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Abstract. In this paper we consider an age-structured epidemic model of

the susceptible-exposed-infectious-recovered (SEIR) type. To characterize the

seasonality of some infectious diseases such as measles, it is assumed that the
infection rate is time periodic. After establishing the well-posedness of the

initial-boundary value problem, we study existence of time periodic solutions

of the model by using a fixed point theorem. Some numerical simulations are
presented to illustrate the obtained results.

1. Introduction. It is well-known that biological, physical, and social conditions
of the host population have great impacts on the transmission dynamics of infec-
tious diseases. Age structure is one of such factors that affect the outcome and
consequences of the epidemics. In their pioneer series of papers published in the
1920s-1930s, Kermack and McKendrick [24, 25, 26] considered the effect of infection-
age and proposed the so-called age-structured epidemic models described by three
first-order hyperbolic partial differential equations (see Inaba [20] for a re-derivation
and analysis of the age-structured Kermack-McKendrick model). Starting in the
1970s, researchers have noticed that the chronological age of the host population
also plays a crucial role in the transmission process of some infectious diseases, such
as measles, mumps, and pertussis, in particular when mass vaccination program is
targeted at specific age groups. Consequently, many age-structured epidemic mod-
els have been proposed and analyzed in the literature, we refer to some early studies
by Anderson and May [1], Andreasen [2], Bentil and Murray [5], Busenberg et al.
[8, 7], Cha et al. [9], Feng et al. [11], Greenhalgh [12], Hethcote [13], Hoppensteadt
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[15], Iannelli [17], Iannelli et al. [18], Inaba [19], Li et al. [33], Schenzle [36], Tudor
[38], the recent monograph by Inaba [23] and the references cited therein.

Periodic outbreak is a common phenomenon observed in the epidemics of many
infectious diseases such as chickenpox, influenza, measles, mumps, rubella, etc.
(Hethcote and Levin [14]). It is very important to understand such epidemic pat-
terns in order to introduce public health interventions and design control measures
for the spread of these infectious diseases. Recent studies have demonstrated that
seasonality plays a crucial role in causing periodic outbreaks of some of these infec-
tious diseases and many researchers have developed epidemic models with periodic
parameters to investigate the effect of seasonality on the transmission dynamics of
some infectious diseases, we refer to Bacaër [3], Bacaër and Guernaoui [4], Earn et
al. [10], Huang et al. [16], Wang and Zhao [39], and so on.

It is very natural to study the combined effects of age structure of host population
and the periodicity in environmental, seasonal or social changes. In recent years,
there has been considerable interest in investigating age-structured epidemic models
with periodic parameters, see for examples, Busenberg et al. [7], Kubo and Langlais
[28], Kuniya [29], Kuniya and Iannelli [30], Kuniya and Inaba [31], and Langlais and
Busenberg [32]. Especially, a threshold value for the existence and uniqueness of a
nontrivial endemic periodic solution of an age-structured SIS epidemic model with
periodic parameters was obtained in Kuniya and Inaba [31].

The purpose of this paper is to generalize the periodic SEIR epidemic model
describing measles (Earn et al. [10], Huang et al. [16]) to an age-structured SEIR
model with periodic infection rate. The host population is divided into four epidemi-
ological classes: susceptible, exposed, infectious, and recovered. We assume that
individuals who were vaccinated or recovered from infection would obtain immu-
nity and go to the recovered class directly. We will first establish the well-posedness
of the initial-boundary value problem for the age-structured SEIR model. Then
we will study existence of time periodic solutions of the model by using a fixed
point theorem. Finally we will present some numerical simulations to illustrate the
obtained results.

The paper is organized as follows: In Section 2, we formulate the age-structured
SEIR epidemic model with periodic infection rate. In Section 3, we establish the
well-posedness of the time evolution problem. In Section 4, we prove the existence of
a nontrivial endemic periodic solution of the system. Finally, numerical illustrations
are given in Section 5 and a brief discussion is given in Section 6.

2. Mathematical model. Motivated by the study of periodic solutions of an SEIR
epidemic model describing measles (Huang et al. [16]), we consider the following
age-structured epidemic model:

∂S

∂t
+
∂S

∂a
= −S(t, a)

∫ a+
0

β(t; a, a′)I(t, a′)da′ − (µ(a) + ρ(a))S(t, a),

∂E

∂t
+
∂E

∂a
= S(t, a)

∫ a+
0

β(t; a, a′)I(t, a′)da′ − (σ(a) + µ(a))E(t, a),

∂I

∂t
+
∂I

∂a
= σ(a)E(t, a)− (γ(a) + µ(a))I(t, a),

∂R

∂t
+
∂R

∂a
= ρ(a)S(t, a) + γ(a)I(t, a)− µ(a)R(t, a),

(2.1)

where S(t, a), E(t, a), I(t, a), and R(t, a) represent the densities of susceptible, ex-
posed, infectious, and recovered individuals at time t with age a, respectively. µ(a)
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is the mortality rate, ρ(a) is the vaccination rate, σ(a) is the reciprocal of the in-
cubation period, γ(a) is the reciprocal of the infective period, and β(t; a, a′) is the
rate at which susceptible individuals with age a are infected by infections individ-
uals with age a′ and is a nonnegative and periodic function in t with period T > 0.
The associated boundary conditions are

S(t, 0) = A, E(t, 0) = 0, I(t, 0) = 0, R(t, 0) = 0, (2.2)

where A is a positive constant, and initial conditions are given by

S(0, a) = S0(a), E(0, a) = E0(a), I(0, a) = I0(a), R(0, a) = R0(a), (2.3)

where S0(a), E0(a), I0(a), and R0(a) are nonnegative continuous functions of a.
The corresponding ordinary differential equations (ODEs) model is as follows:

dS

dt
= A(1− ρ)− β(t)IS − µS,

dE

dt
= β(t)IS − (σ + µ)E,

dI

dt
= σE − (γ + µ)I,

dR

dt
= Aρ+ γI − µR,

(2.4)

where the parameters are positive constants and have the same interpretations as
in (2.1). Huang et al. [16] showed that the existence of a periodic solution for (2.4)
when the basic reproduction number R0 > 1. In this paper, we will follow the
idea in Kuniya [29] and Kuniya and Inaba [31] to establish the existence of periodic
solutions in (2.1) under the same condition R0 > 1.

Let P (t, a) := S(t, a) + E(t, a) + I(t, a) + R(t, a) denote the total population at
time t with age a. By adding up the four equations in (2.1), we know that P (t, a)
satisfies the following equation:

∂P

∂t
+
∂P

∂a
= −µ(a)P (t, a) (2.5)

with boundary condition

P (t, 0) = A

and initial condition

P (0, a) = P0(a) := S0(a) + E0(a) + I0(a) +R0(a).

In this paper we assume that the host population is already in a demographic
steady state. Then the dynamics of P (t, a) can be determined independently from
the epidemic. Actually,

P (t, a) = Ae−
∫ a
0
µ(a′)da′ .

If we normalize variables by

s(t, a) =
S(t, a)

P (t, a)
, e(t, a) =

E(t, a)

P (t, a)
, i(t, a) =

I(t, a)

P (t, a)
, r(t, a) =

R(t, a)

P (t, a)
,
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then we obtain the following system for (s, e, i, r):

∂s

∂t
+
∂s

∂a
= −λ(t, a)s(t, a)− ρ(a)s(t, a),

∂e

∂t
+
∂e

∂a
= λ(t, a)s(t, a)− σ(a)e(t, a),

∂i

∂t
+
∂i

∂a
= σ(a)e(t, a)− γ(a)i(t, a),

∂r

∂t
+
∂r

∂a
= ρ(a)s(t, a) + γ(a)i(t, a)

(2.6)

with boundary conditions

s(t, 0) = 1, e(t, 0) = 0, i(t, 0) = 0, r(t, 0) = 0

and initial conditions

s(0, a) = s0(a) :=
S0(a)

P0(a)
, e(0, a) = e0(a) :=

E0(a)

P0(a)
,

i(0, a) = i0(a) :=
I0(a)

P0(a)
, r(0, a) = r0(a) :=

R0(a)

P0(a)

where

λ(t, a) :=

∫ a+

0

β(t; a, a′)I(t, a′)da′ =

∫ a+

0

β(t; a, a′)P (t, a′)i(t, a′)da′. (2.7)

3. Well-posedness. In order to study the well-posedness of the initial-boundary
value problem, we first make the following assumptions.

Assumption 3.1. We assume that

(i) σ(·), ρ(·), γ(·) ∈ L∞+ (0, a+) and for each t ∈ R+, β(t, ·, ·) ∈ L∞+ ([0, a+] ×
[0, a+]);

(ii)
∫ a+
0

µ(a)da = +∞ and µ is locally integrable.

We now present a semigroup approach to prove the existence and uniqueness of
nonnegative solutions of system (2.6). Since s(t, a) = 1 − e(t, a) − i(t, a) − r(t, a),
system (2.6) can be reduced to a three-component system for (e, i, r) as follows:

∂e

∂t
+
∂e

∂a
= λ(t, a)(1− e(t, a)− i(t, a)− r(t, a))− σ(a)e(t, a),

∂i

∂t
+
∂i

∂a
= σ(a)e(t, a)− γ(a)i(t, a),

∂r

∂t
+
∂r

∂a
= ρ(a)(1− e(t, a)− i(t, a)− r(t, a)) + γ(a)i(t, a)

(3.1)

with boundary conditions

e(t, 0) = 0, i(t, 0) = 0, r(t, 0) = 0 (3.2)

and initial conditions

e(0, a) = e0(a), i(0, a) = i0(a), r(0, a) = r0(a). (3.3)

Define the state space of (e, i, r) by

M := L1
+(0, a+)× L1

+(0, a+)× L1
+(0, a+).
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Define the operator A with domain D(A) and family {F (t; ·)}t≥0 acting on E by

(Aφ)(a) =


− d

da
0 0

0 − d

da
0

0 0 − d

da


φ1(a)
φ2(a)
φ2(a)

 ,

D(A) =

φ =

φ1φ2
φ3

 ∈M : φj ∈W 1,1(0, a+),

φ1(0)
φ2(0)
φ3(0)

 =

0
0
0

 ,

F (t, φ)(a) =

λ[t, a|φ2](1− φ1(a)− φ2(a)− φ3(a))− σφ1
σφ1 − γφ2

ρ(1− φ1(a)− φ2(a)− φ3(a)) + γφ2

 ,

where

λ[t, a|φ2] :=

∫ a+

0

β(t; a, a′)P (t, a′)φ2(a′)da′

and W 1,1(0, a+) is the space of all absolutely continuous functions on (0, a+).
Let u = (e, i, r)T be the state vector of the (e, i, r) system. Then the (e, i, r)

system can be formulated as a semilinear Cauchy problem on the Banach space E:

du(t)

dt
= Au(t) + F (t, u(t)), u(0) = u0. (3.4)

We can show that the operator A generates a strongly continuous semigroup etA.
In fact, the semigroup etA can be expressed as follows:

etA

φ1(a)
φ2(a)
φ3(a)

 =

(etA1φ1)(a)
(etA2φ2)(a)
(etA3φ3)(a)

 ,

where etAi for i = 1, 2, 3 are the semigroups on L1(0, a+), which are defined for
u ∈ L1(0, a+) as

(etAiu)(a) =

{
0, t− a > 0,

u(a− t), a− t > 0,
i = 1, 2, 3.

In the following, define a region in M by

Ω := {(e, i, r) ∈ L1
+(0, a+)× L1

+(0, a+)× L1
+(0, a+) : 0 ≤ e+ i+ r ≤ 1}.

Then we can conclude that

Lemma 3.2. The mapping F (t, ·) : Ω → M is Lipschitz continuous for any fixed
t ∈ R+ and there exists a number α ∈ (0, 1) such that

(I + αF (t, ·))(Ω) ⊂ Ω. (3.5)

Proof. The Lipschitz continuity of F (t, ·) is clear, let us show (3.5). If we define the
vector v = (v1, v2, v3)T by

(I + αF (t, ·))(u1, u2, u3)T = (v1, v2, v3)T ,

then we have

v1(a)+v2(a)+v3(a)=α(λ[t, a|u2]+ρ)(1−u1(a)−u2(a)−u3(a))+(u1(a)+u2(a)+u3(a)).
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Set λ+ := supλ and ρ+ := sup ρ and choose α : α ≤ (λ+ + ρ+)−1. Then we have
v1(a) + v2(a) + v3(a) ≤ 1. Moreover, set σ+ := supσ, γ+ := sup γ and choose
α : ασ+ ≤ 1, αγ+ ≤ 1. Thus we have v1 ≥ 0 and v2 ≥ 0. Therefore, if we choose

0 < α < min

{
1

λ+ + ρ+
,

1

σ+
,

1

γ+

}
,

then (3.5) holds.

Now following the method of Busenberg et al. [8], we can rewrite the Cauchy
problem (3.4) as follows:

du(t)

dt
=

(
A− 1

α

)
u(t) +

1

α
(I + αF (t, ·))u(t), u(0) = u0, (3.6)

where α is chosen such that (3.5) holds. The mild solution of this problem is then
given by the variation of constants formula:

u(t) = e−
1
α tetAu0 +

∫ t

0

e−
1
α (t−s)e(t−s)A[u(s) + αF (s, u(s))]ds.

The mild solution defines an evolutionary system {U(t, s)}t≥s≥0 by U(t, 0)u0 = u(t).
Define an iterative sequence {un(t)} by

u0(t) = u0, un+1(t) = e−
1
α tetAu0 +

∫ t

0

e−
1
α (t−s)e(t−s)A[un(s) + αF (s, un(s))]ds.

If un ∈ Ω, it follows that etAu0, e
(t−s)A[un(s)+αF (s, un(s))] ∈ Ω. Hence, un+1 ∈ Ω

because it is the convex sum of two elements of the convex set Ω. It follows from the
Lipschitz continuity that the iterative sequence {un(t)} converges uniformly to the
mild solution U(t, 0)u0 ∈ Ω. Thus, we have the following existence and uniqueness
result.

Proposition 3.3. The Cauchy problem (3.4) has a unique mild solution U(t, 0)u0,
where {U(t, s)}t≥s≥0 defines an evolutionary system with the following property:

U(s, s) = I, U(t, σ)U(σ, s) = U(t, s), U(t, s)(Ω) ⊂ Ω,

If the initial data are in the domain D(A), then the mild solution becomes a classical
solution.

4. Existence of an endemic periodic solution. In this section we investigate
the existence of an endemic T -periodic solution of system (2.6). Let XT be the
space of all locally integrable T -periodic L1(0, a+)-valued functions with norm

‖ϕ‖XT :=

∫ T

0

‖ϕ(t)‖L1dt =

∫ T

0

∫ a+

0

|ϕ(t, a)|dadt

and XT,+ be its positive cone. Let CT be the state subspace defined by

CT := {ϕ ∈ XT,+ : 0 ≤ ϕ(t, a) ≤ 1}.

Since r(t, a) = 1 − s(t, a) − e(t, a) − i(t, a) and the equations of (s, e, i) are
independent of r, system (2.6) can be reduced to a three-component system in
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(s, e, i) as follows 

∂s

∂t
+
∂s

∂a
= −λ(t, a)s(t, a)− ρ(a)s(t, a),

∂e

∂t
+
∂e

∂a
= λ(t, a)s(t, a)− σ(a)e(t, a),

∂i

∂t
+
∂i

∂a
= σ(a)e(t, a)− γ(a)i(t, a)

(4.1)

with boundary conditions

s(t, 0) = 1, e(t, 0) = 0, i(t, 0) = 0 (4.2)

and initial conditions

s(0, a) = s0(a), e(0, a) = e0(a), i(0, a) = i0(a). (4.3)

Let s∗, e∗, i∗, λ∗ ∈ XT,+ \ {0} be a nontrivial periodic solution satisfying system
(4.1). Then from the integration along the characteristic line t − a =constant, we
have

s∗(t, a) =e−
∫ a
0
(λ∗(t−a+τ,τ)+ρ(τ))dτ ,

e∗(t, a) =

∫ a

0

λ∗(t− a+ τ, τ)s∗(t− a+ τ, τ)e−
∫ a
τ
σ(η)dηdτ

=

∫ a

0

λ∗(t− τ, a− τ)e−
∫ a
τ
(λ∗(t−η,a−η)+ρ(a−η))dηe−

∫ τ
0
σ(a−η)dηdτ

and

i∗(t, a) =

∫ a

0

σ(ξ)e∗(t− a+ ξ, ξ)e−
∫ a
ξ
γ(δ)dδdξ

=

∫ a

0

σ(a− ξ)e∗(t− ξ, a− ξ)e−
∫ ξ
0
γ(a−η)dηdξ

=

∫ a

0

σ(a− ξ)
∫ a

ξ

λ∗(t− τ, a− τ)

× e−
∫ a
τ
(λ∗(t−η,a−η)+ρ(a−η))dηe−

∫ τ
ξ
σ(a−η)dηdτe−

∫ ξ
0
γ(a−η)dηdξ.

From the above equation of i∗(t, a) and the equation of λ, we obtain an integral
equation of λ∗ as follows:

λ∗(t, a) =

∫ a+

0

β(t; a, a′)P ∗(t, a′)

∫ a′

0

σ(a′ − ξ)
∫ a′

ξ

λ∗(t− τ, a′ − τ) (4.4)

× e−
∫ a′
τ

(λ∗(t−η,a′−η)+ρ(a′−η))dηe−
∫ τ
ξ
σ(a′−η)dηdτe−

∫ ξ
0
γ(a′−η)dηdξda′,

where P ∗(t, a) = Ae−
∫ a
0
µ(τ)dτ was assumed in Section 2. Thus, in order to find a

nontrivial periodic solution of system (4.1), we only have to show the existence of a
nontrivial periodic solution λ∗ of (4.4). To this end, we define a nonlinear operator

F (ϕ)(t, a) :=

∫ a+

0

β(t; a, a′)P ∗(t, a′)

∫ a′

0

σ(a′ − ξ)
∫ a′

ξ

ϕ(t− τ, a′ − τ)

× e−
∫ a′
τ

(ϕ(t−η,a′−η)+ρ(a′−η))dηe−
∫ τ
ξ
σ(a′−η)dηdτ

× e−
∫ ξ
0
γ(a′−η)dηdξda′ (4.5)
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on XT,+ and investigate the existence of its nontrivial fixed point in XT,+ \ {0}. It
is easy to see that F has the strong Fréchet derivative

F (ϕ)(t, a) :=

∫ a+

0

β(t; a, a′)P ∗(t, a′)

∫ a′

0

σ(a′ − ξ)
∫ a′

ξ

ϕ(t− τ, a′ − τ)

× e−
∫ a′
τ
ρ(a′−η)dηe−

∫ τ
ξ
σ(a′−η)dηdτe−

∫ ξ
0
γ(a′−η)dηdξda′ (4.6)

at 0 ∈ XT,+. Now we make the following technical assumption, which is needed to
ensure the compactness of the fixed point operator and its derivative.

Assumption 4.1. (i) For the infection rate β(t, a, a′), it satisfies that

lim
h→0

∫ T

0

∫ a+

0

|β(t+ h, a+ h, a′)− β(t, a, a′)|dadt = 0 uniformly for a′ ∈ [0, a+]

and β(t, a, a′) = 0 for a, a′ /∈ [0, a+]× [0, a+];
(ii) For the reciprocal of the incubation period σ, it is integrable in L1(0, a+) and

σ(a) = 0 for a /∈ [0, a+];
(iii) There exists a positive constant ε0 > 0 such that β(t; a, a′) ≥ ε0 for almost all

t ∈ R+ and a, a′ ∈ [0, a+];
(iv) The maximum attainable age is greater than or equal to the period of coeffi-

cients; that is, a+ ≥ T .

Lemma 4.2. Under the Assumption 4.1, if r(F ) > 0, where r(F ) is the spectral
radius of the operator F , then it is a positive eigenvalue of F associated with a
positive eigenvector v0 ∈ XT,+ \ {0}.

Proof. First we show that F is regarded as a compact operator in L1([0, T ]×[0, a+]).
Observe that F is a linear map from XT,+ into itself preserving the cone invariant,
and we have

(Fϕ)(t, a) =

∫ a+

0

∫ a′

0

∫ a′

ξ

β(t; a, a′)P ∗(t, a′)σ(a′ − ξ)ϕ(t− τ, a′ − τ)

× e−
∫ a′
τ
ρ(a′−η)dηe−

∫ τ
ξ
σ(a′−η)dηe−

∫ ξ
0
γ(a′−η)dηdτdξda′

=

∫ a+

0

∫ a+

ξ

∫ a+

τ

β(t; a, a′)P ∗(t, a′)σ(a′ − ξ)ϕ(t− τ, a′ − τ)

× e−
∫ a′
τ
ρ(a′−η)dηe−

∫ τ
ξ
σ(a′−η)dηe−

∫ ξ
0
γ(a′−η)dηda′dτdξ

=

∫ a+

0

∫ a+

ξ

∫ a+−τ

0

β(t; a, τ + χ)P ∗(t, τ + χ)σ(τ + χ− ξ)ϕ(t− τ, χ)

× e−
∫ τ+χ
τ

ρ(τ+χ−η)dηe−
∫ τ
ξ
σ(τ+χ−η)dηe−

∫ ξ
0
γ(τ+χ−η)dηdχdτdξ

=

∫ a+

0

∫ t−ξ

t−a+

∫ a+−t+s

0

[
β(t; a, t− s+ χ)P ∗(t, t− s+ χ)

× σ(t− s+ χ− ξ)ϕ(s, χ)e−
∫ t−s+χ
t−s ρ(t−s+χ−η)dη

× e−
∫ t−s
ξ

σ(t−s+χ−η)dηe−
∫ ξ
0
γ(t−s+χ−η)dη

]
dχdsdξ

=

∫ t

t−a+

∫ a+−t+s

0

∫ t−s

0

[
β(t; a, t− s+ χ)P ∗(t, t− s+ χ)
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× σ(t− s+ χ− ξ)ϕ(s, χ)e−
∫ t−s+χ
t−s ρ(t−s+χ−η)dη

× e−
∫ t−s
ξ

σ(t−s+χ−η)dηe−
∫ ξ
0
γ(t−s+χ−η)dη

]
dξdχds, (4.7)

where in the last step we changed the order of triple integral. Next, define

G(t− s, χ) :=

∫ t−s

0

σ(t− s+ χ− ξ)e−
∫ t−s
ξ

σ(t−s+χ−η)dηe−
∫ ξ
0
γ(t−s+χ−η)dηdξ.

Then we can rewrite (4.7) as

(Fϕ)(t, a) =

∫ t

t−a+

∫ a+−t+s

0

β(t; a, t− s+ χ)P ∗(t, t− s+ χ)G(t− s, χ)

× e−
∫ t−s+χ
t−s ρ(t−s+χ−η)dηϕ(s, χ)dχds. (4.8)

If we extend the domain of parameters as β(t; a, a′) = 0 for (a, a′) /∈ [0, a+] ×
[0, a+] and σ(a) = 0 for a /∈ [0, a+], we can rewrite (4.8) as

(Fϕ)(t, a) =

∫ t

−∞

∫ a+

0

β(t; a, t− s+ χ)P ∗(t, t− s+ χ)G(t− s, χ)

× e−
∫ t−s+χ
t−s ρ(t−s+χ−η)dηϕ(s, χ)dχds. (4.9)

Next, we can use the periodization technique as in [31, Lemma 4.2], [23, 9.2.2] or
[3, Section 2] to write (4.9) as

(Fϕ)(t, a) =

∫ T

0

∫ a+

0

Ψ̂(t, a, s, χ)ϕ(s, χ)dχds,

where

Ψ̂(t, a, s, χ) :=


∞∑
n=0

Ψ(t, a, t− s+ nT, χ) for t > s,

∞∑
n=1

Ψ(t, a, t− s+ nT, χ) for t < s

(4.10)

and

Ψ(t, a, z, χ) := β(t; a, z + χ)P ∗(t, z + χ)G(z, χ)e−
∫ z+χ
z

ρ(z+χ−η)dη.

Hence, we can regard F as an operator in L1([0, T ] × [0, a+]). From Assumption
4.1 and the well-known compactness criterion in L1, for example see [6, Theorem
4.26], we see that F is compact in L1([0, T ] × [0, a+]). Since F is positive, linear
and compact, it follows from the Krein-Rutman theorem that if r(F ) > 0, then it
is a positive eigenvalue of F associated with a positive eigenvector ṽ0 ∈ L1

+([0, T ]×
[0, a+]) \ {0}. That is,

(F ṽ0)(t, a) = r(F )ṽ0(t, a).

Hence, we can see that there exists a periodic eigenvector v0 in XT,+ \ {0} of F ,
which is associated with the eigenvalue r(F ) and is the periodization of ṽ0.

Next, we use the idea in Kuniya [29] and Kuniya and Inaba [31] to prove our
main result. First we introduce a fixed point theorem in Inaba [19], based on the
Krasnoselskii fixed point theorem (Krasnoselskii [27]). Let E be a real Banach space
and E∗ be its dual space. Let E+ be the positive cone of E and E∗+ be the dual
cone of E; that is, the subset of E∗ consisting of all positive linear functionals on
E. For φ ∈ E and f ∈ E∗, we write the value of f at φ as 〈f, φ〉. Then we say that
f ∈ E∗+ \{0} is strictly positive if 〈f, φ〉 > 0 holds for every φ ∈ E+ \{0}. Moreover,
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we say that φ ∈ E+ is a quasi-interior point if 〈f, φ〉 > 0 holds for all f ∈ E∗+.
Denote the set of bounded linear operators from E to E by B(E). Then we say
that a positive operator T ∈ B(E) is nonsupporting if for every pair φ ∈ E+ \ {0}
and f ∈ E∗+ \{0}, there exists a positive integer p = p(φ, f), such that 〈f, Tnφ〉 > 0
for all n ≥ p. From the results in Marek [34] and Sawashima [35], we obtain the
following proposition.

Proposition 4.3 (Marek [34] and Sawashima [35]). Let E be a real Banach space
and T ∈ B(E) be compact and nonsupporting. Then

(i) r(T ) ∈ Pσ(T ) \ {0} and r(T ) is a simple pole of the resolvent, where Pσ(·)
denotes the point spectrum of an operator;

(ii) The eigenspace corresponding to r(T ) is one-dimensional and the correspond-
ing eigenvector ϕ ∈ E+ is a quasi-interior point. The relation Tφ = µφ with
φ ∈ E+ implies that φ = cϕ for a constant c.

The fixed point theorem in Inaba [19] based on the Krasnoselskii fixed point
theorem (Krasnoselskii [27]) can be stated as follows:

Theorem 4.4 (Inaba [19]). Let E be a real Banach space with positive cone E+

and F be a positive nonlinear operator on E. Suppose that

(i) F (0) = 0 and the strong Fréchet derivative F := F ′[0] exists at 0;
(ii) F has a positive eigenvector v0 ∈ X+ \ {0} corresponding to an eigenvalue

λ0 > 1 and no eigenvector corresponding to eigenvalue 1;
(iii) F is compact and F (E+) is bounded.

Then F has a nontrivial fixed point in E+ \ {0}.
We now use Proposition 4.3 and Theorem 4.4 to prove our main result.

Theorem 4.5. Let F and F be defined as (4.5) and (4.6), respectively. If r(F ) >
1, then F has a nontrivial fixed point in XT,+ \ {0}.
Proof. From (i) of Assumption 3.1 and (iii) of Assumption 4.1, we have an inequality

F (ϕ)(t, a) ≥ ε0e−(ρ
++σ++γ+)a+

∫ a+

0

∫ a′

0

∫ a′

ξ

P ∗(t, a′)σ(a′−ξ)ϕ(t−τ, a′−τ)dτdξda′.

Then we have

F 2(ϕ)(t, a) ≥ε20e−2(ρ
++σ++γ+)a+

∫ a+

0

∫ a′

0

∫ a′

ξ

P ∗(t, a′)σ(a′ − ξ)

×
∫ a+

0

∫ η

0

∫ η

ω

P ∗(t− τ, η)σ(η − ω)

× ϕ(t− τ − δ, η − δ)dδdωdηdτdξda′

≥ε20A2e−2(ρ
++σ++γ+)a+

∫ a+

0

∫ a′

0

∫ a′

ξ

e−
∫ a′
0
µ(s)dsσ(a′ − ξ)

×
∫ a+

0

∫ η

0

∫ η

ω

e−
∫ η
0
µ(s)dsσ(η − ω)

× ϕ(t− τ − δ, η − δ)dδdωdηdτdξda′. (4.11)

Now let us define a linear functional H ∈ X∗T on XT by

〈H,ϕ〉 :=ε20A
2e−2(ρ

++σ++γ+)a+
∫ a+

0

∫ a′

0

∫ a′

ξ

e−
∫ a′
0
µ(s)dsσ(a′ − ξ)
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×
∫ a+

0

∫ η

0

∫ η

ω

e−
∫ η
0
µ(s)dsσ(η − ω)

× ϕ(t− τ − δ, η − δ)dδdωdηdτdξda′, ϕ ∈ XT .

Then from (ii) and (iv) of Assumption 4.1, we see that H ∈ X∗T,+ is a strictly

positive linear functional. Thus, since F 2ϕ ≥ 〈H,ϕ〉e, e = 1 ∈ XT,+ follows from
(4.11), we have 〈f,F 2ϕ〉 ≥ 〈H,ϕ〉〈f, e〉 > 0 for every pair ϕ ∈ XT,+ \ {0} and
f ∈ X∗T,+ \ {0}, which implies that Fϕ ∈ XT,+ \ {0}, ∀ϕ ∈ XT,+ \ {0}. It follows

that F 3ϕ = F 2(Fϕ) ≥ 〈H,Fϕ〉e and hence 〈f,F 3ϕ〉 ≥ 〈H,Fϕ〉〈f, e〉 > 0 for
every pair ϕ ∈ XT,+ \ {0} and f ∈ X∗T,+ \ {0}. Similarly, we can prove that for all

n ≥ 2 that 〈f,Fnϕ〉 > 0 holds for every pair ϕ ∈ XT,+ \ {0} and f ∈ X∗T,+ \ {0}.
Consequently, F is nonsupporting.

Next we can show the compactness of F similarly by the case of F in Lemma
4.2. And the boundedness of F (XT,+) follows from the inequality

F (ϕ)(t, a) ≤
∫ a+

0

β(t; a, a′)P ∗(t, a′)

∫ a′

0

σ(a′ − ξ)

×
∫ a′

ξ

ϕ(t− τ, a′ − τ)e−
∫ a′
τ
ϕ(t−η,a′−η)dηdτdξda′

≤β+

∫ a+

0

P ∗(t, a′)

∫ a+

0

σ(a′ − ξ)dξ
(

1− e−
∫ a′
ξ
ϕ(t−η,a′−η)dη

)
da′

≤β+

∫ a+

0

P ∗(t, a′)

∫ a+

0

σ(a′ − ξ)dξda′ <∞, ∀ϕ ∈ XT,+,

where β+ = supt∈[0,T ] ess sup(a,a′)∈[0,a+]2 β(t; a, a′) <∞.

Finally, by Proposition 4.3 we see that r(F ) is a simple eigenvalue of F and the
corresponding eigenvector is positive. Moreover, since r(F ) > 1, it follows from
(ii) of Proposition 4.3 that F has no eigenvector corresponding to eigenvalue 1.
Thus (ii) of Theorem 4.4 holds. Since (i) is obvious and (iii) follows from the above
argument, we obtain that F has a nontrivial fixed point in XT,+ \ {0}.

Now the existence of a nontrivial fixed point of operator F implies the existence
of a nontrivial periodic solution of the original system (2.1). Moreover, we are
interested in using the sign of R0− 1 to check the existence of a nontrivial periodic
solution of the original system (2.1).

Suppose that the system is in the diseases-free state (S∗(t, a), 0, 0, R∗(t, a)), where
S∗(t, a) + R∗(t, a) = P ∗(t, a). From the first equation of (2.1) we can compute

S∗(t, a) = Ae−
∫ a
0
(µ(σ)+ρ(σ))dσ. Further, from the second and third equations of

(2.1), we obtain a linearized system
∂E

∂t
+
∂E

∂a
= λ(t, a)S∗(t, a)− (σ(a) + µ(a))E(t, a),

∂I

∂t
+
∂I

∂a
= σ(a)E(t, a)− (γ(a) + µ(a))I(t, a).

(4.12)

Integrating the first equation of (4.12) along the characteristic line t− a =constant
yields

E(t, a) =

∫ a

0

λ(t− a+ τ, τ)S∗(t− a+ τ, τ)e−
∫ a
τ
(σ(ρ)+µ(ρ))dρdτ
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= A

∫ a

0

λ(t− τ, a− τ)e−
∫ a
τ
(µ(a−η)+ρ(a−η))dηe−

∫ τ
0
(σ(a−η)+µ(a−η))dηdτ

= A

∫ a

0

λ(t− τ, a− τ)e−
∫ a
0
µ(a−η)dηe−

∫ a
τ
ρ(a−η)dηe−

∫ τ
0
σ(a−η)dηdτ. (4.13)

Substituting it into the second equation of (4.12), we obtain via integrating along
the characteristic line t− a =constant that

I(t, a) =

∫ a

0

σ(ξ)E(t− a+ ξ, ξ)e−
∫ a
ξ
(γ(δ)+µ(δ))dδdξ

=

∫ a

0

σ(a− ξ)E(t− ξ, a− ξ)e−
∫ ξ
0
(γ(a−η)+µ(a−η))dηdξ

= A

∫ a

0

σ(a− ξ)
∫ a

ξ

λ(t− τ, a− τ)e−
∫ a
ξ
µ(a−η)dηe−

∫ a
τ
ρ(a−η)dη

× e−
∫ τ
ξ
σ(a−η)dηdτe−

∫ ξ
0
(γ(a−η)+µ(a−η))dηdξ

= A

∫ a

0

σ(a− ξ)
∫ a

ξ

λ(t− τ, a− τ)e−
∫ a
0
µ(a−η)dηe−

∫ a
τ
ρ(a−η)dη

× e−
∫ τ
ξ
σ(a−η)dηdτe−

∫ ξ
0
γ(a−η)dηdξ. (4.14)

Insert it into the equation of λ defined in (2.7), we obtain by changing the integral
order that

λ(t, a) = A

∫ a+

0

β(t; a, a′)

∫ a′

0

σ(a′ − ξ)
∫ a′

ξ

λ(t− τ, a′ − τ)

× e−
∫ a′
0
µ(a′−η)dηe−

∫ a′
τ
ρ(a′−η)dηe−

∫ τ
ξ
σ(a′−η)dηdτe−

∫ ξ
0
γ(a′−η)dηdξda′

= A

∫ a+

0

∫ a+

τ

∫ τ

0

β(t; a, a′)σ(a′ − ξ)λ(t− τ, a′ − τ)e−
∫ a′
0
µ(a′−η)dη

× e−
∫ a′
τ
ρ(a′−η)dηe−

∫ τ
ξ
σ(a′−η)dηe−

∫ ξ
0
γ(a′−η)dηdξda′dτ. (4.15)

Define a linear operator B(t, τ) from L1(0, a+) into itself by

(B(t, τ)ψ)(a) :=A

∫ a+

τ

∫ τ

0

β(t; a, a′)σ(a′ − ξ)e−
∫ a′
0
µ(a′−η)dηe−

∫ a′
τ
ρ(a′−η)dη

× e−
∫ τ
ξ
σ(a′−η)dηe−

∫ ξ
0
γ(a′−η)dηψ(a′ − τ)dξda′.

Then (4.15) can be written as an abstract homogeneous renewal equation:

λ(t, a) :=

∫ a+

0

(B(t, τ)λ(t− τ))(a)dτ.

From the periodic renewal theorem [37, 21], we see that λ(t, a) is asymptotically
proportional to an exponential solution er0tw(t) growing with a Malthusian param-
eter r0. The Malthusian parameter r0 is a real root of the characteristic equation
r(B̂(z)) = 1, where B̂(z), z ∈ C, is a linear operator on XT defined by

(B̂(z)ψ)(t) :=

∫ a+

0

e−ztB(t, τ)ψ(t− τ)dτ,

and w ∈ XT is a positive eigenfunction of B̂(r0) associated with the positive eigen-

value unity. Therefore, the sign relation sign(r0) = sign(r(B̂(0)) − 1) holds. Then
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R0 in periodic environment is defined as the spectral radius of the next generation
operator K : XT → XT given by

K(ϕ)(t, a) := (B̂(0)ϕ)(t) =

∫ a+

0

B(t, τ)ϕ(t− τ)dτ, ϕ ∈ XT .

We see that K is a positive operator from XT into itself:

(Kϕ)(t, a) =A

∫ a+

0

∫ a+

τ

∫ τ

0

β(t; a, a′)σ(a′ − ξ)e−
∫ a′
0
µ(a′−η)dηe−

∫ a′
τ
ρ(a′−η)dη

× e−
∫ τ
ξ
σ(a′−η)dηe−

∫ ξ
0
γ(a′−η)dηϕ(t− τ, a′ − τ)dξda′dτ. (4.16)

As in [4, 22], we obtain the asymptotic per generation growth factor of the infected
population

R0 = r(K). (4.17)

Moreover, assuming that the Malthusian parameter r0 for population growth equals
zero, it follows from [31, Proposition 7.1] that r(F ) = r(K) = R0. In summary, we
have the following main theorem in this paper.

Theorem 4.6. Let R0 be defined in (4.17).

(i) If R0>1, then system (2.1) has a nontrivial periodic solution (S∗, E∗, I∗, R∗)
∈ (XT,+ \ {0})4.

(ii) If R0<1, then system (2.1) has no nontrivial periodic solution in (XT,+ \
{0})4.

Proof. First (i) follows immediately from Theorem 4.5. Now let us prove (ii). On
the contrary, if system (2.1) has a nontrivial periodic solution (S∗, E∗, I∗, R∗) ∈
(XT,+\{0})4, then operator F has a nontrivial fixed point ϕ∗ = F (ϕ∗) in XT,+\{0}.
Since ϕ∗ = F (ϕ∗) ≤ F (ϕ∗), we have r(F ) = R0 ≥ 1, which is a contradiction.

5. Numerical examples. In this section, we provide some numerical examples to
illustrate our results obtained in the previous sections. For simplicity, we consider
the case where β(t; a, a′) = β(t) = c1(1 + c2 cos(2πt)) is only time-periodic and
independent of the age variable a, ρ(a) = ρ, γ(a) = γ, and σ(a) = σ are constant.
We also choose µ(a) = 10−4× (a−30)2. We consider two scenarios in the following.

Figure 1. Behavior of the model when R0 < 1: (a) Total exposed

population
∫ 80

0
e(t, a)da versus time t; (b) Total infected population∫ 80

0
i(t, a)da versus time t.
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5.1. No vaccination. When the vaccination rate ρ = 0, from our previous results
we expect that system (2.6) has a unique periodic solution with period 1 when
R0 > 1. In fact, system (2.6) has no nontrivial periodic solution when R0 < 1

in Figure 1. Figure 2 demonstrates that solutions
∫ 80

0
s(t, a)da,

∫ 80

0
e(t, a)da, and∫ 80

0
i(t, a)da converge to periodic solutions with period 1.
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Figure 2. Behavior of solutions when R0 > 1 and the vaccination

rate is zero: (a) Total susceptible population
∫ 80

0
s(t, a)da versus

time t; (b) Total exposed population
∫ 80

0
e(t, a)da versus time t; (c)

Total infected population
∫ 80

0
i(t, a)da versus time t.

5.2. Effect of vaccination. In Figure 3, we explore the effect of vaccination on the
behavior of solutions. When there is no vaccination, Figure 3(a) indicates that there
is a periodic solution with period 1. In particular, Figure 4 shows that the infected
population and exposed population of this periodic solution versus age and time
(in three periods), respectively, and Figure 5 presents the age distribution of the
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Figure 3. Effect of vaccination on the behavior of the solutions
(the total exposed population

∫ 80

0
e(t, a)da and the total infected

population
∫ 80

0
i(t, a)da versus time t) and different vaccination rate

ρ: (a) ρ = 0; (b) ρ = 0.5; (c) ρ = 0.7; (d) ρ = 0.9. All other
parameters are fixed.
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infected population at peak time (t = 60.3), where most infected individuals come
from young ages. By increasing the vaccination rate (Figure 3(b)-(e)), which is an
essential control strategy for many infectious diseases, it is possible to successfully
control the infectious disease.

Figure 4. Plots of the infected population i(t, a) and exposed pop-
ulation e(t, a) versus age a and time t (in three periods).

Figure 5. Age distribution of the infected population at the peak
of a periodic solution (t = 60.3).

6. Discussion. Since one of the main issues in controlling some infectious diseases,
such as measles, mumps, and pertussis, is to find the optimal age to vaccinate
children in order to have the maximum impact on the incidence of disease-related
morbidity and mortality for a given rate of vaccination coverage, age-structured
epidemic models have been extensively used to study the transmission dynamics and
control of infectious diseases (see Anderson and May [1], Andreasen [2], Bentil and
Murray [5], Busenberg et al. [8, 7], Cha et al. [9], Feng et al. [11], Greenhalgh [12],
Hethcote [13], Hoppensteadt [15], Iannelli [17], Iannelli et al. [18], Inaba [19, 23],
Li et al. [33], Schenzle [36], and Tudor [38]). The outbreaks of some infectious
diseases exhibit seasonal patterns, recently there has been considerable interest in
investigating age-structured epidemic models with periodic parameters (Busenberg
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et al. [7], Kubo and Langlais [28], Kuniya [29], Kuniya and Inaba [31], Kuniya and
Iannelli [30], and Langlais and Busenberg [32]). For an age-structured SIS epidemic
model with periodic parameters, Kuniya and Inaba [31] obtained a threshold value
for the existence and uniqueness of a nontrivial endemic periodic solution.

Based on a periodic SEIR epidemic model describing measles (Earn et al. [10],
Huang et al. [16]), in this paper we considered an age-structured SEIR model
with periodic infection rate. We first established the well-posedness of the initial-
boundary value problem for the age-structured SEIR model. Then we studied
existence of time periodic solutions of the model by using a fixed point theorem
and showed that there is also a threshold value for the existence and uniqueness
of a nontrivial endemic periodic solution. Finally we provided some numerical
simulations to illustrate the obtained results. Note that in this paper we only
assumed that the infection rate β is time periodic. In fact the results still remain
valid if all parameters are time periodic, that is µ(a) = µ(a, t), ρ(a) = ρ(a, t), σ(a) =
σ(a, t) and γ(a) = γ(a, t), see [31, 29].

It will be interesting to consider the stability of periodic solutions and optimal
age vaccinations in age-structured epidemic model with periodic parameters. Also,
it will be interesting to find age distribution data on some infectious diseases, such
as measles, mumps, and pertussis, and use model (2.1) to calibrate the data.
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