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Abstract
In this paper we develop fundamental theories for a scalar first-order hyperbolic partial 
differential equation with two internal variables which models single-species population 
dynamics with two physiological structures such as age–age, age–maturation, age–size, and 
age–stage. Classical techniques of treating structured models with a single internal variable 
are generalized to study the double physiologically structured model. First, the semigroup 
is defined based on the solutions and its infinitesimal generator is determined. Then, the 
compactness of solution trajectories is established. Finally, spectrum theory is employed to 
investigate stability of the zero steady state and asynchronous exponential growth of solu-
tions is studied when the zero steady state is unstable.

Keywords Physiological structure · Semigroup theory · Infinitesimal generator · Spectrum 
theory · Asynchronous exponential growth

Mathematics Subject Classification 35L04 · 92D25 · 47A10

1 Introduction

In populations dynamics, structured models bridge the gap between the individual level 
and the population level and allow us to study the dynamics of populations from properties 
of individuals or vice versa (Metz and Diekmann [40]). In order to parametrize the state 
of individuals as well as to distinguish individuals from one another, we usually take their 
physiological conditions or physical characteristics such as age, maturation, size, stage, sta-
tus, location, and movement into consideration and determine their birth, growth and death 
rates, interactions with each other and with environment, infectivity, and so on. The goal of 
studying structured population models is to understand how these physiological conditions 
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or physical characteristics affect the dynamical properties of these models and thus the 
outcomes and consequences of the biological and epidemiological processes (Magal and 
Ruan [34]).

Age structure is the most important characteristic in population dynamics. It is well 
known for a long time that the age-structure of a population affects the nonlinear dynamics 
of the species in ecology and the transmission dynamics of infectious diseases in epide-
miology. In modeling specific diseases, the age could be chronological age (the age of the 
population), infection age (the time elapsed since infection), recovery age (the time elapsed 
since the last infection), class age (the length of time in the present group), etc. The the-
ory of age-structured models has been well developed, and we refer to the classical mono-
graphs of Anita [1], Iannelli [23], Inaba [26], and Webb [52] on this subject. Models with 
other physiological structures, such as size and stage, have also been extensively studied in 
the literature (Barfield et al. [3], Cushing [7], Ebenman and Persson [17], Manly [36], Metz 
and Diekmann [40]).

There are some models taking into account the combined effects of two age characteris-
tics. Hoppensteadt [22] proposed a double age-structured epidemic model for a population 
consisted of susceptible, infectious, quarantined infectious, and immune classes by keep-
ing track of the chronological ages of the individuals as well as their class ages (i.e., the 
length of time since entering their present state). Existence and uniqueness of solutions to 
the model were considered. In order to determine the likely success of isolating sympto-
matic individuals and tracing and quarantining their contacts, Fraser et al. [19] studied a 
double age-structured model involving individuals who were infected time � ago by people 
who themselves were infected time �′ ago. They concluded direct estimation of the propor-
tion of asymptomatic and presymptomatic infections is achievable by contact tracing and 
should be a priority during an outbreak of a novel infectious agent. Kapitanov [29] con-
sidered the coinfection of HIV and tuberculosis in which each disease progresses through 
several stages. He suggested modeling these stages through a time since-infection tracking 
transmission rate function and introduced a double age-structured model. By incorporat-
ing the chronological ages of the individuals into the Kermack and McKendrick’s origi-
nal infection-age structured endemic model, Inaba [25] developed a double age-structured 
susceptible–infectious–recovered model and studied some basic properties of the model. 
Burie et al. [6] investigated an age and infection age structured model for the propagation 
of fungal diseases in plants and analyzed the asymptotic behavior of the model. Laroche 
and Perasso [33] studied a generic epidemic model structured by age and, for infected, 
the time remaining before the end of the incubation where they show detectable clinical 
signs. Population dynamical models with age and size structures (Sinko and Streifer [44], 
Webb [55]), age and maturation structures (Dyson et  al. [15, 16]), age and stage struc-
tures (McNair and Goulden [39], Matucci [38], Delgado et al. [10], Walker [48]), and age 
and an aggregated variable (Doumic [13]) have also been proposed and studied by many 
researchers.

Though many epidemic and populations models with two physiological structures have 
been proposed in the literature (as mentioned above), there are very few theoretical stud-
ies on the fundamental properties of such equations. By considering the property of the 
disease-free steady state of a susceptible–infectious–recovered model with chronological 
and class ages, Inaba [25] obtained a scalar equation with two age structures and provided 
some analysis of the model, including global stability of the disease-free steady state, using 
the strongly continuous semigroup theory. Webb [53] investigated a scalar structured popu-
lation model with nonlinear boundary conditions in which individuals are distinguished 
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by age and another physical characteristic and proved that populations structured by two 
internal variables converge to stable distributions.

Motivated by the studies of Inaba [25] and Webb [53], in this paper we aim to develop 
fundamental results and theories for a scalar equation with two physiological structures and 
to generalize the techniques in treating single age-structured models (Iannelli [23], Inaba [26], 
Webb [51, 52]) to study structured models with two internal variables. Consider the following 
first-order hyperbolic partial differential equation with two internal variables a and a′ (which 
models single-species population dynamics with two physiological structures)

under the initial condition

and boundary conditions

Here u(t, a, a�) denotes the density of a population at time t with age a and another charac-
teristic a′ (age, size, maturation, stage, etc.), the function � represents the initial distribu-
tion of the population with respect to age a and another physiological characteristic a′ . 
�(a, a�) denotes the mortality rate of the population at age a with characteristic a′ . Bound-
ary condition (1.3) accounts for the input at time t of individuals of age 0 with characteris-
tic a′ and boundary condition (1.4) describes the input at time t of individuals of age a with 
characteristic a′ at level 0. Here a+ represents the maximum age or characteristic and could 
be infinity.

By using semigroup theory, we study the basic properties and dynamics of model (1.1) 
under the initial condition (1.2) and boundary conditions (1.3)–(1.4), including the solution 
flow u(t, a, a�) and its semigroup {S(t)}t≥0 with infinitesimal generator A. Moreover, we estab-
lish the compactness of the solution trajectories, analyze the spectrum of A, investigate stabil-
ity of the zero equilibrium, and discuss the asynchronous exponential growth of the solutions 
when the zero equilibrium is unstable. We study the initial-boundary value problem in the 
two cases: a+ < ∞ and a+ = ∞ . First, we show that for a+ < ∞ the semigroup {S(t)}t≥0 with 
infinitesimal generator A is eventually compact, while for a+ = ∞ the semigroup {S(t)}t≥0 is 
quasi-compact. Next, we study the existence and uniqueness of the principal and simple eigen-
value and spectral bound of A under extra assumptions (see Assumption 2.1(iii)’ and (5.7)) for 
a+ = ∞ . Finally, we establish the same threshold dynamics for these two cases.

(1.1)
𝜕u(t, a, a�)

𝜕t
+

𝜕u(t, a, a�)

𝜕a
+

𝜕u(t, a, a�)

𝜕a�

= −𝜇(a, a�)u(t, a, a�), t > 0, (a, a�) ∈ (0, a+) × (0, a+)

(1.2)u(0, a, a�) = �(a, a�), a ∈ (0, a+), a� ∈ (0, a+)

(1.3)u(t, 0, a�) = ∫
a+

0 ∫
a+

0

𝛽(a�, a, s)u(t, a, s)dads, t > 0, a� ∈ (0, a+),

(1.4)u(t, a, 0) = ∫
a+

0 ∫
a+

0

𝛽�(a, s, a�)u(t, s, a�)dsda�, t > 0, a ∈ (0, a+).
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2  The semigroup

In this section we investigate the existence and uniqueness of solutions to the initial-bound-
ary value problem (1.1)–(1.4) via theory of integral functions. By using the method of 
characteristic lines we obtain the following expression for the density u(t, a, a�) 

Assumption 2.1 Assume that 

(i) �, �� ∶ [0, a+) × [0, a+) × [0, a+) → [0,∞) are nonnegative L1 integrable and Lipschitz 
continuous, and � ∶ [0, a+) × [0, a+) → [0,∞) is also nonnegative L1 integrable and 
Lipschitz continuous.

(ii) The following limits 

 and 

 hold uniformly for (a, s) ∈ (0, a+) × (0, a+) and (s, a�) ∈ (0, a+) × (0, a+), respectively.
(iii) There exist two nonnegative functions �1(s), �2(s) such that 𝛽(a�, a, s) ≥ 𝜖1(s) > 0 and 

𝛽�(a, s, a�) ≥ 𝜖2(s) > 0 for all a�, a ∈ (0, a+) and a, a� ∈ (0, a+), respectively.
(iii)’ �, �′ are separable such that �(a�, a, s) = �1(a

�)�2(a, s) and ��(a, s, a�) = ��
1
(a)��

2
(s, a�) 

with 𝛽1(a�), 𝛽�1(a) > 0 a.e. in L1(0, a+) , i.e., �1, �′1 are quasi-interior points in L1(0, a+) 
and �2(a, s), ��2(s, a

�) satisfy Assumption 2.1(iii), so that there exist two nonnegative 
functions �1(s) and �2(s) such that 𝛽2(a, s) ≥ 𝜖1(s) > 0 and 𝛽�

2
(s, a�) ≥ 𝜖2(s) > 0 for all 

a ∈ (0, a+) and a� ∈ (0, a+), respectively.
(iv) In addition, 

 Denote 

(2.1)

u(t, a, a�) =

⎧⎪⎨⎪⎩

𝜙(a − t, a� − t)e− ∫ t

0
𝜇(s−t+a,s−t+a�)ds, t < a < a� < a+ or t < a� < a < a+

u(t − a, 0, a� − a)e− ∫ a

0
𝜇(s,s+a�−a)ds, a < t < a� < a+ or a < a� < t, a < a� < a+

u(t − a�, a − a�, 0)e− ∫ a�

0
𝜇(s+a−a� ,s)ds, a� < a < t, a� < a < a+ or a� < t < a < a+.

lim
h→0∫

a+

0

|�(a� + h, a, s) − �(a�, a, s)|da� = 0

lim
h→0∫

a+

0

|��(a + h, s, a�) − ��(a, s, a�)|da = 0

sup
(a,s)∈(0,a+)×(0,a+)

�(a�, a, s) ≤ �(a�), where � ∈ L1((0, a+)),

sup
(s,a�)∈(0,a+)×(0,a+)

��(a, s, a�) ≤ ��(a), where �� ∈ L1((0, a+)).
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 and �max ∶= max{�sup, �
�
sup

}.
(v) For �(a, a�) , denote 

Remark 2.2 In fact, we only use the Lipschitz continuity of �, �′ and � with respect to their 
own components to show compactness of solution trajectories in Sect. 4, for other sections 
L1 integrability is enough. Moreover, (iii) and (iii)’ are used for cases a+ < ∞ and a+ = ∞, 
respectively.

2.1  A priori estimate

We use boundary conditions (1.3) and (1.4) and the above solution flow to obtain equa-
tions for the fertility rate functions b�(t, a�) ∶= u(t, 0, a�), b�

�
(t, a) ∶= u(t, a, 0) , where 

b�, b
�
�
∶ (0,∞) × (0, a+) → ℝ satisfy the following integral equations, respectively, see 

Fig. 1a for t < a+ (including a+ = ∞ and t < a+ < ∞ ) and Fig. 1b for t > a+ when a+ < ∞:

and

�sup ∶= ∫
a+

0

�(a)da, ��
sup

∶= ∫
a+

0

��(a)da

𝜇 = sup
(a,a�)∈(0,a+)×(0,a+)

𝜇(a, a�), 𝜇 = inf
(a,a�)∈(0,a+)×(0,a+)

𝜇(a, a�) > 0.

(2.2)

b�(t, a
�) = �

a+−t

0 �
a+−t

0

h(a, s)�(a�, a + t, s + t)�(a, s)e− ∫ t

0
�(�+a,�+s)d�dads

+ �
t

0 �
a+

a

h(a, s)�(a�, a, s)b�(t − a, s − a)e− ∫ a

0
�(�,�+s−a)d�dsda

+ �
t

0 �
a+

s

h(a, s)�(a�, a, s)b�
�
(t − s, a − s)e− ∫ s

0
�(�+a−s,�)d�dads

Fig. 1  Integration regions for (2.2)–(2.3)
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where h(a,  s) is a cut-off function defined by h(a, s) = 1 if a, s ∈ (0, a+) and h(a, s) = 0 
otherwise.

Now adding up (2.2) and (2.3) and denoting X(t, a) = b�(t, a) + b�
�
(t, a) , we obtain

where

Denote Y(t) = ∫ a+

0
X(t, a)da and define E ∶= L1

+
((0, a+) × (0, a+)). Integrating (2.4) on 

[0, a+) with respect to a,  we obtain

(2.3)

b�
�
(t, a) = �

a+−t

0 �
a+−t

0

h(a�, s)��(a, s + t, a� + t)�(s, a�)e− ∫ t

0
�(�+s,�+a�)d�da�ds

+ �
t

0 �
a+

a�
h(a�, s)��(a, s, a�)b�

�
(t − a�, s − a�)e− ∫ a�

0
�(�+s−a� ,�)d�dsda�

+ �
t

0 �
a+

s

h(a�, s)��(a, s, a�)b�(t − s, a� − s)e− ∫ s

0
�(�,�+a�−s)d�da�ds,

(2.4)

X(t, a) ≤ �
t

0 �
a+

p

[F(a, p, s) + G(a, s, p)]X(t − p, s − p)dsdp

+ �
a+−t

0 �
a+−t

0

H(a, p, s, t)�(p, s)dpds

= �
t

0 �
a+−p

0

[F(a, t − p, s + t − p) + G(a, s + t − p, t − p)]X(p, s)dsdp

+ �
a+−t

0 �
a+−t

0

H(a, p, s, t)�(p, s)dpds,

F(a, p, s) = �(a, p, s)e− ∫ p

0
�(�,�+s−p)d� + ��(a, s, p)e− ∫ p

0
�(�+s−p,�)d� ,

G(a, s, p) = �(a, s, p)e− ∫ p

0
�(�+s−p,�)d� + ��(a, p, s)e− ∫ p

0
�(�,�+s−p)d� ,

H(a, p, s, t) = [�(a, p + t, s + t) + ��(a, p + t, s + t)]e− ∫ t

0
�(�+p,�+s)d� .

(2.5)

Y(t) ≤ �
a+

0 �
t

0 �
a+−p

0

[F(a, t − p, s + t − p) + G(a, s + t − p, t − p)]X(p, s)dsdpda

+ �
a+

0 �
a+−t

0 �
a+−t

0

H(a, p, s, t)�(p, s)dpdsda

≤ �
t

0 �
a+

0

X(p, s)ds�
a+

0

2[�(a) + ��(a)]dadp

+ �
a+

0 �
a+

0 �
a+

0

[�(a) + ��(a�)]da�(p, s)dpds

≤ 4�max �
t

0

Y(p)dp + 2�max‖�‖E.
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Hence, by Gronwall’s inequality, we have the following estimate:

which implies that ∫ a+

0
b�(t, a)da, ∫ a+

0
b�
�
(t, a)da ≤ 2�max‖�‖Ee4�maxt.

2.2  Existence and uniqueness of solutions

Now we prove that there exists a unique solution 
(b�(t, a), b

�
�
(t, a)) ∈ C((0,∞), L1

+
(0, a+)) × C((0,∞),L1

+
(0, a+)) to system (2.2)–(2.3). By 

(2.2) and (2.3), after changing variables, we obtain

and

where

Denote M = C([0,T], L1
+
(0, a+)) and define

by F(b�, b
�
�
) = (F1(b�, b

�
�
),F2(b�, b

�
�
)) , where

(2.6)Y(t) ≤ 2�max‖�‖Ee4�maxt,

(2.7)

b�(t, a) = ∫
t

0 ∫
a+−t+p

0

f1(a, t − p, s + t − p)b�(p, s)dsdp

+ ∫
t

0 ∫
a+−t+s

0

g1(a, p + t − s, t − s)b�
�
(s, p)dpds

+ ∫
a+−t

0 ∫
a+−t

0

h1(a, p, s, t)�(p, s)dpds

(2.8)

b�
�
(t, a) = ∫

t

0 ∫
a+−t+p

0

f2(a, t − p + s, t − p)b�
�
(p, s)dsdp

+ ∫
t

0 ∫
a+−t+s

0

g2(a, t − s, p + t − s)b�(s, p)dpds

+ ∫
a+−t

0 ∫
a+−t

0

h2(a, s, p, t)�(s, p)dpds,

f1(a, p, s) = h(p, s)�(a, p, s)e− ∫ p

0
�(�,�+s−p)d� ,

g1(a, p, s) = h(p, s)�(a, p, s)e− ∫ s

0
�(�+p−s,�)d� ,

h1(a, p, s, t) = h(p, s)�(a, p + t, s + t)e− ∫ t

0
�(�+p,�+s)d� ,

f2(a, s, p) = h(p, s)��(a, s, p)e− ∫ p

0
�(�+s−p,�)d� ,

g2(a, s, p) = h(p, s)��(a, s, p)e− ∫ s

0
�(�,�+p−s)d� ,

h2(a, s, p, t) = h(p, s)��(a, s + t, p + t)e− ∫ t

0
�(�+s,�+p)d� .

F ∶ M ×M → M ×M
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and

First it is easy to see that F  is linear and bounded. In fact,

Similarly,

(2.9)

F1(b�, b
�
�
) = ∫

t

0 ∫
a+−t+p

0

f1(a, t − p, s + t − p)b�(p, s)dsdp

+ ∫
t

0 ∫
a+−t+s

0

g1(a, p + t − s, t − s)b�
�
(s, p)dpds

+ ∫
a+−t

0 ∫
a+−t

0

h1(a, p, s, t)�(p, s)dpds

(2.10)

F2(b�, b
�
�
) = ∫

t

0 ∫
a+−t+p

0

f2(a, t − p + s, t − p)b�
�
(p, s)dsdp

+ ∫
t

0 ∫
a+−t+s

0

g2(a, t − s, p + t − s)b�(s, p)dpds

+ ∫
a+−t

0 ∫
a+−t

0

h2(a, s, p, t)�(s, p)dpds.

(2.11)

sup
t∈[0,T]�

a+

0

F1(b�, b
�
�
)da = �

a+

0 �
t

0 �
a+−t+p

0

f1(a, t − p, s + t − p)b�(p, s)dsdpda

+ �
a+

0 �
t

0 �
a+−t+s

0

g1(a, p + t − s, t − s)b�
�
(s, p)dpdsda

+ �
a+

0 �
a+−t

0 �
a+−t

0

h1(a, p, s, t)�(p, s)dpdsda

≤ �
a+

0

�(a)da�
t

0 �
a+

0

b�(p, s)dsdp

+ �
a+

0

�(a)da�
t

0 �
a+

0

b�
�
(s, p)dpds

+ �
a+

0

�(a)da�
a+

0 �
a+

0

�(p, s)dpds

≤ �sup �
t

0 �
a+

0

b�(p, s)dsdp

+ �sup �
t

0 �
a+

0

b�
�
(s, p)dpds + �sup‖�‖E

≤ �supT
�‖b�‖M + ‖b�

�
‖M

�
+ �sup‖�‖E.
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Thus, F  maps M ×M into itself for any T > 0.
Next, we claim that F  is a contractive operator in M ×M when T is sufficiently small. 

Indeed, by similar estimates as in (2.11), 

Similarly, we have

Now let T be sufficiently small, then

It follows that F  is contractive, which implies that there exists a unique fixed point to F  
in M ×M , i.e., there exists a unique solution to system (2.2)–(2.3) for t ∈ [0, T] . But since 
we have (2.6), it allows us to conclude that the solution (b�(t, a), b��(t, a)) exists globally. In 
fact, we can extend the solution from T to 2T with initial data at T, and by the same argu-
ment as above to conclude the existence and uniqueness of the solution on [T, 2T]. Con-
tinuing this procedure, we obtain the global existence.

2.3  Semigroup generated by the solution flow

Define the family of linear operators {S(t)}t≥0 in E by the following formula:

(2.12)

sup
t∈[0,T]�

a+

0

F2(b�, b
�
�
)da ≤ ��

sup �
t

0 �
a+

0

b�
�
(p, s)dsdp

+ ��
sup �

t

0 �
a+

0

b�(s, p)dpds + ��
sup

‖�‖E
≤ ��

sup
T
�‖b�

�
‖M + ‖b�‖M

�
+ ��

sup
‖�‖E.

(2.13)

sup
t∈[0,T]�

a+

0

�F1(b𝜙, b
�
𝜙
) −F1(b̃𝜙, b̃

�
𝜙
)�da

≤ sup
t∈[0,T]

�
𝛽sup �

t

0 �
a+

0

�b𝜙(p, s) − b̃𝜙(p, s)�dsdp

+ 𝛽sup �
t

0 �
a+

0

�b�
𝜙
(s, p) − b̃�

𝜙
(s, p)�dpds�

≤ 𝛽supT‖b𝜙 − b̃𝜙‖M + 𝛽supT‖b�𝜙 − b̃�
𝜙
‖M .

sup
t∈[0,T]�

a+

0

�F2(b𝜙, b
�
𝜙
) −F2(b̃𝜙, b̃

�
𝜙
)�da ≤ 𝛽�

sup
T‖b𝜙 − b̃𝜙‖M + 𝛽�

sup
T‖b�

𝜙
− b̃�

𝜙
‖M .

‖F(b𝜙, b
�
𝜙
) −F(b̃𝜙, b̃

�
𝜙
)‖M×M ≤ 1

2
‖(b𝜙, b�𝜙) − (b̃𝜙, b̃

�
𝜙
)‖M×M .
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We have the following theorem.

Theorem 2.3 Let Assumption 2.1 hold. Then {S(t)}t≥0 defined in (2.14) is a strongly con-
tinuous semigroup of bounded linear operators in E. Furthermore, {S(t)}t≥0 is a positive 
semigroup in E.

Proof First we can see that the positivity of {S(t)}t≥0 follows immediately from the space 
M of b�, b′� and the space E of � . Next we prove the semigroup property. Motivated by 
Webb [55], we prove that for � ∈ E,

whereBS(t1)�
(t) = bS(t1)�(t, a

�), B�
S(t1)�

(t) = b�
S(t1)�

(t, a�); i.e.,

Observe from (2.2), (2.3) and (2.14) that

We have

(2.14)

(S(t)𝜙)(a, a�) =

⎧
⎪⎨⎪⎩

𝜙(a − t, a� − t)e− ∫ t

0
𝜇(s−t+a,s−t+a�)ds, t < a < a� < a+ or t < a� < a < a+

b𝜙(t − a, a� − a)e− ∫ a

0
𝜇(s,s+a�−a)ds, a < t < a� < a+ or a < a� < t, a < a� < a+

b
�
𝜙
(t − a�, a − a�)e− ∫ a�

0
𝜇(s+a−a� ,s)ds, a� < a < t, a� < a < a+ or a� < t < a < a+.

(2.15)BS(t1)�
(t) = B�(t + t1), B�

S(t1)�
(t) = B�

�
(t + t1),

(2.16)bS(t1)�(t, a
�) = b�(t + t1, a

�), b�
S(t1)�

(t, a) = b�
�
(t + t1, a).

(2.17)

bS(t1)�(t, a
�) = �

a+−t

0 �
a+−t

0

h(a, s)�(a�, a + t, s + t)S(t1)�(a, s)e
− ∫ t

0
�(�+a,�+s)d�dads

+ �
t

0 �
a+

a

h(a, s)�(a�, a, s)bS(t1)�(t − a, s − a)e− ∫ a

0
�(�,�+s−a)d�dsda

+ �
t

0 �
a+

s

h(a, s)�(a�, a, s)b�
S(t1)�

(t − s, a − s)e− ∫ s

0
�(�+a−s,�)d�dads,

b�
S(t1)�

(t, a) = �
a+−t

0 �
a+−t

0

h(a�, s)��(a, s + t, a� + t)S(t1)�(s, a
�)e− ∫ t

0
�(�+s,�+a�)d�da�ds

+ �
t

0 �
a+

a�
h(a�, s)��(a, s, a�)b�

S(t1)�
(t − a�, s − a�)e− ∫ a�

0
�(�+s−a� ,�)d�dsda�

+ �
t

0 �
a+

s

h(a�, s)��(a, s, a�)bS(t1)�(t − s, a� − s)e− ∫ s

0
�(�,�+a�−s)d�da�ds.



On first‑order hyperbolic partial differential equations…

1 3

(2.18)

b�(t + t1, a
�) = �

a+−t−t1

0
�

a+−t−t1

0

h(a, s)�(a�, a + t + t1, s + t + t1)�(a, s)e
− ∫ t+t1

0
�(�+a,�+s)d�dads

+ �
t+t1

0
�

a+

a

h(a, s)�(a�, a, s)b�(t + t1 − a, s − a)e− ∫ a

0
�(�,�+s−a)d�dsda

+ �
t+t1

0
�

a
+

s

h(a, s)�(a�, a, s)b�
�
(t + t1 − s, a − s)e− ∫ s

0
�(�+a−s,�)d�dads

= �
a+−t

t1
�

a+−t

t1

h(a − t1, s − t1)�(a
�, a + t, s + t)�(a − t1, s − t1)e

− ∫ t+t1
0

�(�+a−t1 ,�+s−t1)d�dads

+ �
t1

0
�

a+−t

a

h(a + t, s + t)�(a�, a + t, s + t)b�(t1 − a, s − a)e− ∫ t+a

0
�(�,�+s−a)d�dsda

+ �
t1

0
�

a+−t

s

h(a + t, s + t)�(a�, a + t, s + t)b�
�
(t1 − s, a − s)e− ∫ t+s

0
�(�+a−s,�)d�dads

+ �
t

0
�

a
+

a

h(a, s)�(a�, a, s)b�(t + t1 − a, s − a)e− ∫ a

0
�(�,�+s−a)d�dsda

+ �
t

0
�

a+

s

h(a, s)�(a�, a, s)b�
�
(t + t1 − s, a − s)e− ∫ s

0
�(�+a−s,�)d�dads

= �
a+−t

0
�

a+−t

0

h(a, s)�(a�, a + t, s + t)S(t1)�(a, s)e
− ∫ t

0
�(�+a,�+s)d�dads

+ �
t

0
�

a
+

a

h(a, s)�(a�, a, s)b�(t + t1 − a, s − a)e− ∫ a

0
�(�,�+s−a)d�dsda

+ �
t

0
�

a
+

s

h(a, s)�(a�, a, s)b�
�
(t + t1 − s, a − s)e− ∫ s

0
�(�+a−s,�)d�dads,

b
�
�
(t + t1, a) = �

a+−t−t1

0
�

a+−t−t1

0

h(a�, s)��(a, s + t + t1, a
� + t + t1)�(s, a

�)e− ∫ t+t1
0

�(�+s,�+a� )d�da�ds

+ �
t+t1

0
�

a
+

a�

h(a�, s)��(a, s, a�)b�
�
(t + t1 − a

�, s − a
�)e− ∫ a�

0
�(�+s−a� ,�)d�dsda�

+ �
t+t1

0
�

a
+

s

h(a�, s)��(a, s, a�)b�(t + t1 − s, a� − s)e− ∫ s

0
�(�,�+a�−s)d�da�ds

= �
a+−t

t1
�

a+−t

t1

h(a� + t, s + t)��(a�, s + t, a� + t)�(s − t1, a
� − t1)e

− ∫ t+t1
0

�(�+s−t1 ,�+a
�−t1)d�da�ds

+ �
t1

0
�

a+−t

a�

h(a� + t, s + t)��(a, s + t, a� + t)b�
�
(t1 − a

�, s − a
�)e− ∫ t+a�

0
�(�+s−a� ,�)d�dsda�

+ �
t1

0
�

a
+−t

s

h(a� + t, s + t)��(a, s + t, a� + t)b�(t1 − s, a� − s)e− ∫ t+s

0
�(�,�+a�−s)d�da�ds

+ �
t

0
�

a
+

a�

h(a�, s)��(a, s, a�)b�
�
(t + t1 − a

�, s − a
�)e− ∫ a�

0
�(�+s−a� ,�)d�dsda�

+ �
t

0
�

a+

s

h(a�, s)��(a, s, a�)b�(t + t1 − s, a� − s)e− ∫ s

0
�(�,�+a�−s)d�da�ds

= �
a
+−t

0
�

a
+−t

0

h(a�, s)��(a, s + t, a� + t)S(t1)�(s, a
�)e− ∫ t

0
�(�+s,�+a� )d�da�ds

+ �
t

0
�

a
+

a�

h(a�, s)��(a, s, a�)b�
�
(t + t1 − a

�, s − a
�)e− ∫ a�

0
�(�+s−a� ,�)d�dsda�

+ �
t

0
�

a+

s

h(a�, s)��(a, s, a�)b�(t + t1 − s, a� − s)e− ∫ s

0
�(�,�+a�−s)d�da�ds.
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By the uniqueness of solutions to (2.2) and (2.3), we then obtain (2.16), which implies that

and

For 𝜙 ∈ E, 0 ≤ t < t1 and t + t1 < a or t + t1 < a�,

For t < a < a� < t + t1,

For t < a� < a < t + t1,

For a < a′ < t , by (2.16)

For a′ < a < t , by (2.16)

(S(t)S(t1)�)(0, a
�) = (S(t + t1)�)(0, a

�), t, t1 ≥ 0

(S(t)S(t1)�)(a, 0) = (S(t + t1)�)(a, 0), t, t1 ≥ 0.

(2.19)

(S(t)S(t1)�)(a, a
�) = (S(t1)�)(a − t, a� − t)e− ∫ t

0
�(s−t+a,s−t+a�)ds

= �(a − t − t1, a
� − t − t1)e

− ∫ t1
0

�(s−t1+a−t,s−t1+a
�−t)ds

e− ∫ t

0
�(s−t+a,s−t+a�)ds

= �(a − (t + t1), a
� − (t + t1))e

− ∫ t+t1
0

�(s−(t+t1)+a,s−(t+t1)+a
�)ds

= (S(t + t1)�)(a, a
�).

(2.20)

(S(t)S(t1)�)(a, a
�) = (S(t1)�)(a − t, a� − t)e− ∫ t

0
�(s−t+a,s−t+a�)ds

= b�(t1 − (a − t), a� − a)e− ∫ a−t

0
�(s,s+a�−a)dse− ∫ t

0
�(s−t+a,s−t+a�)ds

= b�(t + t1 − a, a� − a)e− ∫ a

0
�(s,s+a�−a)ds

= (S(t + t1)�)(a, a
�).

(2.21)

(S(t)S(t1)�)(a, a
�) = (S(t1)�)(a − t, a� − t)e− ∫ t

0
�(s−t+a,s−t+a�)ds

= b�
�
(t1 − (a� − t), a − a�)e− ∫ a�−t

0
�(s+a−a� ,s)dse− ∫ t

0
�(s−t+a,s−t+a�)ds

= b�
�
(t + t1 − a�, a − a�)e− ∫ a�

0
�(s+a−a� ,s)ds

= (S(t + t1)�)(a, a
�).

(2.22)

(S(t)S(t1)�)(a, a
�) = bS(t1)�(t − a, a� − a)e− ∫ a

0
�(s,s+a�−a)ds

= b�(t + t1 − a, a� − a)e− ∫ a

0
�(s,s+a�−a)ds

= (S(t + t1)�)(a, a
�).
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Thus, 

Now we need to prove the strong continuity property. We have

where

by the absolute continuity and boundedness of � ∈ E and continuity of the exponential 
function e�t . Next observe that

by the boundary condition b�(0, a�) = u(0, 0, a�) = �(0, a�) and absolute continuity and 
boundedness of b� in C((0,∞),L1

+
(0, a+)) with continuity of the exponential function e�a . 

Similarly, we can show that III → 0 as t → 0+ . It follows that

(2.23)

(S(t)S(t1)�)(a, a
�) = b�

S(t1)�
(t − a�, a − a�)e− ∫ a�

0
�(s+a−a� ,s)ds

= b�
�
(t + t1 − a�, a − a�)e− ∫ a

0
�(s+a−a� ,s)ds

= (S(t + t1)�)(a, a
�).

S(t + t1)� = (S(t)S(t1))�, t, t1 ≥ 0, � ∈ E.

(2.24)

‖S(t)� − �‖
E
= �

a+

0
�

a+

0

�(S(t)�)(a, a�) − �(a, a�)�dada�

≤ �
a+

t
�

a+

t

��(a − t, a� − t)e− ∫ t

0
�(s−t+a,s−t+a�)ds − �(a, a�)�dada�

+ �
t

0
�

a+

a

�b�(t − a, a� − a)e− ∫ a

0
�(s,s+a�−a)ds − �(a, a�)�da�da

+ �
t

0
�

a+

a�

�b�
�
(t − a

�, a − a
�)e− ∫ a�

0
�(s+a−a� ,s)ds − �(a, a�)�dada�

∶ = I + II + III,

(2.25)

I ≤ �
a+

t �
a+

t

|�(a − t, a� − t) − �(a, a�)|dada�

+ �
a+

t �
a+

t

|�(a − t, a� − t)||e− ∫ t

0
�(s−t+a,s−t+a�)ds − 1|dada�

→ 0 as t → 0+

(2.26)

II ≤ �
t

0 �
a+

a

|b�(t − a, a� − a) − b�(0, a
� − a)| + |b�(0, a� − a) − �(a, a�)|da�da

+ �
t

0 �
a+

a

|b�(t − a, a� − a)||e− ∫ a

0
�(s,s+a�−a)ds − 1|da�da

→ 0 as t → 0+

lim
t→0+

S(t)� = �, ∀� ∈ E.
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This completes the proof.   ◻

2.4  Solutions of the initial‑boundary value problem

In the previous subsections we established the global existence and uniqueness of the solu-
tion for (2.1). In this subsection we claim that the solution of (2.14) is indeed a solution of 
(1.1)–(1.4).

Proposition 2.4 Let T > 0 and let � ∈ L1
+
((0, a+) × (0, a+)) . If u is a solution of (2.1) on 

[0, T], then it is a solution of (1.1)–(1.4) on [0, T].

Proof First, u(0, ⋅, ⋅) = � since u(t, ⋅, ⋅) satisfies (2.1) at t = 0 . Next, let 0 ≤ t < T  and 
0 < h < T − t . From (2.1) we have

Letting h → 0 , by continuity of the exponential function e�h , the above expression will 
approach zero by the uniform boundedness of b(t, a�), b�(t, a) in C((0,∞),L1

+
(0, a+)) and � 

in E. Hence, (1.1) holds.
Next, let 0 ≤ t < T  and let 0 < h < T − t with 0 < h < a′ . From (2.1) we have

(2.27)

�
a+

0 �
a+

0

|||h
−1[u(t + h, a + h, a� + h) − u(t, a, a�)] + �(a, a�)u(t, a, a�)

|||dada
�

= �
a+

t �
a+

t

|h−1�(a − t, a� − t)[e− ∫ t+h

0
�(s−t+a,s−t+a�)ds − e− ∫ t

0
�(s−t+a,s−t+a�)ds]

+ �(a, a�)�(a − t, a� − t)e− ∫ t

0
�(s−t+a,s−t+a�)ds|dada�

+ �
t

0 �
a+

a

|h−1u(t − a, 0, a� − a)[e− ∫ a+h

0
�(s,s+a�−a)ds − e− ∫ a

0
�(s,s+a�−a)ds]

+ �(a, a�)u(t − a, 0, a� − a)e− ∫ a

0
�(s,s+a�−a)ds|da�da

+ �
t

0 �
a+

a�
|h−1u(t − a�, a − a�, 0)[e− ∫ a�+h

0
�(s+a−a� ,s)ds − e− ∫ a�

0
�(s+a−a� ,s)ds]

+ �(a, a�)u(t − a�, a − a�, 0)e− ∫ a�

0
�(s+a−a� ,s)ds|dada�

≤ �
a+

t �
a+

t

|�(a − t, a� − t)||h−1[e− ∫ t+h

t
�(s−t+a,s−t+a�)ds − 1] + �(a, a�)||e− ∫ t

0
�(s−t+a,s−t+a�)ds|dada�

+ �
t

0 �
a+

a

|u(t − a, 0, a� − a)||h−1[e− ∫ a+h

a
�(s,s+a�−a)ds − 1] + �(a, a�)||e− ∫ a

0
�(s,s+a�−a)ds|da�da

+ �
t

0 �
a+

a�
|u(t − a�, a − a�, 0)||h−1[e− ∫ a�+h

a�
�(s+a−a� ,s)ds − 1] + �(a, a�)||e− ∫ a�

0
�(s+a−a� ,s)ds|dada�.
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where

and

Letting h → 0 yields that I → 0 by the equicontinuity of � with respect to a′ in Assumption 
2.1(ii), continuity of u(t, ⋅, ⋅) in E with respect to t,  and the uniform boundedness of u(t, ⋅, ⋅) 
in E and � in Assumption 2.1, while II → 0 by uniform boundedness of u(t, ⋅, ⋅) in E and � 
in Assumption 2.1 with continuity of exponential functions.

(2.28)

h−1 �
h

0 �
a+

0

||u(t + h, x, a�) − �
a+

0 �
a+

0

�(a�, a, s)u(t, a, s)dads||da�dx

= h−1 �
h

0 �
a+

0

||u(t + h − x, 0, a� − x)e− ∫ x

0
�(s,s+a�−x)ds

− �
a+

0 �
a+

0

�(a�, a, s)u(t, a, s)dads||da�dx

= h−1 �
h

0 �
a+

0

||�
a+

0 �
a+

0

�(a� − x, a, s)u(t + h − x, a, s)dadse− ∫ x

0
�(s,s+a�−x)ds

− �
a+

0 �
a+

0

�(a�, a, s)u(t, a, s)dads||da�dx

= h−1 �
h

0 �
a+

0

||||||

[
�

a+

0 �
a+

0

�(a� − x, a, s)u(t + h − x, a, s)

−�(a�, a, s)u(t, a, s)dads
]
e− ∫ x

0
�(s,s+a�−x)ds

+�
a+

0 �
a+

0

�(a�, a, s)u(t, a, s)dads[e− ∫ x

0
�(s,s+a�−x)ds − 1]

|||||
da�dx

≤ sup
0≤x≤h�

a+

0 �
a+

0 �
a+

0

�(a� − x, a, s)u(t + h − x, a, s) − �(a�, a, s)u(t, a, s)dadsda�

+ sup
0≤x≤h

[e
−�x

− 1]�
a+

0 �
a+

0 �
a+

0

�(a�, a, s)u(t, a, s)dadsda�

∶= I + II,

(2.29)

I ≤ sup
0≤x≤h

||�
a+

0 �
a+

0 �
a+

0

|�(a� − x, a, s) − �(a�, a, s)||u(t + h − x, a, s)|dadsda�

+ �
a+

0 �
a+

0 �
a+

0

|�(a�, a, s)||u(t + h − x, a, s) − u(t, a, s)|dadsda�||

≤ sup
0≤x≤h

||�
a+

0

|�(a� − x, a, s) − �(a�, a, s)|da� �
a+

0 �
a+

0

u(t + h − x, a, s)dads

+ �
a+

0

�(a�)da� �
a+

0 �
a+

0

|u(t + h − x, a, s) − u(t, a, s)|dads||

(2.30)II ≤ sup
0≤x≤h

[e
−�x

− 1]�
a+

0

�(a�)da� �
a+

0 �
a+

0

u(t, a, s)dada.
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Similarly, we can show that

This completes the proof.   ◻

3  The infinitesimal generator

The infinitesimal generator of the strongly continuous semigroup {S(t)}t≥0 is defined as the 
(unbounded) linear operator A in X by (see Hille and Phillips [21])

with � ∈ D(A), where

One would intuitively imagine that the infinitesimal generator would follow similarly to the 
single age-structured systems (Webb [52]) as B� = −

��

�a
−

��

�a�
− �� with domain

However, it is unlikely to show the weak differentiability of � ∈ D(A) ; thus, we cannot 
conclude A = B . The key reason for A and B being different lies in the fact that A takes 
the directional derivative along ⟨1, 1⟩ in the L1 sense, while B takes partial derivatives with 
respect to both variables in the L1 sense. Indeed, the characterization of the infinitesimal 
generator A is a bit more complicated than the single age-structured case, and here, we 
adopt the description of A as pointed out in Webb [53, Remark 3.1] and provide a proof.

Proposition 3.1 If � ∈ D(A) , there exists � ∈ E such that for a ≥ 0, a′ ≥ 0:

where F(�)(a) ∶= ∫ a+

0
∫ a+

0
��(a, s, a�)�(s, a�)dsda� and G(�)(a�) ∶= ∫ a+

0
∫ a+

0
�(a�, a, s)�(a, s)dads.

Proof Let � ∈ D(A) , for t > 0 , define �t ∈ E,�t ∈ E by

lim
h→0

h−1 ∫
h

0 ∫
a+

0

||u(t + h, a, x) − ∫
a+

0 ∫
a+

0

��(a, s, a�)u(t, s, a�)dsda�||dadx = 0.

A� = lim
t→0+

t−1(S(t)� − �)

D(A) = {� ∈ X ∶ lim
t→0+

t−1(S(t)� − �) exists}.

D(B) =

⎧
⎪⎨⎪⎩
� ∈ W1,1([0, a+)2) ∶

a+

∫
0

a+

∫
0

�(a�, a, s)�(a, s)dads

= �(0, a�),

a+

∫
0

a+

∫
0

��(a, s, a�)�(s, a�)dsda� = �(a, 0)

⎫
⎪⎬⎪⎭
.

(3.1)

a

∫
0

�(s, a�)ds +

a�

∫
0

�(a, s�)ds� +

a�

∫
0

a

∫
0

�(s, s�)dsds� =

a

∫
0

F(�)(s)ds +

a�

∫
0

G(�)(s�)ds�,
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and

respectively. Then, we have

by the differentiability of exponential functions and the boundedness and absolute continu-
ity of � in E.

Next, observe that

by the definition of A. Thus, we have limt→0+ �t(a, a
�) = A�(a, a�) + �(a, a�)�(a, a�) a.e. in 

[0, a+] × [0, a+] . In addition we get for any a, a′ ≥ 0 that

𝜒t(a, a
�) =

{
0, for a.e. a < t or a� < t

t−1[𝜙(a − t, a� − t)e− ∫ t

0
𝜇(s−t+a,s−t+a�)ds − 𝜙(a − t, a� − t)], for a.e. a > t and a� > t

𝜙t(a, a
�) =

{
0, for a.e. a < t or a� < t

t−1[𝜙(a − t, a� − t) − 𝜙(a, a�)], for a.e. a > t and a� > t,

(3.2)

‖�t + �(a, a�)�(a, a�)‖E
= �

a+

t �
a+

t

�����

�
�(a − t, a� − t)

e− ∫ t

0
�(s−t+a,s−t+a�)ds − 1

t

�
+ �(a, a�)�(a, a�)

�����
dada�

+ �
t

0 �
a+

a

��(a, a�)�(a, a�)�da�da + �
t

0 �
a+

a�
��(a, a�)�(a, a�)�dada�

≤ �
a+

t �
a+

t

��(a, a�)���(a − t, a� − t) − �(a, a�)�dada�

+ �
a+

t �
a+

t

��(a − t, a� − t)�
�
e− ∫ t

0
�(s−t+a,s−t+a�)ds − 1

t
+ �(a, a�)

�
dada�

+ �
t

0 �
a+

a

��(a, a�)�(a, a�)�da�da + �
t

0 �
a+

a�
��(a, a�)�(a, a�)�dada�

→ 0 as t → 0+

(3.3)

‖�t + �t − A�‖E
≤ �

t

0 �
a+

a

�A�(a, a�)�da�da + �
t

0 �
a+

a�
�A�(a, a�)�dada�

+ �
a+

t �
a+

t

�����
�(a − t, a� − t)e− ∫ t

0
�(s−t+a,s−t+a�)ds − �(a, a�)

t
− A�(a, a�)

�����
dada�

≤ �
t

0 �
a+

a

�A�(a, a�)�da�da + �
t

0 �
a+

a�
�A�(a, a�)�dada�

+ �
a+

t �
a+

t

��t−1[S(t)� − �] − A�(a, a�)��dada�

→ 0 as t → 0+
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We further observe that for a.e. a ∈ [0, a+],

By the fact that ∫ t

0
∫ a+

a
|A�(a, a�)|da�da → 0 as t → 0+ , we have

Then

where I1 converges to 0 as t → 0+ because of (3.5). Next note that b�
�
∈ C([0,∞),L1

+
(0, a+)) 

and b�
�
(0, ⋅) = F(�)(⋅) , we have

Hence, we can find 𝛿 > 0 such that

(3.4)

lim
t→0+

t−1

a+t

∫
t

a�+t

∫
t

�(s, s�)ds�ds − t−1

a

∫
0

a�

∫
0

�(s, s�)ds�ds

= lim
t→0+

t−1

a

∫
0

a�

∫
0

�(s + t, s� + t) − �(s, s�)ds�ds

= −

a

∫
0

a�

∫
0

[A�(s, s�) + �(s, s�)�(s, s�)]ds�ds.

‖t−1[S(t)� − �] − A�‖E

≥
t

�
0

a

�
s�

����t
−1[b�

�
(t − s�, s − s�)e− ∫ s�

0
�(r+s−s� ,r)dr − �(s, s�)] − A�(s, s�)

����dsds
�.

(3.5)t−1

t

�
0

a

�
s�

||b��(t − s�, s − s�)e− ∫ s�

0
�(r+s−s� ,r)dr − �(s, s�)||dsds� → 0 as t → 0+.

||t−1 �
t

0 �
a

0

�(s, s�)dsds� − �
a

0

F(�)(s)ds||

≤ t−1 �
t

0 �
a

0

||�(s, s�) − F(�)(s)||dsds�

≤ t−1 �
t

0 �
a

0

||�(s, s�) − b�
�
(t − s�, s − s�)e− ∫ s�

0
�(r+s−s� ,r)dr||dsds�

+ t−1 �
t

0 �
a

0

||b��(t − s�, s − s�)
(
e− ∫ s�

0
�(r+s−s�,r)dr − 1

)||dsds�

+ t−1 �
t

0 �
a

0

||b��(t − s�, s − s�) − b�
�
(t − s�, s)||dsds�

+ t−1 �
t

0 �
a

0

||b��(t − s�, s) − F(�)(s)||dsds�

=∶ I1 + I2 + I3 + I4,

(3.6)lim
t→0+ ∫

a+

0

|b�
�
(t, a) − F(�)(a)|da = 0.
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Therefore, by Assumption 2.1(v),

Clearly, I4 → 0 as t → 0+ . Further,

where the first two terms converge to 0 as t → 0+ because of (3.6) and the last term con-
verges to 0 due to the continuity of the L1 function F(�) with respect to translation. So we 
have

Similarly

sup
t∈[0,𝛿]∫

a+

0

b�
𝜙
(t, a)da < 2∫

a+

0

F(𝜙)(a)da.

I2 ≤ sup
s�∈[0,t]�

a+

0

|b�
�
(t − s�, s − s�)|(1 − e

−�s�
)ds → 0 as t → 0+.

I3 ≤ sup
s�∈[0,t]�

a+

0

|b�
�
(t − s�, s − s�) − b�

�
(t − s�, s)|ds

≤ sup
s�∈[0,t]�

a+

0

|b�
�
(t − s�, s − s�) − F(�)(s − s�)|ds

+ sup
s�∈[0,t]�

a+

0

|F(�)(s) − b�
�
(t − s�, s)|ds

+ sup
s�∈[0,t]�

a+

0

|F(�)(s − s�) − F(�)(s)|ds → 0 as t → 0+,

(3.7)lim
t→0+

t−1

t

∫
0

a

∫
0

�(s, s�)dsds� = ∫
a

0

F(�)(s)ds.

(3.8)lim
t→0+

t−1

t

∫
0

a�

∫
0

�(s, s�)ds�ds =

a�

∫
0

G(�)(s�)ds�.

Fig. 2  Illustration of equality (3.13)
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Next we observe that ∫ a

0
∫ a�

0
�(s, s�)ds�ds is differentiable with respect to the variable a for 

all a, a′ ≥ 0 , thus

and similarly

Further, it is easy for us to have the following estimates:

Note that the integration of � on [0, a + t] × [0, a� + t] can be approached in different ways 
(see Fig. 2) and we have the following equality for any a, a′ ≥ 0:

 Let t → 0+ and apply (3.4)–(3.12), we have (3.1) for a.e. a, a′ ≥ 0 with � = A� + �� .  
 ◻

Remark 3.2 Based on (3.1), one can easily derive a description of operator A:

From (3.1) we can conclude that

(3.9)lim
t→0+

t−1 ∫
a+t

a ∫
a�

0

�(s, s�)ds�ds = ∫
a�

0

�(a, s�)ds�,

(3.10)lim
t→0+

t−1 ∫
a

0 ∫
a�+t

a�
�(s, s�)ds�ds = ∫

a

0

�(s, a�)ds.

(3.11)lim
t→0+

t−1 ∫
t

0 ∫
t

0

�(s, s�)ds�ds = 0, lim
t→0+

t−1 ∫
t

0 ∫
a�+t

a�
�(s, s�)ds�ds = 0,

(3.12)lim
t→0+

t−1 ∫
a+t

a ∫
t

0

�(s, s�)ds�ds = 0, lim
t→0+

t−1 ∫
a+t

a ∫
a�+t

a�
�(s, s�)ds�ds = 0.

(3.13)

t−1
(
∫

a

0 ∫
t

0

�(s, s�)ds�ds + ∫
t

0 ∫
a�

0

�(s, s�)ds�ds − ∫
t

0 ∫
t

0

�(s, s�)ds�ds

+ ∫
a+t

a ∫
t

0

�(s, s�)ds�ds + ∫
t

0 ∫
a�+t

a�
�(s, s�)ds�ds + ∫

a+t

t ∫
a�+t

t

�(s, s�)ds�ds
)

= t−1
(
∫

a

0 ∫
a�

0

�(s, s�)ds�ds + ∫
a+t

a ∫
a�

0

�(s, s�)ds�ds

+ ∫
a

0 ∫
a�+t

a�
�(s, s�)ds�ds + ∫

a+t

a ∫
a�+t

a�
�(s, s�)ds�ds

)
.

(3.14)
(A�)(a, a�) = −

�

�a

(
�(a, a�) +

�

�a� ∫
a

0

�(s, a�)ds
)
− �(a, a�)�(a, a�)

= −
�

�a�

(
�(a, a�) +

�

�a ∫
a�

0

�(a, s�)ds�
)
− �(a, a�)�(a, a�).
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Moreover, Webb [53] claimed that the inclusion is in fact an equality. Furthermore, � ∈ D(A) 
if and only there exists � ∈ E such that for a ≥ 0, a′ ≥ 0 , (3.1) holds. If in addition � is suf-
ficiently smooth, then A = B and �(a, 0) = F(�)(a), a ≥ 0,�(0, a�) = G(�)(a�), a� ≥ 0.

4  Compactness of solution trajectories

First we introduce the �-measure of non-compactness of a bounded linear operator in the 
Banach space X from Nussbaum [41] or Webb [52]. If T is a bounded linear operator in the 
Banach space X,  then the Kuratowski measure of non-compactness of T,  denoted by �[T], 
is the infimum of 𝜖 > 0 such that �[T(M)] ≤ ��[M] for all bounded sets M in X, where 
�[M] is the measure of non-compactness of M. The following result is proved in Webb [52, 
Proposition 4.9]:

Proposition 4.1 Let T1 and T2 be bounded linear operator in Banach space X. The fol-
lowing hold:

 (i) �(T1) ≤ |T1|;
 (ii) �[T1T2] ≤ �[T1]�[T2];
 (iii) �[T1 + T2] ≤ �[T1] + �[T2];
 (iv) �[T1] = 0 if and only if T1 is compact.

To establish the compactness of solution trajectories, we need the following proposition 
which was proved by Webb [50].

Proposition 4.2 (Webb [50]) Let {S(t)}t≥0 be a dynamical system in the Banach space X 
satisfying

 (i) S(t) = S1(t) + S2(t) for each t ≥ 0 , where S1(t), S2(t) are mappings from X to X; 
 (ii) ‖S1(t)x‖ ≤ c(t, r) for all t ≥ 0 and all x ∈ X  such that ‖x‖ ≤ r  , where 

c ∶ ℝ
+ ×ℝ

+
→ ℝ

+ is a continuous function such that for all r > 0 , limt→∞ c(t, r) = 0;

(3.15)

D(A) ⊂

{
𝜙 ∈ E ∶ (a, a�) → �

a

0

𝜙(s, a�)ds is absolutely continuous in a� for a ≥ 0,

(a, a�) →

[
𝜕

𝜕a� �
a

0

𝜙(s, a�)ds + 𝜙(a, a�)

]
is absolutely continuous in a for a.e. a� > 0,

lim
a→0+

[
𝜕

𝜕a� �
a

0

𝜙(s, a�)ds + 𝜙(a, a�)

]
= G(𝜙)(a�) for a.e. a� > 0,

(a, a�) → �
a�

0

𝜙(a, s)ds is absolutely continuous in a for a� ≥ 0,

(a, a�) →

[
𝜕

𝜕a �
a�

0

𝜙(a, s)ds + 𝜙(a, a�)

]
is absolutely continuous in a� for a.e. a > 0,

lim
a�→0+

[
𝜕

𝜕a �
a�

0

𝜙(a, s)ds + 𝜙(a, a�)

]
= F(𝜙)(a) for a.e. a > 0,

and
𝜕

𝜕a

[
𝜕

𝜕a� �
a

0

𝜙(s, a�)ds + 𝜙(a, a�)

]
∈ E

}
.
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 (iii) S2(t) is compact (that is, maps bounded sets into precompact sets) for t sufficiently 
large.

If the trajectory �(x0) of x0 ∈ X is bounded, then it is also precompact.
We now apply this proposition to show that bounded trajectories of {S(t)}t≥0 are precom-

pact. Define

Proposition 4.3 If 𝜇 > 0 , then S1(t) satisfies the hypothesis (ii) of Proposition 4.2 and 
S2(t), S3(t) satisfy (iii) of Proposition 4.2.

Proof We assume a+ < ∞ throughout this proof, the conclusion also holds for a+ = ∞ and 
the corresponding proof is presented in Appendix, Proposition A.1.

Obviously Si(t), t ≥ 0, i = 1, 2, 3, are mappings from E to E. We have

Now we show that S2(t) is compact for t > 2a+ , it is equivalent to show that for a bounded 
set K of E,

S1(t)𝜙(a, a
�) =

{
𝜙(a − t, a� − t)e− ∫ t

0
𝜇(s−t+a,s−t+a�)ds, t < a < a� < a+ or t < a� < a < a+

0, otherwise

S2(t)𝜙(a, a
�) =

{
b𝜙(t − a, a� − a)e− ∫ a

0
𝜇(s,s+a�−a)ds, a < t < a� < a+ or a < a� < t, a < a� < a+

0, otherwise

S3(t)𝜙(a, a
�) =

{
b
�
𝜙
(t − a�, a − a�)e− ∫ a

�

0
𝜇(s+a−a� ,s)ds, a� < a < t, a� < a < a+ or a� < t < a < a+

0, otherwise.

(4.1)

‖S1(t)�‖E ≤ ������
a+

t �
a+

t

e− ∫ t

0
�(s−t+a,s−t+a�)ds�(a − t, a� − t)

�����
dada�

≤ �
a+

t �
a+

t

e
−�t��(a − t, a� − t)�dada�

≤ e
−�t‖�‖E.

Fig. 3  Integration regions for (4.4) and (A.3)
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uniformly for � ∈ K (which can be found in Dunford and Schwartz [14, Theorem  21, 
p. 301]). Without loss of generality, assume that k > h and h, k → 0+ , we have

as illustrated in Fig.  3a: S2(t)�(a, a�) is non-trivial for points (a, a�) in regions I, and 
S2(t)�(a + h, a� + k) is non-trivial for points (a, a�) in regions I, II, and III. First recall from 
(2.7) and (2.8) that when a+ < ∞ and t > a+,

and

We then show

(4.2)lim
h → 0

k → 0

∫
a+

0 ∫
a+

0

||S2(t)�(a + h, a� + k) − S2(t)�(a, a
�)||dada� = 0,

(4.3)lim
h → a+

k → a+

∫
a+

h ∫
a+

k

||S2(t)�(a, a�)||dada� = 0

(4.4)

�
a+

0 �
a+

0

||S2(t)�(a + h, a� + k) − S2(t)�(a, a
�)||da�da

≤ �
a+

0 �
a+

a

||S2(t)�(a + h, a� + k) − S2(t)�(a, a
�)||da�da

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
region I

+ �
a+

k−h �
a

a+h−k

||S2(t)�(a + h, a� + k)||da�da
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

region II

+ �
k−h

0 �
a

0

||S2(t)�(a + h, a� + k)||da�da
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

region III

,

(4.5)
b�(t, a) = ∫

t

t−a+ ∫
a+−t+p

0

f1(a, t − p, s + t − p)b�(p, s)dsdp

+ ∫
t

t−a+ ∫
a+−t+s

0

g1(a, p + t − s, t − s)b�
�
(s, p)dpds

(4.6)
b�
�
(t, a) = ∫

t

t−a+ ∫
a+−t+p

0

f2(a, t − p + s, t − p)b�
�
(p, s)dsdp

+ ∫
t

t−a+ ∫
a+−t+s

0

g2(a, t − s, p + t − s)b�(s, p)dpds.
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where

based on our prior estimate in Sect. 2.1 and with K� being the Lipschitz constant for � . 
Thus, II → 0 uniformly for � ∈ K as h, k → 0+.

Next, we need to show that

By (4.5) and (4.6), we have (note that we consider t > 2a+)

where

�
a+

0 �
a+

a

||S2(t)�(a + h, a� + k) − S2(t)�(a, a
�)||da�da

≤ �
a+

0 �
a+

a

||b�(t − a − h, a� + k − a − h) − b�(t − a, a� − a)||e− ∫ a+h

0
�(s,s+a�+k−a−h)dsda�da

+ �
a+

0 �
a+

a

||b�(t − a, a� − a)[e− ∫ a+h

0
�(s,s+a�+k−a−h)ds − e− ∫ a

0
�(s,s+a�−a)ds]||da�da

∶= I + II,

II ≤ �
a+

0 �
a+

a

b𝜙(t − a, a� − a)��e− ∫ a+h

0
𝜇(s,s+a�−a)ds[1 − e∫ a+h

0
𝜇(s,s+a�−a)−𝜇(s,s+a�+k−a−h)ds]

+ e− ∫ a

0
𝜇(s,s+a�−a)ds[1 − e− ∫ a+h

a
𝜇(s,s+a�−a)ds]��da�da

≤ �
a+

0 �
a+

a

b𝜙(t − a, a� − a)
�
max{1 − e−K𝜇(k−h)a

+

, eK𝜇(k−h)a
+

− 1} + (1 − e−�̄�h)
�
da�da

≤ �
max{1 − e−K𝜇(k−h)a

+

, eK𝜇(k−h)a
+

− 1} + (1 − e−�̄�h)
�
�

a+

0 �
a+

0

b𝜙(t − a, s)dsda

≤ 2𝛽max‖𝜙‖E
�
max{1 − e−K𝜇(k−h)a

+

, eK𝜇(k−h)a
+

− 1} + (1 − e−�̄�h)
�
�

a+

0

e4𝛽max(t−a)da

(4.7)lim
h → 0

k → 0

∫
a+

0 ∫
a+

a

|b�(t − a − h, a� + k − a − h) − b�(t − a, a� − a)|da�da = 0.

�
a+

0
�

a+

a

|b�(t − a − h, a� + k − a − h) − b�(t − a, a� − a)|da�da

≤ �
a+

0
�

a+

a

||�
t−a−h

t−a−h−a+ �
a+−t+a+h+p

0

f1(a
� + k − a − h, t − a − h − p, s + t − a − h − p)b�(p, s)dsdp

− �
t−a

t−a−a+ �
a+−t+a+p

0

f1(a
� − a, t − a − p, s + t − a − p)b�(p, s)dsdp

||da�da

+ �
a+

0
�

a+

a

||�
t−a−h

t−a−h−a+ �
a+−t+a+h+s

0

g1(a
� + k − a − h, p + t − a − h − s, t − a − h − s)b�

�
(s, p)dpds

− �
t−a

t−a−a+ �
a+−t+a+s

0

g1(a
� − a, p + t − a − s, t − a − s)b�

�
(s, p)dpds||da�da

∶= J1 + J2,
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in which

by Assumption 2.1(i) on � being Lipschitz continuous and K� as the Lipschitz constant. 
Thus, 

based on the assumption of a+ < ∞ . From (4.5) we first estimate that

Then, we have

and

J1 ≤�
a+

0
�

a+

a

(
�

t−a−h

t−a−a+ �
a+−t+a+p

0

|f1(a� + k − a − h, t − a − h − p, s + t − a − h − p)

− f1(a
� − a, t − a − p, s + t − a − p)|b�(p, s)dsdp

+ �
t−a−h

t−a−a+ �
a+−t+a+h+p

a+−t+a+p

f1(a
� + k − a − h, t − a − h − p, s + t − a − h − p)b�(p, s)dsdp

+ �
t−a

t−a−h �
a+−t+a+p

0

f1(a
� − a, t − a − p, s + t − a − p)b�(p, s)dsdp

+ �
t−a−a+

t−a−a+−h �
a+−t+a+p+h

0

f1(a
� + k − a − h, t − a − h − p, s + t − a − h − p)b�(p, s)dsdp

)
da�da

∶= J1
1
+ J2

1
+ J3

1
+ J4

1
,

|f1(a� + k − a − h, t − a − h − p, s + t − a − h − p) − f1(a
� − a, t − a − p, s + t − a − p)|

≤ |𝛽(a� + k − a − h, t − a − h − p, s + t − a − h − p)(1 − e
− ∫ s+t−a−p

s+t−a−p−h
𝜇(𝜎,𝜎+s)d𝜎

)|
+ |𝛽(a� + k − a − h, t − a − h − p, s + t − a − h − p) − 𝛽(a� − a, t − a − p, s + t − a − p)|

≤ 𝛽(a� + k − a − h)(1 − e�̄�h) + 3max{k, h}K𝛽

J1
1
≤ �

a+

0 �
a+

a

�
𝛽(a� + k − a − h)(1 − e�̄�h) + 3max{k, h}K𝛽

��
�

t−a−h

t−a−a+ �
a+−t+a+p

0

b𝜙(p, s)dsdp
�
da�da

≤ �
a+

0 �
a+

a

�
𝛽(a� + k − a − h)(1 − e�̄�h) + 3max{k, h}K𝛽

��
�

t−a−h

t−a−a+
2𝛽max‖𝜙‖Ee4𝛽maxpdp

�
da�da

≤ �
a+(1 − e�̄�h)𝛽sup + 3max{k, h}K𝛽 (a

+)2
��

�
t

0

2𝛽max‖𝜙‖Ee4𝛽maxpdp
�

→ 0 uniformly for 𝜙 ∈ K as h, k → 0+

(4.8)

�
x+h

x

b𝜙(t, a)da ≤ �
x+h

x

�
�

t

0 �
a+−t+p

0

𝛽(a)b𝜙(p, s)dsdp + �
t

0 �
a+−t+s

0

𝛽(a)b�
𝜙
(s, p)dpds

�
da

≤ �
�

x+h

x

𝛽(a)da
��
4‖𝜙‖E𝛽max �

t

0

e4𝛽maxpdp
�

→ 0, as h → 0+ uniformly for 𝜙 ∈ K, x ≥ 0.

J2
1
≤ �

a+

0 �
a+

a

𝛽(a� + k − a − h)
(
�

t−a−h

t−a−a+ �
a+−t+a+p+h

a+−t+a+p

b𝜙(p, s)dsdp
)
da�da

≤ (
�

a+

0

𝛽(a�)da�
)(

�
a+

0 �
t−a−h

t−a−a+ �
a+−t+a+p+h

a+−t+a+p

b𝜙(p, s)dsdpda
)

→ 0, as h, k → 0+ uniformly for 𝜙 ∈ K
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Similarly, one can show that J4
1
→ 0 . Therefore, we have J1 → 0 as h, k → 0+ uniformly for 

� ∈ K . The fact that J2 → 0 uniformly for � ∈ K as h, k → 0+ can be proved by a similar 
argument.

Therefore, we know that the first term in (4.4) goes to 0 uniformly for � ∈ K . Secondly, 
based on estimate in (4.8) we have

Moreover,

we thus have (4.2). For (4.3),

as h, k → a+ uniformly for � ∈ K . We can show that {S3(t)}t≥0 is compact for sufficiently 
large t in the same way.   ◻

Remark 4.4 Similarly, in the case of a+ = ∞ and with Assumption 2.1(iii)’, one can show 
that S1(t), S2(t) , and S3(t) satisfy the hypothesis of Proposition 4.2, see Appendix. In par-
ticular, when a+ < ∞ , {S2(t)}t≥0 and {S3(t)}t≥0 are eventually compact, while in the case of 

J3
1
≤ �

a+

0 �
a+

a

𝛽(a� − a)
�
�

t−a

t−a−h �
a+−t+a+p

0

b𝜙(p, s)dsdp
�
da�da

≤ �
�

a+

0

𝛽(a�)da�
��

�
a+

0 �
t−a

t−a−h

2𝛽max‖𝜙‖Ee𝛽maxpdpda
�

→ 0, as h, k → 0+ uniformly for 𝜙 ∈ K.

�
a+

k−h �
a

a+h−k

��S2(t)𝜙(a + h, a� + k)��da�da

≤ �
a+

0 �
a

a+h−k

b𝜙(t − a − h, a� + k − a − h)da�da

≤ �
a+

0

���
a

a+h−k

𝛽(a�)da���
�
4‖𝜙‖E𝛽max �

t

0

e4𝛽maxpdp
�
da

≤ sup
0<a<t

���
a

a−h+k

𝛽(a�)da��� ⋅ a+ ⋅

�
4‖𝜙‖E𝛽max �

t

0

e4𝛽maxpdp
�

→ 0 as h, k → 0+ uniformly for 𝜙 ∈ K.

�
k−h

0 �
a

0

��S2(t)�(a + h, a� + k)��da�da

≤ �
k−h

0 �
a

0

b�(t − a − h, a� + k − a − h)da�da

≤ �
k−h

0 �
a+

0

b�(t − a − h, s)dsda ≤ 2�max‖�‖E �
k−h

0

e4�max(t−a−h)da

→ 0 as h, k → 0+ uniformly for � ∈ K,

�
a+

h �
a+

k

��S2(t)�(a, a�)��dada� ≤ �
a+

h �
a+

0

b�(t − a, s)dsda

≤ 2‖�‖E�max �
a+

h

e4�max(t−a)da → 0



On first‑order hyperbolic partial differential equations…

1 3

a+ = ∞ we can actually show that {S2(t)}t≥0 and {S3(t)}t≥0 are compact for all t > 0 . Fig-
ure 3b illustrates the estimation similar to (4.4) for all t > 0.

Now we have shown that if a+ < ∞ , for sufficiently large t > a+,

which implies that the semigroup {S(t)}t≥0 is eventually compact, hence the essential 
growth bound

while if a+ = ∞,

which implies the estimate of the essential growth bound

Moreover, the essential spectral radius of A satisfies that

It follows that {S(t)}t≥0 is quasi-compact. The following theorem from Engel and Nagel 
[18, Theorem 2.5, Chapter VI] will be used to show the stability of an equilibrium for a C0

-semigroup.

Theorem 4.5 (Engel and Nagel [18]) Let {S(t)}t≥0 be a positive strongly continuous semi-
group with generator A on a Banach lattice LP(Ω,𝜇), 1 ≤ p < ∞ . Then s(A) = �0 , where

is the spectral bound of A and

is the growth bound of A.

5  Spectrum analysis

In order to study the spectral theory, we introduce some definitions and results in positive 
operator theory on ordered Banach spaces from Inaba [24]. For more complete exposition, 
we refer to Daners and Koch-Medina [8], Heijmans [20], Marek [37], and Sawashima [43].

Let E be a real or complex Banach space and E∗ be its dual (the space of all linear 
functionals on E). Write the value of f ∈ E∗ at � ∈ E as ⟨f ,�⟩ . A non-empty closed 
subset E+ is called a cone if the following hold: (1) E+ + E+ ⊂ E+ , (2) 𝜆E+ ⊂ E+ for 
� ≥ 0 , (3) E+ ∩ (−E+) = {0} . Let us define the order in E such that x ≤ y if and only if 
y − x ∈ E+ and x < y if and only if y − x ∈ E+ ⧵ {0} . The cone E+ is called total if the set 
{� − � ∶ � ,� ∈ E+} is dense in E. The dual cone E∗

+
 is the subset of E∗ consisting of all 

�[S(t)] ≤ �[S1(t)] + �[S2(t)] + �[S3(t)] = 0 + 0 + 0 = 0,

(4.9)�1(A) ∶= lim
t→∞

t−1 log(�[S(t)]) = −∞,

�[S(t)] ≤ �[S1(t)] + �[S2(t)] + �[S3(t)] ≤ e
−�t

+ 0 + 0 = e
−�t

, t ≥ 0,

�1(A) ∶= lim
t→∞

t−1 log(�[S(t)]) ≤ −�.

re(S(t)) = exp[𝜔1(A)t] ≤ e
−𝜇t

< 1, t ≥ 0.

s(A) ∶= sup{Re� ∶ � ∈ �(A)}

�0 ∶= lim
t→∞

t−1 log(‖S(t)‖)
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positive linear functionals on E; that is, f ∈ E∗
+
 if and only if ⟨f ,�⟩ ≥ 0 for all � ∈ E+ . 

� ∈ E+ is called a quasi-interior point if ⟨f ,𝜓⟩ > 0 for all f ∈ E∗
+
⧵ {0} . f ∈ E∗

+
 is said to 

be strictly positive if ⟨f ,𝜓⟩ > 0 for all � ∈ E+ ⧵ {0} . The cone E+ is called generating if 
E = E+ − E+ and is called normal if E∗ = E∗

+
− E∗

+
.

An ordered Banach space (E,≤) is called a Banach lattice if (1) any two elements 
x, y ∈ E have a supremum x ∨ y = sup{x, y} and an infimum x ∧ y = inf{x, y} in E;  and (2) 
|x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for x, y ∈ E, where the modulus of x is defined by |x| = x ∨ (−x).

Let B(E) be the set of bounded linear operators from E to E. T ∈ B(E) is said to be 
positive if T(E+) ⊂ E+ . T ∈ B(E) is said to be strongly positive if ⟨f , T𝜓⟩ > 0 for every pair 
� ∈ E+ ⧵ {0}, f ∈ E∗

+
⧵ {0} . For T , S ∈ B(E) , we say T ≥ S if (T − S)(E+) ⊂ E+ . A positive 

operator T ∈ B(E) is called non-supporting if for every pair � ∈ E+ ⧵ {0}, f ∈ E∗
+
⧵ {0} , 

there exists a positive integer p = p(� , f ) such that ⟨f , Tn𝜓⟩ > 0 for all n ≥ p . The spec-
tral radius and spectral bound of T ∈ B(E) are denoted as r(T) and s(T), respectively. �(T) 
denotes the spectrum of T and �P(T) denotes the point spectrum of T.

From results in Sawashima [43], Marek [37], and Inaba [24], we state the following 
proposition.

Proposition 5.1 Let E be a Banach lattice and let T ∈ B(E) be compact and non-sup-
porting. Then the following statements hold:

 (i) r(T) ∈ �P(T) ⧵ {0} and r(T) is a simple pole of the resolvent, that is r(T) is an alge-
braically simple eigenvalue of T;

 (ii) The eigenspace of  T corresponding to r(T) is one-dimensional, and the correspond-
ing eigenvector � ∈ E+ is a quasi-interior point. The relation T� = �� with � ∈ E+ 
implies that � = c� for some constant c;

 (iii) The eigenspace of T∗ corresponding to r(T) is also a one-dimensional subspace of 
E∗ spanned by a strictly positive functional f ∈ E∗

+
;

 (iv) Let S, T ∈ B(E) be compact and non-supporting. Then S ≤ T , S ≠ T  and r(T) ≠ 0 
imply r(S) < r(T).

5.1  Point spectrum and stability analysis

In this subsection we study the spectrum of A. Note that we will not solve the charac-
teristic or resolvent equation of A directly, since A with its domain D(A) seems very 
complicated as shown in Sect. 3. But thanks to the solution flow {S(t)}t≥0 , we can still 
characterize the eigenfunctions or resolvent solutions of A, see the following theorems 
from Webb [53]. Moreover, we only consider the case a+ < ∞ in this section but the 
main results presented here remain true in the case a+ = ∞ (see Remark 5.8).

Theorem 5.2 (Webb [53]) Let F  and G be defined in Proposition 3.1. Then � ∈ D(A) and 
A� = �� for some � ∈ ℂ if and only if � (in the complexification of E) satisfies

where

(5.1)𝜙(a, a�) =

{
e−𝜆a

�

Π(a, a�, a�)F(𝜙)(a − a�), a.e. a > a�

e−𝜆aΠ(a, a�, a)G(𝜙)(a� − a), a.e. a� > a,
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Theorem  5.3 (Webb [53]) Let � ∈ �(A) (the resolvent set of A) such that 
Re𝜆 > 𝛽sup + 𝛽�

sup
− 𝜇 , let � ∈ E and satisfy � = (�I − A)−1� . Then

where �sup + ��
sup

 is from the norm of linear boundary conditions.

Plugging (5.1) into the integral conditions F(�) and G(�) defined in Proposition 3.1, 
we obtain

Denote

So

If we can solve non-trivial � and � from the above equations, we would find the non-trivial 
solution of the characteristic equation. In the following context, the function space that 
appeared is itself or its complexification based on the values of � in ℝ or ℂ.

Define F� ∶ L1(0, a+) × L1(0, a+) → L1(0, a+) × L1(0, a+), � ∈ ℂ , by

Π(a, a�, t) = exp

[
−∫

t

0

�(a − �, a� − �)d�

]
.

(5.2)

𝜙(a, a�) =

{
e−𝜆a

�

Π(a, a�, a�)F(𝜙)(a − a�) + ∫ a�

0
e−𝜆𝜎Π(a, a�, 𝜎)𝜓(a − 𝜎, a� − 𝜎)d𝜎, a.e. a > a�

e−𝜆aΠ(a, a�, a)G(𝜙)(a� − a) + ∫ a

0
e−𝜆𝜎Π(a, a�, 𝜎)𝜓(a − 𝜎, a� − 𝜎)d𝜎, a.e. a� > a,

(5.3)

G(�)(a�) = ∫
a+

0 ∫
a+

0

�(a�, a, s)�(a, s)dads

= ∫
a+

0 ∫
a

0

�(a�, a, s)Π(a, s, s)e−�sF(�)(a − s)dsda

+ ∫
a+

0 ∫
s

0

�(a�, a, s)Π(a, s, a)e−�aG(�)(s − a)dads,

F(�)(a) = ∫
a+

0 ∫
a+

0

��(a, s, a�)�(s, a�)dsda�

= ∫
a+

0 ∫
a�

0

��(a, s, a�)Π(s, a�, s)e−�sG(�)(a� − s)dsda�

+ ∫
a+

0 ∫
s

0

��(a, s, a�)Π(s, a�, a�)e−�a
�

F(�)(s − a�)da�ds.

�(t) = G(�)(t), �(t) = F(�)(t),

f1(a
�, a, s) = �(a�, a, s)Π(a, s, s), f2(a

�, a, s) = �(a�, a, s)Π(a, s, a),

f3(a, s, a
�) = ��(a, s, a�)Π(s, a�, s), f4(a, s, a

�) = ��(a, s, a�)Π(s, a�, a�).

(5.4)

�(t) = ∫
a+

0 ∫
a

0

f1(t, a, s)�(a − s)e−�sdsda + ∫
a+

0 ∫
s

0

f2(t, a, s)�(s − a)e−�adads,

�(t) = ∫
a+

0 ∫
a�

0

f3(t, s, a
�)�(a� − s)e−�sdsda� + ∫

a+

0 ∫
s

0

f4(t, s, a
�)�(s − a�)e−�a

�

da�ds.

F�(�, �) = (F1�(�, �),F2�(�, �)),
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where

and

Now the problem becomes finding a non-trivial fixed point of F� in L1(0, a+) × L1(0, a+) . 
Furthermore, it is easy to check that F� maps L1(0, a+) × L1(0, a+) into itself since

Similarly, for F2� , we also have the following estimate:

In the following we give some properties of F�.

Lemma 5.4 Let Assumption 2.1 hold. Then the operator F� is compact for all � ∈ ℂ and 
non-supporting for all � ∈ ℝ.

Proof For the compactness of F� , it is equivalent to show that for a bounded set K of 
L1(0, a+) × L1(0, a+),

where i = 1, 2 . Now let us consider F1� , that is,

F1�(�, �) = ∫
a+

0 ∫
a

0

f1(t, a, s)�(a − s)e−�sdsda + ∫
a+

0 ∫
s

0

f2(t, a, s)�(s − a)e−�adads

F2�(�, �) = ∫
a+

0 ∫
a�

0

f3(t, s, a
�)�(a� − s)e−�sdsda� + ∫

a+

0 ∫
s

0

f4(t, s, a
�)�(s − a�)e−�a

�

da�ds.

(5.5)

‖F1�(�, �)‖L1(0,a+) = �
a+

0 �
a+

0 �
a

0

�f1(t, a, s)�(a − s)e−�s�dsdadt

+ �
a+

0 �
a+

0 �
s

0

�f2(t, a, s)�(s − a)e−�s�dadsdt

≤ �
a+

0

�(t)dt �
a+

0

��(a − s)�da�
a

0

e
−(Re�+�)s

ds

+ �
a+

0

�(t)dt �
a+

0

��(s − a)�ds�
s

0

e
−(Re�+�)a

da

≤ �sup

Re� + �
[1 − e

−(Re�+�)a+
]‖(�, �)‖.

(5.6)‖F2�(�, �)‖L1(0,a+) ≤
��
sup

Re� + �
[1 − e

−(Re�+�)a+
]‖(�, �)‖.

lim
h→0∫

a+

0

|Fi�(�, �)(t + h) − Fi�(�, �)(t)|dt = 0 uniformly for (�, �) ∈ L1(0, a+) × L1(0, a+),
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by Assumption  2.1(ii) on �, �′ . Similarly, we can show the convergence for F2� , which 
implies that F� is a compact operator for all � ∈ ℂ.

Next, for � ∈ ℝ , define a positive functional F� = (F1�,F2�) by

From Assumption 2.1(iii), F� is a strictly positive functional and we have

where (e1, e2) ≡ 1 is a quasi-interior point in L1(0, a+) × L1(0, a+) when a+ < ∞ . Moreo-
ver, we have

where

(5.7)

||�
a+

0 �
a+

0 �
a

0

f1(t + h, a, s)e−�s�(a − s)dsdadt

+ �
a+

0 �
a+

0 �
s

0

f2(t + h, a, s)e−�a�(s − a)dadsdt

− �
a+

0 �
a+

0 �
a

0

f1(t, a, s)e
−�s�(a − s)dsdadt

− �
a+

0 �
a+

0 �
s

0

f2(t, a, s)e
−�a�(s − a)dadsdt||

≤ �
a+

0 �
a+

0 �
a

0

|f1(t + h, a, s) − f1(t, a, s)||e−�s||�(a − s)|dsdadt

+ �
a+

0 �
a+

0 �
s

0

|f2(t + h, a, s) − f2(t, a, s)||e−�a||�(s − a)|dadsdt
→ 0 as h → 0

(5.8)

⟨F1�, (�, �)⟩ ∶= ∫
a+

0 ∫
a

0

�1(s)Π(a, s, s)e
−�s�(a − s)dsda

+ ∫
a+

0 ∫
s

0

�1(s)Π(a, s, a)e
−�a�(s − a)dads,

⟨F2�, (�, �)⟩ ∶= ∫
a+

0 ∫
a�

0

�2(s)Π(s, a
�, s)e−�s�(a� − s)dsda�

+ ∫
a+

0 ∫
s

0

�2(s)Π(s, a
�, a�)e−�a�(s − a�)da�ds.

(5.9)
F�(�, �) = (F1�(�, �),F2�(�, �)) ≥ (⟨F1�, (�, �)⟩e1, ⟨F2�, (�, �)⟩e2),

lim
�→−∞

(⟨F1�, (e1, e2)⟩, ⟨F2�, (e1, e2)⟩) = (+∞,+∞),

F2
�
(�, �) = F�(F1�(�, �),F2�(�, �))

= (F1�(F1�(�, �),F2�(�, �)),F2�(F1�(�, �),F2�(�, �))),

Fi�(F1�(�, �),F2�(�, �)) ≥ ⟨Fi�, (F1�(�, �),F2�(�, �))⟩ei
≥ ⟨Fi�,

�⟨F1�, (�, �)⟩e1, ⟨F2�, (�, �)⟩e2
�⟩ei

≥ min{⟨F1�, (�, �)⟩, ⟨F2�, (�, �)⟩}⟨Fi�, (e1, e2)⟩ei
∶= min⟨F�, (�, �)⟩⟨Fi�, (e1, e2)⟩ei, i = 1, 2.
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It follows that

By induction for any integer n we have

Then we obtain ⟨F,Fn
𝜆
(𝛼, 𝜂)⟩ > 0, n ≥ 1, for every pair 

(�, �) ∈ L1
+
(0, a+) × L1

+
(0, a+) ⧵ {(0, 0)},F ∈ (L1

+
(0, a+))∗ × (L1

+
(0, a+))∗ ⧵ {(0, 0)} ; that is, 

we know that F� is a non-supporting operator. In summary, F� is a compact and non-sup-
porting operator.   ◻

Remark 5.5 Note that in the above proof of non-supporting of F� , we chose a con-
stant function e ≡ 1 as the lower bound of F� . But if a+ = ∞ , e ≡ 1 is no longer in 
L1(0,∞) × L1(0,∞) . Fortunately, we can still prove it under Assumption 2.1(iii)’.

Still define the same positive functional F� = (F1�,F2�) by (5.8). From Assump-
tion 2.1(iii)’, F� is a strictly positive functional and we have

where (�1, ��1) is obviously a quasi-interior point in L1(0, a+) × L1(0, a+) . The estimates are 
the same as above by just changing (e1, e2) into (�1, ��1) . Hence, F� is still a non-supporting 
operator when a+ = ∞.

Now we study the resolvent set of A. Plugging (5.2) into the integral conditions F(�) 
and G(�) defined in Proposition 3.1, we obtain that

where

F2
�
(�, �) ≥ min⟨F�, (�, �)⟩(⟨F1�, (e1, e2)⟩e1, ⟨F2�, (e1, e2)⟩e2)

≥ min⟨F�, (�, �)⟩min⟨F�, (e1, e2)⟩(e1, e2).

Fn+1
�

(�, �) ≥ min⟨F�, (�, �)⟩
�
min⟨F�, (e1, e2)⟩

�n
(e1, e2).

(5.10)
F�(�, �) = (F1�(�, �),F2�(�, �)) ≥ (⟨F1�, (�, �)⟩�1, ⟨F2�, (�, �)⟩��1),

lim
�→−∞

(⟨F1�, (�1, �
�
1
)⟩, ⟨F2�, (�1, �

�
1
)⟩) = (+∞,+∞),

(5.11)

�(t) = ∫
a+

0 ∫
a

0

f1(t, a, s)�(a − s)e−�sdsda + ∫
a+

0 ∫
s

0

f2(t, a, s)�(s − a)e−�adads

+ ∫
a+

0 ∫
a

0

K1(t, a, s)�(a, s)dsda + ∫
a+

0 ∫
s

0

K2(t, a, s)�(a, s)dads,

�(t) = ∫
a+

0 ∫
a�

0

f3(t, s, a
�)�(a� − s)e−�sdsda� + ∫

a+

0 ∫
s

0

f4(t, s, a
�)�(s − a�)e−�a

�

da�ds

+ ∫
a+

0 ∫
a�

0

K3(t, s, a
�)�(s, a�)dsda� + ∫

a+

0 ∫
s

0

K4(t, s, a
�)�(s, a�)da�ds,
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One can rewrite (5.11) as the following functional equations.

where

Next we analyze the spectra of F� and A together with their relations via the continuity of 
r(F�) with respect to � and the sign of r(F0) − 1.

Proposition 5.6 Let Assumption 2.1 hold. For a+ < ∞ , we have the following statements

 (i) Γ ∶= {� ∈ ℂ ∶ 1 ∈ �(F�)} = {� ∈ ℂ ∶ 1 ∈ �P(F�)} , where �(A) and �P(A) denote 
the spectrum and point spectrum of the operator A,  respectively;

 (ii) There exists a unique real number �0 ∈ Γ such that r(F�0
) = 1 and 𝜆0 > 0 if r(F0) > 1 ; 

�0 = 0 if r(F0) = 1 ; and 𝜆0 < 0 if r(F0) < 1;
 (iii) 𝜆0 > sup{Re𝜆 ∶ 𝜆 ∈ Γ ⧵ {𝜆0}};
 (iv) {� ∈ ℂ ∶ � ∈ �(A)} = {� ∈ ℂ ∶ 1 ∈ �(F�)} , where �(A) denote the resolvent set of 

A;
 (v) �0 is the dominant eigenvalue of A, i.e., �0 is greater than all real parts of the eigen-

values of A. Moreover, it is an algebraically simple eigenvalue of A;
 (vi) �0 = s(A) ∶= sup{Re� ∶ � ∈ �(A)}.

Proof (i) Since F� is compact, �(F�) ⧵ {0} = �P(F�) ⧵ {0} , hence conclusion (i) follows.
(ii) Next, F�, � ∈ ℝ is strictly decreasing in the operator sense, which implies that the 

spectral radius r(F�), � ∈ ℝ , is strictly decreasing by Lemma 5.4 and Proposition 5.1 (see 
also Inaba [24, Proposition 3.3]). On the one hand, for � ∈ ℝ , let f� be a positive eigen-
functional corresponding to the eigenvalue r(F�) of positive operator F� . Then, we have

Since f� is strictly positive, we obtain r(F�) ≥ min⟨F�, (e1, e2)⟩ . It follows from (5.9) that 
lim�→−∞ r(F�) = +∞ . On the other hand, it is easy to see that lim�→∞ r(F�) = 0 . Moreover, 

(5.12)

K1(t, a, s)�(a, s) = �(t, a, s)∫
s

0

e−��Π(a, s, �)�(a − �, s − �)d�,

K2(t, a, s)�(a, s) = �(t, a, s)∫
a

0

e−��Π(a, s, �)�(a − �, s − �)d�,

K3(t, s, a
�)�(s, a�) = ��(t, s, a�)∫

s

0

e−��Π(s, a�, �)�(s − �, a� − �)d�,

K4(t, s, a
�)�(s, a�) = ��(t, s, a�)∫

s

0

e−��Π(s, a�, �)�(s − �, a� − �)d�.

(5.13)
(
�

�

)
= F�

(
�

�

)
+

(
G1

�
�

G2
�
�

)
,

(5.14)
G1

�
� = ∫

a+

0 ∫
a

0

K1(t, a, s)�(a, s)dsda + ∫
a+

0 ∫
s

0

K2(t, a, s)�(a, s)dads,

G2
�
� = ∫

a+

0 ∫
a

0

K3(t, s, a)�(s, a)dsda + ∫
a+

0 ∫
s

0

K4(t, s, a)�(s, a)dads.

⟨f�,F�(e1, e2)⟩ = r(F�)⟨f�, (e1, e2)⟩ ≥ min⟨F�, (e1, e2)⟩⟨f�, (e1, e2)⟩.
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by the fact that the spectral radius of a compact operator is continuous with respect to the 
parameter from Nussbaum [42] or Degla [9], we conclude the result (ii).

(iii) Next, we can use the idea in Inaba [24, Proposition 3.3] to show result (iii). For any 
� ∈ Γ , there exists an eigenfunction �� such that F��� = �� , i.e.,

Then, we have |��| = |F���| ≤ FRe�|��| where |��| ∶=
(|�1�||�2�|

)
 . Let fRe� be the positive 

eigenfunctional corresponding to the eigenvalue r(FRe�) of FRe� , we obtain that

Hence, we have r(FRe�) ≥ 1 and Re� ≤ �0 since r(F�) is strictly decreasing with respect to 
� ∈ ℝ and r(F�0

) = 1 . If Re� = �0 , then F�0
|��| = |��| . In fact, if F𝜆0

|𝜙𝜆| > |𝜙𝜆| , taking 
duality paring with the eigenfunctional f�0 corresponding to the eigenvalue r(F�0

) = 1 on 
both sides yields ⟨f𝜆0 ,F𝜆0

�𝜙𝜆�⟩ = ⟨f𝜆0 , �𝜙𝜆�⟩ > ⟨f𝜆0 , �𝜙𝜆�⟩, which is a contradiction. Then we 
can write that |��| = c��0

 , where ��0
 is the eigenfunction corresponding to the eigenvalue 

r(F�0
) = 1 . Hence, without loss of generality we can assume that c = 1 and write 

�� =

(
�1�(t)

�2�(t)

)
=

(
�10(t)e

i�(t)

�20(t)e
i� (t)

)
 for some real function �(t) and � (t) , where ��0

=

(
�10(t)

�20(t)

)
 . 

If we substitute this relation into

then we have

and

which follows after changing variables that

(
F1�(�1�,�2�)

F2�(�1�,�2�)

)
=

(
�1�

�2�

)
.

⟨fRe�,FRe�����⟩ = r(FRe�)⟨fRe�, ����⟩ ≥ ⟨fRe�, ����⟩.

F�0
��0

= ��0
= |��| = |F���|,

∫
a+

0 ∫
a

0

f1(t, a, s)�20(a − s)e−�0sdsda + ∫
a+

0 ∫
s

0

f2(t, a, s)�10(s − a)e−�0adads

= ||∫
a+

0 ∫
a

0

f1(t, a, s)�20(a − s)ei� (a−s)e−(�0+iIm�)sdsda

+ ∫
a+

0 ∫
s

0

f2(t, a, s)�10(s − a)ei�(s−a)e−(�0+iIm�)adads||

∫
a+

0 ∫
a�

0

f3(t, s, a
�)�10(a

� − s)e−�0sdsda� + ∫
a+

0 ∫
s

0

f4(t, s, a
�)�20(s − a�)e−�0a

�

da�ds

= ||∫
a+

0 ∫
a�

0

f3(t, s, a
�)�10(a

� − s)ei�(a
�−s)e−(�0+iIm�)sdsda�

+ ∫
a+

0 ∫
s

0

f4(t, s, a
�)�20(s − a�)ei� (s−a

�)e−(�0+iIm�)a�da�ds||
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and

From Heijmans [20, Lemma 6.12], we have that � (a − s) − Im�s = �(a − s) − Im�s = �1 
and � (a� − s) − Im�s = �(a� − s) − Im�s = �2 for some constants �1 and �2 . From 
F��� = �� , we have

which implies that �1 = � and �2 = � , hence Im� = 0 . Then, there is no element � ∈ Γ such 
that Re� = �0 and � ≠ �0 ; thus, result (iii) is desired.

(iv) For result (iv), when 1 ∈ �(F�) , (I − F�)
−1 exists and is well defined, then from 

(5.13), one can obtain that

Now plugging (5.15) into (5.2), we will obtain the expression of � = (�I − A)−1� , which is 
well defined. It follows that � ∈ �(A) . Conversely, if � ∈ �(A) , the resolvent solution (5.2) 
exists and is well defined, then the system of integral equations (5.11) on (�, �) has a solu-
tion. It follows that (5.13) has a solution, which implies that 1 ∈ �(F�).

(v) First claim that � ∈ �P(A) with geometric multiplicity m if and only if 1 ∈ �P(F�) 
with geometric multiplicity m for all m ∈ ℕ . In fact, if � ∈ �P(A) corresponding to linearly 
independent eigenfunctions �1,… ,�m , then �1,… ,�m satisfy (5.1) which implies that 
(5.3) holds and equivalently (5.4) holds. It follows that F�(G(�i),F(�i)) = (G(�i),F(�i)) 
for all i = 1,… ,m . Hence, (G(�i),F(�i)), i = 1,… ,m, are necessarily linearly independent 
eigenfunctions of F� corresponding to eigenvalue 1 and so 1 ∈ �P(F�) with geometric mul-
tiplicity n ≥ m . Conversely, if (�i, �i), i = 1,… , n, are eigenfunctions of F� corresponding 
to eigenvalue 1, i.e., F�(�i, �i) = (�i, �i), i = 1,… , n, and set

Then it is easy to verify F(�i) = �i,G(�i) = �i, i = 1,… , n . It follows that 
��i = A�i, i = 1,… , n, by Theorem 5.2. Moreover, (5.16) ensures that �1,… ,�n are lin-
early independent. Hence, � ∈ �P(A) with geometric multiplicity m ≥ n . Thus, n = m . It 
follows from the claim that

∫
a+

0 ∫
a

0

f1(t, a, s)�20(a − s)e−�0s + f2(t, s, a)�10(a − s)e−�0sdsda

= ||∫
a+

0 ∫
a

0

f1(t, a, s)�20(a − s)ei� (a−s)e−(�0+iIm�)s + f2(t, s, a)�10(a − s)ei�(a−s)e−(�0+iIm�)sdsda||

∫
a
+

0
∫

a
�

0

f3(t, s, a
�)�10(a

� − s)e−�0s + f4(t, a
�, s)�20(a

� − s)e−�0sdsda�

= ||∫
a
+

0
∫

a
�

0

f3(t, s, a
�)�10(a

� − s)ei�(a
�−s)

e
−(�0+iIm�)s + f4(t, a

�, s)�20(a
� − s)ei� (a

�−s)
e
−(�0+iIm�)sdsda�||.

(
ei�1F1�0

(�10,�20)

ei�2F2�0
(�10,�20)

)
=

(
ei��10

ei��20

)
,

(5.15)
(
�

�

)
= (I − F�)

−1

(
G

1

�
�

G
2

�
�

)
.

(5.16)𝜙i(a, a
�) =

{
e−𝜆a

�

Π(a, a�, a�)𝜂i(a − a�), a� < a,

e−𝜆aΠ(a, a�, a)𝛼i(a
� − a), a < a�,

i = 1,… , n.

Γ = {� ∈ ℂ ∶ � ∈ �P(A)}.
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Now from (iii), we conclude that �0 is dominant. Next, we need to prove that �0 is simple. 
Plugging (5.15) into (5.2), we obtain

where (I − F�)
−1 = ((I − F�)

−1
1
, (I − F�)

−1
2
) . From the above formula, we see that (�I − A)−1 

does not hold for all � such that r(F�) = 1 . Thus, 1 is a pole of (I − F�)
−1 of order m if and 

only if � is a pole of (�I − A)−1 of order m. However, by Proposition 5.1(i), we know that 1 
is a simple pole of (I − F�)

−1 which implies that �0 is a simple pole of (�I − A)−1 . Thus, it 
follows from Webb [52, Proposition 4.11] that �0 is an algebraically simple eigenvalue of 
A.

(vi) Finally, we show result (vi). Let �̂�0 ∶= s(A) denote the spectral bound of A. Then 
�̂�0 ≥ 𝜆0 and so �̂�0 > 𝜔1(A) = −∞ . Thus, 𝜎0(A) = {�̂�0} by Webb [54, Proposition 2.5] 
which states that the peripheral spectrum �0 of the generator of a strongly continuous posi-
tive semigroup in a Banach lattice consists exactly of the generator’s spectral bound pro-
vided the latter is strictly greater than the essential growth bound. Then �̂�0 ∈ 𝜎(A) and thus 
by (i) and (iv), 1 ∈ 𝜎p(F�̂�0

), which implies that 1 ≤ r(F�̂�0
) . However, due to �̂�0 ≥ 𝜆0 we have 

r(F�̂�0
) ≤ r(F𝜆0

) = 1 , Hence, �̂�0 = 𝜆0 . Thus, (vi) is desired.   ◻

To address the case when a+ = ∞ , we make the following assumption.

Assumption 5.7 r(F𝛾 ) > 1 for some � ∈ ℝ with 𝛾 > −𝜇.

Remark 5.8 For a+ = ∞ , if in addition we have Assumption 5.7, all statements in Proposi-
tion 5.6 still hold.

It guarantees the existence of �0 such that r(F�0
) = 1 since for now the domain of F� 

is changing into Re𝜆 > −𝜇 instead of ℂ to make F� be well defined. Further, for Propo-
sition  5.6(vi) one can see that �̂�0 ≥ 𝜆0 > 𝛾 > −𝜇 ≥ 𝜔1(A) when a+ = ∞ . Note Assump-
tion 5.7 is only used here to show the existence of �0 under the case a+ = ∞ . All other 
results in this Sect. 5 are still valid without this assumption. Moreover, Assumption 5.7 can 
be verified explicitly given the separable mixing Assumption 2.1(iii’) plus �2 ≡ �′

2
 . In fact, 

it is easy to compute F0(�1, �
�
1
) = r(F0)(�1, �

�
1
) under the condition and then r(F0) > 1 will 

implies Assumption 5.7, where

Remark 5.9 In fact, we can prove (vi) by using a different method. Observe that for any 
� ∈ ℝ , when 𝜆 > 𝜆0 and so r(F𝜆) < r(F𝜆0

) = 1 , (I − F�)
−1 exists and is positive. Moreo-

ver, 1 ∈ �(F�) ⇒ � ∈ �(A) . Therefore, �0 is larger than any other real spectral values in 
�(A) . It follows that �0 = s

ℝ
(A) ∶= sup{� ∈ ℝ ∶ � ∈ �(A)} . Next we claim A is a resolvent 

positive operator. In fact, it is easy to see that the resolvent set of A contains an infinite 

(𝜆I − A)−1𝜓 =

⎧
⎪⎪⎨⎪⎪⎩

e−𝜆a
�

Π(a, a�, a�)(I − F𝜆)
−1
1
(G1

𝜆
𝜓 ,G2

𝜆
𝜓)(a − a�)

+ ∫ a�

0
e−𝜆𝜎Π(a, a�, 𝜎)𝜓(a − 𝜎, a� − 𝜎)d𝜎 a.e. a > a�

e−𝜆aΠ(a, a�, a)(I − F𝜆)
−1
2
(G1

𝜆
𝜓 ,G2

𝜆
𝜓)(a� − a)

+ ∫ a

0
e−𝜆𝜎Π(a, a�, 𝜎)𝜓(a − 𝜎, a� − 𝜎)d𝜎 a.e. a� > a,

r(F0) = ∫
a+

0 ∫
a

0

�2(a, s)Π(a, s, s)�
�
1
(a − s)dsda

+ ∫
a+

0 ∫
s

0

�2(a, s)Π(a, s, a)�1(s − a)dads.
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ray (�0,∞) and (�I − A)−1 is a positive operator for 𝜆 > 𝜆0 by (5.2) and the positivity of 
(I − F�)

−1 . But since L1(0, a+) × L1(0, a+) is a Banach lattice with normal and generating 
cone K ∶= L1

+
(0, a+) × L1

+
(0, a+) and s(A) ≥ 𝜆0 > −∞ due to �0 ∈ �(A) , we can conclude 

from Thieme [47, Theorem 3.5] that s(A) = s
ℝ
(A) = �0.

Remark 5.10 As we know, non-supporting is a generalization of strong positivity in the 
Banach space with a positive cone which may have empty interior. In fact, we can give 
an assumption on � and �′ such that F� is strongly positive in the sense of dual space (see 
the definition in Daners and Koch-Medina [8]), for example, Assumption 2.1(iii)’. Now F� 
itself is strongly positive thus irreducible in L1(0, a+) × L1(0, a+) which is a Banach lat-
tice, then by [8, Theorem 12.3], one can still conclude that r(F�) is an algebraically sim-
ple eigenvalue of F� with a positive eigenfunction and a simple pole of the resolvent of 
F� . Moreover, � → r(F�) is continuous by the compactness of F� and strictly decreasing 
by showing that � → r(F�) is log-convex (Thieme [47]) or super-convex (Kato [30]), for 
details see [2, Lemma 1]. Hence, we can still obtain the same results in Proposition 5.6.

Taking a closer look at the operator F0 , we have its first output element illustrated as:

where �(a − s) is the first generation population density with structure (a − s, 0) , Π(a, s, s) 
is the survival probability for individuals born with structure (a − s, 0) to reach structure 
(a, s), and �(b, a, s) is the reproduction rate for mothers with structure (a, s) to give birth 
to daughters with structure (0,  b). And the interpretation of the second integral follows 
similarly.

Biologically speaking, F0 is the next generation operator: given any population density 
functions (�(⋅), �(⋅)) on both boundaries (first generation densities), F0(�(⋅), �(⋅)) represents 
the offspring density functions (second generation) on both boundaries generated by the 
first generation during their entire life periods. Thus, the spectral radius of F0 can be inter-
preted as the basic reproductive number of the population, where a detailed mathematical 
interpretation can be adopted directly from the widely known discussion on R0 for single-
structured infectious disease models (Diekmann et al. [12]) or scalar age-structured popu-
lation dynamical models (Kot [32]). Therefore, we have the following theorem by Theo-
rem 4.5 on the basic reproduction number R0.

Theorem  5.11 Define R0 ∶= r(F0) . If R0 < 1 , then the zero equilibrium is globally 
exponentially stable. Otherwise, if R0 > 1 , then the zero equilibrium is unstable.

F10(�, �)(b) = ∫
a+

0 ∫
a

0

�(b, a, s)Π(a, s, s)�(a − s)dsda

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

next generation population density with structure (0, b)

produced by the first generation with structure (⋅, 0)

and density function �(⋅)

+ ∫
a+

0 ∫
s

0

�(b, a, s)Π(a, s, a)�(s − a)dads

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

next generation population density with structure (0, b)

produced by the first generation with structure (0, ⋅)

and density function �(⋅)

,
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Proof If R0 = r(F0) < 1 , by Proposition 5.6(ii) there exists a unique real 𝜆0 < 0 such that 
r(F�0

) = 1 . Hence, by Proposition  5.1 we have F�0
��0

= r(F�0
)��0

= ��0
 which ��0

 is a 
positive function in L1(0, a+) × L1(0, a+) ; that is, we find a non-trivial solution ��0

 of the 
characteristic equations for some 𝜆 < 0 when r(F0) < 1 . Moreover, there is no non-trivial 
solution for all 𝜆 > 0 since 0 is the only fixed point of F� by Banach fixed point theorem. 
And from Proposition 5.6(iv) we know that s(A) ∶= sup{Re𝜆 ∶ 𝜆 ∈ 𝜎(A)} = 𝜆0 < 0 . It fol-
lows from Theorem 4.5 that the zero equilibrium is globally exponentially stable.

If R0 = r(F0) > 1 , by Proposition 5.6(v) there exists a real 𝜆0 > 0 such that r(F�0
) = 1 . 

Similarly, by Proposition  5.1 we have F�0
��0

= r(F�0
)��0

= ��0
, in which ��0

 is a posi-
tive function in L1(0, a+) × L1(0, a+) ; that is, we find a non-trivial solution ��0

 of the 
characteristic equation for some 𝜆 > 0 when r(F0) > 1 . Moreover, by Proposition 5.6(vi), 
s(A) = 𝜆0 > 0 . Motivated by Thieme [46, Corollary 4.3], let Σ denote the set of spectral val-
ues with positive real parts. As these are normal eigenvalues, Σ is finite and bounded away 
from the imaginary axis and can so be separated from the rest of the spectrum by a rectifi-
able simple closed curve. According to Kato [31, Chapter III, Theorem 6.17], there exists 
a decomposition of E into invariant subspaces E1 and E2 such that the restriction of A to E1 
has the spectrum Σ and its restriction to E2 has a spectral bound ≤ 0 < inf{Re𝜆 ∶ 𝜆 ∈ Σ} 
and thus a non-positive type. Now the instability of the zero equilibrium follows from 
Desch and Schappacher [11, Theorem 2.2].   ◻

Furthermore, we have the following estimates when a+ = ∞

Similarly, for F2� , we also have the following estimate:

Remark 5.12 In general r(F0) is not easy to compute, but we have the following estimates 
combining (5.5), (5.6), (5.17) and (5.18) when a+ < ∞:

and when a+ = ∞,

(5.17)

‖F1�(�, �)‖L1(0,+∞) = �
+∞

0 �
+∞

0 �
a

0

�f1(t, a, s)�(a − s)e−�s�dsdadt

+ �
+∞

0 �
+∞

0 �
s

0

�f2(t, a, s)�(s − a)e−�s�dadsdt

≤ �
+∞

0

�(t)dt �
+∞

0

��(a − s)�da�
a

0

e
−(Re�+�)s

ds

+ �
+∞

0

�(t)dt �
+∞

0

��(s − a)�ds�
s

0

e
−(Re�+�)a

da

≤ �sup

Re� + �
‖(�, �)‖.

(5.18)‖F2�(�, �)‖L1(0,+∞) ≤
��
sup

Re� + �
‖(�, �)‖.

(5.19)‖F�‖ ≤ �max

Re� + �
[1 − e

−(Re�+�)a+
],
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Then by the Gelfand’s formula r(F) = lim
k→∞

‖Fk‖ 1

k for bounded linear operators and linear-
ity of F� , we have

Thus, we have the following corollary.

Corollary 5.13 

 (i) When a+ < ∞ , if 𝛽max(1−e
−𝜇a+

)

𝜇
< 1 , then the zero equilibrium is globally exponentially 

stable;
 (ii) When a+ = ∞ , if 𝛽max

𝜇
< 1 , then the zero equilibrium is globally exponentially stable.

5.2  Asynchronous exponential growth

In this subsection, we study the asynchronous exponential growth of {S(t)}t≥0 when 
r(F0) > 1 . We study the two cases when a+ < ∞ and when a+ = ∞ together and give an 
extra Assumption 5.7 in the latter case. First let us recall the definition.

Definition 5.14 Let {S(t)}t≥0 be a strongly continuous semigroup of bounded linear 
operators on a Banach space X with infinitesimal generator A. We say that {S(t)}t≥0 has 
asynchronous exponential growth with intrinsic growth constant �0 ∈ ℝ if there exists a 
nonzero finite rank operator P0 ∈ X such that

We introduce a theorem in Magal and Ruan [35, Theorem 4.6.2] which was proved 
by Webb [54].

Theorem 5.15 (Webb [54]) Let {S(t)}t≥0 be a strongly continuous semigroup of bounded 
linear operators on a Banach space X with infinitesimal generator A. Then {S(t)}t≥0 has 
asynchronous exponential growth with intrinsic growth constant �0 ∈ ℝ if and only if

 (i) 𝜔1(A) < 𝜆0;
 (ii) �0 = sup{Re� ∶ � ∈ �(A)};
 (iii) �0 is a simple pole of (�I − A)−1, 

where �1(A) denotes the essential growth bound of A which is defined by (4.9).
Now we use this theorem to show that our semigroup {S(t)}t≥0 defined in (2.14) has 

asynchronous exponential growth.

(5.20)‖F�‖ ≤ �max

Re� + �
.

r(F0) ≤
⎧
⎪⎨⎪⎩

𝛽max(1−e
−𝜇a+)

𝜇
, when a+ < ∞,

𝛽max

𝜇
, when a+ = ∞.

lim
t→∞

e−�0tS(t) = P0.
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Theorem 5.16 If R0 > 1 , then there exists a unique positive and real number 𝜆1 > −𝜇 
satisfying r(F�1

) = 1 such that {S(t)}t≥0 has asynchronous exponential growth with intrinsic 
growth constant �1 . Moreover,

where P�1
∶ E → E is defined by

and Γ is a positively oriented closed curve in ℂ enclosing �1 , but no other point of �(A).

Proof First it is easy to see that if r(F0) > 1 , then there exists a unique real number 𝜆1 > 0 
such that r(F�1

) = 1 and �1 = sup{Re� ∶ � ∈ �(A)} by Proposition 5.6, which shows that 
condition (ii) in Theorem  5.15 holds. Next, in Sect.  4 we have shown that �1(A) ≤ −� 
for a+ = ∞ and �1(A) = −∞ when a+ < ∞ . Thus, condition (i) in Theorem 5.15 is satis-
fied. Moreover, sup{Re� ∶ � ∈ �e(A)} ≤ �1(A), which implies �1 ∈ �P(A) ⧵ �e(A) , thus is 
a pole of (�I − A)−1 by Webb [52, Proposition 4.11], where �e(A) represents the essential 
spectrum of A. Also �1 is a simple eigenvalue of A and a simple pole of (�I − A)−1 , see the 
proof in Proposition 5.6(v). Thus, condition (iii) in Theorem 5.15 is also satisfied. Hence, 
our result is desired.   ◻

What we do next is to derive a formula for the projection P�1
∶ E → ker(A − �1I), 

inspired by Walker [49]. Observe that there is a quasi-interior element 
Φ0 = (�, �) ∈ L1

+
(0, a+) × L1

+
(0, a+) such that ker(1 − F�1

) =span{Φ0} . Denote

then ker(A − �1I) =span{Π�1
(a, a�)Φ0} . Let � ∈ E be fixed and let c(�) ∈ ℝ be such that 

P�1
� = c(�)Π�1

(a, a�)Φ0 . Recall that �1 is a simple pole of the resolvent (�I − A)−1 . Denote

Then H�� is holomorphic in � , it follows from (5.2), (5.15) and Residue theorem that

where

in which Gi
�
, i = 1, 2, is defined in (5.14). Let w� ∈ (L1

+
(0, a+) × L1

+
(0, a�))� be a positive 

eigenfunctional of the dual operator F′
�1

 of F�1
 corresponding to the eigenvalue r(F�1

) = 1 . 
Then for f � ∈ E� defined by

we have due to F�
�1
w� = w� that

lim
t→∞

e−�1tS(t)� = P�1
� for all � ∈ E,

P�1
� = (2�i)−1 ∫

Γ

(�I − A)−1�d�

Π𝜆(a, a
�)(𝛼, 𝜂) =

{
e−𝜆a

�

Π(a, a�, a�)𝜂(a − a�), a > a�

e−𝜆aΠ(a, a�, a)𝛼(a� − a), a < a
,

H𝜆𝜙 ∶=

{ ∫ a�

0
e−𝜆𝜎Π(a, a�, 𝜎)𝜙(a − 𝜎, a� − 𝜎)d𝜎, a� < a,

∫ a

0
e−𝜆𝜎Π(a, a�, 𝜎)𝜙(a − 𝜎, a� − 𝜎)d𝜎, a < a�.

P�1
� = lim

�→�1
(� − �1)Π�(a, a

�)(1 − F�)
−1G��,

G�� =
(
G1

�
�,G2

�
�
)
,

⟨f �,�⟩ ∶= ⟨w�, (G� ,F�)⟩, � ∈ E,
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Writing

according to the decomposition L1
+
(0, a+) × L1

+
(0, a+) = ℝ ⋅Φ0 ⊕ rg(1 − F𝜆1

) , it follows 
that

due to the continuity of F� in � . But from (5.21)

since F�
�1
w� = w� , whence d(G�1

�) = �⟨w�,G�1
�⟩ with �−1 = ⟨w�,Φ0⟩ . Similarly, 

decomposing

we find

With these observations, we derive that

for some constant C0 . Consequently,

Since P�1
 is a projection, i.e., P2

�1
= P�1

 , the constant C0 is easily computed and we obtain 
the following result.

Proposition 5.17 Under the assumptions of Theorem 5.16, the projection P�1
 is given by

for � ∈ E , where G�1
� = (G1

�1
�,G2

�1
�) and w� ∈ (L1

+
(0, a+) × L1

+
(0, a�))� is a positive 

eigenfunctional of the dual operator F′
�1

 of F�1
 corresponding to the eigenvalue r(F�1

) = 1.

Remark 5.18 In fact, the expression of P�1
� does not look explicitly like the one for single 

age-structured models, since the resolvent of A cannot be expressed explicitly for our dou-
ble age-structure model.

c(�)⟨w�,Φ0⟩ = ⟨f �,P�1
�⟩ = lim

�→�1
⟨f �, (� − �1)Π�(a, a

�)(1 − F�)
−1G��⟩

= lim
�→�1

⟨w�, (� − �1)(1 − (1 − F�))(1 − F�)
−1G��⟩

= lim
�→�1

⟨w�, (� − �1)(1 − F�)
−1G��⟩.

(5.21)G𝜆𝜙 = d(G𝜆𝜙)Φ0 ⊕ (1 − F𝜆1
)g(G𝜆𝜙)

lim
�→�1

⟨w�, (� − �1)(1 − F�)
−1G��⟩ = d(G�1

�) lim
�→�1

⟨w�, (� − �1)(1 − F�)
−1Φ0⟩

⟨w�,G�1
�⟩ = d(G�1

�)⟨w�,Φ0⟩

Z� ∶= (� − �1)(1 − F�)
−1Φ0,

lim
�→�1

⟨w�, Z�⟩ =
�
lim
�→�1

d(Z�)

�
⟨w�,Φ0⟩.

c(�)⟨w�,Φ0⟩ = C0⟨w�,G�1
�⟩⟨w�,Φ0⟩

P�1
� = C0⟨w�,G�1

�⟩Π�1
(a, a�)Φ0.

(5.22)P�1
� =

⟨w�,G�1
�⟩

⟨w�,G�1
Π�1

(a, a�)Φ0⟩Π�1
(a, a�)Φ0
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5.3  Asymptotic behavior for R
0
= 1

In the previous subsections, we have shown that if R0 < 1 , then {S(t)}t≥0 is uniformly 
exponentially stable and if R0 > 1 , then {S(t)}t≥0 has asynchronous exponential growth. It 
is natural to ask what happens if R0 = 1.

Remark 5.19 When {S(t)}t≥0 has asynchronous exponential growth with intrinsic growth 
constant �1 , the intrinsic growth constant �1 can be any real number, it means that 

 (i) If 𝜆1 < 0 , then S(t) decays exponentially; thus, the zero equilibrium is exponentially 
stable, as Theorem 5.11 states;

 (ii) If 𝜆1 > 0 , as {S(t)}t≥0 has asynchronous exponential growth, it describes the divergent 
rate at which the system blows up when the zero equilibrium is unstable for a linear 
system;

 (iii) If �1 = 0 , then S(t)� converges to P� as t → ∞ . This is the case when R0 = 1 that 
we are concerned in this subsection.

First, note that when R0 = 1 , i.e., r(F0) = 1 , by the previous argument we know that the 
spectral bound s(A) = 0 . Now let us recall a theorem from Engel and Nagel [18, Chapter 
VI, Theorem 3.5].

Theorem 5.20 (Engel and Nagel [18]) Let {S(t)}t≥0 be a quasi-compact, irreducible, pos-
itive strongly continuous semigroup with generator A and assume that s(A) = 0 . Then 0 is a 
dominant eigenvalue of A and a first-order pole of (�I − A)−1 . Moreover, there exist strictly 
positive elements 0 ≪ h ∈ X, 0 ≪ 𝜑 ∈ X� and constants M ≥ 1, 𝜖 > 0 such that

where ⟨⋅, ⋅⟩ is the dual product in Banach space.

In Sect.  4, we have shown that {S(t)}t≥0 is quasi-compact when a+ = ∞ ; in Sect.  2, 
we have shown that {S(t)}t≥0 is positive. Next, we claim that {S(t)}t≥0 is also irreducible. 
Recall that a positive semigroup with generator A on the Banach lattice X is irreducible if 
for some 𝜆 > s(A) and all 0 < f ∈ X, the resolvent satisfies (𝜆I − A)−1f ≫ 0 , where ≫ rep-
resents strictly positivity.

By strict positivity in E, we need to require that 𝜑 = (𝜆I − A)−1𝜓 > 0 for almost all 
(a, a�) ∈ (0, a+) × (0, a+) for every 0 < 𝜓 ∈ E . Look at the resolvent solution (5.2), we only 
need that � and � are positive almost everywhere for (a, a�) ∈ (0, a+) × (0, a+) . Since � and 
� are determined by (5.11), motivated by Engel and Nagel [18, Theorem 4.4], only for � 
and �′ , there exists no a0 ≥ 0 such that

In fact, Assumption 2.1(iii)’ satisfies the above conditions, and then � and � will be positive 
almost everywhere. Thus, (𝜆I − A)−1𝜓 ≫ 0, which implies that {S(t)}t≥0 is irreducible. By 
Theorem 5.20, we have the following theorem.

Theorem 5.21 If R0 = 1 and (5.23) holds, then there exist a strictly positive linear func-
tion h ∈ E, a linear form � ∈ fix(S(t)�), t ≥ 0 , and constants M ≥ 1, 𝜖 > 0 such that

‖S(t)f − ⟨f ,�⟩ ⋅ h‖ ≤ Me−�t‖f‖ for all t ≥ 0, f ∈ X,

(5.23)�||[a0,a+)×[a0,a+)×[a0,a+) = 0, ��||[a0,a+)×[a0,a+)×[a0,a+) = 0 almost everywhere.
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where

which coincides with kerA and fix(S(t)�)t≥0 = ker(A�).

6  Discussion

In this paper we considered a linear first-order hyperbolic partial differential equation that 
models the single-species population dynamics with two physiological structures. By using 
semigroup theory, we studied the basic properties and dynamics of the model, including 
the solution flow u(t, a, a�) and its semigroup {S(t)}t≥0 with infinitesimal generator A. More-
over, we established the compactness of solution trajectories, analyzed the spectrum of A, 
and investigated stability of the zero equilibrium with asynchronous exponential growth.

We would like to point out the differences between single physiologically structured 
models and double physiologically structured models. For a double physiologically struc-
tured model, first, the state space becomes L1

+
((0, a+) × (0, a+)) instead of L1

+
(0, a+) . It fol-

lows that the Volterra integral equations generated by the boundary conditions become a 
system of integral equations in the function space L1

+
(0, a+) instead of ℝ , and the character-

istic equation becomes an operator equation instead of a scalar equation. Accordingly, the 
principal eigenvalue is changed into a point spectrum of an operator. Second, the integral 
region for an eigenfunction becomes a plane in ℝ2 instead of a line in ℝ and correspond-
ingly the characteristic plane in ℝ3 for a solution flow instead of the characteristic line in 
ℝ

2 . More importantly, the infinitesimal generator A of the semigroup {S(t)}t≥0 for a double 
physiologically structured model is much more complicated than that for a single physi-
ologically structured model. Thanks to the solution flow (see Theorems 5.2 and 5.3 which 
give equivalent characterizations of eigenvalues and eigenfunctions of A), we can still 
study the spectrum of A without solving the characteristic equation A� = ��,� ∈ D(A).

The novelty and difficulty of the analysis lie in the non-trivial conditions for both 
boundaries (1.3)–(1.4). Such a setup not only brings extra complications in the proof of 
existence of solutions and trajectory compactness, but also requires alternative tools in the 
spectrum analysis. Therefore, it is very natural for one to ask for the motivation in terms 
of real-world applications with both boundaries being non-trivial (as most of the existing 
models with double physiological structures assume one trivial boundary condition). Our 
techniques and ideas can be applied to study multi-dimensional structured models with two 
physiological structures, such as epidemic models with chronological age and infection 
age (Hoppensteadt [22], Inaba [25], Burie et al. [6], Laroche and Perasso [33]), population 
dynamical models with age and size structures (Webb [55]), age and maturation structures 
(Dyson et al. [15, 16]), and age and stage structures (McNair and Goulden [39], Matucci 
[38]), or structured cell population models with continuous cell age and another continuous 
cell status such as cyclin content (Bekkal Brikci et al. [4]), maturity level (Bernard et al. 
[5]), plasmid copies (Stadler [45]), and telomere length (Kapitanov [28]). For instance, the 
model developed in Kapitanov [28] describes cell population structured with continuous 
cell age and discrete telomere length, which can be easily derived into models with both 
structures being continuous and with both boundary conditions being non-trivial (since 

‖S(t)� − ⟨�, �⟩ ⋅ h‖ ≤ Me−�t‖�‖ for all t ≥ 0,� ∈ E,

fix(S(t))t≥0 ∶= {x ∈ E ∶ S(t)x = x for all t ≥ 0},
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newly generated cells could have telomere with any length and there indeed exist aging 
cells with 0-length telomere). We leave these for future consideration.

Note that our formulation of the problem allows more mortality processes than (1.2) and 
more general birth processes than (1.3) and (1.4). For example, one can study the following 
double physiologically structured model with G, F, H under appropriate conditions

where Du(t, a, a�) ∶= �u

�t
(t, a, a�) +

�u

�a
(t, a, a�) +

�u

�a�
(t, a, a�) . In an upcoming paper [27], 

we will study the following nonlinear double physiologically structured model via a dif-
ferent approach: integrated semigroups and non-densely defined operators (where we can 
study the characteristic and resolvent equations directly),

Acknowledgements We would like to thank Professor Hisashi Inaba for very helpful discussions and in 
particular for bring the reference Webb [53] into our attention. We are also very grateful to the anonymous 
reviewer for his/her helpful comments and constructive suggestions which helped us to improve the presen-
tation of the paper.

Appendix

In this Appendix, we prove some statements that were used in Sect. 4.

Proposition A.1 If a+ = ∞ , 𝜇 > 0 , and Assumption  2.1 holds, then S1(t) satisfies the 
hypothesis (ii) and S2(t), S3(t) satisfy the hypothesis (iii) of Proposition 4.2.

Proof We only need to show that S2(t) is compact for t > 0 , which is equivalent to show 
that for a bounded set K of E,

(6.1)

⎧
⎪⎨⎪⎩

Du(t, a, a�) = G(t, u(t, ))(a, a�), for t > 0, (a, a�) ∈ (0, a+) × (0, a+)

u(t, 0, a�) = F(t, u(t, ), a�), for t > 0, a� ∈ (0, a+)

u(t, a, 0) = H(t, u(t, ), a), for t > 0, a ∈ (0, a+)

u(0, a, a�) = 𝜙(a, a�), for (a, a�) ∈ (0, a+) × (0, a+),

(6.2)

⎧⎪⎪⎨⎪⎪⎩

Du(t, a, a�) = −𝜇(a, a�,P(t))u(t, a, a�), for t > 0, (a, a�) ∈ (0, a+) × (0, a+)

u(t, 0, a�) = ∫ a+

0
∫ a+

0
𝛽(a�, a, s,P(t))u(t, a, s)dads, for t > 0, a� ∈ (0, a+)

u(t, a, 0) = ∫ a+

0
∫ a+

0
𝛽�(a, s, a�,P(t))u(t, s, a�)dsda�, for t > 0, a ∈ (0, a+)

u(0, a, a�) = 𝜙(a, a�), for (a, a�) ∈ (0, a+) × (0, a+)

P(t) = ∫ a+

0
∫ a+

0
u(t, a, a�)dada�, for t > 0.

(A.1)lim
h→0, k→0∫

∞

0 ∫
∞

0

||S2(t)�(a + h, a� + k) − S2(t)�(a, a
�)||dada� = 0

(A.2)lim
h→∞,k→∞∫

∞

h
∫

∞

k

||S2(t)�(a, a�)||dada� = 0
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uniformly for � ∈ K (which can be found in [14, Theorem 21, p. 301]). Without loss of 
generality, assume k > h and h, k → 0+ , we have

as illustrated in Fig. 3b: S2(t)�(a, a�) is non-trivial for points (a, a�) in regions I and IV, and 
S2(t)�(a + h, a� + k) is non-trivial for points (a, a�) in regions I, II, and III.

We first show

where

based on our prior estimate in Sect. 2.1 and with K� being the Lipschitz constant for � , thus 
II → 0 uniformly for � ∈ K as h, k → 0+ . Next, we need to show that

(A.3)

�
∞

0 �
∞

0

||S2(t)�(a + h, a� + k) − S2(t)�(a, a
�)||da�da

≤ �
t−h

0 �
∞

a

||S2(t)�(a + h, a� + k) − S2(t)�(a, a
�)||da�da

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
region I

+ �
t−h

k−h �
a

a+h−k

||S2(t)�(a + h, a� + k)||da�da
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

region II

+ �
k−h

0 �
a

0

||S2(t)�(a + h, a� + k)||da�da
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

region III

+�
t

t−h �
∞

a

||S2(t)�(a, a�)||da�da
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

region IV

,

�
t−h

0 �
∞

a

||S2(t)�(a + h, a� + k) − S2(t)�(a, a
�)||da�da

≤ �
t

0 �
∞

a

||b�(t − a − h, a� + k − a − h) − b�(t − a, a� − a)||e− ∫ a+h

0
�(s,s+a�+k−a−h)dsda�da

+ �
t−h

0 �
∞

a

||b�(t − a, a� − a)[e− ∫ a+h

0
�(s,s+a�+k−a−h)ds − e− ∫ a

0
�(s,s+a�−a)ds]||da�da

∶= I + II,

II ≤ �
t−h

0 �
∞

a

b𝜙(t − a, a� − a)��e− ∫ a+h

0
𝜇(s,s+a�−a)ds[1 − e∫ a+h

0
𝜇(s,s+a�−a)−𝜇(s,s+a�+k−a−h)ds]

+ e− ∫ a

0
𝜇(s,s+a�−a)ds[1 − e− ∫ a+h

a
𝜇(s,s+a�−a)ds]��da�da

≤ �
t−h

0 �
∞

a

b𝜙(t − a, a� − a)
�
max{1 − e−K𝜇(k−h)t, eK𝜇(k−h)t − 1} + (1 − e−�̄�h)

�
da�da

≤ �
max{1 − e−K𝜇(k−h)t, eK𝜇(k−h)t − 1} + (1 − e−�̄�h)

�
�

t

0 �
∞

0

b𝜙(t − a, s)dsda

≤ 2𝛽max‖𝜙‖E
�
max{1 − e−K𝜇(k−h)t, eK𝜇(k−h)t − 1} + (1 − e−�̄�h)

�
�

t

0

e4𝛽max(t−a)da
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Now by an alternative version of (2.7) and (2.8), we have

where

in which

(A.4)lim
h→0, k→0∫

t

0 ∫
∞

a

|b�(t − a − h, a� + k − a − h) − b�(t − a, a� − a)|da�da = 0.

�
t

0 �
∞

a

|b�(t − a − h, a� + k − a − h) − b�(t − a, a� − a)|da�da

≤ �
t

0 �
∞

a

||�
t−a−h

0 �
∞

0

f1(a
� + k − a − h, t − a − h − p, s + t − a − h − p)b�(p, s)dsdp

− �
t−a

0 �
∞

0

f1(a
� − a, t − a − p, s + t − a − p)b�(p, s)dsdp

||da�da

+ �
t

0 �
∞

a

||�
t−a−h

0 �
∞

0

g1(a
� + k − a − h, p + t − a − h − s, t − a − h − s)b�

�
(s, p)dpds

− �
t−a

0 �
∞

0

g1(a
� − a, p + t − a − s, t − a − s)b�

�
(s, p)dpds||da�da

+ �
t

0 �
∞

a

||�
∞

0 �
∞

0

h1(a
� + k − a − h, p, s, t − a − h)�(p, s)dpds

− �
∞

0 �
∞

0

h1(a
� − a, p, s, t − a)�(p, s)dpds||da�da

∶= J1 + J2 + J3,

J1 ≤ �
t

0 �
∞

a

(
�

t−a−h

0 �
∞

0

|f1(a� + k − a − h, t − a − h − p, s + t − a − h − p)

− f1(a
� − a, t − a − p, s + t − a − p)|b�(p, s)dsdp

+ �
t−a−h

t−a �
∞

0

f1(a
� − a, t − a − p, s + t − a − p)b�(p, s)dsdp

)
da�da

∶= J1
1
+ J2

1
,

|f1(a� + k − a − h, t − a − h − p, s + t − a − h − p) − f1(a
� − a, t − a − p, s + t − a − p)|

≤ 𝛽1(a
� + k − a − h)||𝛽2(t − a − h − p, s + t − a − h − p)e− ∫ t−a−p−h

0
𝜇(𝜎,𝜎+s)d𝜎

− 𝛽2(t − a − p, s + t − a − p)e− ∫ t−a−p

0
𝜇(𝜎,𝜎+s)d𝜎||

+ |𝛽1(a� + k − a − h) − 𝛽1(a
� − a)|𝛽2(t − a − p, s + t − a − p)

≤ 𝛽1(a
� + k − a − h)||𝛽2(t − a − h − p, s + t − a − h − p) − 𝛽2(t − a − p, s + t − a − p)||

+ 𝛽1(a
� + k − a − h)𝛽2(t − a − p, s + t − a − p)||1 − e

− ∫ t−a−p

t−a−h−p
𝜇(𝜎,𝜎+s)d𝜎||

+ ||𝛽1(a� + k − a − h) − 𝛽1(a
� − a)||𝛽2(t − a − p, s + t − a − p)

≤ 𝛽1(a
� + k − a − h)K𝛽2h + 𝛽(a� + k − a − h)(1 − e�̄�h)

+ ||𝛽1(a� + k − a − h) − 𝛽1(a
� − a)||𝛽2(t − a − p, s + t − a − p)

≤ 𝛽1(a
� + k − a − h)K𝛽2h + 𝛽(a� + k − a − h)(1 − e�̄�h)

+ ||𝛽1(a� + k − a − h) − 𝛽1(a
� − a)||𝛽sup2
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by Assumption 2.1(i) on � being Lipschitz continuous and K� as the Lipschitz constant, 
where

because Assumption 2.1(iv) holds. Thus, 

and

Therefore, we have J1 → 0 as h, k → 0+ uniformly for � ∈ K . And the fact that J2 → 0 uni-
formly for � ∈ K as h, k → 0+ can be proved by using a similar argument. To show J3 → 0 , 
we first

Then by applying Assumption  2.1(ii), we have J3 → 0 uniformly for � ∈ K.
Therefore, we have the first term in (A.3) goes to 0 uniformly for � ∈ K . Secondly,
based on estimate (4.8) in the main text we have

𝛽
sup

2
∶= sup

(a,s)∈(0,∞)×(0,∞)

𝛽2(a, s) < ∞

J1
1
≤ �

t

0 �
∞

a

�
𝛽1(a

� + k − a − h)K𝛽2h + 𝛽(a� + k − a − h)(1 − e�̄�h)
��

�
t−a−h

0 �
∞

0

b𝜙(p, s)dsdp
�
da�da

+ �
t

0 �
∞

a

��𝛽1(a� + k − a − h) − 𝛽1(a
� − a)��𝛽sup2

�
�

t−a−h

0 �
∞

0

b𝜙(p, s)dsdp
�
da�da

≤ �
t

0 �
∞

a

�
𝛽1(a

� + k − a − h)K𝛽2h + 𝛽(a� + k − a − h)(1 − e�̄�h)
��

�
t−a−h

0

2𝛽max‖𝜙‖Ee4𝛽maxpdp
�
da�da

+ �
t

0 �
∞

a

��𝛽1(a� + k − a − h) − 𝛽1(a
� − a)��𝛽sup2

�
�

t−a−h

0

2𝛽max‖𝜙‖Ee4𝛽maxpdp
�
da�da

→ 0 uniformly for 𝜙 ∈ K as h, k → 0+

J2
1
≤ �

t

0 �
∞

a

𝛽(a� − a)
�
�

t−a−h

t−a �
∞

0

b𝜙(p, s)dsdp
�
da�da

≤ �
�

∞

0

𝛽(a�)da�
��

�
t

0 �
t−a

t−a−h

2𝛽max‖𝜙‖Ee4𝛽maxpdpda
�

→ 0 as h, k → 0+ uniformly for 𝜙 ∈ K,

||h1(a� + k − a − h, p, s, t − a − h) − h1(a
� − a, p, s, t − a)||

≤ ||𝛽(a� + k − a − h, p + t − a − h, s + t − a − h) − 𝛽(a� − a, p + t − a, s + t − a)||e− ∫ t−a−h
0

𝜇(𝜎+p,𝜎+s)d𝜎

+ 𝛽(a� − a, p + t − a, s + t − a)e− ∫ t−a−h
0

𝜇(𝜎+p,𝜎+s)d𝜎 ||1 − e− ∫ t−a
t−a−h 𝜇(𝜎+p,𝜎+s)d𝜎 ||

≤ ||𝛽(a� + k − a − h, p + t − a − h, s + t − a − h) − 𝛽(a� − a, p + t − a − h, s + t − a − h)||
+ 𝛽1(a

� − a)||𝛽2(p + t − a − h, s + t − a − h) − 𝛽2(p + t − a, s + t − a)||
+ 𝛽(a� − a, p + t − a, s + t − a)(1 − e

−𝜇h
)

≤ ||𝛽(a� + k − a − h, p + t − a − h, s + t − a − h) − 𝛽(a� − a, p + t − a − h, s + t − a − h)||
+ 𝛽1(a

� − a)K𝛽2h + 𝛽(a� − a)(1 − e
−𝜇h

).
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Further,

Lastly,

We thus proved (A.1). For (A.2), we have

as h, k → 0 uniformly for � ∈ K . We can show that S3(t) is compact for sufficiently large t 
in the same way.   ◻

�
t−h

k−h �
a

a+h−k

��S2(t)𝜙(a + h, a� + k)��da�da

≤ �
t−h

k−h �
a

a+h−k

b𝜙(t − a − h, a� + k − a − h)da�da

≤ �
t−h

k−h

���
a

a+h−k

𝛽(a�)da���
�
4‖𝜙‖E𝛽max �

t

0

e4𝛽maxpdpp + ‖𝜙‖E
�
da

≤ sup
0<a<t

���
a

a+h−k

𝛽(a�)da��� ⋅ t ⋅
�
4‖𝜙‖E𝛽max �

t

0

e4𝛽maxpdp + ‖𝜙‖E
�

→ 0 as h, k → 0+ uniformly for 𝜙 ∈ K.

�
k−h

0 �
a

0

��S2(t)�(a + h, a� + k)��da�da

≤ �
k−h

0 �
a

0

b�(t − a − h, a� + k − a − h)da�da

≤ �
k−h

0 �
∞

0

b�(t − a − h, s)dsda ≤ 2�max‖�‖E �
k−h

0

e4�max(t−a−h)da

→ 0 as h, k → 0+ uniformly for � ∈ K.

�
t

t−h �
∞

a

��S2(t)�(a, a�)��da�da

≤ �
t

t−h �
∞

a

b�(t − a, a� − a)da�da

≤ �
t

t−h �
∞

0

b�(t − a, s)dsda ≤ 2�max‖�‖E �
t

t−h

e4�max(t−a)da

→ 0 as h → 0+ uniformly for � ∈ K.

�
∞

h �
∞

k

��S2(t)�(a, a�)��dada�

≤ �
∞

h �
∞

0

b�(t − a, s)dsda

≤ 2‖�‖E�max �
∞

h

e4�max(t−a)da → 0
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