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Abstract

In this paper, we investigate a system of delayed lattice differential equations with partial mono-
tonicity. By using Schauder’s fixed point theorem, a new cross-iteration scheme is given to establish
the existence of traveling wave solutions. Our main results can deal with the existence of traveling
wave solution for a class of delayed reaction diffusion system with partial monotonicity and generalize
the results of Wu and Zou (J. Differential Equations 135 (1997) 315-357).
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Lattice dynamical systems are infinite systems of differential or difference equations
indexed by points in a lattice, such as the integer laffie¢hich incorporate some aspect
of the spatial structure of the lattice. Such systems arise in many applied subjects, such as

* Corresponding author. Tel.: +1 305 284 2312; fax: +1 305 284 2848.
E-mail addresseghhuang32@yahoo.cofd. Huang)yuan@math.miami.ed{8. Ruan).

1 Research was partially supported by the NNSF of China.
2 Research was supported by the NNSF of China.
3 Research was partially supported by the NSF and the College of Arts and Sciences at the University of Miami.

0362-546X/$ - see front matté@ 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2004.10.020


http://www.elsevier.com/locate/na
mailto:jhhuang32@yahoo.com
mailto:ruan@math.miami.edu

1332 J. Huang et al. / Nonlinear Analysis 60 (2005) 1331-1350

biology, chemical kinetics, imagine processing, material science, neurology, physiology,
etc. We refer to the surveys by Chdé] and Mallet-Paref15] about some recent results
on lattice dynamical systems.

The most studied lattice differential equation is giegle spatially discrete Fisher or
Nagumo equation

dx,,

dr

=d(xn-1— 2% +xp41) + f(xn), neZ, (1.1)

whered is a positive constant arfds a Lipschitz continuous function satisfying certain
character. Bell and Cosn¢B] studied the long time behavior of solutions to (1.1) for
some nonlinear functiorf. The traveling wave solutions were analytically discussed in
Britton [4] and numerically computed in Chi et §]. Keener{11] analyzed propagation
and its failure for (1.1). By Keener’s formation, a traveling wave of Eq. (1.1) is a solution
of the formx,(t) = ¢(n — cr) for eachn € Z, for some¢: R — R and somec €
R. The existence and stability of traveling wave solutions of (1.1) have been extensively
studied by Hankerson and Zinng0], Keener[11], Zinner [24,25], Zinner et al.[26],
etc. More recently, Mallet-Par¢t 3,14] investigated the global structure of the set of all
traveling wave solutions within a general framework of dynamical systems and provided
existence, unigueness and monotonicity. See also Chow|[&{ alnd the references cited
therein.

Recently, researchers have started to stydyemsf lattice differential equations. Ren-
shaw[18] proposed a spatial population dynamics system

d (1.2)
# =dp(Vn41 — 20y + Vp—1) + fo(un, vy)

{ détt” =d1(up+1 — 2upy +up—1) + f1(un, vy),
and studied the Turing model for morphogenesis Wittu,,, v,)=u, (r1r —b1v,), f2(un, va)

=v, (—r2+ bou,) (se€18, pp. 314—323] By using the comparison method, Anderson and
Sleemari1] investigated the existence of traveling wave fronts and propagation failure for
spatially discretized FitzHugh—Nagumo equations

d
{ étfn =Up+1 — 2up +up—1+up(L—up)(uy —a) — vy,

dv
G = O0Un — Yn.

Nekorkin et al[16] considered a system of two coupled FitzHugh—Nagumo chains

dv, (1.3)

{ dgt” =dunt1 — 2up +up-1) + fun) — hp(un — vp),
a = d(vyy1 — 2v, +vp-1) + fn) = hy(vy —uy),
wheref(w)=w(w —1)(a —w), 0<a <1, h, andd are the interchain and intrachain cou-
pling coefficients. See also Erneux and Nicf@kfor a discrete bistable reaction—diffusion
system modeling\ coupled Nagumo equations.
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Zou and Wu[28] introduced a time delay into the discrete Nagumo-type equation (1.1)
and considered the followingelayedattice differential equation:

du,,
dr

=d[un—1(t) = 2un () + un41(1)]

+ fup@), up—1(t — ), upy(t — 1), up11(t — 7)), (1.4)

wheren € Z,d >0, 7>0 are constants anfl: R* — R is a sufficiently smooth function.
By using the symmetry Hopf bifurcation theory, they studied the existence and stability of
the periodic traveling wave solutions. [[20], Wu and Zou considered a more general class
of delayed lattice single differential equations and established the existence of wave fronts
and slowly oscillatory spatially periodic traveling waves.

In this paper, we consider the following system of two delayed lattice differential equa-
tions:

d(’jl,n = Z aj[g(un+j(t))_Zg(un(t))'i'g(unfj(t))]'i'fl(un(t_f)’ v, (1—1)),

=1

m 1.
U= 3 518005 0) = 2600(0) + 8t ) (1-9)
J=

+ fo(uu(t — 1), va(t — 7))

and study the existence of traveling wave solutions, whwere Z, m > 1 is an integer,
aj>0,b;>0,1<j<m, 120, f;: R? - Randg: R — R are continuous functions.

In the last decade, great attention has been paid to the existence of traveling wave so-
lutions in delayed reaction—diffusion equations, whose discrete versions are the delayed
lattice differential equations. A pioneer work by Schi#f] was for scalar equations. The
monotone iteration and fixed point methods were first used to study the existence of travel-
ing waves (at least in monostable case) by Atkinson and RE2]Jtand Diekmann8]. Zou
and Wu[27] developed a monotone iteration method to establish the existence of traveling
wave solutions for systems of delayed reaction—diffusion equations with monotone nonlin-
earities. By using some nonstandard ordering of the profile set, Wu anfPZpshowed
that the monotone iteration scheme can be employed to cases with both quasimonotone
and nonquasimonotone reaction terms. The iteration scheme of Wu and Zou requires that
the upper solution of the wave equations converges to two equilibria when-oo and
t — oo, respectively. Following Wu and Zoj21], Ma [12] relaxed the monotonicity of
the iteration scheme by applying the Schauder fixed point theorem to the operator used
in Wu and Zou[21] in a properly chosen subset in the Banach spga@, R") equipped
with the so-called exponentially decay norm. The subset is constructed in terms of a pair
of upper—lower solutions, which is less restrictive than the upper—lower solutions required
in Wu and Zoy21]. This makes the searching for the pair of upper—lower solutions easier.
For example, the upper solution does not have to be in the profile set. Howevgt?Ma
only considered systems with quasimonotone reaction terms and did not consider systems
with non-quasimonotone reaction terms.
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If the nonlinear reaction terms in system (1.5) satisfy either the quasimonotonicity
condition

(QM) there exist two positive constanfts and 8, such that

S1(P1(x), Y1(x)) — f1(Po(x), Yo(x)) + B1le1(X)(0) — o (x)(0)]
>2A[g($1(0)) — g(d2(0))],
S2(P1(x), Y1(x)) — fa(da(x), Ya(x)) + falh1(x)(0) — Y (x)(0)]
>2B[g(1(0) — g()2(0))]
for ¢; (x), Y; (x)eX=C([—1, 0]; R) With 0< () (5) < 1 (x) (5) <k, O (x)(s)

élpl(x)(s).é ko for s €l-, 0],'1: =12, whereA=3""_1a;, B=31_1b;
or the nonquasimonotonicity condition

(QM*) there exist two positive constanfs and 5, such that

J1(P1(x), Y1(x)) — f1(o(x), Yo (x)) + P1l1(x)(0) — P2(x)(0)]
>2A[8(91(0)) — g(d2(0)],

S2(1(x), Y1(x)) = f2(ha(x), Y2(x)) + Bolh1(x)(0) — Yro(x)(0)]
>2B[g(Y1(0)) — g(¥2(0)]

for ¢; (x), ¥; (x)eX=C([—7, 0; R), i=1, 2with (i) 0< ¢ (x)(s) < 1 (x)(s) <ka,
0< Yo (x)(5) <Y1 (x)(s) <kz for s € [—7, 0], and (i) &1*[¢hy (x)(5) — Pp(x)(5)]
and EﬁZ‘Y[gbl(x)(s) — Yo(x)(s)] are nondecreasing in € [—t,0], where
A=3" q1a;,B=3""_1bj,
then the existence of traveling wave front solutions of (1.5) can be obtained by using the
results in Wu and Zo{R0].
On the other hand, the reaction terms in some models arising from practical problem may
not satisfy (QM) orlQM*), such as the following epidemic model with time delays:

N (1.6)
d,n =dz(vp41 — 2v, + vy—1) + upv, — by,

! %Atl_l =di(upy1 — 21y 4 up—1) + aup[l—u,(t — )] — upvy,

to which the main results of Wu and Z¢20] fail to apply.

The purpose of this paper is to generalize the methods of Wu and Zou to the cases in
which only one equation in system (1.5) satisfies the condition (QMRM*) while the
other equation satisfies neither. We will propose a less restrictive condition on the reaction
terms, construct a subsetin the Banach sgade R?) equipped with the exponential decay
norm and apply the Schauder fixed point theorem to the operator used in Wu af20Zou
to establish the existence of a traveling wavefront solution of delayed lattice differential
equations. The subsetis obtained from a pair of upper—lower solutions and the upper solution
does not have to satisfy the left-limit condition-ato. Since the nonlinear functiong
and f2 in (1.5) have different monotonicity with respect to the first and second arguments in
the first and second equations, respectively, following Ye ari@d2]iand Paq17], we will
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introduce definitions of the upper and lower solutions and the new cross iteration scheme,
which are different from that defined in Wu and Zj@0].

This paper is organized as follows. In Section 2, some definitions and assumptions are
given. Section 3 is devoted to establishing the existence of traveling wave solutions in the
case of quasimonotone reactions. The case of nonquasimonotone reaction terms is studied
in Section 4.

2. Preliminaries

A traveling wave solutioof (1.5) is a pair of solutions of the special foimn(t) = ¢ (r —
nc), vy (t) = Y(t — cn), wherec is a given positive constant. Substituting(s) = ¢t —
nc), v, (1) =Y (t — cn) into (1.5), and denoting, (s) = ¢t +5), ¥,(s) =y (r + ), we find
that (1.5) has a pair of traveling wave solutions if and only if the following wave equations:

a0 é ajlg(li + jo)) — 28(H(1) + gt — JON + il ).
% = jzl ajlgWt + jo)) — 2 (1)) + gt — joNl + fa(y, ¥y) ey
with asymptotic boundary conditions
Jim ¢ =¢_.  lim o@0)=¢,,
im Y =y_,  lim yo =y, (2.2)

have a pair of solutions oR, where(¢_, y_) and(¢_, ) are two equlibria of (2.1).
Without loss of generality, lep_ =0, ¢, =k1>0,y_ =0, =k,>0. Then (2.2)
can be replaced by

Jim ¢ =0, lim _$(1) =k,

lim () =0, lim () =ko. (2.3)
t——00 t——+00
In this paper, we use the usual notations for the standard orderiRg.iffhat is, for
u = (u1,u2)’ andv = (v1, v2)", we denoteu <v if u; <v;,i = 1,2, andu < v if u<v
butu # v. In particular, we denote <v if u<<v butu; # v;,i =1, 2. If u<<v, we also

denote(u, v] = {w € R?: u <w<v}, [u,v)={w € R?: u<w <v}. Let| - | denote the
Euclidean norm irR? and|| - || denote the supremum normdi([—z, 0], R?).
For the convenience of statement, we make the following hypotheses:

(P1) £1(0) = f1(K) =0 and f2(0) = f2(K) = 0 with 0 = (0,0), K = (ky, k), where
k1 >0, ko> 0.

(P2) g:[0, Kol— R is continuously differentiable, monotonically increasing, ardg)(x)
<g’(0), g(0) = 0, whereKg = max{k, kp}.
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(P3) There exist two positive constarits > 0 andL» > 0 such that

[f1(P1, Y1) — f1(Po, Yo ) IS La|| @ — P,
[ f2(P1, V1)) — fa(o, W) | < L2|| P — P

fOI’ QD = (¢1, lpl), ,{, = ((l’)z, lpz) S C([_T, O], R) W|th 0< (,Z'),»(S), lﬁi(s)éK, s €
[-7,0],i=1,2
(P4) fa(p, ) = (O)[h(¥) + ap(0)], where the functionat(¢) is continuous and > 0.

Define operatorgly, Ho: C(R2, R) — C(R?, R) by

Hi(¢,)(0) = fu(dy. ) + Brd(®) + Y ajlg(p(t + jo)) — 28(d(1))

j=1

+ g(p@t — jo)l,

Ha(, ) (1) = f2( Y1) + B () + Y bilgh(t + je)) — 28 (1))

j=1

+ 8t — je)l

Then, (2.1) can be rewritten as following:

d _ _
(£ =t o .
= —BoVy + Ho(, ).

Define the operatorgy, F»: C(R?, R) — C(R?, R) by

t

(e, (1) = e P / &5 Hy (¢, ) (s) ds,
t

Fa(o ) (1) = P2 / &2 Hy(h, ) (s) ds.

We can see thaf; and F» are well defined and for angh (1), (1)) € C(R, R?), F1 and
F> satisfy

F{(, ) (1) = —B1F1(, Y) (1) + Hi(d, ) (@),
F)(, W)(t) = —BoFa(eh, Y)(t) + Ha(eh, Y) (). (2.5)

In the following, we introduce the exponential decay norm. Let (0, min{f;, f»}) and

equipC(R, R?) with the norm| - |, defined byl}|, = supcg |¢(t)|e #I'I. Define

Bu(R, R? = {¢> € C(R, R?) : sup|¢p(r)|e I < oo} .
teR

ThenB, (R, R?) is a Banach space.
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3. Partially quasimonotone case

In this section, we study the existence of traveling wave solution of (2.1) when the
delayed reaction termg; and f> are partially monotonic, i.e. they satisfy the following
condition:

(PQM) there exist two constangg > 0 andf, > 0 such that

f1(P1 i) = fi(do, Y1)+ P p1(0)—h(0)]1 > 2A[g(d1(0) —g (¢h2(0))]1,
fl((f)lp '701;) - fl(d)lt’ l//Zt) <07
Sfo(b1y. Y1) = f2(op Yo +PolY1(0) = (0)] = 2B[g (Y1(0) —g (¥2(0))]

for ¢1, (bz, lpl, lpz (S] C([—T, O], R) with O< ¢2(S) < ¢1(S) gkl, O0< ¢2(s)<
W1(s)<kz, s € [—1, 0], whereA = Z;.”:l ajandB = Z’}’zl bj

Remark 3.1. Comparing (QM) and (PQM), we can see tlfasatisfies the same monotone
condition while f1 satisfies a weaker monotone condition in (PQM). Thugiitind f>
satisfy (QM), then they satisfy (PQM), but the inverse does not hold.

Definition 3.2. If the continuous functions¢(z), ¥(1)) and (¢(1), y()): R — R2? are
differentiable almost everywhere and satisfy -

3

¢ (1> Y. ajlg(@lt + o) = 289 (0) + (@ = JON + i@ ¥,
Jj=1
, (3.1)
Y= Z bilgWh(t + jo)) — 28(h(1) + g (t = jeN1 + fa(y. W)
J

§

and
P< il 1g(P(t + jo)) — 28((0) + gt — JN] + il P,
J=
m (3.2)
YOS 3 b la+ o) = 2800 + 8t — D+ fo(d,. ¥,

.
\ |

then(i&(r), l/_/(t)) is calledan upper solutiorand(¢(z), Y (¢)) is called alower solutionof
(2.2). -

In what follows, we assume that an upper squﬁiIn):(&(t), l/_/(t)) and alower solution
Y@= (Q(t), ﬂ(t)) of (2.1) are given so that

(A1) (0,0 < (¢(1), YD) < (G0, Y1) < ke ko)
(A2) 1My _oo ($(1), () = (0, 0), 1iM,oe(h(1). Y(1)) = (k1. ko).

The operatoid = (H1, H») defined in Section 2 enjoys the following nice properties.
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Lemma 3.3. Assume thatP1)—(P3)and (PQM) hold. We have

(i) O<Ho(¢. ¥)(1) < falka, k2) + Poka for (¢.4) € Co.k1(R, R?);
(i) Ha2(¢, ¥)(r) is nondecreasing in€ R if (¢, ) € Cio x)(R, R?) is nondecreasing in
t € R;
(ii))y H1(do, Y1) (1) <H1(py, Y1) (1) and Ha(ey, o) (1) <Ha(hq, hy) (1) for 1 e R if
(d1.¥1). (P2, ¥2) € Clo.x)(R, R?) satisfygo(t) <y (1), (1) <1 (1) for ¢ € R.

Proof. By (P2) and (PQM), direct calculation shows that
Hi(¢1, Y1) () — Hi(dg, Y1) (1)
= fu(P1. V1) — [1(Do, Yay) + Prld1(t) — do(0)]
+ Y ai{le (et + je)) — g(olt + je))] — 21g(P1(1)) — g(¢ho(t)]
j=1
+[8(P1(t — jo)) — g(da(t — je)l}
>2A[g(P1(1)) — g(d2(1))]
+ Z {ajlg(Pr(t + jo)) — g(da(t + jo))] — 2[g(d1(1)) — g(Po(1))]
j=1
+[8(P1(t — jo)) — g(da(t — je)l}
>0,

which implies thatH1 (¢, Y1) (t) = Hi(¢o, Y1) (@).
Following a similar argument as in Wu and Z[20, Proposition 3.1]we can verify the
proposition forHz(¢, ). This completes the proof.[]

We have the following lemma foF = (F1, F») defined in Section 2, which is a direct
consequence of Lemma 3.3.

Lemma 3.4. Assume thaP1)—(P3)and (PQM) hold. Then

(i) F2(¢, ¥)(¢) is nondecreasing in R ifp, Y)(r) € Cio k)(R, R?) is nondecreasing in
t €R;

(i) F1(do, ) (1) < Fr(gq, Y1) (1) andFa(gy, Yp) (1) < Fa(dy, p) (1) forteRif (¢, Yrp),
(2. 5) € Cro.k1(R, RZ) satisfyd, (1) <1 (1), Yo(t) <Y (t) fort € R.

Now, we assume that there exist an upper solutidt), /() and a lower solution
(9(), Y (1)) of (2.1) satisfying

(A3) sup <, P(s) < p(t), suR <, Y(s) < ().
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Define

(¢, ¥1. 1. ¥

— {(qb, ) € C(R, RY) (i) (1) is nondecreasing iR, }

(i) PPN <) and (1) <Y(1) <Y(1)

We can see tha([¢. V1. [¢. ¥]) is nonempty. In fact, ledo(r) = SUR <, $(s). Yo(t) =
sup <, Y(s). Then(do(1). Yo(1) € T ([, Y. [, ¥)).

Lemma 3.5. Assume thatP1)—-(P3)hold, then F = (Fy, F2) : Bu(R, R?) — Bu(R, R?)
is continuous with respect to the noitm|,.

Proof. We first prove thatf; : B, (R, R?) — Bu(R, R2) is continuous. Iid = by, D),
¥ = (¢2. ) € Bu(R, R?) satisfy

|® — P, =sup|®(t) — P(1)|e M <,

teR

then

|H1(¢q, Y1) () — H1(do, Y2) (1)
=|f1(d1,. Y1) — fildor o) + 11 () — (D))

+ Y ajllg(@r(t + 7)) — (ot + )] — 208 (1) — g(P1(1))]
j=1
+lg(do(t —r) — g(de(t — ri)]}
S1f1(Pass Y1) — f1(Dor Yo )|l + Brlda (D) — (1)

+ Y ajlg(rt +r)) — (ot + 1) +2)  ajlg(o(t) — g(da())]

j=1 Jj=1
+ Z ajlg(p(t — 7)) — g(do(t — 7))
=1

< f1(hays Ya) — filda Yol + (B1 + 248 (O)[(1) — (1))
+ Y aig O)1ds(t +rj) — dalt + 1)) + da(t — 1)) — hot — ]I

j=1
We can check that

(2t = 1)) = $ot = rIE M 1yt + 7)) — ot +rj)le !
gZeurj|(ri)l(s) - ¢2(s)|‘u- (33)
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Thus, it follows that

|H1 (1, Y) (1) — Ha(go, o) ()€ M
<1f(b1 Yay) — fi(doy, )€ M 4 (B + 248" (0) 1 (1) — o) |e ]

+ Y ajg O)ds(t +rj) — dalt + 1) + da(t — rj) — Pt — )|l

j=1

<\ f1(drys ey — f1(de,, ‘//2;)|e_#|”

+ (ﬁl +248'0) +2 (a;6"1)5'0) | 11 — do(0)l,

j=1
<L) D — P, x e M

j=1

+ (ﬁl +248'0) +2 (a; €5 0) | [$1(t) — do()ly

<Li Sup  |dq(t +5) — Pq(t + )M

s€[—ct,0]
+ (/31 +2Ag'(0) +2 Z(a,,eﬂ’f)g/(O)) |$1.(1) — oDy
j=1

<Lisup|®(0) — P(0)|e 0!
0eR

+ (ﬂl +2Ag'(0) + 2Z<aje*”f>g’<0>) 1$2(0) — oD

j=1

< (Lle““ + P +248'(0) +2) (a ,-e*"f)g’(t))) D) — Y1),

j=1
DenoteN = L1e"" + f3; + 2Ag’(0) + 2g’(0)2’}1=1(aje/”.f). For any fixed: > 0, leto be
suchthad <¢/N.If &, ¥ € B, (R, R?) satisfy|®— V|, =supcg |P(t) — P(t)|e Ml <6,
then
|H1(¢q, Y1) (t) — Hi(¢y, l,bz)(f)|u
j=1

< (Lle“” + By +248'(0) + 2¢'(0) Z(a,-e‘”f)) |P(t) — P (0)l,

=N|[P(1) — VY (D)|u
SNo<e,

which implies thatH; : B, (R, R?) — By (R, R?) is continuous.
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Next, we need to estimaté’ (¢, 1) () — Fi(¢,, W) (1)|. By the definition ofFy (¢,
¥) (1), we have

|F1(¢1, Y (1) — F1(do, Yo) (1)
t t
g P / e Hy(dpy. ) (s) ds — e P! / P15 Hy(dy. ) (s) ds

t
ge‘ﬁltf 1 | Hi(y, Y1) (5) — Hila, ) (s)| ds

t
<IHL Gy U))(s) — Hi(o Yrp)(s) e P! f ol g,

—00

(@) If r <0, we have

1
|F1(¢p1, ) (1) — Fi(¢2, ) (DI < ; uef“lIHl(%, Y1) (s) — Hilo, Y2) ().

-
It follows that

1
~ |H1(p1. Y1) (1) — Hi(da, Y2) (D).

P11, ¥0)(0) = Filbo ) Ol < 5

1

(b) If £ > 0, it follows that

|F1(¢17 lpl)(t) - Fl(¢2’ lpZ)O)'

ge—ﬂll[ 1 _ 1 + 1 e(ﬂl+/'¢)[
Bi—u Brtu Brtu

Therefore, we have that

|H1(p1. Y1) ()= Haldo, Y2) (D).

| F1(hy, Y1) (1) — Fa(ghp, o) (1) e 1]

1 1 1
= e Pt _
) {[Bl—u ﬁ1+u]e ' +—ﬁ1+u} [Hi(d, Y1) (1) = Hi(h, ¥2) ()]
1
< |H1(p1, Y1) (@) — Hi(do, o) (D).
Br—u

Thus, by using the fact thaiy (@) (1) — Hi(¥)(¢) is continuous inB, (R, R?), it follows
that F1 (@) (r) — F1(¥)(2) is continuous with respect to the noim|,.

By using a similar argument as above, we can also provefih@®) (1) — Fo(V)(t) is
continuous with respect to the noim|,. This completes the proof.[]

Lemma 3.6. If (P1)—(P3pand(PQM)hold, thenF (I'([$. 1. [, Y1) C T'([p. Y1, [$. ).
Proof. We first claim that

Fi($. ) < FL(d. W) S Fi(d. ). Fa($. ) < Fa(d. ) < Fa(h. ). (3.4)
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In fact, for any(¢, ) € [$, @] x [V, Y], by (A2) and (P2) and Lemma 3.3(ii), it follows
that - -
H1(¢, Y)(1) — Hi(. Y) (1)
= f1(d ) = f1(dy, ) + Prld®) — (1))

+ Y aillg(dl + je)) — gt + je))] — 2g(p(1) — ()]

j=1
+ [g(p(t — jo)) — g(P(t — je)] — 2[g((1)) — g(p()]}
= [fl((bzv %,) - fl((pzv %,)] + ﬁl[‘b(ﬂ - ¢(t)] + [fl(¢zv ﬂt) - fl((»bt’ lpt)]

+ Y ai{lg(@(t + jo)) — gt + jo)] — 2g(d(1)) — g(p(1))]

j=1
+ [8(p(t — jo)) — gt — jo)])
> 241($(1)) — g+ faldy ¥) — faldy. )
+ Y aj{lg(@ + jo)) — g(P(t + je))] — 2g(h(t) — g(P(1))]
j=1

+ [g(P(t — jc)) — g(p(t — jo)l}
>0,

which implies thatF1(¢, y) > Hi(¢. ). Similarly, H1(¢, ) < Hi($, ). Repeating the
above argument shows thBi(¢. V) < F2(¢., ) < Fa(¢, ). Thus, (3.4) is proved.
Since(¢(t), Y(1)) is an upper solution, we have

¢ (1) + Br(1) — Hi(, Y)() >0. (3.5)
Recalling (2.5) for((1). (1)) implies that

F{($. ) (®) + B1FL(. ) (1) — Hi($. ) (1) = 0. (3.6)
It follows from (3.5) and (3.6) that

[F1(d, 1) (&) — ¢ + PalFr(d, Y) (1) — p(1)]<O. 3.7)

Let w(r) = Fi(¢, y) (1) — (1) and denote (1) = w'(r) + Byw(r). Then, it follows from
(3.7)that(r) <0. Now, by using the fundamental theorem of first-order ordinary differential
equation, we obtain that

t
w(t) = cie Pt 4 / e_ﬂl(t_s)r(s) ds.

—00
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Sincew(t) is bounded ori—oo, 00), we haver; =0. Thusw()= [ e F1¢=9)r(5) ds <O,
which means that

Fi(. Y) (1) < p(0). (3.8)
Similarly, we can prove that
FL(¢. ¥) (1) = $(0). (3.9)

Combining (3.4), (3.8) and (3.9) yields
PO <FLP, Y1) <P(0).
For any(¢. ) € [¢. ¢] x [V, 1. Repeating the above argument, we have

V() < Fa(, ) (1) < Fa(p, ) (1) < Fa(h, Y) () Y ().

Combining this with Lemma 3.4(ii), we can see tlfa{ ¢, 1) is nondecreasing in€ R.
This completes the proof.[]

Lemma 3.7. If (P2)—(P3)and (PQM) hold, then operator F: I'([$, Y1, [, Y1) —
I, y1, 19, Y] is compact

Proof. We first established an estimate for For any (¢ (1), Y(t) € T'(($, Y1, [d. Y1),
direct calculation shows o

0< Fy(9, Y)(0)
'
_ ‘ue*ﬁll / e/"2SH2(d>, W) (s)ds + Ho(p, Y)(2)

— B1F2(), Y) (@) + Ha(, ¥)(2)
< — B1F2(0,0) + Ha(ky, k2)

< Ha(ka, k2) — H2(0, 0)

= ﬂlkz,

N

which implies thatF; (¢, )(z) is uniformly bounded. )
From Lemma 3.6, we havegog(t) < F1(¢, ) (1) < (1) <ky. It follows that

t
Fi(g. Y)(t) = — pre P! / ¥ Hy (¢, ) (s) ds + Hi(, ) (1)

t
<P) — pre it / e g (s) ds

<o)<k
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and

t
F{(¢. ) (1) = (1) — pre P! / 15 (s) ds

t
> — ﬁlefﬁlt'/ P19 d(s) ds

WV

t
— pe Pt / eP15ky ds
—0o0

= —ki.

It implies that [F{(¢, ) ()| <ki. Hence, FT'([¢.y].[¢.¥]) is equicontinuous on
I, 1,19, ¥).
Define F" (¢, ) = (F1 (P, ¥), F3 (¢, ), where
Fi(o, (),  tel-n,n],
F' (¢, ) (1) = { Fi(p, ¥)(=n), te(-o0,—n), i=12
Fi(¢,yY)(n), t e (n,+00).

Thus,F" (¢, ¥)(¢) is equicontinuous and uniformly bounded. Ascoli-Arzelalemma implies
that F;, (¢, ) (¢) is compact.
Since{F, (¢, ¥)(1)}g° is a compact series, and

SUP| Fu (¢, ) (1) — F (¢, ) (1) ]e P!

teR

= sup [F™ (. Y)(0) — F (b, ) (1) e

te(—o0,—n)U(n.co)
<2Ke P -0, n— oo.

By using Proposition 2.12 23], we knowthat G, (¢, ) (1)}3° is convergenttd (¢, ) (t)
in I'([¢, 1, [$. Y1) with respect to the norr |,.. Therefore F (¢, 1) (¢) is compact. O

Theorem 3.8. Assume tha{P1)—(P3)and (PQM) hold. In addition to(A1)—(A3), we as-
sume that an upper solutiaw@, y) and a lower solutior(¢, y) satisfy

(Ad) f=(f1. f2) # O0forany(¢,y) € (0,infrer ¢1 x (0, infieg Y1 U [SURck . k1) x
[SURcg ¥, k2).

Then(2.1) has a traveling wave solution connectig@, 0) and (k1, k2). Moreover, the

second component of traveling wave solution is monotonically nondecreasirg M

Proof. The boundedness of the ﬂw@ g], [55, x/_/]) is obvious. We can see thﬁt@, g],
[, y]) is closed, convex and nonempty.

Since F: Cjo.x)(R, R?) — Cjo.x1(R, R?) is continuous with respect to the norm
| - | in Bu(R, R?) from Lemma 3.5. Lemmas 3.6 and 3.7 imply thats compact and
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F(I'[¢. ¥1.[$. Y] C I'([¢. Y. [$. ¥]). Schauder’s fixed point theorem implies that there

exists a fixed pointg* (1), ¥* (1)) € I'([$. Y[, Y1), which is a solution of (2.1).
In order to prove that this solution is a traveling wave solution, we need to verify the
asymptotic boundary condition (2.3). First of all, by (P2) and the fact tat@ /) (1) <

@ (). W (1) < (¢ ) (1) < (k. k2), we know
im_ (9", 9@ =(0,0).

Secondly,(¢* (1), y*(1)) € T(($. V). (¢, ¥)) implies that)* () is monotone nondecreas-

ing in 7 € R, and hence, lim, y*(r) exists and satisfies; := lim, o y*(t) =

SURcg ¥ (1) =Supcg Y (7) > 0. Now, employing the 1'Hospital's rule 1" (1) = F2(¢™ (1),
V¥ (1)), we have

lim g () = lim_Fa(¢™(6), " (1))

i [ €P2 Hap(* ) (s) ds

t—00 ebat

1
lim —= | fa(¢f, W) (s) + Py (1)
t—00 ﬂz

+ 3 blgh(t + je)) — 28(h (1) + (Wt + jc»]}
j=1
) foc (W)
= lim | &2
m[ B

+ w*m}
R

= lim
t—00 ﬁZ

+ lim yr @),
which implies that

Nim_ fac(¢7, ;) =0.
BY fac(@/, 1) = (O)lhe(¢;) + ayp™ (1)), we know that

- [fzc(dif, VD)

al Y@
which shows that} := lim,_, «, ¢™(¢) also exists. By Proposition 2.1 jA0], we must have
(fre(kt, k5), fac(kt, k3)) = (0, 0). Note that (P4) implies that

- hcoﬁ:‘)}

0 <supy(r) <kj <ka,
teR

O<supo(r) = lim ¢@)< lim ¢*(r) = ki <ki.
teR - —0o00 — 11— 00
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Again by (P4), we conclude thaf = k1 andk3 = k2. Therefore, the fixed point does
satisfy the boundary condition (2.4), giving a traveling wave front of (1.3). The proof is
completed. [J

4. Partially exponential quasimonotone case

In this section, we consider the case that (PQM) is not satisfied. We replace (PQM) by
the following assumption.

(PQM*) There exist two constanf > 0 andf, > 0 such that

f1(D1 Y1) = f2(do, W) + P1lP1(0)— o (0)]1 > 2A[g (¢4 (0)—g (P2 (0)],
{ fl((ﬁlp l//1;) - fl(¢lt’ lﬁzz) <O,
fo(@r 1) — fo(Pors Yo) + Bol1(0) — Yr2(0)1>2B[g(1f1(0) — g(2(0))]

for (1, Y1), (d2, ¥2) € C([—7, 01, R)with (1) 0< o (s) < Py (s) <k, 0<p(s)
<Yy(s) <kz, s € [—7, 0] and (ii) @1 [h1(s) — Po(s)] and &2° [ (s) — p(s)]
are nondecreasing ine [—t, 0], whereA = 37" 1 a; andB =} 7 b;.

Remark 4.1. Similarly, we can see thaQM*) implies (PQM*).

In what follows, we assume that an upper solut'(&t(t), lL(t)) and a lower solution
(@), Y (1)) satisfy (A1)—(A2) and the following additional assumption:

(A5) The setl"([¢. /1. [¢. Y])* is non-empty, where

I{¢, ¥l (o, D

(i) Y(?) is nondecreasing iR; B

(i) (@), Y (1)) <(P(), Y (1)) < (P(1), Y(1));

, (i) e [p) — pn)], &2 (1) — (o),

=1 (@, ¥) € C(R, R°); M) — p(1)] and 2 [p(r) — p(1)]
are nondecreasing ine R; B

(iv) €% [y(r+s) — ()] is nondecreasing i
t € R for everys >0

The proofs of the following lemmas are similar to that of Lemmas 3.3-3.5 and are omitted
here.

Lemma 4.2. Assume thafP1)—(P3)and (PQM*) hold, then for any(¢q, V1), (5, ¥ry) €
Cio.x1(R, R?) with (o) 0< ¢p(t) <p1(t) k1, Oy () <ko for t € R; ()
&b [ (1) — ¢o(r)] andeP2! [y, (1) — Y,(1)] are nondecreasing ine R, we have

(i) O< Ha(¢, ) (1) < falkn, k2) + Boka for (¢, Y) € Cpo.k1(R, R?);
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(i) Ha2(¢. ) (r) is nondecreasing in€ R if (¢, ) € Cjo.x (R, R?) is nondecreasing in
t € R;

(iity Hy(pp, Y1) (1) <H1(Pq, Y1) (@) andHo(py, o) (1) < Ho(pq, ) (@) if (g, ¥rp),
(¢2.¥2) € Clok)(R, R?) satisfy(a) 0< (1) < dq (1) <k1, O<yo(t) <y () <k
fors € R; (b) €1/ [¢1(1) — P, (1)1 andeP2' [y, (1) —,(1)] are nondecreasing ine R.

Lemma 4.3. Assume thaP1)—(P3)and (PQM*) hold, then

(i) F2(¢, ) (1) is nondecreasing in R ifp, Y)(r) € Cio k)(R, R?) is nondecreasing in
t €R;

(i) Fa(gg, y) (1) < F1(q, Y1) (1) andFa(y, Yo) (1) < F2(p1, Y1) (1) forteRif (¢q, ¥rq),
(¢2. ¥2)€C0.k1(R, R?) satisfy(a) 0< do (1) <y (1) <kz, 0o (1) <y (1) <k for
1 € R; (b) €M1/ [1 (1) — ¢po(r)] andeP2! [y, (r) — Y,(1)] are non-decreasing ine R.

Lemma 4.4. Assume thafP1)—(P3)hold, then F = (F1, F2): Bu(R, R?) — Bu(R, R?)
is continuous with respect to the noitm|,.

Lemma 4.5. Assume thaiP1)—(P3jand (PQM*) hold, thenI'([y, y1, [$. y])* is a closed
boundedand convex subset &, (R, R?).

Proof. Wefirstly showthal ([, Y1, [, Y])* isclosed. Let, . v/,,) € T'([p. ], [, y])*.
Assume thate,, (1)}5° and{y,, (1)}3° are convergent, then there exists a continuous function

(1), (1)) such that

lim sup|p,(®) —¢p@le =0, lim suply, ) —y@)le ! =0.
n——+00 teR n—-+o0o teR

Therefore, (¢, (1), ¥, (t)) converges td¢ (1), Y(t)) pointwis_ely_for everyr € R asn —
+oo. For anyr, 12 € R, letty >1,. Sinced,, (t) € F([g, g], (¢, Y])*, it follows that

&, (11 +5) = , (1)1 2%, (12 + 5) = ¢, ()],
e P(11) — §, (1] = €2 [P(12) — ¢, (12)],
&1, (1) — P11 =€"2[,, (12) — P(12)].

Taking limit asn — oo, we have

e p(t1 +5) — ()] = €2 [P(t2 + 5) — P(12)],
1P (11) — Pp(11)]1=€“2[P(t2) — P(12)],
e1p(11) — Pt 1= €2[P(12) — P(12)],

which imply thatd(¢) satisfies the condition (ii) of ([, 1. [¢. ¥])*. It is easy to show
thate (1) satisfies the condition (i) df (L, Y1, [, ¥1)*. Hencep(r) € T'(Ly, Y1, [§. ™.
Similarly, (1) € (L, 1. [, y)*.Therefore ' ([¢, Y1, [$. ¥])* is closed.

Itis easy to know thak'([¢, Y1, [c}), [b])* is convex by the definition, and the boundedness
is obvious. This completes the proofl]
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Lemma 4.6. If (P1)-(P3)and (PQM") hold, then F(I'([¢, Y1, [, YD) C I'(¢,y1l,
(. yD*.

Proof. For any(¢(t), y(1)) € I'([$, Y1, [$. Y1)*, by Lemma 4.3(i), we know thaf> (¢,
Y)(¢) is nondecreasing ine R. Repeating the proof of Lemma 3.6, we have

P<FLUG W<, Y<Fa(d, )<

By a similar argument to that of Proposition 4.1 in Wu and Z20], we know that

M p(1)—Fr(e. Y) ()], 1 [Fr(, ) ()= p(1)]. €2 [ (1) = Fa(p. ) (1)) and €2 [ Fa(,
Y)(t) — y(1)] are nondecreasing ine R.

Next, we verify the condition (iv) of ([¢, 1, [, Y])*. Forany(¢ (1), y(1)) € rqg. yl.
[$, Y]*, ¢ € R, ands > 0, we have

[FL(, ¥)(t + 5) — Fi(, ¥)(1)1eP!

1+s 4
_ehis / &1 Hy(, 1) (0) dO — / e Hy(, ) (0) dO
1 t
— e b / P10 Hy (¢, ) (0 + 5) dO — / 1V Hy (. )(0) do

t
_ / PUOLHL (b, ) (O + 5) — Hi($, )(0)]dO

By Lemma 4.2, it follows that
d
3 [P0 +9) = Fa(, ) (0)1e)

= Y[ Hi(), )t +5) — Hi(d, ) ()] >0,

which implies thaf F1(¢, Y) (1 + s) — F1(¢, ) (1)]€f1’ is nondecreasing in€ R for all
s > 0. Similarly,[F2(p, ) (¢ +5) — Fa(¢, lg)(g)]eﬂz’ is also nondecreasing inc R for all
s > 0. Therefore F (¢, Y)(¢) € F([Q, ﬂ], [¢, Yy])*. It completes the proof. [J

Lemma 4.7. If (PQM*) holds then F: I'([¢p, ¥, [p, ¥y]D* — (¢, 1, [p, Yy]* is
compact o o

Proof. The proof is similar to that of Lemma 3.7 and is omitted herel

By Lemmas 4.4-4.7 and Theorem 3.8, we have
Theorem 4.8. Assume thafP1)—(P4)and (PQM*) hold. If there exist an upper solution
(b)), Y(1)) and a lower solution((z), Y (1)) satisfying(A1)-(A2), (A4) and (AS5), then

(2.1) has a traveling wave front solution with nondecreasing second compombith
connectg0, 0) and (k1, k2).
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Remark 4.9. For some discrete predator—prey model with time delays or epidemic models
with time delays, such as the model (1.6) mentioned in the introduction, we may find a
suitable pair of upper and lower solutions, which satisfies the assumptions in Theorem 3.8
or Theorem 4.8, and obtain the existence of traveling wave solutions. We leave these for
future consideration.

References

[1] A.R.A.Anderson, B.D. Sleeman, Wave front propagation and its failure in coupled systems of discrete bistable
cells modeled by FitzHugh—Nagumo dynamics, Int. J. Bifurcation Chaos Appl. Sci. Eng. 5 (1995) 63-74.

[2] C. Atkinson, G.E.H. Reuter, Deterministic epidemic waves, Math. Proc. Cambridge Philos. Soc. 80 (1976)
315-330.

[3] J.Bell, C. Cosner, Threshold behavior and propagation for nonlinear differential—difference systems motivated
by modeling myelinated axons, Quart. Appl. Math. 42 (1984) 1-14.

[4] N.F. Britton, Travelling wave front solutions of a differential-difference equation arising in the modelling of
myelinated nerve axon, in: B. Sleeman, R. Jarvis (Eds.), Ordinary and Partial Differential Equations, Lecture
Notes in Mathematics, vol. 1151, Springer, Berlin, 1984, pp. 77-89.

[5] H. Chi, J. Bell, B. Hassard, Numerical solutions of a nonlinear advanced-delay differential equation from
nerve condition theory, J. Math. Biol. 24 (1986) 583—601.

[6] S.-N. Chow, Lattice dynamical systems, in: J.W. Macki, P. Zecca (Eds.), Dynamical Systems, Lecture Notes
in Mathematics, vol. 1822, Springer, Berlin, 2003, pp. 1-102.

[7] S.-N. Chow, J. Mallet-Paret, W. Shen, Traveling waves in lattice dynamical systems, J. Differential Equations
149 (1998) 248-291.

[8] O.Diekmann, Thresholds and traveling waves for the geographical spread of infection, J. Math. Biol. 6 (1978)
109-130.

[9] T.Erneux, G. Nicolis, Propagating waves in discrete bistable reaction—diffusion systems, Physica D 67 (1993)
237-244.

[10] D. Hankerson, B. Zinner, Wave fronts for a cooperative tridiagonal system of differential equations, J. Dyn.
Differential Equations 5 (1993) 359-373.

[11] J.P. Keener, Propagation and its failure to coupled systems of discrete excitable cells, SIAM J. Appl. Math.
47 (1987) 556-572.

[12] S. Ma, Traveling wavefronts for delayed reaction—diffusion systems via a fixed point theorem, J. Differential
Equations 171 (2001) 294-314.

[13] J. Mallet-Paret, The Fredholm alternative for functional—differential equations of mixed type, J. Dyn.
Differential Equations 11 (1999) 1-47.

[14] J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems, J. Dyn.
Differential Equations 11 (1999) 49-127.

[15] J. Mallet-Paret, Traveling waves in spatially discrete dynamical systems of diffusive type, in: J.W. Macki,
P. Zecca (Eds.), Dynamical Systems, Lecture Notes in Mathematics, vol. 1822, Springer, Berlin, 2003, pp.
231-298.

[16] V.I. Nekorkin, V.B. Kazantsev, S. Morfu, J.M. Bilbault, P. Marquié, Theoretical and experimental study of
two discrete coupled Nagumo chains, Phys. Rev. E 64 (2001) 036602.

[17] C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.

[18] E. Renshaw, Modelling Biological Populations in Space and Time, Cambridge University Press, Cambridge,
1991.

[19] K.W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations,
Trans. Amer. Math. Soc. 302 (1987) 587-615.

[20] J. Wu, X. Zou, Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of
lattice functional differential equations, J. Differential Equations 135 (1997) 315-357.

[21] J. Wu, X. Zou, Traveling wave fronts of reaction diffusion systems with delay, J. Dyn. Differential Equations
13 (2001) 651-687.

[22] Q. Ye, Y. Li, Introduction of Reaction Diffusion Equations, Academy Press, Beijing, 1985.



1350 J. Huang et al. / Nonlinear Analysis 60 (2005) 1331-1350

[23] E. Zeidler, Nonlinear Functional Analysis and its Applications: |, Fixed-point Theorems, Springer, New York,
1986.

[24] B. Zinner, Stability of traveling wave fronts for the discrete Nagumo equation, SIAM J. Math. Anal. 22 (1991)
1016-1020.

[25] B. Zinner, Existence of traveling wave front solutions for the discrete Nagumo equation, J. Differential
Equations 96 (1992) 1-27.

[26] B. Zinner, G. Harris, W. Hudson, Traveling wave fronts for the discrete Fisher’s equation, J. Differential
Equations 105 (1993) 46—-62.

[27] X. Zou, J. Wu, Existence of traveling wave fronts in delayed reaction—diffusion systems via the monotone
iteration method, Proc. Amer. Math. Soc. 125 (1997) 2589-2598.

[28] X. Zou, J. Wu, Local existence and stability of periodic traveling waves of lattice functional-differential
equations, Can. Appl. Math. Quart. 6 (1998) 397-418.



	Traveling wave solutions in delayed lattice differential equations with partial monotonicity
	Introduction
	Preliminaries
	Partially quasimonotone case
	Partially exponential quasimonotone case
	References


