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It was shown in [Li & Xiao, 2007] that in a predator–prey model of Leslie type with simplified
Holling type IV functional response some complex bifurcations can occur simultaneously for
some values of parameters, such as codimension 1 subcritical Hopf bifurcation and codimension
2 Bogdanov–Takens bifurcation. In this paper, we show that for the same model there exists
a unique degenerate positive equilibrium which is a degenerate Bogdanov–Takens singularity
(focus case) of codimension 3 for other values of parameters. We prove that the model exhibits
degenerate focus type Bogdanov–Takens bifurcation of codimension 3 around the unique degen-
erate positive equilibrium. Numerical simulations, including the coexistence of three hyperbolic
positive equilibria, two limit cycles, bistability states (one stable equilibrium and one stable
limit cycle, or two stable equilibria), tristability states (two stable equilibria and one stable
limit cycle), a stable limit cycle enclosing a homoclinic loop, a homoclinic loop enclosing an
unstable limit cycle, or a stable limit cycle enclosing three unstable hyperbolic positive equilib-
ria for various parameter values, confirm the theoretical results.

Keywords : Predator–prey model of Leslie type; simplified Holling type IV functional response;
degenerate focus type Bogdanov–Takens bifurcation of codimension 3.

1. Introduction

Due to the complexity of biological interactions,
the mathematical models that describe population
dynamics usually involve many meaningful param-
eters. If the qualitative or topological structure of a
given model with parameters changes as the param-
eters vary in the neighborhood of a special value
of parameters, then the model is said to undergo
a bifurcation and the special value of parameters
is referred to as the bifurcation value. In order to
understand the nonlinear dynamics of a model, it

is important to determine which parameters are
important for the dynamical change, how to find
the bifurcation values, how do the dynamics change
when the parameters vary in the neighborhood of
the bifurcation values, etc. These problems are very
important for species conservation and management
or disease control (see for example [Cai et al., 2013;
Chen et al., 2013; Etoua & Rousseau, 2010; Hu
et al., 2011; Huang et al., 2013a; Huang et al.,
2013b; Tang et al., 2008; Xiao & Ruan, 1999; Xiao &
Jennings, 2005], and references cited therein). These
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studies indicate that the nonlinear dynamics of
such biological and epidemiological models not only
depend on more bifurcation parameters but are
also very sensitive to parameter perturbations (see
for example [Baer et al., 2006; Huang et al., 2014;
Xiao & Ruan, 2001; Xiao & Zhang, 2007; Zhu et al.,
2002]).

The predator–prey interaction is one of the
most fundamental interactions in ecology and math-
ematical ecology. Based on a predator–prey system
first proposed by May [1973], Caughley [1976] used
the following Holling–Tanner model with Holling
type II functional response

ẋ = rx
(
1 − x

K

)
− mxy

a + x
,

ẏ = sy
(
1 − y

hx

) (1)

to model the biological control of the prickly-pear
cactus by the moth Cactoblastis cactorum. Wol-
lkind, Collings and Logan [Wollkind et al., 1988]
also employed model (1) to study the temperature-
mediated stability of the predator–prey mite inter-
action between Metaseiulus occidentalis and the
phytophagous spider mite Tetranychus mcdanieli on
apple trees. They showed that the model exhibits
a stable low population density equilibrium, popu-
lation cycles, or population outbreaks in response
to population perturbations for different parameter
values.

In order to study how robust the model (1) is
with respect to the functional response and to deter-
mine how the type of functional response influences
bifurcation and stability behavior, Collings [1997]
further considered system (1) that incorporates
the Holling types III and IV function responses.
The Holling type IV or nonmonotonic functional
response incorporates prey interference with preda-
tion in that the per capita predation rate increases
with prey density to a maximum at a critical prey
density beyond which it decreases. When the prey
species is a spider mite, such as T. mcdanieli, one
possible source of interference is the webbing pro-
duced by these mites which is known to interfere
with predators by decreasing their walking speed
and reducing their chances of contacting the prey.
Thus, predatory mites that are not adapted to walk-
ing on webbing can starve in the presence of spi-
der mite prey. Notice that this phenomenon is also
known as group defence in population dynamics (see
[Ruan & Xiao, 2001; Xiao & Ruan, 2001], and the

references cited therein). By numerical simulations,
Collings [1997] showed that the model (1) with
types I–III functional responses exhibit qualita-
tively similar bifurcation and stability behavior over
the interval of definition of the temperature param-
eter. Similar behavior is observed in the system (1)
with type IV functional response at low levels of
prey interference, while the prevalence of bistabil-
ity and the presence of three attractors for some
values of the model parameters demonstrate that
higher levels of interference are destabilizing the
system.

Recently, we [Huang et al., 2014] provided
detailed analysis on the nonlinear dynamics of
model (1) with generalized Holling type III func-
tional response. Li and Xiao [2007] considered
model (1) with simplified Holling type IV functional
response

ẋ = rx
(
1 − x

K

)
− mxy

x2 + b
,

ẏ = sy
(
1 − y

hx

)
,

(2)

where r,K,m, b, s and h are all positive param-
eters, and mx

x2+b
is the simplified Holling type IV

functional response. For the sake of simplicity, they
scaled x, y, t and parameters in (2) by letting

t = rt, x =
x

K
, y =

my

rK2
,

a =
b

K2
, δ =

s

r
, β =

sK

hm
.

Dropping the bars, model (2) becomes

ẋ = x(1 − x) − xy

x2 + a
,

ẏ = y

(
δ − βy

x

)
,

(3)

where a, δ, β are all positive parameters. It was
shown in [Li & Xiao, 2007] that the model (3)
can have simultaneously two nonhyperbolic positive
equilibria for some values of parameters, one is a
cusp of codimension 2 and the other is a multiple
focus of multiplicity one. Bogdanov–Takens bifur-
cation and subcritical Hopf bifurcation can occur
in the small neighborhoods of these two equilibria,
respectively. By theoretical analysis and numerical
simulations, it was shown that the model (3) can
have a stable limit cycle enclosing two positive equi-
libria, an unstable limit cycle enclosing a hyperbolic
positive equilibrium, or two limit cycles enclosing a
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hyperbolic positive equilibrium by choosing differ-
ent values of parameters.

For some other values of parameters, model (3)
can have a unique degenerate positive equilibrium,
and may exhibit higher codimension and more com-
plex bifurcation phenomena, which was not dis-
cussed in [Li & Xiao, 2007]. We will show that this
unique degenerate positive equilibrium is indeed
a degenerate Bogdanov–Takens singularity (focus
case) of codimension 3 for other values of param-
eters and prove that the model undergoes a degen-
erate focus type Bogdanov–Takens bifurcation of
codimension 3. Hence, the model can exhibit more
complex and new bifurcation phenomena, such as
saddle-node loop bifurcation and multiple limit
cycle bifurcation. Numerical simulations, including
a stable limit cycle enclosing a homoclinic loop, a
homoclinic loop enclosing an unstable limit cycle, a
stable limit cycle enclosing three unstable hyper-
bolic positive equilibria, confirm the theoretical
results.

This paper is organized as follows. In Sec. 2,
we show that the unique degenerate positive equi-
librium of model (3) is a degenerate Bogdanov–
Takens singularity (focus case) of codimension 3
for some values of parameters. In Sec. 3, we
prove that the model (3) exhibits degenerate focus
type Bogdanov–Takens bifurcation of codimension
3 around the unique degenerate positive equilib-
rium. Numerical simulations about phase portraits
are also given to confirm the theoretical results.
This paper ends with a discussion.

2. Degenerate Bogdanov–Takens
Singularity (Focus Case) of
Codimension 3

In order to present our analysis about system (3),
we first quote Lemma 2.1(ii) in [Li & Xiao, 2007] as
our first lemma.

Lemma 1. Let A = 1− 3(a + δ
β ) and ∆ = −4A3 +

(1−27a−3A)2. If both ∆ = 0 and A = 0, i.e. a = 1
27 ,

δ
β = 8

27 , then system (3) has a unique positive equi-
librium E∗(x∗, y∗) = (1

3 , 8
81), which is a degenerated

equilibrium.

Li and Xiao [2007] have not discussed the
type of the unique degenerate positive equilibrium
E∗(1

3 , 8
81), we now consider in this case.

Theorem 1

(i) If (a, β) = ( 1
27 , 27

8 δ) and δ �= 2
3 , then system (3)

has a unique degenerate positive equilibrium
E∗(1

3 , 8
81 ), which is a stable (an unstable) degen-

erate node if δ > 2
3 (δ < 2

3 , respectively);
(ii) If (a, β, δ) = ( 1

27 , 9
4 , 2

3), then the unique degener-
ate positive equilibrium E∗(1

3 , 8
81 ) of system (3)

is a codimension 3 degenerate Bogdanov–
Takens singularity (focus case). The phase por-
traits are given in Fig. 1.

Proof. (i) When (a, β) = ( 1
27 , 27

8 δ) and δ �= 2
3 , then

Det(J(E∗)) = 0 and Tr(J(E∗)) �= 0 (here J(E∗)

x ’ = x (1 − x) − x y/(x2 + a)
y ’ = y (δ − β y/x)    

δ = 1
β = 27/8

a = 1/27
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x ’ = x (1 − x) − x y/(x2 + a)
y ’ = y (δ − β y/x)    
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(a) (b)

Fig. 1. Phase portrait of the model with a unique degenerate positive equilibrium E∗: (a) a stable degenerate node and
(b) a codimension 3 Bogdanov–Takens singularity (focus case).
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is the Jacobian matrix of system (3) at E∗), sys-
tem (3) becomes

ẋ = x(1 − x) − xy

x2 +
1
27

:= F1(x, y),

ẏ = y

(
δ − 27δy

8x

)
:= G1(x, y).

(4)

To translate the equilibrium E∗(1
3 , 8

81) to the origin
and expand system (4) in power series around the
origin, let

x1 = x − 1
3
, y1 = y − 8

81
.

Then system (4) can be rewritten as

ẋ1 = F1

(
x1 +

1
3
, y1 +

8
81

)
,

ẏ1 = G1

(
x1 +

1
3
, y1 +

8
81

)
.

(5)

Make a change of variables as follows:

(
x1

y1

)
=




3
2

9

4
9

4δ



(

x

y

)
.

Then system (5) becomes

ẋ =
27δxy

2
+ 81δ(−1 + 3δ)y2 +

243δx3

32 − 48δ
− 729δ(17 − 24δ + 18δ2)xy2

−8 + 12δ
+

2187δx2y

16 − 24δ

− 2187δ(11 − 24δ + 18δ2)y3

−4 + 6δ
+

2187δx4

64(−2 + 3δ)
+

19683δ(62 − 123δ + 72δ2)xy3

8(−2 + 3δ)

+
6561δ(52 − 75δ + 36δ2)x2y2

−32 + 48δ
− 19683(−2 + δ)δx3y

−64 + 96δ
+

59049δ(25 − 57δ + 36δ2)y4

−8 + 12δ
+ O(|x, y|5),

ẏ =
(

2
3
− δ

)
y − 3xy

2
− 9(2 − 6δ + 9δ2)y2

2
+

27
−32 + 48δ

x3 +
243(3 + 4δ − 12δ2 + 9δ3)xy2

−8 + 12δ

+
243x2y

−16 + 24δ
+

729(1 + 4δ − 12δ2 + 9δ3)y3

−4 + 6δ
+

243
64(2 − 3δ)

x4 − 6561(10 + 7δ − 48δ2 + 36δ3)xy3

8(−2 + 3δ)

− 2187(12 − δ − 24δ2 + 18δ3)x2y2

−32 + 48δ
+

2187(−2 + δ)x3y

−64 + 96δ
− 19683(3 + 5δ − 24δ2 + 18δ3)y4

−8 + 12δ
+ O(|x, y|5).

(6)

Finally, make a time transform τ = 2−3δ
3 t, then system (6) becomes (still denote time by t)

ẋ =
81δxy

4 − 6δ
+

243δ(−1 + 3δ)y2

2 − 3δ
+

729δx3

16(2 − 3δ)2 +
2187δ(17 − 24δ + 18δ2)xy2

4(2 − 3δ)2
+

6561δx2y

8(2 − 3δ)2

+
6561δ(11 − 24δ + 18δ2)y3

2(2 − 3δ)2
− 6561δx4

64(2 − 3δ)2 − 59049δ(62 − 123δ + 72δ2)xy3

8(2 − 3δ)2

− 19683δ(52 − 75δ + 36δ2)x2y2

16(2 − 3δ)2 +
59049(−2 + δ)δx3y

32(2 − 3δ)2 − 177147δ(25 − 57δ + 36δ2)y4

4(2 − 3δ)2 + O(|x, y|5),

ẏ = y +
9xy

−4 + 6δ
+

27(2 − 6δ + 9δ2)y2

−4 + 6δ
− 81x3

16(2 − 3δ)2 − 729(3 + 4δ − 12δ2 + 9δ3)xy2

4(2 − 3δ)2 − 729x2y

8(2 − 3δ)2

− 2187(1 + 4δ − 12δ2 + 9δ3)y3

2(2 − 3δ)2 +
729x4

64(2 − 3δ)2 +
19683(10 + 7δ − 48δ2 + 36δ3)xy3

8(2 − 3δ)2

+
6561(12 − δ − 24δ2 + 18δ3)x2y2

16(2 − 3δ)2 − 6561(−2 + δ)x3y

32(2 − 3δ)2
+

59049(3 + 5δ − 24δ2 + 18δ3)y4

4(2 − 3δ)2 + O(|x, y|5).

(7)
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Hence Theorem 7.1 in [Zhang et al., 1992] implies
that the unique degenerate positive equilibrium
E∗(1

3 , 8
81) of system (3) is a stable (an unstable)

degenerate node if δ > 2
3 (δ < 2

3 , respectively).

(ii) When (a, β) = ( 1
27 , 27

8 δ) and δ = 2
3 , that

is (a, β, δ) = ( 1
27 , 9

4 , 2
3), we have Det(J(E∗)) =

Tr(J(E∗)) = 0, then E∗(1
3 , 8

81) is a nilpotent (or
double-zero eigenvalue) equilibrium. We provide a
series of explicitly smooth transformations to derive
a normal form to determine the exact type of this
equilibrium.

First of all, we translate the unique interior
equilibrium E∗(1

3 , 8
81) to the origin and expand sys-

tem (3) in power series around the origin. Let

(i) x1 = x − 1
3
, y1 = y − 8

81
.

Then system (3) can be rewritten as

ẋ1 = F1

(
x1 +

1
3
, y1 +

8
81

)
,

ẏ1 = G1

(
x1 +

1
3
, y1 +

8
81

)
.

(8)

Secondly, in order to transform the linear part
of system (8) to the Jordan canonical form, we let

(ii) x1 =
1
12

(x2 + y2), y1 =
2
81

x2 − 1
81

y2,

then system (8) can be rewritten as

ẋ2 = y2 − x2y2

24
− 7y2

2

24
− x3

2

192
+

3x2y
2
2

64
− x2

2y2

64

+
11y3

2

192
+

x4
2

1536
− 35x2y

3
2

1536
− 3x2

2y
2
2

512
+

7x3
2y2

1536

− 5y4
2

384
+ O(|x2, y2|5),

ẏ2 = −x2y2

12
+

y2
2

6
− x3

2

96
− 3x2y

2
2

32
− x2

2y2

32
− 7y3

2

96

+
x4

2

768
+

37x2y
3
2

768
+

9x2
2y

2
2

256
+

7x3
2y2

768
+

y4
2

48

+ O(|x2, y2|5).
(9)

We next make the following near identity trans-
formation to eliminate the y2 terms in system (9),

(iii) x2 = x3 +
1
12

x2
3, y2 = y3 +

1
6
x3y3 +

7
24

y2
3,

which brings system (9) into

ẋ3 = y3 + a30x
3
3 + a12x3y

2
3 + a21x

2
3y3

+ a03y
3
3 + a40x

4
3 + a13x3y

3
3 + a31x

3
3y3

+ a22x
2
3y

2
3 + a04y

4
3 + Q1(x3, y3),

ẏ3 = b11x3y3 + b30x
3
3 + b12x3y

2
3 + b21x

2
3y3

+ b03y
3
3 + b40x

4
3 + b13x3y

3
3 + b31x

3
3y3

+ b22x
2
3y

2
3 + b04y

4
3 + Q2(x3, y3),

(10)

where Q1(x3, y3) and Q2(x3, y3) are smooth func-
tions of their arguments with at least fifth-order
terms of (x3, y3), and

a30 = − 1
192

, a12 = − 1
16

, a21 = − 29
1152

,

a03 = − 65
576

, a40 =
1

3072
, a13 =

131
6912

,

a31 =
25

9216
, a22 =

49
6912

, a04 =
85

6912
,

b11 = − 1
12

, b30 = − 1
96

, b12 = − 1
72

,

b21 = − 7
192

, b03 =
7

288
, b40 =

5
4608

,

b13 = − 85
6912

, b31 =
7

576
, b22 =

137
6912

,

b04 = − 167
6912

.

Since

b11b30 =
1

1152
�= 0,

it follows from Lemma 3.1 in [Cai et al., 2013] that
there exists a small neighborhood U of (0, 0) such
that in this neighborhood U system (10) is locally
topologically equivalent to

ẋ = y,

ẏ = b11xy + b30x
3 + (b21 + 3a30)x2y

+ (b40 − b11a30)x4

+
(

4a40 + b31 +
1
3
b11a21 +

1
6
b11b12

)
x3y

+ Q(x, y),
(11)

where Q(x, y) is a smooth function of their argu-
ments with at least fifth-order terms of (x, y).
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Moreover, we have that

5b30(b21 + 3a30) − 3b11(b40 − b11a30)

=
53

18432
�= 0

and

b30 = − 1
96

< 0, b2
11 + 8b30 = − 11

144
< 0.

Once again Lemma 3.1 in [Cai et al., 2013] implies
that the equilibrium (0, 0) of system (11) is a degen-
erate focus of codimension 3, thus the unique degen-
erate positive equilibrium E∗(1

3 , 8
81 ) of system (3)

is a codimension 3 degenerate Bogdanov–Takens
singularity (focus case). �

3. Degenerate Focus Type
Bogdanov–Takens Bifurcation
of Codimension 3

Theorem 1 indicates that if (a, β, δ) = ( 1
27 , 9

4 , 2
3),

then the unique degenerate positive equilibrium
E∗(1

3 , 8
81) of system (3) is a codimension 3

Bogdanov–Takens singularity (focus case). We next
discuss the existence of degenerate focus type
Bogdanov–Takens bifurcation of codimension 3 for
system (3). To do that, we choose a, δ and β as
bifurcation parameters. Set

a =
1
27

+ r1, δ =
2
3

+ r2,

β =
9
4

+ r3, r = (r1, r2, r3)

and consider the unfolding system of system (3) as
follows

ẋ = x(1 − x) − xy(
1
27

+ r1

)
+ x2

,

ẏ = y

(
2
3

+ r2 −
(

9
4

+ r3

)
y

x

)
,

(12)

where r = (r1, r2, r3) is a parameter vector in a
small neighborhood of (0, 0, 0). Thus, we have the
main theorem of this paper on the existence of a
degenerate focus type Bogdanov–Takens bifurca-
tion of codimension 3 in the model.

Theorem 2. When parameters (a, δ, β) vary in
a small neighborhood of ( 1

27 , 2
3 , 9

4), system (3)
undergoes a degenerate focus type Bogdanov–
Takens bifurcation of codimension 3 in a small
neighborhood of E∗(1

3 , 8
81 ). Moreover, in a small

neighborhood of the point (a, δ, β) = ( 1
27 , 2

3 , 9
4) in the

(a, δ, β)-parameter space, there exist a Hopf bifur-
cation surface, two homoclinic bifurcation surfaces,
two saddle-node loop bifurcation surfaces, a multi-
ple limit cycle bifurcation surface, and two saddle-
node bifurcation surfaces for system (3). Hence,
system (3) has three hyperbolic positive equilibria,
two limit cycles, bistability states (one stable equilib-
rium and one stable limit cycle, or two stable equi-
libria), or tristability states (two stable equilibria
and one stable limit cycle) for various parameter
values.

Proof. First of all, we make successively smooth
transformations (i)–(iii) for system (12), which have
been used in the proof of Theorem 1, to obtain the
following system:

Ẋ = Y + a00(r) + a10(r)X + a01(r)Y

+ a20(r)X2 + a11(r)XY + a02(r)Y 2

+ a30(r)X3 + a12(r)XY 2 + a21(r)X2Y

+ a03(r)Y 3 + O(|X,Y |4),
Ẏ = b00(r) + b10(r)X + b01(r)Y + b20(r)X2

+ b11(r)XY + b02(r)Y 2 + b30(r)X3

+ b12(r)XY 2 + b21(r)X2Y + b03(r)Y 3

+ O(|X,Y |4),

(13)

where aij(r) and bij(r) are smooth functions, we
omit their long expressions here for the sake of
simplicity, a00(0) = a10(0) = a01(0) = a02(0) =
a20(0) = a11(0) = b00(0) = b01(0) = b10(0) =
b20(0) = b02(0) = 0, a03(0) = a03, a12(0) = a12,
a21(0) = a21, a30(0) = a30, b03(0) = b03, b11(0) =
b11, b12(0) = b12, b21(0) = b21, b30(0) = b30 and
a03, a12, a21, a30, b03, b11, b12, b21, b30 are given in
system (10).

Secondly, we make the following near-identity
transformation to simplify the third-order terms
when r = 0

(iv) X = x1 +
b12

6
x3

1 +
a12 + b03

2
x2

1y1 + a03x1y
2
1,

Y = y1 +
b12

2
x2

1y1 + b03x1y
2
1

and rewrite system (13) as follows

ẋ1 = y1 + e00(r) + e10(r)x1 + e01(r)y1 + e20(r)x2
1

+ e11(r)x1y1 + e02(r)y2
1 + e30(r)x3

1

1650034-6
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+ e12(r)x1y
2
1 + e21(r)x2

1y1 + e03(r)y3
1

+ O(|x1, y1|4),
ẏ1 = f00(r) + f10(r)x1 + f01(r)y1 + f20(r)x2

1

+ f11(r)x1y1 + f02(r)y2
1 + f30(r)x3

1

+ f12(r)x1y
2
1 + f21(r)x2

1y1 + f03(r)y3
1

+ O(|x1, y1|4),
(14)

where eij(r) and fij(r) can be expressed by aij(r),
bij(r), b12, a12, b03 and a03, we also omit their
expressions here for the sake of brevity.

Thirdly, under the following near-identity
transformation

(v) x2 = x1,

y2 = y1 + e00(r) + e10(r)x1 + e01(r)y1

+ e20(r)x2
1 + e11(r)x1y1 + e02(r)y2

1

+ e30(r)x3
1 + e12(r)x1y

2
1 + e21(r)x2

1y1

+ e03(r)y3
1 + O(|x1, y1|4),

system (14) becomes

ẋ2 = y2,

ẏ2 = g00(r) + g10(r)x2 + g01(r)y2

+ g20(r)x2
2 + g11(r)x2y2 + g02(r)y2

2

+ g30(r)x3
2 + g12(r)x2y

2
2 + g21(r)x2

2y1

+ g03(r)y3
2 + O(|x2, y2|4),

(15)

where gij(r) can be expressed by eij(r) and fij(r),
we also omit their expressions here for reasons of
space.

Finally, following the steps in [Xiao & Zhang,
2007], we can rewrite system (15) as

ẋ3 =
σ(r)
ν(r)

y3,

ẏ3 =
−g30(r)

σ(r)
[λ1(r) + λ2(r)ν(r)x3 − ν3(r)x3

3]

+ g21(r)y3[λ3(r) + A(r)ν(r)x3 + ν2(r)x2
3]

+ y2
3Q1(x3, y3, r) + O(|x3, y3|4),

(16)

where

λ1(r) = −g00(r)
g30(r)

+
g10(r)g20(r)

3g2
30(r)

− g3
20(r)

9g3
30(r)

+
g3
20(r)

27g3
30(r)

,

λ2(r) = −g10(r)
g30(r)

+
g2

20(r)
3g2

30(r)
,

λ3(r) =
g01(r)
g21(r)

− g11(r)g20(r)
3g21(r)g30(r)

+
g21(r)g2

20(r)
9g21(r)g2

30(r)
,

A(r) =
g11(r)
g21(r)

+
2g20(r)
3g30(r)

,

Q1(x3, y3, r) = σ(r)
[
g02(r) +

g12(r)g2
20(r)

9g2
30(r)

+ σ(r)g03(r)y3 + ν(r)g12(r)x3

]
.

We obtain that g30(0) = − 1
96 < 0 and g21(0) =

− 5
96 < 0 by using the computer software Mathemat-

ica, so we can choose

σ(r) = −g30(r)
g21(r)

ν(r),

ν(r) =

√
−g30(r)

g2
21(r)

in the small neighborhood of r = (0, 0, 0). In order
to get the canonical unfolding of the focus type
Bogdanov–Takens singularity of codimension 3, we
make the final time transformation τ = − g30(r)

g21(r)
t,

and still denote τ by t, system (16) becomes

ẋ3 = y3,

ẏ3 = µ1(r) + µ2(r)x3 − x3
3

+ y3[µ3(r) + A1(r)x3 + x2
3]

+ y2
3Q2(x3, y3, r) + O(|x3, y3|4),

(17)

where A1(r) = g21(r)
√

−g30(r)

g30(r) A(r), Q2(x3, y3, r) =

− g21(r)
g30(r)

Q1(x3, y3, r), and

µ1(r) =
g3
21(r)

g30(r)
√−g30(r)

λ1(r),

1650034-7
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µ2(r) = −g2
21(r)

g30(r)
λ2(r),

µ3(r) = −g2
21(r)

g30(r)
λ3(r).

(18)

Since

∣∣∣∣∂(µ1(r), µ2(r), µ3(r))
∂(r1, r2, r3)

∣∣∣∣
r=0

=
−62500

√
2
3

9
�= 0,

the above parameter transformation (18) is a home-
omorphism in a small neighborhood of the origin,
and µ1, µ2 and µ3 are independent parameters. Fur-
thermore, for system (17), the coefficients of x3

3 and
x2

3y3 are −1 and 1, respectively, the coefficient of
x3y3 is A1(r), which can be calculated as follows
when r = 0

A1(0) =

√
2
3

< 2
√

2.

By the results in [Dumortier et al., 1991] or [Xiao &
Zhang, 2007] or [Huang et al., 2014], we know that
system (17) is a generic 3-parameters family or
standard family of Bogdanov–Takens singularity of
codimension 3 (focus case). Thus, system (3) will
undergo a degenerate focus type Bogdanov–Takens
bifurcation of codimension 3 by choosing a, δ and β

as bifurcation parameters in a small neighborhood
of ( 1

27 , 2
3 , 9

4). �

Remark 3.1. Because determining the maximum
number of limit cycles for the versal unfolding of
a focus type Bogdanov–Takens singularity of codi-
mension 3 is still an open problem, we refer the
reader to the conjecture bifurcation diagram Fig. 3
on page 7 in [Dumortier et al., 1991] (note that
we have made the time reversal transformation
τ = − g30(r)

g21(r)t, which transforms stable points and
cycles into unstable points and cycles).

Next, we provide a series of phase portraits
by numerical simulation to confirm the existence
of degenerate focus type Bogdanov–Takens bifur-
cation of codimension 3 in model (3). Based on
the parameter values in [Li & Xiao, 2007], we fix
a = 41

√
17−169
2 , δ =

√
17−3
2 + λ1, β =

√
17+4
4 + λ2.

(i) When (λ1, λ2) = (−0.01,−0.12), there exist a
big stable limit cycle enclosing a little unsta-
ble limit cycle and a unique stable hyperbolic
positive equilibrium E∗

2 [see Fig. 2(a)].
(ii) When (λ1, λ2) = (−0.056,−0.2), there exist a

big stable limit cycle enclosing three unstable
hyperbolic positive equilibria, where E∗

3 is a
saddle [see Fig. 2(b)].
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(a) (b)

Fig. 2. Phase portraits for model (3) with a = 41
√

17−169
2 , δ =

√
17−3
2 + λ1, β =

√
17+4
4 + λ2: (a) (λ1, λ2) = (−0.01,−0.12),

a big stable limit cycle enclosing a little unstable limit cycle, (b) (λ1, λ2) = (−0.056,−0.2), a big stable limit cycle enclosing
three unstable hyperbolic positive equilibria, (c) (λ1, λ2) = (−0.0566,−0.2), a big stable limit cycle enclosing a little unstable
limit cycle and three hyperbolic positive equilibria, bistability states, (d) (λ1, λ2) = (−0.0568,−0.2), a big stable limit cycle
enclosing a little homoclinic cycle, (e) (λ1, λ2) = (−0.06022,−0.2), a big stable limit cycle enclosing three hyperbolic positive
equilibria, (f) (λ1, λ2) = (0.052, 0.2), three hyperbolic positive equilibria and a little unstable limit cycle enclosing a stable
equilibrium E∗

2 , (g) (λ1, λ2) = (0.0537, 0.2), a big homoclinic cycle enclosing an unstable limit cycle, bistability states and
(h) (λ1, λ2) = (0.055, 0.2), a big stable limit cycle enclosing an unstable limit cycle, tristability states.
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Fig. 2. (Continued)
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(iii) When (λ1, λ2) = (−0.0566,−0.2), there exist
a big stable limit cycle enclosing a little unsta-
ble limit cycle and three hyperbolic positive
equilibria, which exhibit a kind of bistabil-
ity states (a big stable limit cycle and one
stable equilibrium E∗

1) [see Fig. 2(c)]. From
Figs. 2(b) and 2(c), we can see that a sub-
critical Hopf bifurcation occurs around E∗

1.
(iv) When (λ1, λ2) = (−0.0568,−0.2), there exist

a big stable limit cycle enclosing a little
homoclinic cycle and three hyperbolic posi-
tive equilibria [see Fig. 2(d)].

(v) When (λ1, λ2) = (−0.06022,−0.2), there
exist a big stable limit cycle enclosing three
hyperbolic positive equilibria [see Fig. 2(e)].
From Figs. 2(c)–2(e), we can see that a little
homoclinic bifurcation occurs around E∗

3.
(vi) When (λ1, λ2) = (0.052, 0.2), there exist three

hyperbolic positive equilibria and a little
unstable limit cycle enclosing a stable equilib-
rium E∗

2 [see Fig. 2(f)]. From Figs. 2(e)–2(f),
we can see that a subcritical Hopf bifurcation
occurs around E∗

2.
(vii) When (λ1, λ2) = (0.0537, 0.2), there exist

a big homoclinic cycle enclosing an unsta-
ble limit cycle [see Fig. 2(g)], which exhibits
another kind of bistability states (two stable
equilibria E∗

1 and E∗
2).

(viii) When (λ1, λ2) = (0.055, 0.2), there exist a big
stable limit cycle enclosing an unstable limit
cycle [see Fig. 2(h)], which exhibits tristabil-
ity states (two stable equilibria E∗

1 and E∗
2

and a big stable limit cycle). From Figs. 2(f)–
2(h), we can see that a big homoclinic bifur-
cation occurs around E∗

3.

4. Discussion

In order to better understand the temperature-
mediated stability of the predator–prey mite inter-
action between Metaseiulus occidentalis and the
phytophagous spider mite Tetranychus mcdanieli on
apple trees, Collings [1997] extended a predator–
prey model of Leslie type with Holling type II func-
tional response used by Wollkind et al. [1988] to
one with Holling type IV function. On top of the
existence of a stable low population density equi-
librium, population cycles, or population outbreaks
in response to population perturbations were shown
for different parameter values, his numerical simu-
lations demonstrated the prevalence of bistability

and the presence of three attractors for some val-
ues of the model parameters in the case of Holling
type IV functional response. Li and Xiao [2007]
showed that the model (3) can have simultaneously
two nonhyperbolic positive equilibria for some val-
ues of parameters, one is a cusp of codimension 2
and the other is a multiple focus of multiplicity
one. Bogdanov–Takens bifurcation and subcritical
Hopf bifurcation can occur in the small neighbor-
hoods of these two equilibria, respectively. By the-
oretical analysis and numerical simulations, it was
shown that the model (3) can have a stable limit
cycle enclosing two positive equilibria, an unsta-
ble limit cycle enclosing a hyperbolic positive equi-
librium, or two limit cycles enclosing a hyperbolic
positive equilibrium by choosing different values of
parameters.

In this paper we showed that for the model (3)
with simplified Holling type IV functional response
there exists a degenerate Bogdanov–Takens singu-
larity (focus case) of codimension 3 for some values
of parameters. We proved that the model exhibits
a degenerate focus type Bogdanov–Takens bifurca-
tion of codimension 3 around the unique degenerate
positive equilibrium. Hence, more complex and new
dynamics, such as the existence of three hyperbolic
positive equilibria, two limit cycles, two kinds of
bistability states (one stable equilibrium and one
stable limit cycle, two stable equilibria), or trista-
bility states (two stable equilibria and one stable
limit cycle) can occur for various parameter values,
which not only support the numerical observations
of Collings [1997] that there are different kinds of
population oscillations and outbreaks in response to
increasing temperature-dependent parameters and
population perturbations (initial population den-
sity) but also complete the bifurcation analysis of
Li and Xiao [2007] on the model, which provides a
mechanism of the occurrence of complex dynamics
in the model. Therefore, our results are a com-
plement of the results in [Li & Xiao, 2007] and
[Collings, 1997] on the model.
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