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Abstract. In this paper, we study the global dynamics of a density-dependent

predator-prey system with ratio-dependent functional response. The main fea-

tures and challenges are that the origin of this model is a degenerate equilibrium
of higher order and there are multiple positive equilibria. Firstly, local quali-

tative behavior of the system around the origin is explicitly described. Then,

based on the dynamics around the origin and other equilibria, global qualitative
analysis of the model is carried out. Finally, the existence of Bogdanov-Takens

bifurcation (cusp case) of codimension two is analyzed. This shows that the

system undergoes various bifurcation phenomena, including saddle-node bifur-
cation, Hopf bifurcation, and homoclinic bifurcation along with different topo-

logical sectors near the degenerate origin. Numerical simulations are presented
to illustrate the theoretical results.

1. Introduction. Since the early twentieth century, modelling predator-prey inter-
actions has attracted great attention from applied mathematicians and theoretical
biologists and various types of predator-prey models have been developed. Ratio-
dependent predator-prey models were proposed in the late 1980s and have been
extensively studied since then. In 1989, Arditi and Ginzburg [3] provided evidence
and empirical observations to suggest that ratio-dependent predator-prey models
give more reasonable predictions for the complex, heterogeneous systems with slow
dynamics, where the final (large scale) outcome of predation is a sharing process,
such as large terrestrial carnivores and their prey. Akcakaya et al. [2] also referred
to the resource sharing and interference as the mechanistic base of ratio dependence.
Gutierez [10] developed the physiological basis for the ratio-dependent theory and
used a metabolic pool model of Nicholson’s blowflies for explanation. Akcakaya et al.
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[1] constructed a mathematical model of mammals to predict some specific patterns
of population cycles, which showed the reasonability of the ratio-dependent preda-
tion hypothesis for some mammals. Based on these studies, in the past two decades
the following predator-prey system with ratio-dependent functional response x′(t) = x(t)

[
c− bx(t)− sy(t)

x(t)+my(t)

]
,

y′(t) = y(t)
[
−d+ fx(t)

x(t)+my(t)

]
,

(1.1)

has been analyzed considerably. Here, x(t) and y(t) denote the population densities
of the prey and predators at time t, respectively. c is the intrinsic growth rate of
the prey and b is the mutual interference among prey population so that c

b is the
carrying capacity of the prey in the absence of predators. d represents the death
rate of predators. The predators consume prey according to the ratio-dependent
functional response, where s, f and m stand for the capturing rate, conversion
rate, and half saturation constant, respectively. All parameters of system (1.1) are
positive.

Detailed studies on the dynamics of (1.1) have been done in some early studies.
For instance, Kuang and Beretta [19] proved that if the positive steady state is
locally asymptotically stable, then the system has no nontrivial positive periodic
solutions, that is, positive solutions tend either to the origin or to the unique positive
equilibrium. Jost et al. [18] investigated the asymptotic behavior of system (1.1)
around the origin and demonstrated that (0, 0) can be either a saddle point or
an attractor for certain trajectories, that is, (0, 0) has its own basin of attraction
even when there exists a nontrivial equilibrium. A complete classification of the
asymptotic behavior of the solutions for model (1.1) was provided in Hsu et al. [14].
Based on the qualitative behavior of system (1.1) at the origin, global qualitative
analysis of the model depending on all parameters was carried out in Xiao and Ruan
[30]. Berezovskaya et al. [6] showed the existence of eight qualitatively differential
types of system behaviors for various parameter values. Versal unfoldings of system
(1.1) were explored and all its possible bifurcations have been discussed in Ruan et
al. [23]. Heteroclinic bifurcation in system (1.1) was studied by Ruan et al. [22],
Kuang et al. [20], and Tang and Zhang [27].

However, in the natural world, predators can interfere with each other’s activ-
ities and generate competition for various resources. Hence, it is more natural to
incorporate both prey density dependence and predator density dependence into the
predator-prey system [5]. In 1976, Bazykin [4] proposed a predator-prey model tak-
ing the density-dependent mortality of predators into consideration. Systematically
qualitative analysis on the original Bazykin’s model can be found in Hainzl [11, 12].
Motivated by these ecological observations, in this paper, we consider the following
predator-prey model with both density-dependent mortality and ratio-dependent
functional response: x′(t) = x(t)

[
c− bx(t)− sy(t)

x(t)+my(t)

]
,

y′(t) = y(t)
[
−d− ry(t) + fx(t)

x(t)+my(t)

]
.

(1.2)

Compared with system (1.1) without density dependent death rate of predator

species ry(t)
2
, system (1.2) has richer and more complex dynamics. For system

(1.2), local asymptotic stability of the positive steady state cannot guarantee the
global asymptotic stability due to the effect of predator density dependence [17].
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Inspired by the S-procedure [25] and semi-definite programming [21], by using the
sum of squares decomposition (SOS) based method [32] to find polynomial Lya-
punov functions, global asymptotic stability of the positive equilibrium of system
(1.2) was discussed in [17]. However, the global topological structure of the model
is not presented. For this purpose, we have to study the behavior of solutions of
system (1.2) in the interior of the first quadrant.

Meanwhile, it is also challenging to investigate the bifurcation phenomena of
system (1.2). By exploring the monotonic property of the trace of the Jacobian
matrix with respect to the predator density dependence parameter r, the existence
of Hopf bifurcation was analytically verified in [17]. According to the bifurca-
tion theory in [9, 28], we know that under certain nondegeneracy conditions, some
equilibrium can be a cusp. If we choose suitable bifurcation parameters, then the
system undergoes a Bogdanov-Takens bifurcation. This implies that the system
can undergo saddle-node bifurcation, Hopf bifurcation, and homoclinic bifurcation.
Bogdanov-Takens bifurcation in different predator-prey models has been studied
by some researchers recently. In Xiao and Ruan [29], Bogdanov-Takens bifurca-
tion in predator-prey systems with constant rate havesting was analyzed. In Ruan
and Xiao [24], Bogdanov-Takens bifurcation of cusp type of codimension 2 in a
predator-prey system with nonmonotonic functional response was studied. Huang
et al. [15] investigated bifurcations in a Leslie type system with generalized Holling
type III functional response and proved that the model can exhibit degenerate fo-
cus type Bogdanov-Takens bifurcation of codimension 3 for some parametric values.
These bifurcation analytical results and corresponding numerical simulations pre-
dicted that the populations of the predator-prey systems oscillate and outbreak
under different parameter conditions.

In this paper, we will explore the global structure of system (1.2) in R2
+ :=

{(x, y) : x > 0, y > 0}. To this purpose, letting t → ct, x → b
cx, y →

bm
c y, s =

s
cm , b = f

c , d = d
f and r = cr

bfm , we can simplify system (1.2) as x′(t) = x(t)
[
1− x(t)− sy(t)

x(t)+y(t)

]
,

y′(t) = by(t)
[
−d− ry(t) + x(t)

x(t)+y(t)

]
.

(1.3)

By geometrical analysis of hyperbolic curves, sufficient and necessary conditions
on the existence of positive equilibria of system (1.3) have been given in [17]. By
analyzing the bifurcation function, it was proved that the positive equilibrium is
a saddle-node under some conditions. This implies the existence of a saddle-node
bifurcation. The positive equilibrium can be a cusp under special parametric con-
ditions. Thus, the Bogdanov-Takens bifurcation of system (1.3) can be further
analyzed.

We first explore the local qualitative behavior of system (1.3) near the origin in
R2

+. The origin is a critical point of higher order and system (1.3) exhibits various
dynamic phenomena nearby. There exist parabolic sectors, hyperbolic sectors, ellip-
tic sectors, and some combinations of them in the neighborhood of the origin. These
structures have important implications on the global behavior of the model. Based
on the dynamics around the origin and equilibria, we study the global dynamics
of system (1.3). Lastly, we focus on the existence of bifurcations that occur in a
two-dimensional parameter region. Under some conditions, we prove that system
(1.3) undergoes Bogdanov-Takens bifurcation, that is, the bifurcation of a cusp of
codimension 2 along with different topological sectors near the degenerate origin.
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The rest of this paper is organized as follows. In section 2, the qualitative be-
havior of system (1.3) around the origin is investigated. Section 3 is devoted to the
global dynamics of system (1.3). Section 4 explores the Bogdanov-Takens bifurca-
tion. Conclusions can be found in Section 5 .

2. Local qualitative behavior near the origin. We analyze the global quali-
tative behavior and topological structures of system (1.3) in R2

+. However, since
the ratio-dependent model (1.3) is not well defined at the origin (0, 0), we need to
explore its local qualitative behavior around the origin. To this end, similar to the
analysis in [30], we redefine system (1.3) as

x′(t) = x(t)
[
1− x(t)− sy(t)

x(t)+y(t)

]
,

y′(t) = by(t)
[
−d− ry(t) + x(t)

x(t)+y(t)

]
,

x′(t) = y′(t) = 0, when x(t) = y(t) = 0.

(2.1)

Moreover, since system (2.1) cannot be linearized at (0, 0), local stability of (0, 0)
cannot be studied directly. By making a time scale change dt = (x + y)dt, we can
transform system (2.1) into the following equivalent polynomial system{

x′(t) = X2(x, y) + Φ(x, y) := x2 + (1− s)xy − x3 − x2y,
y′(t) = Y2(x, y) + Ψ(x, y) := b(1− d)xy − bdy2 − brxy2 − bry3,

(2.2)

where X2 and Y2 are homogeneous polynomials in x and y of degree 2 and Φ(x, y) :=
−x3 − x2y, Ψ(x, y) := −brxy2 − bry3. The equilibrium (0, 0) of the polynomial
system (2.2) is an isolated critical point of higher order.

By the analysis results in section II.2 in [31], we know that no orbit of system
(2.2) can tend to the critical point (0, 0) spirally. If the orbits of system (2.2)
tend to the origin as a sequence {tn} of t tends to ∞ along a direction, then
the direction is called a characteristic direction. These characteristic directions
are given by solutions of the characteristic equation [31]. For this, we introduce the
polar coordinate transformation x = γ cos θ and y = γ sin θ. Then the characteristic
function of system (2.2) takes the form

G(θ) := cos θY2(cos θ, sin θ)− sin θX2(cos θ, sin θ)

= sin θ cos θ[(s− 1− bd) sin θ − (b− 1− bd) cos θ].

The characteristic equation
G(θ) = 0 (2.3)

indicates the following two cases: (i) G(θ) ≡ 0 or (ii) G(θ) has at most three real
roots θi(i = 1, 2, 3) in Θ := {θ | 0 ≤ θ ≤ π

2 }. If G(θ) is not identically zero,
then there are at most 3 directions θi(i = 1, 2, 3) in Θ along which at least one
orbit of system (2.2) approaches the origin. These orbits of system (2.2) divide the
neighborhood of the origin into various open regions, which are called sectors. For
system (2.2), there exist three kinds of sectors: hyperbolic sectors, parabolic sectors
and elliptic sectors [31]. According to the number of real roots of characteristic
equation (2.3) in Θ, we consider the following three cases.

2.1. s− 1− bd = 0 and b− 1− bd = 0. In this case, G(θ) ≡ 0. This is a singular
case. By the Briot-Bouquet transformation y = ux, system (2.2) in R2

+ is changed
into {

x′(t) = x2 + (1− s)x2u− x3 − x3u,
u′(t) = x2u+ (1− br)x2u2 − brx2u3.

(2.4)
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On the (x, u)-plane, system (2.4) can be written as

dx

du
=

1− bdu− x− xu
u+ (1− br)u2 − bru3

. (2.5)

By conventional calculation, the solution of system (2.5) can be expressed by

x =

{
1 + C1|br − 1

u |
br

1+br |1 + 1
u |

1
1+br + C2| bru−1u+1 |

1
1+br − bd, x > 1,

1− C1|br − 1
u |

br
1+br |1 + 1

u |
1

1+br + C2| bru−1u+1 |
1

1+br − bd, x ≤ 1,
(2.6)

where Ci (i = 1, 2) are arbitrary constants. So a general solution of system (2.2) in
R2

+ is

x =

 1 + C1|br − x
y |

br
1+br |1 + x

y |
1

1+br + C2| bry−xy+x |
1

1+br − bd, x > 1,

1− C1|br − x
y |

br
1+br |1 + x

y |
1

1+br + C2| bry−xy+x |
1

1+br − bd, x ≤ 1.

The dynamic behavior can be seen in Figure 1. In the following, we only need
to consider the non-singular case.
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Figure 1. Phase diagram of system (2.2) with s = b = 2, d = 0.5
and r = 0.2.

2.2. (s− 1− bd)(b− 1− bd) = 0 but one of them is not zero. In this case,
characteristic equation (2.3) has two roots in Θ: θ1 = 0 and θ2 = π

2 . To verify the
existence and number of orbits of system (2.2) which tend to the origin along the
direction θi (i = 1, 2) as t tends to ∞, we need to introduce the following auxiliary
functions [31]

G′(θ) = cos 2θ[(s− 1− bd) sin θ + (b− 1− bd) cos θ]

+ sin θ cos θ[(s− 1− bd) cos θ − (b− 1− bd) sin θ],

G′′(θ) =− 5

2
sin 2θ[(s− 1− bd) sin θ + (b− 1− bd) cos θ]

+ 2 cos 2θ[(s− 1− bd) cos θ − (b− 1− bd) sin θ],

H(θ) := sin θY2(cos θ, sin θ) + cos θX2(cos θ, sin θ)

= cos3 θ + (1− s) cos2 θ sin θ + b(1− d) cos θ sin2 θ − bd sin3 θ.

Now we classify different situations by virtue of the multiplicity of roots of char-
acteristic equation (2.3).
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2.2.1. s − 1 − bd = 0 and b − 1 − bd 6= 0. In this case, θ1 is a simple root of (2.3)
and θ2 is a multiple root with multiplicity 2. Through the corresponding analysis
in [31], we obtain the following result.

Theorem 2.1. Assume that s− 1− bd = 0 and b− 1− bd 6= 0.

(I) There exist ε1 > 0 and γ1 > 0 such that
(i) if b−1−bd > 0, then all orbits of system (2.2) in {(θ, γ) : 0 ≤ θ < ε1, 0 <

γ < γ1} tend to (0, 0) along θ1 as t→ −∞;
(ii) if b − 1 − bd < 0, then there exists a unique orbit of system (2.2) in
{(θ, γ) : 0 ≤ θ < ε1, 0 < γ < γ1} which tends to (0, 0) along θ1 as
t→ −∞;

(II) There exist ε2 > 0 and γ2 > 0 such that all orbits of system (2.2) in {(θ, r) :
0 ≤ π

2 − θ < ε2, 0 < γ < γ2} tend to (0, 0) along θ2 as t→ +∞.

Proof. When s − 1 − bd = 0 and b − 1 − bd > 0, we have G′(θ1) = b − 1 − bd > 0
and H(θ1) = 1 > 0. Then, G′(θ1)H(θ1) > 0. Thus, by Theorem 3.4 on page
76 of [31], there exist ε1 > 0 and γ1 > 0 such that all orbits of system (2.2) in
{(θ, γ) : 0 ≤ θ < ε1, 0 < γ < γ1} tend to (0, 0) along θ1 as t→ −∞.

On the other hand, if s− 1− bd = 0 and b− 1− bd < 0, then G′(θ1)H(θ1) < 0.
Note that Φ(γ, θ) = −γ3 cos3 θ − γ3 cos2 θ sin θ and Ψ(γ, θ) = −brγ3 cos θ sin2 θ −
brγ3 sin3 θ. Let C(γ) := min{7γ, 7brγ}, then for 0 < θ1, θ2 � 1, we have

1

γ2
[Φ(γ, θ2)− Φ(γ, θ1)]

=γ[(cos θ1 − cos θ2)(cos2 θ1 + cos θ1 cos θ2 + cos2 θ2)

+ (1− sin2 θ1) sin θ1 − (1− sin2 θ2) sin θ2]

=γ[(sin(
π

2
− θ1)− sin(

π

2
− θ2))(cos2 θ1 + cos θ1 cos θ2 + cos2 θ2)

+ (sin θ1 − sin θ2)(1 + sin2 θ1 + sin θ1 sin θ2 + sin2 θ2)]

≤7γ|θ2 − θ1|

and

1

γ2
[Ψ(γ, θ2)−Ψ(γ, θ1)]

=brγ[(sin θ1 − sin θ2)(sin2 θ1 + sin θ1 sin θ2 + sin2 θ2)

+ (1− cos2 θ1) cos θ1 − (1− cos2 θ2) cos θ2]

=brγ[(sin θ1 − sin θ2)(sin2 θ1 + sin θ1 sin θ2 + sin2 θ2)

+ (sin(
π

2
− θ1)− sin(

π

2
− θ2))(1− cos2 θ1 − cos θ1 cos θ2 − cos2 θ2)]

≤7brγ|θ2 − θ1|.

Furthermore, we can see that

C(γ) = min{7γ, 7brγ} → 0 as γ → 0,

1

γ2
Φ(γ, θ) = −γ cos2 θ(sin θ + cos θ)→ 0 as γ → 0,

1

γ2
Ψ(γ, θ) = −brγ sin2 θ(sin θ + cos θ)→ 0 as γ → 0.

Hence, the conclusion (I)(ii) follows from Theorem 3.7 on page 79 of [31].
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Besides, when b− 1− bd > 0, we obtain G′(θ2) = 0, G′′(θ2) = 2(b− 1− bd) > 0
and H(θ2) = −bd < 0. Then G′′(θ2)H(θ2) 6= 0.

Let

D :=

(
H(θ2)

2

)2

(G′′(θ2))−1 =
b2d2

8(b− 1− bd)
> 0,

A(γ) := γ2
(

ln
1
γ

)−2
=
( γ

lnγ

)2
> 0,

and

η(γ, θ) := cos θΨ(γ, θ)− sin θΦ(γ, θ)

=γ3 cos θ sin θ[(1− br) cos θ sin θ + cos2 θ − br sin2 θ]

<0 as θ → π

2
.

We choose C1 = 1
2D, then η(γ, θ) < C1A(γ) for 0 < C1 < D. Thus, due to

Theorem 3.8 on page 85 of [31], if b−1− bd > 0, then there exist ε2 > 0 and γ2 > 0,
such that all orbits of system (2.2) in {(θ, γ) : 0 ≤ π

2 − θ < ε2, 0 < γ < γ2} tend to
(0, 0) along θ2 as t→ +∞.

When b − 1 − bd < 0, the conclusion (II) can also be obtained in a similar
manner.

2.2.2. s − 1 − bd 6= 0 and b − 1 − bd = 0. In this case, θ1 is a multiple root with
multiplicity 2 and θ2 is a simple root of (2.3). By using a similar analysis as the
proof of Theorem 2.1, we obtain the following theorem.

Theorem 2.2. Suppose that s− 1− bd 6= 0 and b− 1− bd = 0.

(I) There exist ε3 > 0 and γ3 > 0 such that all orbits of system (2.2) in {(θ, γ) :
0 ≤ θ < ε3, 0 < γ < γ3} tend to (0, 0) along θ1 as t→ −∞;

(II) There exist ε4 > 0 and γ4 > 0 such that
(i) if s− 1− bd > 0, then all orbits of system (2.2) in {(θ, γ) : 0 ≤ π

2 − θ <
ε4, 0 < γ < γ4} tend to (0, 0) along θ2 as t→ +∞;

(ii) if s − 1 − bd < 0, then there exists a unique orbit of system (2.2) in
{(θ, γ) : 0 ≤ π

2 − θ < ε4, 0 < γ < γ4} which tends to (0, 0) along θ2 as
t→ +∞.

2.3. (s− 1− bd)(b− 1− bd) 6= 0. In this case, since we only need to analyze
equation (2.3) in Θ, we discuss the following two subcases:

(A) If (b− 1− bd)(s− 1− bd) > 0, then (2.3) has two simple roots: θ1 = 0 and
θ2 = π

2 ;
(B) If (b− 1− bd)(s− 1− bd) < 0, then (2.3) has three simple roots: θ1, θ2 and

θ3 = arctan 1+bd−b
s−1−bd .

Firstly, we analyze the orbits along θ1 and θ2 in cases (A) and (B). According to
Theorems 3.4 and 3.7 in [31], the following theorem can be obtained.

Theorem 2.3. Suppose that (b− 1− bd)(s− 1− bd) 6= 0.

(I) There exist ε5 > 0 and γ5 > 0 such that
(i) if b−1−bd > 0, then all orbits of system (2.2) in {(θ, γ) : 0 ≤ θ < ε5, 0 <

γ < γ5} tend to (0, 0) along θ1 as t→ −∞;
(ii) if b − 1 − bd < 0, then there exists a unique orbit of system (2.2) in
{(θ, γ) : 0 ≤ θ < ε5, 0 < γ < γ5} which tends to (0, 0) along θ1 as
t→ −∞;

(II) There exist ε6 > 0 and γ6 > 0 such that
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(i) if s− 1− bd > 0, then all orbits of system (2.2) in {(θ, γ) : 0 ≤ π
2 − θ <

ε6, 0 < γ < γ6} tend to (0, 0) along θ2 as t→ +∞;

(ii) if s − 1 − bd < 0, then there exists a unique orbit of system (2.2) in
{(θ, γ) : 0 ≤ π

2 − θ < ε6, 0 < γ < γ6} which tends to (0, 0) along θ2 as
t→ +∞.

In the following, we consider θ3 in case (B).

Theorem 2.4. Suppose that b− 1− bd > 0 and s− 1− bd < 0.

(I) If s < 1 + sd, then there exist ε7 > 0 and γ7 > 0 such that there exists a
unique orbit of system (2.2) in {(θ, γ) : 0 ≤ |θ − θ3| < ε7, 0 < γ < γ7} that
tends to (0, 0) along θ3 as t→ −∞;

(II) If s > 1 + sd, then there exist ε8 > 0 and γ8 > 0 such that all orbits of system
(2.2) in {(θ, γ) : 0 ≤ |θ − θ3| < ε8, 0 < γ < γ8} tend to (0, 0) along θ3 as
t→ +∞.

Proof. By introducing the Briot-Bouquet transformation x = x, y = ux and dt =
xdt, system (2.2) is transformed into{

x′(t) = x+ (1− s)xu− x2 − x2u,

u′(t) = (b− 1− bd)xu+ (s− 1− bd)u2 + [1 + (1− br)u− bru2]x2u.
(2.7)

Note that the inverse transformation condenses the u-axis into one point. Thus,
we should investigate the equilibria of system (2.7) in the u-axis. For system (2.7),
there exist two equilibria, (0, 0) and (0,− b−1−bds−1−bd ), on the u-axis. (0, 0) is an unstable
node and we need to analyze the other one.

Letting x1 = x and x2 = u− b−1−bd
s−1−bd , we translate system (2.7) into x′1(t) = A1x1 + (1− s)x1x2 − s−b

s−1−bdx
2
1 − x21x2,

x′2(t) = A2x1 +A3x2 +A4x1x2 +A5x
2
2 +A6x1x

2
2 − brx1x32,

(2.8)

where A1 = b(s−1−sd)
s−1−bd , A2 = (s−b)(1+bd−b)

(s−1−bd)2

(
1 + br b−1−bds−1−bd

)
, A3 = 1 + bd− b, A4 =

1 + 2(1− br) 1+bd−b
s−1−bd −3br

(
1+bd−b
s−1−bd

)2
, A5 = s−1− bd and A6 = 1− br+ 3br b−1−bds−1−bd .

We can see that if b−1−bd > 0 and s−1−bd < 0, then A3 < 0 holds. Moreover,
if s−1−sd < 0, then A1 > 0 also holds. This implies that (0, 0) is a saddle point of
system (2.8). Thus, the equilibrium (0,− b−1−bds−1−bd ) of system (2.7) is a saddle point.
Hence, there exists a unique separatrix of this equilibrium in the interior of the first
quadrant of system (2.7), which tends to (0,− b−1−bds−1−bd ) as t → −∞. Through the
inverse Briot-Bouquet transformation, we can see that there exist ε7 > 0 and γ7 > 0
such that system (2.2) has one unique orbit in {(θ, γ) : 0 ≤ |θ−θ3| < ε7, 0 < γ < γ7}
that tends to (0, 0) along θ3 as t→ −∞.

However, when s − 1 − sd > 0, there holds A1 < 0. (0, 0) is a stable node of
system (2.8). Hence, the equilibrium (0,− b−1−bds−1−bd ) of system (2.7) is a stable node.
By the inverse Briot-Bouquet transformation, we obtain that there exist ε8 > 0 and
γ8 > 0 such that all orbits of system (2.2) in {(θ, γ) : 0 ≤ |θ− θ3| < ε8, 0 < γ < γ8}
tend to (0, 0) along θ3 as t→ +∞. This completes the proof of the theorem.

By a similar argument as the proof in Theorem 2.4, we have

Theorem 2.5. Assume that b− 1− bd < 0 and s− 1− bd > 0.
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(I) If s < 1 + sd, then there exist ε9 > 0 and γ9 > 0 such that there exists a
unique orbit of system (2.2) in {(θ, γ) : 0 ≤ |θ − θ9| < ε9, 0 < γ < γ9} that
tends to (0, 0) along θ3 as t→ +∞;

(II) If s > 1 + sd, then there exist ε10 > 0 and γ10 > 0 such that all orbits of
system (2.2) in {(θ, γ) : 0 ≤ |θ − θ10| < ε10, 0 < γ < γ10} tend to (0, 0) along
θ3 as t→ −∞.

Lastly, we consider a special case for s − 1 − sd = 0. In this case, A1 = 0 and
system (2.8) reduces to{

x′1(t) = (1− s)x1x2 − 1
dx

2
1 − x21x2,

x′2(t) = A2x1 +A3x2 +A4x1x2 +A5x
2
2 +A6x1x

2
2 − brx1x32.

(2.9)

Let x3 = x1 and x4 = A2x1 +A3x2, then system (2.9) is transformed into

x′3(t) =
[
(s− 1)A2

A3
− 1

d

]
x23 + (1− s) 1

A3
x3x4 + A2

A3
x33 − 1

A3
x23x4,

x′4(t) = A3x4 +
[
−(1− s)A

2
2

A3
− A2

d −A2A4 +
A2

2A5

A3

]
x23

+
[
(1− s)A2

A3
+A4 − 2A2A5

A3

]
x3x4 + A5

A3
x24

+
(
A2

2

A3
+

A2
2A6

A3

)
x33 +

(
−A2

A3
− 2A2A6

A3

)
x23x4 + A6

A3
x3x

2
4

+
brA3

2

A2
3
x43 −

3brA2
2

A2
3
x33x4 + 3brA2

A2
3
x23x

2
4 − br

A2
3
x3x

3
4.

(2.10)

To simplify the system, we consider the special case A2 = 0, that is, the condition

(H6) s− 1− bd = br(1 + bd− b).
Under conditions s− 1− sd = 0 and (H6), system (2.10) becomes x′3(t) = − 1

dx
2
3 + (1− s) 1

A3
x3x4 − 1

A3
x23x4,

x′4(t) = A3x4 +A4x3x4 + A5

A3
x24 + A6

A3
x3x

2
4 − br

A2
3
x3x

3
4.

(2.11)

We can see that, in the first equation of system (2.11), the degree of the lowest
power term is 2 and the corresponding coefficient is − 1

d < 0. Thus, due to Theorem
7.1 in page 131 of [31], (0, 0) is a saddle-node (see Figure 2). Hence, we obtain the
following theorem.

Theorem 2.6. Suppose that conditions (s− 1− bd)(b− 1− bd) 6= 0, s− 1− sd = 0
and (H6) hold. Then there exist ε11 > 0 and γ11 > 0 such that all orbits of system
(2.2) in {(θ, γ) : 0 ≤ |θ− θ3| < ε11, 0 < γ < γ11} tend to (0, 0) along θ3 as t→ +∞
(see Figure 3).

3. Global dynamics. In this section, by summarizing the results on the local
qualitative behavior around the critical point (0, 0) in Sections 3 and the results
on the positive and boundary equilibria in [17], we discuss the global dynamics of
system (1.3) depending on various parameters.

Note that d < 1 is the necessary condition for the existence of positive equilibria.
When d < 1, the boundary equilibrium point (1, 0) is a saddle point; and when
d > 1, it is a stable node. The sufficient and necessary conditions for the existence
of positive equilibria of system (1.3) were also given.
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Figure 2. Saddle-node (0, 0) of system (2.11) with s = 2, d =
0.5, b = 1, r = 1.
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Figure 3. Phase diagram of system (2.2) with s = 2, d = 0.5, b =
1, r = 1.

Lemma 3.1 ([17]). Let ∧,∨ and the bar − represent the intersection, union and
complement of the corresponding conditions. Then for system (1.3), there exists a
unique positive equilibrium if and only if one of the following conditions is satisfied:

(H1) s < 1
1−d ;

(H2) s = 1
1−d and s(2− d− r) < 2;

(H3) s = 1
1−d + (d−r)2

4r(1−d) and s(2− d− r) < 2.

There exist two positive equilibria if and only if

(H4) 1
1−d < s < 1

1−d + (d−r)2
4r(1−d) and s(2− d− r) < 2.

There exists no positive equilibrium if and only if (H1) ∨ (H2) ∨ (H3) ∨ (H4) holds.

Under the condition (H1) ∨ (H2) ∨ (H3), denote E∗ = (x∗, y∗) as the unique
positive equilibrium. Under the condition (H4), denote E1 = (x1, y1) and E2 =
(x2, y2) as the two positive equilibria. Under condition (H1) ∨ (H2) ∨ (H3), let

a∗1 =
(b− s)x∗y∗

(x∗ + y∗)2
+ x∗ + bry∗ and a∗2 =

[
r +

x∗ − rsy∗

(x∗ + y∗)2

]
bx∗y∗,
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and under condition (H4), we just need to replace (x∗, y∗) with (xi, yi) to obtain
ai1 and ai2, i = 1, 2. Then, the local stability of those positive equilibria is shown as
follows.

Lemma 3.2 ([17]). Under the condition (H1) ∨ (H2), the positive equilibrium E∗

is locally asymptotically stable if a∗1 > 0. Under condition (H3), if the following
condition

(H5) 4(1 + sr)(2s− 1− sd) 6= (s− b)(r + 2− d)2 + 4b(1− d)(1 + sr)2

also holds, then the unique positive equilibrium E∗ is a saddle-node. Under the
condition (H4), the positive equilibrium E1 is a saddle point; if a21 > 0 also holds,
then the positive equilibrium E2 is locally asymptotically stable.

3.1. Global dynamics of system (1.3) with no positive equilibrium. Firstly,
we consider the global dynamic behavior of system (1.3) when it has no positive
equilibria. In this case, the critical point (0, 0) and the boundary equilibrium (1, 0)
may be attractors and even a global attractor.

Theorem 3.3. Suppose that the following conditions hold

b− 1− bd ≥ 0 and s− 1− bd ≥ 0,

or b− 1− bd < 0 and s− 1− bd > 0,

or b− 1− bd > 0 and s− 1− bd < 0,

then the topological structure of the origin in R2
+ consists of an elliptic sector and a

parabolic sector. Moreover, if (H1) ∨ (H2) ∨ (H3) ∨ (H4) and d < 1 also hold, then
system (1.3) has no interior equilibrium and (0, 0) is a global attractor of system
(1.3) in R2

+ (see Figure 4).
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Figure 4. Phase diagram of system (1.3) with s = r = 2, d =
0.1, b = 1.

Proof. From Theorem 2.1 (I)(i),(II), Theorem 2.2 (I),(II)(i), and Theorem 2.3 (I)(i),
(II)(i), if b − 1 − bd ≥ 0 and s − 1 − bd ≥ 0, then there exist ε̄1 > 0 and γ̄1 > 0
such that all orbits of system (1.3) in {(θ, γ) : 0 ≤ θ < ε̄1, 0 < γ < γ̄1} tend to
(0, 0) along θ1 as t → −∞; and there exist ε̄2 and γ̄2 > 0 such that all orbits of
system (1.3) in {(θ, γ) : 0 ≤ π

2 − θ < ε̄2, 0 < γ < γ̄2} tend to (0, 0) along θ2 as
t→ +∞. Moreover, no other orbits tend to (0, 0). Thus, the topological structure
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of the origin in R2
+ consists of an elliptic sector and a parabolic sector. Under the

conditions b − 1 − bd < 0, s − 1 − bd > 0 or b − 1 − bd > 0, s − 1 − bd < 0, the
conclusions can be obtained similarly.

Due to Lemma 3.1, system (1.3) has no positive equilibria under condition

(H1) ∨ (H2) ∨ (H3) ∨ (H4) and the boundary equilibrium is a saddle point under
condition d < 1. Hence, (0, 0) is a global attractor of system (1.3) in R2

+.

Theorem 3.4. If d > 1 and s − 1 − bd ≥ 0, then the topological structure of the
origin in R2

+ consists of a parabolic sector and a hyperbolic sector. Moreover, system
(1.3) has no interior equilibrium, and (0, 0) and (1, 0) are attractors of system (1.3)
in R2

+ (see Figure 5).
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Figure 5. Phase diagram of system (1.3) with s = 3, d = 1.5, b =
1, r = 1.

Proof. Note that d > 1 implies b − 1 − bd < 0 and s − 1 − sd < 0. Thus, from
Theorem 2.3 (I)(ii) and (II)(i), if b − 1 − bd < 0 and s − 1 − bd > 0, then there
exist ε̄3 > 0 and γ̄3 > 0 such that there exists a unique orbit of system (1.3) in
{(θ, γ) : 0 ≤ θ < ε̄3, 0 < γ < γ̄3} which tends to (0, 0) along θ1 as t→ −∞; and there
exist ε̄4 > 0 and γ̄4 > 0 such that all orbits of system (1.3) in {(θ, γ) : 0 ≤ π

2 − θ <
ε̄4, 0 < γ < γ̄4} tend to (0, 0) along θ2 as t → +∞. Moreover, from Theorem 2.5
(I), if s < 1 + sd also holds, then there exist ε̄5 > 0 and γ̄5 > 0 such that there
exists a unique orbit of system (1.3) in {(θ, γ) : 0 ≤ |θ − θ3| < ε̄5, 0 < γ < γ̄5} that
tends to (0, 0) along θ3 as t → +∞. Furthermore, no other orbits tend to (0, 0).
Thus, the topological structure of the origin in R2

+ consists of a parabolic sector
and a hyperbolic sector. Under the conditions d > 1 and s− 1− bd = 0, the similar
conclusion can also be obtained.

Under condition d > 1, (H1) ∨ (H2) ∨ (H3) ∨ (H4) holds. This implies that
system (1.3) has no positive equilibria and the boundary equilibrium is a stable
node. Thus, the global conclusion of the theorem holds.

Theorem 3.5. If d > 1 and s − 1 − bd < 0, then the topological structure of the
origin in R2

+ consists of a hyperbolic sector. Moreover, system (1.3) has no interior
equilibrium, and the boundary equilibrium (1, 0) is a global attractor of system (1.3)
in R2

+ (see Figure 6).
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Figure 6. Phase diagram of system (1.3) with b = s = 2, d =
1.5, r = 2.

Proof. d > 1 implies that b− 1− bd < 0 holds. Thus, from Theorem 2.3 (I)(ii) and
(II)(ii), if b− 1− bd < 0 and s− 1− bd < 0, then there exist ε̄6 > 0 and γ̄6 > 0 such
that there exists a unique orbit of system (1.3) in {(θ, γ) : 0 ≤ θ < ε̄6, 0 < γ < γ̄6}
tending to (0, 0) along θ1 as t→ −∞; and there exist ε̄7 > 0 and γ̄7 > 0 such that
there exists a unique orbit of system (1.3) in {(θ, γ) : 0 ≤ π

2 − θ < ε̄7, 0 < γ < γ̄7}
tending to (0, 0) along θ2 as t → +∞. Moreover, no other orbits tend to (0, 0).
Thus, the topological structure of the origin in R2

+ consists of a hyperbolic sector
Due to Lemma 3.1, under condition d > 1, system (1.3) has no positive equilibria

and the boundary equilibrium is a stable node. Thus, (1, 0) is a global attractor of
system (1.3) in R2

+.

3.2. Global dynamics of system (1.3) with a unique positive equilibrium.
Now we consider the global dynamics for the case (H1). In this case, the critical
point (0, 0) or the positive equilibrium (x∗, y∗) may be an attractor and even a
global attractor. Note that when s− 1− sd < 0 and s− 1− bd ≥ 0, we have s > b
and thus s − 1 − sd > b − 1 − bd > 0. This contradicts with s − 1 − sd < 0, and
thus we need not to consider the case b− 1− bd > 0, s− 1− bd > 0 under condition
(H1).

Theorem 3.6. Suppose that b− 1− bd < 0 and s− 1− bd ≥ 0, then the topological
structure of the origin in R2

+ consists of a parabolic sector and a hyperbolic sector.
Moreover, if (H1) and a∗1 > 0 also hold, then both (0, 0) and (x∗, y∗) are attractors
of system (1.3) (see Figure 7).

Proof. From Theorem 2.3 (I)(ii) and (II)(i), if b − 1 − bd < 0 and s − 1 − bd > 0,
then there exist ε̄8 > 0 and γ̄8 > 0 such that there exists a unique orbit of system
(1.3) in {(θ, γ) : 0 ≤ θ < ε̄8, 0 < γ < γ̄8} that tends to (0, 0) along θ1 as t → −∞;
and there exist ε̄9 > 0 and γ̄9 > 0 such that all orbits of system (1.3) in {(θ, γ) :
0 ≤ π

2 − θ < ε̄9, 0 < γ < γ̄9} tend to (0, 0) along θ2 as t→ +∞. Moreover, no other

orbits tend to (0, 0). Thus, the topological structure of the origin in R2
+ consists of

a parabolic sector and a hyperbolic sector. Under the conditions b− 1− bd < 0 and
s− 1− bd = 0, the similar conclusion can also be obtained.
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Figure 7. Phase diagram of system (1.3) with s = 2, d =
0.625, r = 1, b = 0.8.

Under condition (H1) and a∗1 > 0, from Lemmas 3.1 and 3.2, system (1.3) has
a unique local stable positive equilibrium and the boundary equilibrium is a saddle
point. Thus, the global conclusion of the theorem holds.

Remark 1. Under condition (H1), only for the case that b − 1 − bd < 0 and
s − 1 − bd ≥ 0, there may exist Hopf bifurcation. Theorem 6 in [17] gave specific
conditions under which system (1.3) exhibits Hopf bifurcation.

Theorem 3.7. Suppose that b− 1− bd ≥ 0 and s− 1− bd < 0, then the topological
structure of the origin in R2

+ consists of a parabolic sector and a hyperbolic sector.
Moreover, if (H1) also holds, then the unique positive equilibrium (x∗, y∗) is a global
attractor of system (1.3) in R2

+ (see Figure 8).
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Figure 8. Phase diagram of system (1.3) with s = 1, d = 0.5, b =
2.5, r = 1.

Proof. From Theorem 2.3 (I)(i) and (II)(ii), if b − 1 − bd > 0 and s − 1 − bd <
0, then there exist ¯ε10 > 0 and γ̄10 > 0 such that all orbits of system (1.3) in
{(θ, γ) : 0 ≤ θ < ¯ε10, 0 < γ < γ̄10} tend to (0, 0) along θ1 as t → −∞; and there
exist ¯ε11 > 0 and γ̄11 > 0 such that there exists a unique orbit of system (1.3) in
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{(θ, γ) : 0 ≤ π
2 − θ < ¯ε11, 0 < γ < γ̄11} which tends to (0, 0) along θ2 as t → +∞.

No other orbits tend to (0, 0). Thus, the topological structure of the origin in
R2

+ consists of a parabolic sector and a hyperbolic sector. Under the conditions
b− 1− bd = 0 and s− 1− bd < 0, the similar conclusion can also be obtained.

Since b − 1 − bd ≥ 0 and s − 1 − bd < 0 imply that s < b and thus a∗1 > 0.
Then (x∗, y∗) is local asymptotically stable (and thus system (1.3) does not ex-
hibit Hopf bifurcation). Assume that l(t) = (x(t), y(t)) is an arbitrary nontrivial
periodic orbit of system (1.3) with period T > 0. Then under condition s < b,∮ T
0
trJ(x(t), y(t))dt =

∮ T
0

[−x(t) − bry(t) + (s−b)x(t)y(t)
(x(t)+y(t))2 ]dt < 0. By the divergency

criterion [13], the closed orbit l(t) is stable, which contradicts with the local asymp-
totic stability of (x∗, y∗). Thus, system (1.3) has no closed orbits.

Under condition (H1), from Lemma 3.1, system (1.3) has a unique positive equi-
librium and the boundary equilibrium is a saddle point. Hence, (x∗, y∗) is a global
attractor of system (1.3) in R2

+.

Theorem 3.8. Suppose that b− 1− bd < 0 and s− 1− bd < 0, then the topological
structure of the origin in R2

+ consists of a hyperbolic sector. Moreover, if (H1) and
s ≤ b also hold, then the unique positive equilibrium (x∗, y∗) is a global attractor of
system (1.3) in R2

+ (see Figure 9).
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Figure 9. Phase diagram of system (1.3) with s = 0.8, d =
0.5, r = 1, b = 1.

Proof. From Theorem 2.3 (I)(ii) and (II)(ii), if b−1−bd < 0 and s−1−bd < 0, then
there exist ¯ε12 > 0 and γ̄12 > 0 such that there exists a unique orbit of system (1.3)
in {(θ, γ) : 0 ≤ θ < ¯ε12, 0 < γ < γ̄12} which tends to (0, 0) along θ1 as t → −∞;
and there exist ¯ε13 > 0 and γ̄13 > 0 such that there exists a unique orbit of system
(1.3) in {(θ, γ) : 0 ≤ π

2 − θ < ¯ε13, 0 < γ < γ̄13} which tends to (0, 0) along θ2 as
t→ +∞. Moreover, no other orbits tend to (0, 0). Thus, the topological structure
of the origin in R2

+ consists of a hyperbolic sector.
We can see that when s ≤ b, we have a∗1 > 0. Thus, if condition (H1) and s ≤ b

hold, system (1.3) has a unique positive equilibrium, the boundary equilibrium is a
saddle point and there exist no closed orbits. Hence, the conclusion of the theorem
holds.
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Remark 2. When s > b and s−1−bd < 0, we have a∗1|r=0 = (s−b)d2+bd+1−s > 0.

Moreover, under conditions (H1) and s > b,
∂a∗1
∂r > 0 [17]. Thus, we can conclude

that when s−1−bd < 0, a∗1 > 0. Hence, for the case b−1−bd < 0 and s−1−bd < 0
under conditions (H1), (x∗, y∗) is local asymptotically stable and thus system (1.3)
does not undergo Hopf bifurcation.

Now we consider the global dynamics for the case (H2) ∧ (H6). In this case,
the critical point (0, 0) and the positive equilibrium (x∗, y∗) may be attractors.
Note that when s − 1 − sd = 0 and s − 1 − bd > 0, we have s > b and thus
s− 1− sd > b− 1− bd > 0. This contradicts with s− 1− sd = 0, and thus we need
not to consider the case b − 1 − bd > 0, s − 1 − bd > 0. When s − 1 − bd = 0 (or
b− 1− bd = 0), we have s = b and thus b− 1− bd = 0 (or s− 1− bd = 0). This is
the first item of this section and we can obtain the solution directly. Thus, we do
not consider the case s− 1− bd = 0 (or b− 1− bd = 0). When b− 1− bd > 0 and
s − 1 − bd < 0, we have s < b. From condition (H2) ∧ (H6), we have b = d

r(1−d) .

Combining s = 1
1−d and d < r, we can obtain that s > b. This is a contradiction.

Thus, we do not consider the case b−1−bd > 0, s−1−bd < 0. When s−1−sd = 0
and b − 1 − bd < 0, we have s > b and thus s − 1 − bd > s − 1 − sd = 0.
This contradicts with s − 1 − bd < 0, and thus we need not to consider the case
b− 1− bd < 0, s− 1− bd < 0. Hence, under condition (H2) ∧ (H6), we only need
to consider the case b− 1− bd < 0, s− 1− bd > 0.

Theorem 3.9. Suppose that b − 1 − bd < 0, s − 1 − bd > 0 and (H6) hold, then
the topological structure of the origin in R2

+ consists of a hyperbolic sector and a
parabolic sector. Moreover, if (H2) and a∗1 > 0 also hold, then both (0, 0) and
(x∗, y∗) are attractors of system (1.3) in R2

+ (see Figure 3).

Proof. From Theorem 2.3 (I)(ii),(II)(i) and Theorem 2.6, if s−1−bd > 0, b−1−bd <
0 and (H6) hold, then there exist ¯ε14 > 0 and γ̄14 > 0 such that there exists a unique
orbit of system (1.3) in {(θ, γ) : 0 ≤ θ < ¯ε14, 0 < γ < γ̄14} that tends to (0, 0) along
θ1 as t → −∞; and there exist ¯ε15 > 0 and γ̄15 > 0 such that all orbits of system
(1.3) in {(θ, γ) : 0 ≤ π

2 − θ < ¯ε15, 0 < γ < γ̄15} tend to (0, 0) along θ2 as t → +∞.

No other orbits tend to (0, 0). Thus, the topological structure of the origin in R2
+

consists of a hyperbolic sector and a parabolic sector.
Under condition (H2) and a∗1 > 0, due to Lemmas 3.1 and 3.2, system (1.3) has

a unique local stable positive equilibrium and the boundary equilibrium is a saddle
point. Hence, (0, 0) and (x∗, y∗) are attractors of system (1.3) in R2

+.

Remark 3. Under the condition (H2)∧ (H6), only for the case that b− 1− bd < 0
and s−1−bd > 0, system (1.3) may have Hopf bifurcation. Corresponding existence
conditions can be found in Theorem 7 of [17].

In the following, we consider the case (H3)∧(H5). Note that when b−1−bd ≥ 0
and s − 1 − bd ≤ 0, we have s ≤ b and thus a∗1 > 0. This contradicts with the
condition (H3), and thus we need not to consider the case b−1−bd ≥ 0, s−1−bd ≤ 0.
When b − 1 − bd < 0 and s − 1 − sd > 0, we have s > b and thus s − 1 − bd >
s − 1 − sd > 0. This contradicts with s − 1 − bd ≤ 0, and thus we need not to
consider the case b−1−bd < 0, s−1−bd ≤ 0. Hence, under condition (H3)∧ (H5),
we only need to consider the case s− 1− bd > 0.

Theorem 3.10. Suppose s− 1− bd > 0, then the topological structure of the origin
in R2

+ consists of an elliptic sector and a parabolic sector. Moreover, if (H3)∧ (H5)
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also holds, then (x∗, y∗) is a saddle-node and (0, 0) is an attractor of system (1.3)
in R2

+ (see Figure 10).
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Figure 10. Phase diagram of system (1.3) with s = 1.75625, d =
0.2, r = 2, b = 3.

Proof. From Theorem 2.2 (I),(II)(i) and Theorem 2.3 (I)(i),(II)(i), if b− 1− bd ≥ 0
and s − 1 − bd > 0, then there exist ¯ε16 > 0 and γ̄16 > 0 such that all orbits
of system (1.3) in {(θ, γ) : 0 ≤ θ < ¯ε16, 0 < γ < γ̄16} tend to (0, 0) along θ1
as t → −∞; and there exist ¯ε17 > 0 and γ̄17 > 0 such that all orbits of system
(1.3) in {(θ, γ) : 0 ≤ π

2 − θ < ¯ε17, 0 < γ < γ̄17} tend to (0, 0) along θ2 as t → +∞.
Moreover, no other orbits tend to (0, 0). Thus, the topological structure of the origin
in R2

+ consists of an elliptic sector and a parabolic sector. Under the conditions
b− 1− bd < 0 and s− 1− bd > 0, a similar conclusion can also be obtained.

Under condition (H3)∧(H5), from Lemmas 3.1 and 3.2, system (1.3) has (x∗, y∗)
as the unique saddle-node and the boundary equilibrium as a saddle point. Hence,
(0, 0) is an attractor of system (1.3) in R2

+

Remark 4. Under condition (H3)∧ (H5), (x∗, y∗) is a cusp point and system (1.3)
may undergo a Bogdanov-Takens bifurcation, which we will analyze in Section 4.

3.3. Global dynamics of system (1.3) with two positive equilibria. For the
case (H4), the positive equilibrium (x1, y1) is a saddle point, the critical point (0, 0)
and another positive equilibria (x2, y2) may be attractors. In this case, we need not
to consider the case b− 1− bd ≤ 0, s− 1− bd ≤ 0. The reason is similar to the case
(H3) ∧ (H5).

Theorem 3.11. Suppose that (H4) and the following conditions hold

b− 1− bd ≥ 0, s− 1− bd ≥ 0,

or b− 1− bd < 0, s− 1− bd > 0,

or b− 1− bd > 0, s− 1− bd < 0,

then the topological structure of the origin in R2
+ consists of an elliptic sector and

a parabolic sector. (x1, y1) is a saddle point. Moreover, if a21 > 0 also holds, then
both (0, 0) and (x2, y2) are attractors of system (1.3) in R2

+ (see Figure 11).
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Figure 11. Phase diagram of system (1.3) with s = 1.5, d =
0.1, r = 2, b = 2.

Proof. From Theorem 2.1 (I)(i), (II), Theorem 2.2 (I)(i), (II) and Theorem 2.3
(I)(i), (II)(i), if b − 1 − bd ≥ 0 and s − 1 − bd ≥ 0, then there exist ¯ε18 > 0 and
γ̄18 > 0 such that all orbits of system (1.3) in {(θ, γ) : 0 ≤ θ < ¯ε18, 0 < γ < γ̄18}
tend to (0, 0) along θ1 as t → −∞; and there exist ¯ε19 > 0 and γ̄19 > 0 such that
all orbits of system (1.3) in {(θ, γ) : 0 ≤ π

2 − θ < ¯ε19, 0 < γ < γ̄19} tend to (0, 0)
along θ2 as t→ +∞. Moreover, no other orbits tend to (0, 0). Thus, the topological
structure of the origin in R2

+ consists of an elliptic sector and a parabolic sector.
Under the conditions b−1− bd < 0, s−1− bd > 0 or b−1− bd > 0, s−1− bd < 0,
the similar conclusion can also be obtained.

Under condition (H4) and a21 > 0, from Lemmas 3.1 and 3.2, system (1.3) has
(x1, y1) and the boundary equilibrium as saddle points, and (x2, y2) as a stable
positive equilibrium. Thus the conclusion of the theorem holds.

Remark 5. Under condition (H4), for the case that b−1−bd ≥ 0 and s−1−bd ≥ 0
or the case that b− 1− bd < 0 and s− 1− bd > 0, there may exist Hopf bifurcation
around (x2, y2) in R2

+. The conclusion can be seen in Theorem 8 of [17].

Combining Theorem 3.3-Theorem 3.11 and corresponding existence results on
Hopf bifurcation, the global dynamics of system (1.3) can be summarized in Table 1.

4. Bogdanov-Takens bifurcation. Note that system (1.3) can have a saddle-
node or a cusp under condition (H3). Especially, the positive equilibrium (x∗, y∗)

is a cusp under the condition (H3) ∧ (H5) [17] . This implies that there may exist
Bogdanov-Takens bifurcation.

In order to determine the Bogdanov-Takens bifurcation of system (1.3), we need
to fix some values of parameters since the conditions given in [17] are too compli-
cated to analyze. Thus, in this section, we fix b as a constant and investigate the
Bogdanov-Takens bifurcation of system (1.3) on the parameters s, r and d.

Let

q20 = a10a20 + a01β20 −
a10
a01

(a10a11 + a01β11) +
a10

2

a012
(a10a02 + a01β02)

and

q11 = 2a20 + β11 −
a10
a01

(a11 + 2β02),
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Table 1. The global dymamics of system (1.3).

Condition 1 Condition 2 Global Results Hopf bifurcation

(H0)

d < 1

(K1) Theorem 3.3 Does not exist
(K2) Theorem 3.3 Does not exist
(K3) Theorem 3.3 Does not exist
(K4) ∅ Does not exist

d > 1

(K1) ∅ Does not exist
(K2) Theorem 3.4 Does not exist
(K3) ∅ Does not exist
(K4) Theorem 3.5 Does not exist

(H1)

(K1) ∅ Does not exist
(K2) Theorem 3.6 Remark 1
(K3) Theorem 3.7 Does not exist
(K4) Theorem 3.8 Does not exist

(H2) ∧ (H6)

(K1) ∅ Does not exist
(K2) Theorem 3.9 Remark 3
(K3) ∅ Does not exist
(K4) ∅ Does not exist

(H3) ∧ (H5)

(K1) Theorem 3.10 Does not exist
(K2) Theorem 3.10 Does not exist
(K3) ∅ Does not exist
(K4) ∅ Does not exist

(H4)

(K1) Theorem 3.11 Remark 5
(K2) Theorem 3.11 Remark 5
(K3) Theorem 3.11 Does not exist
(K4) ∅ Does not exist

Here (H0) := (H1) ∨ (H2) ∨ (H3) ∨ (H4),

(K1) := {b− 1− bd ≥ 0, s− 1− bd ≥ 0}, (K2) := {b− 1− bd < 0, s− 1− bd ≥ 0},
(K3) := {b− 1− bd ≥ 0, s− 1− bd < 0} and (K4) := {b− 1− bd < 0, s− 1− bd < 0}.

where a10 = sx∗y∗

(x∗+y∗)2 −x
∗, a01 = − sx∗2

(x∗+y∗)2 , a20 = sy∗2

(x∗+y∗)3 − 1, a11 = − 2sx∗y∗

(x∗+y∗)3 ,

a02 = sx∗2

(x∗+y∗)3 , β10 = by∗2

(x∗+y∗)2 , β01 = −bry∗ − bx∗y∗

(x∗+y∗)2 , β20 = − by∗2

(x∗+y∗)3 , β11 =
2bx∗y∗

(x∗+y∗)3 and β02 = −br − bx∗2

(x∗+y∗)3 .

Lemma 4.1 ([17]). For system (1.3) satisfying condition (H3) ∧ (H5), if q20 6= 0
and q11 6= 0, then (x∗, y∗) = ( 1

2(1+sr) (sd+ sr+ 2− 2s), 1
2r(1+sr) (2sr− d− r− 2sdr))

is a cusp of codimension 2.

We aim to show that system (1.3) undergoes Bogdanov-Takens bifurcation on

the parameter space BT := {(s, r, d) | (H3)∧ (H5), q20 6= 0 and q11 6= 0}. Here, we
choose d and r as bifurcation parameters. We need to find the universal unfolding
of (x∗, y∗) on BT . For this point, we consider the following system x′(t) = x(t)

[
1− x(t)− sy(t)

x(t)+y(t)

]
,

y′(t) = by(t)
[
−(d+ µ1)− (r + µ2)y(t) + x(t)

x(t)+y(t)

]
.

(4.1)
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Let x = x+x∗ and y = y+y∗. By using Taylor expansions, system (4.1) becomes{
x′(t) = a10x+ a01y + a20x

2 + a11xy + a02y
2 +A3

1(x, y),

y′(t) = b00 + b10x+ b01y + b20x
2 + b11xy + b02y

2 +B3
1(x, y),

(4.2)

where b00 = −b(µ1 + µ2y
∗)y∗, b10 = by∗2

(x∗+y∗)2 , b01 = −bµ1 − b(r + 2µ2)y∗ −
bx∗y∗

(x∗+y∗)2 , b20 = − by∗2

(x∗+y∗)3 , b11 = 2bx∗y∗

(x∗+y∗)3 , b02 = −b(r + µ2) − bx∗2

(x∗+y∗)3 , and

A3
1(x, y) and B3

1(x, y) are o(|x, y|3).
Consider changes of variables as follows

X = x and Y = a10x+ a01y + a20x
2 + a11xy + a02y

2 +A3
1(x, y),

that is,

x = X and y = k10X + k01Y + k20X
2 + k11XY + k02Y

2 + o(|x, y|3),

where k10 = (s−1)−2(s−1)x∗−x∗2

(s−1+x∗)2 , k01 = −s
(s−1+x∗)2 , k20 = −s(s−1)

(s−1+x∗)3 , k11 = 2s
(s−1+x∗)3

and k02 = s
x∗(s−1+x∗)3 . Then system (4.2) can be written as{

X ′(t) = Y,

Y ′(t) = L0 + L10X + L01Y + L20X
2 + L11XY + L02Y

2 + L3(X,Y ),
(4.3)

where

L0 =a01b00,

L10 =a01b10 + a11b00 + k10(2a02b00 + a01b01),

L01 =a10 + k01(2a02b00 + a01b01),

L20 =a01b20 + k20(2a02b00 + a01b01) + a01b11k10 + k10(2a02b10 + a11b01)

+ k210(2a02b01 + a01b02),

L11 =2a02 + k11(2a02b00 + a01b01) + a11k10 + a01b11k01

+ 2k10k01(2a02b01 + a01b02) + k01(2a02b10 + a11b01),

L02 =k02(2a02b00 + a01b01) + k201(2a02b01 + a01b02) + a11k01.

Following the derivation procedure of the normal form in [29], let x = X, y =
(1−L02X)Y and s = t

1−L02X
. Then system (4.3) is strongly topologically equivalent

to {
x′(s) = y,

y′(s) = λ0 + λ1x+ λ2y + λ3x
2 + λ4xy,

(4.4)

where λ0 = L0, λ1 = L10 − 2L0L02, λ2 = L01, λ3 = L20 − 2L10L02 + L0L
2
02 and

λ4 = L11 − L01L02.

Further, letting X = (x+ λ1

2λ3
)
λ2
4

λ3
, Y =

λ3
4

λ2
3
y and t = λ3

λ4
s, we can rescale system

(4.4) as {
X ′(t) = Y,

Y ′(t) = υ1 + υ2Y +X2 +XY,
(4.5)
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where υ1 =
λ0λ

4
4

λ3
3
− λ2

1λ
4
4

4λ4
3

and υ2 = λ2λ4

λ3
− λ1λ

2
4

2λ2
3
. Due to the results in [7, 8, 26], if

∂(υ1,υ2)
∂(λ1,λ2)

6= 0, then system (4.1) undergoes Bogdanov-Takens bifurcation when µ1

and µ2 vary in a small neighborhood of the orgin.
As an example, now we consider the following system x′(t) = x(t)

[
1− x(t)−

281
160y(t)

x(t)+y(t)

]
,

y′(t) = 605
2248y(t)

[
−( 1

5 + µ1)− (2 + µ2)y(t) + x(t)
x(t)+y(t)

]
.

(4.6)

Note that when µ1 = µ2 = 0, there exists a cusp in system (4.6) [17]. By the above
analysis, we know that system (4.6) undergoes the Bogdanov-Takens bifurcation
when the parameters µ1 and µ2 vary in a small neighborhood of the origin. The
bifurcation curves in the small neighborhood of the origin in the (µ1, µ2)-plane are
sketched in Figure 12. The local representations of these bifurcation curves in the
small neighborhood of the origin are given as follows.

Figure 12. Bifurcation sets and the corresponding phase portraits
of system (4.6).

1. The saddle-node bifurcation curve SN = {(µ1, µ2) : υ1 = 0}, that is,

SN = {(µ1, µ2) :211.6125µ1 + 40.095µ2 + 1212.609431µ1
2

+ 74.85284µ2
2 + 615.85864µ1µ2 = 0}.

When the parameter values lie on the saddle-node bifurcation curve SN , system
(4.6) has one unique equilibrium which is a saddle-node. If the parameters µ1 and
µ2 satisfy υ1(µ1, µ2) > 0 (that is, in region I), then system (4.6) has no equilibrium
(see Figure 13-I). When parameters µ1 and µ2 pass through the curve SN into
region II, then two equilibria appear (see Figure 13-II).

2. The Hopf bifurcation curve H = {(µ1, µ2) : υ1 + υ2
2 = 0, υ1 < 0}, that is,

H = {(µ1, µ2) :182.32895µ1 + 34.54654µ2 + 8.43406µ1
2

− 3.01678µ2
2 + 0.34917µ1µ2 = 0, υ1 < 0}.
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Figure 13. (I): When u1 = −0.1 and u2 = 0.515 lie in the region
I, there exists no positive equilibrium; (II): When u1 = −0.1 and
u2 = 0.55 lie in the region II, there exist a saddle point and an
unstable focus; (III): When u1 = −0.1 and u2 = 0.605 lie in the
region III, there exist a saddle point, a stable focus and an unstable
limit cycle; (IV): When u1 = −0.1 and u2 = 0.8 lie in the region
IV, there exist a saddle point and an stable focus.

When the parameter values lie on the Hopf bifurcation curve H, there exist an un-
stable focus and no periodic orbit. When the parameters cross the Hopf bifurcation
curve H into region III, an unstable limit cycle appears and system (4.6) has a
saddle point and a stable focus (see Figure 13-III).

3. The homoclinic bifurcation curve HL = {(µ1, µ2) : 25υ1+49υ2
2 = 0, υ1 < 0},

that is,

HL = {(µ1, µ2) :13.22578µ1 + 2.50594µ2 + 3.204707µ1
2

+ 4.004325µ2
2 + 29.82948µ1µ2 = 0, υ1 < 0}.

When the parameter values pass region III and lie on the homoclinic bifurcation
curve HL, an unstable homoclinic loop is generated and system (4.6) has a stable
focus. However, system (4.6) has a hyperbolic saddle point and a stable focus when
parameters lie in region IV (see Figure 13-IV).

When µ1 = µ2 = 0, system (4.6) has a cusp of codimension 2 as the unique posi-
tive equilibrium (see Fig.5 in [17]). As µ1 and µ2 vary, specific numerical simulations
of system (4.6) are depicted in the following Figure 13, which is corresponding to
Figure 12.
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5. Conclusions. In this paper, we investigated the global dynamics of a predator-
prey system with density-dependent mortality and ratio-dependent functional re-
sponse and showed that the model has complicated qualitative behavior in the
interior of the first quadrant. Firstly, the qualitative behavior of the system at the
origin in R2

+ was studied. It was shown that the origin is indeed a critical point
of higher order. There can exist numerous kinds of topological structures in the
neighborhood of the origin, including parabolic sectors, elliptic sectors, hyperbolic
sectors and some combinations of them. These structures have critical implications
on the global behavior of system (1.3).

Afterwards, combining the dynamic behavior around the boundary equilibrium,
positive equilibria and the origin, global qualitative analysis of the model depending
on various parameters was carried out. A summary of these results was given in
Table 1. Numerical simulations were presented to illustrate the conclusions.

Lastly, we explored Bogdanov-Takens bifurcation of system (1.3). Bifurcation
sets of system (1.3) were given. An example was given to show the existence of
Bogdanov-Takens bifurcation. In the framework in Figure 12, we demonstrated
that system (1.3) can exhibit various bifurcations, including saddle-node bifurca-
tion, Hopf bifurcation, and homoclinic bifurcation. The corresponding bifurcation
diagrams and phase portraits were sketched in Figure 12. Figure 13 was presented
to support the specific numerical simulations.

The results in [17] showed that system (1.3) can have a cusp of codimension
3 under some conditions. Thus, it is challenging to investigate the existence of
Bogdanov-Takens bifurcation of codimension 3 [16] in our future work. Moreover,
it is also interesting for us to deal with the versal unfoldings [23, 28] of the equiva-
lent polynomial system (2.2) (and thus system (1.3)), and then obtain all possible
bifurcations of the versal unfoldings with phase portraits, including transcritical
bifurcation, Hopf bifurcation, and heteroclinic bifurcation [23].
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