (Foy, (a,m))ey),
(5.9)

/ll_i)f_noo«ﬁm (e1,€2)), (2, (€1, €3))) = (+00, +00),

where (e, e,) = 1 is a quasi-interior point in L'(0,a") x L'(0,a*) when a* < co. Moreo-
ver, we have
Fia,n) = Fy(Fy (e, m), Fy(@,m)
= (F,(Fy(a,n), Fy(a,m), Foy(Fy(a,n), Fyy(a,n))),

where
Fm(Fu(a? n), F2/1(aa n) = <<9izs (Fu(a" n), F%(a, "I)))ei
> (F ((F i (@m)ey, (Fpps (@ m))ey) e

> min{(.F;, (@, M), (Fa,, (@, ) }{F,;, (e, €2))e;
i=min(F, (@, )N Fyy, (e €))e;,  1=1,2.

@ Springer



434 H. Kang et al.

It follows that

F,zl(a’ n) 2 min(.Z,, (@, MY(F 4. (€1, €2))er. (Fy. (€1, €3))€r)
> min{.Z,, (a, n)) min{.%, (1, e;))(e}, €,).

By induction for any integer n we have
F'*™Ya, ) 2 min{.Z,, (@, m) [min(.Z,, (e, €,))] " (e}, €;).

Then we obtain (Z, Fﬁ(a, ny>0,n>1, for every pair
(a,7) € LL(0,a*) X L1(0,a*) \ {(0,0)},.F € (L1(0,a"))* X (L,(0,a*))* \ {(0,0)}; that is,
we know that F, is a non-supporting operator. In summary, F, is a compact and non-sup-
porting operator. a

Remark 5.5 Note that in the above proof of non-supporting of F,, we chose a con-
stant function e =1 as the lower bound of F,. But if a* = o0, e =1 is no longer in
L'(0, 00) X L'(0, 00). Fortunately, we can still prove it under Assumption 2.1(iii)’.
Still define the same positive functional %, = (%,,,.%,,) by (5.8). From Assump-
tion 2.1(iii)’, ., is a strictly positive functional and we have
Fi(a,n) = (Fy(a,n), Fy(a,m) = (F 1, (@, m) B, (F, (a, ’7)).3{),

lim (11, (B BD) (T (B B))) = (00, +00), (5.10)

where (f,, ﬁ{ ) is obviously a quasi-interior point in L1(0, a*) X L'(0, a*). The estimates are
the same as above by just changing (e,, e,) into (f,, ﬁ{ ). Hence, F is still a non-supporting
operator when at = oo.

Now we study the resolvent set of A. Plugging (5.2) into the integral conditions F(¢)
and G(¢) defined in Proposition 3.1, we obtain that

a(t) = / / fi(t,a,s)na — s)e Mdsda + / / Lt a,s)als — a)e *dads
o Jo o Jo

at a at s
+/ / K\, a,s)q/(a,s)dsda+/ / K,(t,a, s)y(a, s)dads,
0 0 0 0

n(t) = / / £t s,a)a(@ — s)e *dsdd’ +/ / fut,s,dn(s — aYe ™ da' ds
o Jo o Jo

at da at s
+/ / K3(t,s,a’)1//(s,a’)dsda/+/ / K,(t,s,a (s, a')dd ds,
o Jo o Jo
(5.11)

where
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K\t a,s)w(a,s) = Pt a,s) / e *Il(a,s,0)y(a —o,s — o)do,
0

K,(t,a,s)w(a,s) = p(t, a,s) / e *Il(a,s,0)y(a - o,s — o)do,

. (5.12)

Ki(t,s,d (s, a') = p'(t,s,d) / e *(s,d, o)y (s — 6,d’ — o)do,
0

Kyt s,d (s, d)=p(t,5,d) | e*T(s,d,o)y(s —0,d - o)do.
0

One can rewrite (5.11) as the following functional equations.

a a Gly
<n> - <'7> ’ <G§W> ’ G4

qu/=/ / Kl(t,a,s)l,u(a,s)dsda+/ /Kz(t,a,s)y/(a,s)dads,
0 0 0 0

where

a*t a a*t s (514)
Giw=/ / Ki(t, s, a)p(s, a)dsda+/ / K, (¢, s, a)y (s, a)dads.
0 0 0 0

Next we analyze the spectra of F, and A together with their relations via the continuity of
r(F ;) with respect to A and the sign of r(F;) — 1.

Proposition 5.6 Ler Assumption 2.1 hold. For a* < oo, we have the following statements

(i) T:={AeC:1e0(F)}={1€C:1€0pF,)}, where oc(A) and cp(A) denote

the spectrum and point spectrum of the operator A, respectively;

(i1) There exists a unique real number A, € I such that r(F /10) = land A, > 0ifr(F,) > 1;
Ay =0ifr(Fy) = Ly and A, < 0if r(Fy) < I;

(iii) Ay >sup{Red : AT\ {4}}

(iv) {A€eC:A€pA)}={21€C 1€ p(F),)}, where p(A) denote the resolvent set of
A

(v) A is the dominant eigenvalue of A, i.e., A is greater than all real parts of the eigen-
values of A. Moreover, it is an algebraically simple eigenvalue of A;

(vi) 4y =s5(A) :=sup{Red : 1 €0(4)}.

Proof (i) Since F, is compact, o(F,) \ {0} = o,(F,) \ {0}, hence conclusion (i) follows.
(i1) Next, F;, A € R is strictly decreasing in the operator sense, which implies that the
spectral radius (), A € R, is strictly decreasing by Lemma 5.4 and Proposition 5.1 (see
also Inaba [24, Proposition 3.3]). On the one hand, for A € R, let f, be a positive eigen-
functional corresponding to the eigenvalue r(F;) of positive operator F;. Then, we have

(1. Filer, €0)) = r(F)){f;, (e1, €3)) =2 min{.F, (e;, e)){f3, (e, €,)).

Since f; is strictly positive, we obtain r(F,) > min{.%#,, (e, ¢,)). It follows from (5.9) that
lim,_,_ r(F,) = 4+o00. On the other hand, it is easy to see that lim,_, , 7(F;) = 0. Moreover,
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by the fact that the spectral radius of a compact operator is continuous with respect to the
parameter from Nussbaum [42] or Degla [9], we conclude the result (ii).

(iii) Next, we can use the idea in Inaba [24, Proposition 3.3] to show result (iii). For any
A €T, there exists an eigenfunction ¢, such that F,¢p, = ¢,, i.e.,

(Fu(d’uad’zz)) - <¢u> .
Fop(b12 920 $2;
|14

Then, we have |¢,| = |F,¢,| < Fg,|¢,| where |¢,| 1= (|¢M|

eigenfunctional corresponding to the eigenvalue r(Fg,,) of Fg,;, we obtain that

(Reas Freal®al) = r(Frei){fres [041) = (Freas 19,1

Hence, we have r(Fg.,;) > 1 and Red < A, since r(F,) is strictly decreasing with respect to
A€ R and ”(F/l(,) = 1. If ReA = 4, then Fﬂo|¢i| =|¢,|. In fact, if Fﬂo|¢j| > |¢,|, taking
duality paring with the eigenfunctional f; corresponding to the eigenvalue r(F, ) = 1 on
both sides yields (f/lo, F/10|(],’)A|) = <f/10’ |d;1) > (fﬂo, |#,]), which is a contradiction. Then we
can write that |¢,| = c¢ Ao’ where ¢ Jo is the eigenfunction corresponding to the eigenvalue
r(F, ) =1. Hence, without loss of generality we can assume that ¢ =1 and write

¢, = <¢”(t)> = <¢10(,)eiy(t)> for some real function y(r) and { (), where ¢, = <¢10(t)>.

>. Let fz., be the positive

@2, (1) ¢2o(t)ei¢([) Pa(t)

If we substitute this relation into
Fiod)/lo = ¢,10 =g, = |F9,l,

then we have
a*t a at s
(t,a, )P (a — s)e **dsda + (t, a, )Py o(s — a)e *dads
1 20 2 10
o Jo 0 0
= / / fi(t,a, $)pyg(a — 5)e @~ hotimAigsdq
0 0

+

a 5
+ / Frlt,a,9)d (s — a)eiy(“_“)e_(’l"”lm’l)“dads|
o Jo

and
at d at s ,
/ / fi(t,s,d ) io(d — s)e *dsda’ + / / falt,s,a )pyo(s — e ™ dd'ds
0 0 0 0
a*t a ) )
— | / / fS(tv s, a’)(»bl()(a’ _ S)ety(a —s)e—(/10+tlmﬁ)sdsda/
0 0

at s
+ / / ﬁ(t, s, ll/)(]520(s _ a/)eig“(s—a’)e—(/l(,+ilm/1)a’da/ds|
0 0

which follows after changing variables that
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a*t a
/ / Fit a, $)pygla — s)e™™ + £5(t, 5, a)p o (a — 5)e **dsda
0 0
a*t a ) ) ) )
— | / / fl (l‘, a, S)¢20(a _ S)eté(u—s)e—(loﬂlmﬁ)s +f2(l‘, s, (1)¢]0((1 _ S)ety(a—.r)e—(/loﬂlm&)sdsda|
0 0
and
a+ a/
F3t,5,a)Po(d — s + (1, d, )og(d — s)e *0%dsdd’
3 10 4 20
0 0
at  pd
Ly . . i) —s i
- I / / f} ([, s, a/)¢]0(a/ _ S)ely(a 7s)ef(io+tlm/1)s +ﬁ‘(l, a/, 3)¢20(a, _ S)etg(u 73)67(10+11m1)sdsdal|.
0 0

From Heijmans [20, Lemma 6.12], we have that {(a —s) — ImAs = y(a — s) — ImAs = 6,
and ¢{(d' —s)—Imis =y(d’ —s) —Imis =6, for some constants 6, and 6,. From

F,¢, = ¢,, we have
<e’:g‘F1,10(¢10, ¢20)> _ (e’:7¢10>
e Fy;, (¢10. P20) ey )’
which implies that 6, = y and 6, = ¢, hence ImA = 0. Then, there is no element A € I" such

that ReA = Ajand 4 # A; thus, result (iii) is desired.
(iv) For result (iv), when 1 € p(F,), I — F ,1)‘1 exists and is well defined, then from

(5.13), one can obtain that
Gly
a -1 A
=({-F) . (5.15)
(7)=a- <Giw>

Now plugging (5.15) into (5.2), we will obtain the expression of @ = (A — A)~!ys, which is
well defined. It follows that A € p(A). Conversely, if 4 € p(A), the resolvent solution (5.2)
exists and is well defined, then the system of integral equations (5.11) on (a, #) has a solu-
tion. It follows that (5.13) has a solution, which implies that1 € p(F)).

(v) First claim that A € op(A) with geometric multiplicity m if and only if 1 € op(F,)
with geometric multiplicity m for all m € N. In fact, if A € op(A) corresponding to linearly
independent eigenfunctions ¢,, ..., ¢,,, then ¢,,...,¢,, satisfy (5.1) which implies that
(5.3) holds and equivalently (5.4) holds. It follows that F,(G(¢,), F($,)) = (G(¢,), F(¢;))
foralli =1,...,m. Hence, (G(¢,), F(¢,)),i = 1, ..., m, are necessarily linearly independent
eigenfunctions of F'; corresponding to eigenvalue 1 and so 1 € o,(F,) with geometric mul-
tiplicity n > m. Conversely, if (a;,#;),i = 1, ..., n, are eigenfunctions of F,; corresponding
to eigenvalue 1, i.e., F,(a;,1;) = (a;,1;),i = 1, ..., n, and set

—Ad r ! !
b0 = ittty e 1=l 610

Then it is easy to verify F(¢,)=mn,0(p,)=a,i=1,...,n. It follows that
Ap; =A¢;,i =1,...,n, by Theorem 5.2. Moreover, (5.16) ensures that ¢,, ..., ¢, are lin-
early independent. Hence, 1 € o,(A) with geometric multiplicity m > n. Thus, n = m. It
follows from the claim that

I'={AeC:1€0p4)}.

@ Springer



438 H. Kang et al.

Now from (iii), we conclude that 4, is dominant. Next, we need to prove that A is simple.
Plugging (5.15) into (5.2), we obtain

e Tl(a,a, a1 = F); Gy Glw)a—a)

(Al = A) 'y = - +/ e“’l’[(aa 6)y/(a—6a—0')d6 ae.a>d
“M(a,d’,a)I - F,l) "(Gly.G l//)(a —a)

+f e **TI(a, a’ a)q/(a—a a —o)do ae.d >a,

where (I — F,)™' = ((I - F));',(I - F;);"). From the above formula, we see that (41 — A)™!
does not hold for all A such that 7(F;) = 1. Thus, 1 is a pole of (/ — F ,1)‘1 of order m if and
only if A is a pole of (Al — A)~! of order m. However, by Proposition 5.1(i), we know that 1
is a simple pole of (I — F;)~! which implies that 4 is a simple pole of (A/ — A)~!. Thus, it
follows from Webb [52, Proposition 4.11] that 4, is an algebraically simple eigenvalue of
A.

(vi) Finally, we show result (vi). Let 20 := s(A) denote the spectral bound of A. Then
;10 > Ay and so ;10 > ®,(A) = —o0. Thus, 6y(A) = {;10} by Webb [54, Proposition 2.5]
which states that the peripheral spectrum ¢, of the generator of a strongly continuous posi-
tive semigroup in a Banach lattice consists exactly of the generator’s spectral bound pro-
vided the latter is strictly greater than the essential growth bound. Then 4, € ¢(A) and thus
by (i) and (iv), 1 € 6,(F] PR ), which implies that 1 < r(F; B ). However, due to /10 > Ay we have
r(FA ) < r(FA )=1, Hence /10 = Ag. Thus, (vi) is desued O

To address the case when at = oo, we make the following assumption.
Assumption 5.7 r(F,) > 1for somey € R withy > —pu.

Remark 5.8 For a* = oo, if in addition we have Assumption 5.7, all statements in Proposi-
tion 5.6 still hold.

It guarantees the existence of 4, such that r(F, ) =1 since for now the domain of F,
is changing into ReA > —u instead of C to make F , be well defined. Further, for Propo-
sition 5.6(vi) one can see that /10 > Ay >v>—u > (A) when at = 0. Note Assump-
tion 5.7 is only used here to show the existence of A, under the case a* = co. All other
results in this Sect. 5 are still valid without this assumption. Moreover, Assumption 5.7 can
be verified explicitly given the separable mixing Assumption 2.1(iii’) plus f, = f}. In fact,
it is easy to compute F,,(f;, ﬂ]’ ) =r(Fy)(B, ﬁ;) under the condition and then r(F;) > 1 will
implies Assumption 5.7, where

r(Fy) = /“ /a Py (a, )I(a, s, s)p|(a — s)dsda
o Jo

+/ /vﬂz(a, )[(a, s, a)B (s — a)dads.
o Jo

Remark 5.9 In fact, we can prove (vi) by using a different method. Observe that for any
A€ R, when 4> Aj and so r(F,) < r(FAO) =1, (I - F,)™! exists and is positive. Moreo-
ver, 1 € p(F,;) = 4 € p(A). Therefore, 4, is larger than any other real spectral values in
o(A). It follows that Ay = sx(A) :=sup{A € R : 1 € 6(A)}. Next we claim A is a resolvent
positive operator. In fact, it is easy to see that the resolvent set of A contains an infinite
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ray (A, c0) and (4 — A)~! is a positive operator for A > 4, by (5.2) and the positivity of
U-F ,l)‘l. But since L'(0,a*) x L'(0,a*) is a Banach lattice with normal and generating
cone K :=L.(0,a%) x L1(0,a*) and s(A) > 4, > —oco due to 4, € 6(A), we can conclude
from Thieme [47, Theorem 3.5] that s(A) = sg(A) = A,.

Remark 5.10 As we know, non-supporting is a generalization of strong positivity in the
Banach space with a positive cone which may have empty interior. In fact, we can give
an assumption on # and #’ such that F, is strongly positive in the sense of dual space (see
the definition in Daners and Koch-Medina [8]), for example, Assumption 2.1(iii)’. Now F,
itself is strongly positive thus irreducible in L'(0,a") x L'(0,a*) which is a Banach lat-
tice, then by [8, Theorem 12.3], one can still conclude that »(F,) is an algebraically sim-
ple eigenvalue of F, with a positive eigenfunction and a simple pole of the resolvent of
F,. Moreover, 4 — r(F,) is continuous by the compactness of F, and strictly decreasing
by showing that A — r(F,) is log-convex (Thieme [47]) or super-convex (Kato [30]), for
details see [2, Lemma 1]. Hence, we can still obtain the same results in Proposition 5.6.

Taking a closer look at the operator F,;, we have its first output element illustrated as:

Fola,n)(b) = /a /“ B(b,a, s)I(a,s, s)n(a — s)dsda
0 0

S/

next generation population density with structure (0, b)
produced by the first generation with structure (-, 0)
and density function #(-)

+ / / B(b,a, s)I(a, s, a)a(s — a)dads ,
o Jo

o >
g

next generation population density with structure (0, b)
produced by the first generation with structure (0, -)
and density function a(-)

where 7(a — s) is the first generation population density with structure (a — s, 0), I1(a, s, 5)
is the survival probability for individuals born with structure (a — s, 0) to reach structure
(a, s), and f(b, a,s) is the reproduction rate for mothers with structure (a, s) to give birth
to daughters with structure (0, b). And the interpretation of the second integral follows
similarly.

Biologically speaking, F), is the next generation operator: given any population density
functions (a(+), #(+)) on both boundaries (first generation densities), Fy(a(:), #(-)) represents
the offspring density functions (second generation) on both boundaries generated by the
first generation during their entire life periods. Thus, the spectral radius of F;, can be inter-
preted as the basic reproductive number of the population, where a detailed mathematical
interpretation can be adopted directly from the widely known discussion on %, for single-
structured infectious disease models (Diekmann et al. [12]) or scalar age-structured popu-
lation dynamical models (Kot [32]). Therefore, we have the following theorem by Theo-
rem 4.5 on the basic reproduction number %,

Theorem 5.11 Define %, :=r(F,). If %, <1, then the zero equilibrium is globally
exponentially stable. Otherwise, if %, > 1, then the zero equilibrium is unstable.
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Proof 1f %, = r(F,) < 1, by Proposition 5.6(ii) there exists a unique real 4, < 0 such that
r(F /10) = 1. Hence, by Proposition 5.1 we have F PRI r(F A())(p 2 = P, which ¢ o is a
positive function in L!'(0,a*) x L' (0, a"); that is, we find a non-trivial solution ¢ I of the
characteristic equations for some A4 < 0 when r(F;) < 1. Moreover, there is no non-trivial
solution for all A > 0 since O is the only fixed point of F; by Banach fixed point theorem.
And from Proposition 5.6(iv) we know that s(A) := sup{Rel : 1 € 6(A)} = 4; < 0. It fol-
lows from Theorem 4.5 that the zero equilibrium is globally exponentially stable.

If %, = r(Fy) > 1, by Proposition 5.6(v) there exists a real 4y > 0 such that r(F, ) = 1.
Similarly, by Proposition 5.1 we have F; ¢, =r(F, )¢, =, in which ¢, is a posi-
tive function in L'(0,a*) x L'(0,a*); that is, we find a non-trivial solution ¢ 4, Of the
characteristic equation for some A > 0 when r(F,)) > 1. Moreover, by Proposition 5.6(vi),
s(A) = 4, > 0. Motivated by Thieme [46, Corollary 4.3], let = denote the set of spectral val-
ues with positive real parts. As these are normal eigenvalues, X is finite and bounded away
from the imaginary axis and can so be separated from the rest of the spectrum by a rectifi-
able simple closed curve. According to Kato [31, Chapter III, Theorem 6.17], there exists
a decomposition of E into invariant subspaces E, and E, such that the restriction of A to E,
has the spectrum X and its restriction to E, has a spectral bound < 0 < inf{Red : 1 € X}
and thus a non-positive type. Now the instability of the zero equilibrium follows from
Desch and Schappacher [11, Theorem 2.2]. a

Furthermore, we have the following estimates when at = oo

“+00 +o0 a
1P @l ey = / / / 1t . $In(a — s)e="*|dsdadr
0 0 0

+o0 +o0 K
+ / / / 2. a,s)a(s — a)e *|dadsdt
0 0 0

+00 +o00 a
< / Bodr / In(a - )lda / R s
0 0 0

too +o0 s
+ / B(1)dt / la(s — a)|ds / e~ Rettwag,
0 0 0
B,

sup

< — .

< Reitn Il (et )l
Similarly, for F,,, we also have the following estimate:

/
sup

ReA+ u

||F2/1(01, ”I)||Ll(o,+oo) < I (e, )l (5.18)

Remark 5.12 In general r(F,) is not easy to compute, but we have the following estimates
combining (5.5), (5.6), (5.17) and (5.18) when at < oo:

”F}L ﬂmax [1 _ e—(Re/Hﬁ)a*]

<
I < Rei+x , (5.19)

and when at = oo,
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ﬂmax
F| < ———.
IF;1 < Red+ (5.20)

Then by the Gelfand’s formula r(F) = klim || F¥ ||i for bounded linear operators and linear-
ity of F;, we have

—pat
ﬂmax(lfe &7

r(Fy) < L
ﬁﬂ, when at = co.

., when at < oo,
K
Thus, we have the following corollary.

Corollary 5.13

—ehat e .
(i) Whena* < o, if % < 1, then the zero equilibrium is globally exponentially

stable;
(i) Whena" = oo, if % < 1, then the zero equilibrium is globally exponentially stable.

5.2 Asynchronous exponential growth

In this subsection, we study the asynchronous exponential growth of {S(¢)}, when
r(Fy) > 1. We study the two cases when a® < oo and when at = oo together and give an
extra Assumption 5.7 in the latter case. First let us recall the definition.

Definition 5.14 Let {S()},5, be a strongly continuous semigroup of bounded linear
operators on a Banach space X with infinitesimal generator A. We say that {S(¢)}( has
asynchronous exponential growth with intrinsic growth constant 4, € R if there exists a
nonzero finite rank operator P, € X such that

lim e 'S(t) = P,.
t—oo

We introduce a theorem in Magal and Ruan [35, Theorem 4.6.2] which was proved
by Webb [54].

Theorem 5.15 (Webb [54]) Let {S(1)} 5 be a strongly continuous semigroup of bounded
linear operators on a Banach space X with infinitesimal generator A. Then {S(t)},5 has
asynchronous exponential growth with intrinsic growth constant A, € R if and only if

D) o(4) < Ay
(i) Ay =sup{Red: 1 €0}
(iii) A is a simple pole of (Al — A

where w,(A) denotes the essential growth bound of A which is defined by (4.9).

Now we use this theorem to show that our semigroup {S(#)} 5 defined in (2.14) has
asynchronous exponential growth.
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Theorem 5.16 If %, > 1, then there exists a unique positive and real number A, > —pu
satisfying r(F 11) = 1such that {S(1)} 5o has asynchronous exponential growth with intrinsic
growth constant A,. Moreover,

lim ehIS(p =P, ¢ forall ¢€EE,
where P, 1 E — E is defined by
P, ¢ =Qxi)”! /(/11 — A 'pdr
r
and T is a positively oriented closed curve in C enclosing A, but no other point of 6(A).

Proof First it is easy to see that if #(F,)) > 1, then there exists a unique real number 4, > 0
such that r(F ﬂl) =1land 4, = sup{Red : 1 € 6(A)} by Proposition 5.6, which shows that
condition (ii) in Theorem 5.15 holds. Next, in Sect. 4 we have shown that w;(A) < —u
for a* = oo and w,(A) = —co when a* < oo. Thus, condition (i) in Theorem 5.15 is satis-
fied. Moreover, sup{Rel : 1 € 6,(A)} < w,(A), which implies 4, € 6p(A) \ 0,(A), thus is
a pole of (Al —A)~! by Webb [52, Proposition 4.11], where o,(A) represents the essential
spectrum of A. Also A, is a simple eigenvalue of A and a simple pole of (A — A)™, see the
proof in Proposition 5.6(v). Thus, condition (iii) in Theorem 5.15 is also satisfied. Hence,
our result is desired. O

What we do next is to derive a formula for the projection P, 1E— ker(A — A1),
inspired by Walker [49]. Observe that there 1is a quasi-interior element
@, = (a,n) € L} (0,a*) X L} (0,a") such that ker(1 — F;,) =span{®, }. Denote

e Ma,d ,dm@a-a), a>d
e *(a,d ,a)a(d — a), a<a

s

H/[(a’ a/)(a9 ’7) = {

then ker(A — 4,7) =span{Il a4 (a,d")®,}. Let ¢ € E be fixed and let c(¢p) € R be such that
P, ¢ =c(P)Il, (a, a")®,. Recall that 4, is a simple pole of the resolvent (Al — A)~!. Denote

Hp := S e a.d . o)pa~0.d —o)do, d <a,
e Jy e (a,d',0)pla—o0,a' —o)do, a<d.

Then H, ¢ is holomorphic in 4, it follows from (5.2), (5.15) and Residue theorem that

Py o= /111_51/111(& — AN, (a,d )1 - F,))"'G,¢,

where
G,b=(G;$.G}9).

in which G;,i = 1,2, is defined in (5.14). Let w' € (LL(O, at) XLL(O, a")) be a positive
eigenfunctional of the dual operator F’ :11 of F, corresponding to the eigenvalue r(F, ) = 1.
Then for /' € E’ defined by

(" w) =W, Gy, Fy)), yE€EE,

we have due to F ; w' = w' that
1
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(D)W, Bo) = (', Py, #) = lim (', (A = AT, (a,a")(1 — F)7'G,¢)
= lim (W', (4 = 41 = (1 = F)))(1 = F)™'G,¢)
= lim (W', (A= 2)(1 - F)'G,¢).
Writing
G,p=d(G,p)P, & (1 - F, )g(G,) (5.21)

according to the decomposition LL(O, at) x LL(O, a)=R-O,@rg(l - F ﬂl), it follows
that

Tim (', (2 = A1 = F)7'G,9) = d(G,, @) lim (', (2 = 4)(1 = F)™' )

due to the continuity of F, in A. But from (5.21)
(WG, $) = d(G, p)(w, @)

since F;Iw’ =w', whence d(G, ¢)=¢EW .G, ¢) with &L= (w,®y). Similarly,
decomposing

Z,i=(A— A1 =F) '@,
we find
/1121/11, W,z = (}1}}1 d(Z,l)>(w’,<I>0).
With these observations, we derive that
(@)W Dy) = Co(w', G, )W, Bp)
for some constant C,,. Consequently,
P, ¢= Co(W', G, $1, (a, a)®,.

Since P, is a projection, i.e., Pi = P, , the constant C, is easily computed and we obtain
1
the following result.

Proposition 5.17 Under the assumptions of Theorem 5.16, the projection P, is given by

_ <W,» G/ll d))
(W, G, T, (a,d)®p)

P ¢ I, (a,d" )@, (5.22)

for ¢ € E, where G, ¢ = (G;I ¢, Gilqﬁ) and w' € (L}r(O, at) x L}r((), a)) is a positive
eigenfunctional of the dual operator F:h ofF/ll corresponding to the eigenvalue r(Fﬂl) =1

Remark 5.18 1In fact, the expression of P 4, ® does not look explicitly like the one for single

age-structured models, since the resolvent of A cannot be expressed explicitly for our dou-
ble age-structure model.
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5.3 Asymptotic behavior for 7, = 1

In the previous subsections, we have shown that if %, < 1, then {S(#)},5, is uniformly
exponentially stable and if %, > 1, then {S(¢)},5 has asynchronous exponential growth. It
is natural to ask what happens if %, = 1.

Remark 5.19 When {S(1)},., has asynchronous exponential growth with intrinsic growth
constant 4,, the intrinsic growth constant 4, can be any real number, it means that

(1) If4, <0, then S(¢) decays exponentially; thus, the zero equilibrium is exponentially
stable, as Theorem 5.11 states;

(i) IfA; > 0, as {S(r)},5o has asynchronous exponential growth, it describes the divergent
rate at which the system blows up when the zero equilibrium is unstable for a linear
system;

(iii) If A, = 0, then S(r)¢ converges to P¢p as t — oo. This is the case when %, = 1 that
we are concerned in this subsection.

First, note that when %, = 1, i.e., r(F,;) = 1, by the previous argument we know that the
spectral bound s(A) = 0. Now let us recall a theorem from Engel and Nagel [18, Chapter
VI, Theorem 3.5].

Theorem 5.20 (Engel and Nagel [18]) Let {S(¢)},5( be a quasi-compact, irreducible, pos-
itive strongly continuous semigroup with generator A and assume that s(A) = 0. Then O is a
dominant eigenvalue of A and a first-order pole of (AI — A)~'. Moreover, there exist strictly
positive elements 0 < h € X,0 < ¢ € X' and constants M > 1, ¢ > 0 such that

IS = (f. @) - hll < Me™||f|| forall t>0.f€X,

where (-, ) is the dual product in Banach space.

In Sect. 4, we have shown that {S(#)},,, is quasi-compact when a* = co; in Sect. 2,
we have shown that {S(#)} . is positive. Next, we claim that {S(#)},. is also irreducible.
Recall that a positive semigroup with generator A on the Banach lattice X is irreducible if
for some A > s(A) and all 0 < f € X, the resolvent satisfies (AI —A)~'f > 0, where > rep-
resents strictly positivity.

By strict positivity in E, we need to require that ¢ = (Al — A)"ly > 0 for almost all
(a,d") € (0,a™) x (0,a™) for every 0 < w € E. Look at the resolvent solution (5.2), we only
need that a and # are positive almost everywhere for (a,a’) € (0,a*) X (0,a"). Since a and
n are determined by (5.11), motivated by Engel and Nagel [18, Theorem 4.4], only for f
and ', there exists no a, > 0 such that

0. =0 almost everywhere. (5.23)

_ ’
'Bi[a(),a+)x[a(,,a*)x[ao,a*) - b |[a(),m)x[a“,a*)x[a(),tﬁ)

In fact, Assumption 2.1(iii)’ satisfies the above conditions, and then « and 7 will be positive
almost everywhere. Thus, (A — A)~'y > 0, which implies that {S(®)},50 1s irreducible. By
Theorem 5.20, we have the following theorem.

Theorem 5.21 [f %, = 1 and (5.23) holds, then there exist a strictly positive linear func-
tion h € E, a linear form ¢ € ix(S(t)'),t > 0, and constants M > 1, ¢ > 0 such that
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IS()p = (¢, &) - hll < Me™'||@]| forall 7>0,¢ €E,
where
fix(S(®);»p :={x € E : S()x=x forall t2>0},

which coincides with ker A and fix(S(t)'),so = ker(A”).

6 Discussion

In this paper we considered a linear first-order hyperbolic partial differential equation that
models the single-species population dynamics with two physiological structures. By using
semigroup theory, we studied the basic properties and dynamics of the model, including
the solution flow u(z, a, a’) and its semigroup {S(®)} ;59 with infinitesimal generator A. More-
over, we established the compactness of solution trajectories, analyzed the spectrum of A,
and investigated stability of the zero equilibrium with asynchronous exponential growth.
We would like to point out the differences between single physiologically structured
models and double physiologically structured models. For a double physiologically struc-
tured model, first, the state space becomes LL((O, a*) % (0,a™)) instead of LL(O, a™). It fol-
lows that the Volterra integral equations generated by the boundary conditions become a
system of integral equations in the function space LL(O, a*) instead of R, and the character-
istic equation becomes an operator equation instead of a scalar equation. Accordingly, the
principal eigenvalue is changed into a point spectrum of an operator. Second, the integral
region for an eigenfunction becomes a plane in R? instead of a line in R and correspond-
ingly the characteristic plane in R? for a solution flow instead of the characteristic line in
R?. More importantly, the infinitesimal generator A of the semigroup {S(¢)} >0 for a double
physiologically structured model is much more complicated than that for a single physi-
ologically structured model. Thanks to the solution flow (see Theorems 5.2 and 5.3 which
give equivalent characterizations of eigenvalues and eigenfunctions of A), we can still
study the spectrum of A without solving the characteristic equation A¢ = A, p € D(A).
The novelty and difficulty of the analysis lie in the non-trivial conditions for both
boundaries (1.3)—(1.4). Such a setup not only brings extra complications in the proof of
existence of solutions and trajectory compactness, but also requires alternative tools in the
spectrum analysis. Therefore, it is very natural for one to ask for the motivation in terms
of real-world applications with both boundaries being non-trivial (as most of the existing
models with double physiological structures assume one trivial boundary condition). Our
techniques and ideas can be applied to study multi-dimensional structured models with two
physiological structures, such as epidemic models with chronological age and infection
age (Hoppensteadt [22], Inaba [25], Burie et al. [6], Laroche and Perasso [33]), population
dynamical models with age and size structures (Webb [55]), age and maturation structures
(Dyson et al. [15, 16]), and age and stage structures (McNair and Goulden [39], Matucci
[38]), or structured cell population models with continuous cell age and another continuous
cell status such as cyclin content (Bekkal Brikci et al. [4]), maturity level (Bernard et al.
[5]), plasmid copies (Stadler [45]), and telomere length (Kapitanov [28]). For instance, the
model developed in Kapitanov [28] describes cell population structured with continuous
cell age and discrete telomere length, which can be easily derived into models with both
structures being continuous and with both boundary conditions being non-trivial (since
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newly generated cells could have telomere with any length and there indeed exist aging
cells with 0-length telomere). We leave these for future consideration.

Note that our formulation of the problem allows more mortality processes than (1.2) and
more general birth processes than (1.3) and (1.4). For example, one can study the following
double physiologically structured model with G, F, H under appropriate conditions

Du(t,a,d’) = G(t,u(t, ))(a,a'), for t>0,(a,a) e 0,a")x(0,a")

u(t,0,a’) = F(t,u(t, ),d), for t>0,d €(0,a")
u(t, a,0) = Ht, u(t, ), a), for t>0,a€ (0,a") (6.1)
u(0,a,d") = ¢(a,a"), for (a,a’) € (0,a*) % (0,a™),

where Du(t,a,d’) 1= %(t,a,d’) + %(t,a,d’) + 2~(t,a,d’). In an upcoming paper [27],
we will study the following nonlinear double physiologically structured model via a dif-
ferent approach: integrated semigroups and non-densely defined operators (where we can
study the characteristic and resolvent equations directly),

Du(t,a,a") = —u(a,d ,P()u(t,a,d), for t>0,(a,d) e 0,a")x(0,a")
u(t,0,a’) = /0a+ /Oa+ p(d,a,s, P()u(t,a, s)dads, for t>0,d €(0,a")
u(t,a,0) = fof f0a+ fla,s,d,PO))u(t,s,a’)dsda’, for t>0,a€ (0,a")
u(0,a,a") = ¢(a,a), for (a,d’) € (0,a")x (0,a")
P(t) = /0‘1+ /Of u(t,a,a)dadd’, for ¢>0.
(6.2)
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Appendix
In this Appendix, we prove some statements that were used in Sect. 4.

Proposition A.1 If a* = o0, u > 0, and Assumption 2.1 holds, then S\(t) satisfies the
hypothesis (ii) and S,(t), S;(t) satisfy the hypothesis (iii) of Proposition 4.2.

Proof We only need to show that S,(¢) is compact for # > 0, which is equivalent to show
that for a bounded set K of E,

lim / / [S;(Dd(a + h,a’" + k) — Sy(p(a,a")|dadd” = 0 (A.D)
0 0

h—0, k=0

lim / " / " |Sz(t)¢(a, a’)ldada’ =0 (A.2)
h k

h—o0,k— 00
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uniformly for ¢ € K (which can be found in [14, Theorem 21, p. 301]). Without loss of
generality, assume k > h and &, k — 0%, we have

/ / |S,(Dpla + h,d' + k) — Sy(1)p(a,d’)|dd’ da
o Jo

t—h 0
< / / |S2()b(a + h,d’ + k) — S,(Dd(a, )| dd da
0 a

~ _
region I
t—h a
+ / / |S,(D(a + h,d + k)|dd'da (A-3)
k=h Ja+h—k
- ~ _
region II
k—h a t oo
+ / / |S,(la + h,d’ + k)|da'da +/ / |S,()¢(a,d’)|dd da,
0 0 t=hJa
“ ~ AN .~ _
region III region IV

as illustrated in Fig. 3b: S, ()¢ (a, a’) is non-trivial for points (a, a’) in regions I and 1V, and
S,(Op(a + h,a’ + k) is non-trivial for points (@, a’) in regions I, II, and III.
We first show

t—h oo
/ / |S,(pla + h,d' + k) = S,((a,d)|dd’ da
0 a
t oo
< / / |by(t —a—h,a" +k—a—h)—by(t—a,d - a)|e_/0 " ussrd ka4 4
0 a

t—h o0
+ / / |b¢([ —a, d — a)le” f(;”h u(s,s+d +k—a—h)ds __ e s u(s,s+a’—a)dS] |da'da
0 a
=141

where

t—h oo
Im< / / b¢(t —a, a/ _ a)|e_ /0‘“"' u(s,s+a’—a)dS[l _ e/ﬂl”h ;4(s,s+a’—a)—u(s,s+a’+k—a—h)ds]
0 a

a+h

+e /0“ ;4(s,s+u’—a)dS[1 — e Ja ! ;4(s,s+u’—a)dS] |da’da
t—h oo )
< / / by(t—a,d — a)( max{1 — e Kulk=hr K, (k=IDt _ 14 4 (1 — e_"h))da'da
0 a
~ t [+
< (max{1 — e Kk K=l _ 1y 4 (1 — e7Fhy) / / by(t — a,s)dsda
o Jo
t
< 2Bnax |l (max{l — e Kulbht Kkl _ 1) 4 (1 — e7Fh)) / (=0 dq

0

based on our prior estimate in Sect. 2.1 and with K, being the Lipschitz constant for y, thus
II - 0 uniformly for ¢ € K as h, k - 0*. Next, we need to show that
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t [e ]
lim / / |by(t —a—h,d" +k—a—h)—by(t—a,d —a)ddda=0. (A4)
0 a

h—0, k=0

Now by an alternative version of (2.7) and (2.8), we have

t [
/ / |by(t —a—h,d +k—a—h)—by(t—a,d —a)|dd'da
0 a

t oo t—a—h oo
S// |/ /fl(a'+k—a—h,t—a—h—p,s+t—a—h—p)b¢(p,s)dsdp
0 Ja 0 0
—a [5S)

—/ fild —a,t—a—p,s+t—a—p)b,(p,s)dsdp|da’da

0 0
t o t—a—h o

+ / |/ / gl(a’+k—a—h,p+t—a—h—s,t—a—h—s)b;(s,p)dpds
0 Ja 0 0

—a (s
—/ / g, —a,p+t—a—s,t—a—s)b:ﬁ(s,p)dpds|da'da
o Jo

t [ 00 00
+/ / |/ / hl(a’+k—a—h,p,s,t—a—h)d)(p,s)dpds
0 a 0 0

—/ / hy(d' —a,p,s,t — a)p(p, s)dpds|da’da
o Jo
=141+,

where

t o0 t—a—h o0
Jls// (/ / lfitd +k—a—-ht—a-h—p,s+t—a—h—p)
0 Ja 0 0

—fitd —a,t—a—p,s+1t—a—p)lby(p,s)dsdp

t—a—h o0
+/ / fitd —a,t—a—p,s+1t—a—p)hby(p,s)dsdp)dd’da
t 0

—a

T )
=1+
in which

fitd +k—a—ht—a—h—p,s+t—a—h—-p)—fi(d —at—a—p,s+t—a—p)|
t—a—p—h

<pd+k—a-n|p(t—a—h—ps+t—a—h—pleh oot
—pt—a—ps+t—a-peh " ueo+s)ds |
+1p@ +k—a=h)—pd —a)p(t—a-p,s+t—a-p)
<pd+k—a-n|pt—a—h—ps+t—a—h—p)—p(t—a—p,s+t—a—p)|
+p@ +k—a—-hpyt—a—p,s+t—a—p)|l - e ey ”<U"’+‘Y)d°|
+ 8@ +k—a—h)—pd —a)|p(t —a—p,s+1—a—p)
<P +k—a—hK2h+pd +k—a—h)(l—e™
+|8d +k—a—h)—pd —a)|p(t—a—p,s+t—a—p)
<P +k—a—hK2h+pd +k—a—h)(l-e™
+ |ﬁ1(a/ +k—a—nh) —ﬂl(a’ —a)|ﬁ;llp
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by Assumption 2.1(i) on f being Lipschitz continuous and K as the Lipschitz constant,
where

sup

= sup Pr(a,s) < oo

(a,5)€(0,00)%(0,00)

because Assumption 2.1(iv) holds. Thus,
t ) B t—a—h )
J} < / / (ﬁl(a’ +k—a—h)Kﬂ2h+ﬁ_(a’ +k—a-h)(1 —e“”))(/ / bd,(p,s)dsdp)da/da
0 Ja 0 0
t ) t—a—h )
+ / / |Bi(d +k—a—h)—pyad —a)|8"( / / by(p. s)dsdp)da’da
0 Ja 0 0
1 o t—a—h
< / / (Bi(d +k—a—hKy2h+ fd +k—a—h)(1-e™M)( / 2Brmax | Bll pe*PmexP dp)da’ da
0 Ja 0

t o t—a—h
+ / / |Bi(d +k—a—h)—pya —a)|8"( / 2max | Pl pe*PmaxP dp) da’ da
0 Ja 0

— 0 uniformly for ¢ € K as b,k — 0F

t oo t—a—h o
JP < / / pld — a)(/ / by (P, s)dsdp)da’da
0 a t—a 0

<( / fada') / / 2B I bll s PP dpda)
0 0 t—a—h

— 0 as i,k — 0% uniformly for ¢ € K,

and

Therefore, we have J; — 0 as h,k — 0% uniformly for ¢ € K. And the fact that J, — 0 uni-
formly for ¢ € K as h,k — 0% can be proved by using a similar argument. To show J; — 0,
we first
|h1(a’+k—a—h,p,s,t—u—h)—h1(a’—a,p,s,t—a)|
< |ﬂ(a’ +k—a—hp+t—a—hs+t—a—h)—pd —a,p+t—a,s+t—a)|e_/51_g_h“("'*"””J’S)d‘y
+pd —a,p+t—a,s+t—ae” [ worpo+e [1-e” S uotpotsdo|
< |ﬂ(a’+k—a—h,p+t—a—h,s+t—a—h)—ﬂ(a'—a,p+t—a—h,s+t—a—h)|
+p@ —a)|pyp+t—a—hs+t—a—h)—pp+i—as+i—a)
+ﬂ(a’—a,p+t—a,s+t—a)(l—e_ﬁh)
< |ﬁ(a’+k—a—h,p+t—a—h,x+t—a—h)—ﬁ(a'—a,p+t—a—h,x+t—a—h)|
+ B — aKp2h+ fd - a)(1 — e .
Then by applying Assumption 2.1(ii), we have J; — O uniformly for ¢ € K.

Therefore, we have the first term in (A.3) goes to 0 uniformly for ¢ € K. Secondly,
based on estimate (4.8) in the main text we have
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t—h a
/ / |S,(Dp(a + h,a’ + k)|dd’da
k=h Jath—k
t—h a
S/ / by(t—a—h,d +k—a—hyddda
k—h a+h—k
t—h a _ t
< [ U] B | @0l B [ i + )
k= Jarh—k 0

a t
< sup | / Ba)dd | -t (4@l ghmax [ €PmPdp + 11@ll)
a k 0

O<a<t +h—,

— 0 as h,k — 0" uniformly for ¢ € K.

Further,
k—h a
/ / |S,()p(a + h,a’ + k)|dd’da
0 0
k—h a
5/ / b¢(t—a—h,a’+k—a—h)da'da
0 0
k—h 0 k—h
< / / by(t —a—h,s)dsda < zﬂmax”()b“E/ eMnan(i=a=h) qq
0 0 0
— 0 as h,k — 0" uniformly for ¢ € K.
Lastly,

t [eS)
/ / S, (D ¢(a,d")|dd’da
t—h Ja
t [e3)
< / / by(t — a,d’ — a)dd'da
t—=h Ja

t o0 ¢
S / / by(t —a,s)dsda < 2ﬁmax”¢”E/ P t=0) 4
t=h JO P

-
— 0as h — 0% uniformly for ¢ € K.

We thus proved (A.1). For (A.2), we have

/ / |S,(Dp(a,a’)|dadd’
no Jk
S/ / b¢(t—a, s)dsda
n Jo

(o4}
<At [ 0= 0
h

as h, k — 0 uniformly for ¢ € K. We can show that S;(¢) is compact for sufficiently large ¢
in the same way. O

@ Springer



On first-order hyperbolic partial differential equations... 451

References

—_

11.

12.

13.

14.
15.

16.

17.

18.
19.

20.

21.

22.

24.

25.

26.

217.

28.

Anita, S.: Analysis and Control of Age-Dependent Population Dynamics. Springer, New York (2000)
Bacaér, N., Ait Dads, E.H.: Genealogy with seasonality, the basic reproduction number, and the influ-
enza pandemic. J. Math. Biol. 62, 741-762 (2011)

Barfield, M., Holt, R.D., Gomulkiewicz, R.: Evolution in stage-structured populations. Am. Nat. 177,
397-409 (2011)

Brikci, F.B., Clairambault, J., Ribba, B., Perthame, B.: An age-and-cyclin-structured cell population
model for healthy and tumoral tissues. J. Math. Biol. 57, 91-110 (2008)

Bernard, S., Pujo-Menjouet, L., Mackey, M.C.: Analysis of cell kinetics using a cell division marker:
mathematical modeling of experimental data. Biophys. J. 84(5), 3414-3424 (2003)

Burie, J.-B., Ducrot, A., Mbengue, A.A.: Asymptotic behavior of an age and infection age structured
model for the propagation of fungal diseases in plants. Discrete Contin. Dynam. Syst. Ser. B 22(7),
2879-2905 (2017)

Cushing, J.M.: An introduction to structured population dynamics. In: CBMS-NSF Regional Confer-
ence Series in Applied Mathematics, vol. 71. SIAM, Philadelphia, PA (1998)

Daners, D., Koch-Medina, P.: Abstract Evolution Equations, Periodic Problems and Applications.
Longman Scientific & Technical, Harlow (1992)

Degla, G.: An overview of semi-continuity results on the spectral radius and positivity. J. Math. Anal.
Appl. 338, 101-110 (2008)

Delgado, M., Molina-Becerra, M., Sudrez, A.: Nonlinear age-dependent diffusive equations: a bifurca-
tion approach. J. Differ. Equ. 244, 2133-2155 (2008)

Desch, W., Schappacher, W.: Linearized stability for nonlinear semigroups. In: Favini, A., Obrecht, E.
(eds.) Differential Equations in Banach Spaces. Lecture Notes in Mathematics, vol. 1223, pp. 61-73.
Springer, Berlin (1986)

Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic
reproduction ratio R, in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28,
365-382 (1990)

Doumic, M.: Analysis of a population model structured by the cells molecular content. Math. Model.
Nat. Phenom. 2(3), 121-152 (2007)

Dunford, N., Schwartz, J.: Linear Operators. Part I: General Theory. Interscience, New York (1958)
Dyson, J., Villella-Bressan, R., Webb, G.: A nonlinear age and maturity structured model of popu-
lation dynamics: I. Basic theory. J. Math. Anal. Appl. 242(1), 93-104 (2000)

Dyson, J., Villella-Bressan, R., Webb, G.: A nonlinear age and maturity structured model of popu-
lation dynamics: II. Chaos. J. Math. Anal. Appl. 242(2), 255-270 (2000)

Ebenman, B., Persson, L.: Size-Structured Populations: Ecology and Evolution. Springer, Berlin
(1988)

Engel, K.-J., Nagel, R.: A Short Course on Operator Semigroups. Springer, New York (2006)
Fraser, C., Riley, S., Anderson, R.M., Ferguson, N.M.: Factors that make an infectious disease out-
break controllable. Proc. Natl. Acad. Sci. USA 101, 6146-6151 (2004)

Heijmans, H.J.A.M.: The dynamical behaviour of the age-size-distribution of a cell population. In:
Metz, J.A.J., Diekmann, O. (eds.) The Dynamics of Physiologically Structured Populations. Lec-
ture Notes in Biomathematics, vol. 68, pp. 185-202. Springer, Berlin (1986)

Hille, E., Phillips, R.S.: Functional Analysis and Semi-groups. American Mathematical Society,
Providence, RI (1996)

Hoppensteadt, F.: An age dependent epidemic model. J. Frankl. Inst. 297, 325-333 (1974)

Iannelli, M.: Mathematical Theory of Age-Structured Population Dynamics. Giardini editori e
stampatori, Pisa (1995)

Inaba, H.: Endemic threshold results in an age-duration-structured population model for HIV infec-
tion. Math. Biosci. 201(1-2), 15-47 (2006)

Inaba, H.: Endemic threshold analysis for the Kermack—McKendrick reinfection model. Josai Math.
Monogr. 9, 105-133 (2016)

Inaba, H.: Age-Structured Population Dynamics in Demography and Epidemiology. Springer, New
York (2017)

Kang, H., Huo, X., Ruan, S.: Nonlinear physiologically-structured population models with two
internal variables. J. Nonlinear Sci. (in press)

Kapitanov, G.: A mathematical model of cancer stem cell lineage population dynamics with muta-
tion accumulation and telomere length hierarchies. Math. Model. Nat. Phenom. 7(1), 136-165
(2012)

@ Springer



452

H.Kang et al.

29.

34.

35.

36.

37.

38.

39.

40.

41.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

Kapitanov, G.: A double age-structured model of the co-infection of tuberculosis and HIV. Math.
Biosci. Eng. 12, 23-40 (2015)

Kato, T.: Superconvexity of the spectral radius, and convexity of the spectral bound and the type.
Math. Z. 180(3), 265-273 (1982)

Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (2013)

Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)
Laroche, B., Perasso, A.: Threshold behaviour of a SI epidemiological model with two structuring
variables. J. Evol. Equ. 16, 293-315 (2016)

Magal, P., Ruan, S.: Structured Population Models in Biology and Epidemiology. Lecture Notes in
Mathematics, vol. 1936. Springer, Berlin (2008)

Magal, P., Ruan, S.: Theory and Applications of Abstract Semilinear Cauchy Problems. Springer,
New York (2018)

Manly, F.J.: Stage-Structured Populations: Sampling, Analysis and Simulation. Springer, Dordrecht
(1990)

Marek, I.: Frobenius theory of positive operators: comparison theorems and applications. SIAM J.
Appl. Math. 19(3), 607-628 (1970)

Matucci, S.: Existence, uniqueness and asymptotic behavior for a multi-stage evolution problem.
Math. Models Methods Appl. Sci. 8, 1013-1041 (1995)

McNair, J.N., Goulden, C.E.: The dynamics of age-structured population with a gestation period:
density-independent growth and egg ratio methods for estimating the birth-rate. Theor. Popul. Biol.
39, 1-29 (1991)

Metz, J.A.J., Diekmann, O.: The Dynamics of Physiologically Structured Populations. Lecture
Notes in Biomathematics, vol. 86. Springer, Berlin (1986)

Nussbaum, R.D.: The radius of the essential spectrum. Duke Math. J. 37(3), 473-478 (1970)
Nussbaum, R.D.: Periodic solutions of some nonlinear integral equations. In: Bednarek, A.R.,
Cesari, L. (eds.) Dynamical Systems, pp. 221-249. Academic Press, New York (1977)

Sawashima, I.: On spectral properties of some positive operators. Nat. Sci. Rep. Ochanomizu Univ.
15(2), 53-64 (1964)

Sinko, J.W., Streifer, W.: A new model for age-size structure of a population. Ecology 48, 910-918
(1967)

Stadler, E.: Eigensolutions and spectral analysis of a model for vertical gene transfer of plasmids. J.
Math. Biol. 78(5), 1299-1330 (2019)

Thieme, H.R.: Semiflows generated by Lipschitz perturbations of non-densely defined operators. Dif-
fer. Integr. Equ. 3(6), 1035-1066 (1990)

Thieme, H.: Remarks on resolvent positive operators and their perturbation. Discrete Contin. Dyn.
Syst. 4(1), 73-90 (1998)

Walker, C.: Bifurcations of positive equilibria in nonlinear structured population models with varying
mortality rates. Ann. Mat. Pura Appl. 190, 1-19 (2011)

Walker, C.: Some remarks on the asymptotic behavior of the semigroup associated with age-structured
diffusive populations. Monatsh. Math. 170, 481-501 (2013)

Webb, G.F.: Compactness of bounded trajectories of dynamical systems in infinite dimensional spaces.
Proc. R. Soc. Edinb. Sect. A Math. 84(1-2), 19-33 (1979)

Webb, G.F.: Nonlinear semigroups and age-dependent population models. Ann. Mat. Pura Appl. 129,
43-55 (1981)

Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York
(1984)

Webb, G.F.: Dynamics of populations structured by internal variables. Math. Z. 189, 319-335 (1985)
Webb, G.F.: An operator-theoretic formulation of asynchronous exponential growth. Trans. Am. Math.
Soc. 303(2), 751-763 (1987)

Webb, G.F.: Population models structured by age, size, and spatial position. In: Magal, P., Ruan, S.
(eds.) Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics, vol.
1936, pp. 1-49. Springer, Berlin (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	On first-order hyperbolic partial differential equations with two internal variables modeling population dynamics of two physiological structures
	Abstract
	1 Introduction
	2 The semigroup
	2.1 A priori estimate
	2.2 Existence and uniqueness of solutions
	2.3 Semigroup generated by the solution flow
	2.4 Solutions of the initial-boundary value problem

	3 The infinitesimal generator
	4 Compactness of solution trajectories
	5 Spectrum analysis
	5.1 Point spectrum and stability analysis
	5.2 Asynchronous exponential growth
	5.3 Asymptotic behavior for 

	6 Discussion
	Acknowledgements 
	References




