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Abstract. We establish the existence of traveling front solutions and small amplitude trav-
eling wave train solutions for a reaction-diffusion system based on a predator-prey model
with Holling type-II functional response. The traveling front solutions are equivalent to het-
eroclinic orbits inR4 and the small amplitude traveling wave train solutions are equivalent to
small amplitude periodic orbits in R4. The methods used to prove the results are the shooting
argument and the Hopf bifurcation theorem.

1. Introduction

The purpose of this paper is to establish the existence of traveling wave solutions
and small amplitude traveling wave train solutions for a reaction-diffusion system
based on a predator-prey interaction model:

{
ut = d1uxx + Au(1 − u

K
) − B uw

1+Eu
,

wt = d2wxx − Cw + D uw
1+Eu

,
(1)

where all parameters in (1) are positive. The functions u(x, t) and w(x, t) are the
densities of the prey and predator, respectively, d1 and d2 are the diffusion coeffi-
cients, A is a growth factor for the prey species, C is the death rate for the predator
in the absence of prey, K is the carrying capacity, B and D are the interaction rates
for the two species, the parameter E measures the “satiation” effect: the consump-
tion of prey by a unit number of predators cannot continue to grow linearly with
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the number of prey available but must “saturate” at the value 1/E, see Freedman
[6] and May [11]. The reaction term is a Holling type-II functional response.

The existence of traveling wave solutions in special cases of the predator-prey
system (1) and its variants has been studied by many researchers. Gardner [7] proved
the existence of traveling wave solutions connecting stable spatially homogeneous
solutions by using a modification of the Conley index called the connection index.
See also Mischaikow and Reineck [12]. Dunbar [1,2] investigated the existence of
traveling wave solutions for a diffusive Lotka-Volterra model. The traveling wave
solutions observed in Dunbar [1,2] are not necessarily monotone but for certain
parameter values have damped oscillations at one end of the traveling wave front.
Dunbar [3] considered system (1) with d1 = 0 and proved the existence of periodic
orbits and traveling wave solutions, that is, heteroclinic orbits connecting a point
and a periodic orbit or connecting two points. We refer to Murray [13] and Volpert
et al. [16] for more detailed results and references.

Numerical simulation in Owen and Lewis [14] show that system (1) with d1 �= 0
and d2 �= 0 possesses traveling wave solutions. They also mentioned that it is an
interesting open problem to prove the existence and convergence of the initial data
to traveling wave solutions for system (1). In this paper, we consider system (1)
when d1 �= 0 and d2 �= 0 and establish the existence of traveling wave solutions and
small amplitude traveling wave train solutions of system (1). The technique used to
establish the existence of the traveling wave is a shooting argument in R4 together
with a Liapunov function and LaSalle’s Invariance Principle. The existence of a
traveling wave solution is guaranteed by the nonequivalence of a simply connected
region and a punctured disk, rather than the nonequivalence of an interval and a
disconnected union of two intervals, see Dunbar [1–3].

We should mention that although the techniques we use to show the existence
of traveling wave solutions in this paper are similar to that in [2], there are several
differences. First, it is a different model. The system considered in [2] is a Lotka-
Volterra model while system (1) has a Holling type-II functional response, so it is
more difficult to establish the existence of traveling wave solutions. Secondly, we
construct a different Wazewski setW which is more complex. Finally, we construct
a different Liapunov function to prove our result. Also, the arguments we use to
establish the existence of small amplitude traveling wave train solutions are similar
to that in [3]. However, in [3], since d1 = 0 the traveling wave equations is a system
in R3 while we study a system in R4, the geometry in R4 is more complicated than
in R3.

For further simplification, taking

u∗ = Eu, w∗ = Bw

C
, t ′ = Ct, x′ =

√
C

d2
x, d = d1

d2
, α = A

ECK
,

b = EK, β = d2

EC
,

and dropping the stars on u,w and the primes on x, t for convenience, we obtain{
ut = duxx + u[α(b − u) − w

1+u
],

wt = wxx − w(1 − βu
1+u

).
(2)
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There are several reasonable parameter restrictions. First, we require that b > 1
or equivalently that E > 1

K
, so that the satiation effect is great enough. We also re-

quire that β > 1+b
b

> 1, which ensures that equations (2) has a positive equilibrium
point corresponding to constant coexistence of the two species. Finally, α > 0 and
0 < d ≤ 1, the latter indicates that the prey population does not disperse faster than
the predators. System (2) has three equilibrium points: (0, 0), (b, 0) and (u0, w0),
which are equilibria of the corresponding ODE system without diffusion, where

u0 = 1

β − 1
, w0 = α(

1

β − 1
+ 1)(b − 1

β − 1
).

The equilibrium point (0, 0) corresponding to absence of both species is a saddle
point, (b, 0) corresponding to the prey at the environment carrying capacity in the
absence of predators is also a saddle point, and (u0, w0) corresponds to co-exis-
tence of the two species. The traveling wave solution which will be established by
the shooting argument is a heteroclinic orbit connecting (b, 0) and (u0, w0).

The paper is organized as follows. In section 2 we first recall a lemma which
is a variant of the Wazewski’s Theorem and is the main tool in proving one of the
main theorems. Then we state the main results on the existence of traveling front
solutions and small amplitude traveling wave train solutions. Section 3 is devot-
ed to the proofs of the main theorems. Finally, a brief discussion is presented in
section 4.

2. Main results

In order to establish the existence of traveling wave solutions of system (2), we
assume that the solutions have the special form u(x, t) = u(x + ct), w(x, t) =
w(x + ct), where s = x + ct , the wave speed parameter c is positive. Then system
(2) becomes {

cu′ = du′′ + αu(b − u) − uw
1+u

,

cw′ = w′′ − w + βuw
1+u

.
(3)

Here ′ denotes the differentiation with respect to the traveling wave variable s.
Recalling the ecological motivation, we require that the traveling wave solutions u
and w are nonnegative and satisfy the boundary conditions:

u(−∞) = b, u(+∞) = u0, w(−∞) = 0, w(+∞) = w0. (4)

Rewrite system (3) as a system of the first order equations in R4



u′ = v,

v′ = c
d
v + α

d
u(u − b) + uw

d(1+u)
,

w′ = z,

z′ = cz + w − βuw
1+u

.

(5)

Recall the following result (see [3], pp.1069) which is a variant of the Wazew-
ski’s Theorem and is a formation and extension of the shooting method. The proof
can be found in [3].
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Consider the differential equation:

y′ = f (y), ′ = d/ds, y ∈ Rn, (∗)
where f : Rn → Rn is a continuous function and satisfies the Lipschitz condition.
Let y(s, y0) be the unique solution of (*) satisfying y(0, y0) = y0.For convenience,
set y(s, y0) = y0 · s, let Y · S be the set of points y0 · s, where y0 ∈ Y, s ∈ S.

Given W ⊆ Rn, define

W− = {y0 ∈ W
∣∣∀s > 0, y0 · [0, s) �⊆ W }.

W− is called the immediate exit set of W . Given ! ⊆ W, let

!0 = {y0 ∈ !
∣∣∃s0 = s0(y0) such that y0 · s0 /∈ W }.

For y0 ∈ !0, define

T (y0) = sup{s∣∣y0 · [0, s] ⊆ W }.
T (y0) is called an exit time. Note that y0 · T (y0) ∈ W− and T (y0) = 0 if and only
if y0 ∈ W−.

Lemma 2.1. Suppose that

(i) if y0 ∈ ! and y0 · [0, s] ⊆ cl(W), then y0 · [0, s] ⊆ W ;
(ii) if y0 ∈ !, y0 · s ∈ W, y0 · s /∈ W−, then there is an open set Vs about y0 · s

disjoint from W−;
(iii) ! = !0, ! is a compact set and intersects a trajectory of y′ = f (y) only

once.

Then the mapping F(y0) = y0 ·T (y0) is a homeomorphism from ! to its image
on W−.

A set W ⊆ Rn satisfying the conditions (i) and (ii) is called a Wazewski set.
Now we state the main results as follows.

Theorem 2.2. (i) If 0 < c <

√
4(bβ−1−b)

1+b
, then there are no nonnegative solutions

of system (5) satisfying the boundary conditions (4).

(ii) If c >

√
4(bβ−1−b)

1+b
, b+1

b
< β < b

b−1 , and (1 − α)(β − 1) ≥ 2β
1+b

√
bβ−1−b

1+b
,

then there are nonnegative solutions of (5) satisfying the boundary conditions
(4), which correspond to traveling wave solutions of system (2).

Theorem 2.3. If b+1
b

< β ≤ 1
1−√

2/(1+b)
, then as the parameter β crosses the

bifurcation curve c2 = 1
1+d

− d(1+d)p
r

at β0 in the (β, c)-parameter plane, where

r = α(1+b)
β

− 2α
β−1 < 0, p = αb(β−1)−α

dβ
< 0, then system (5) undergoes a Hopf

bifurcation at the equilibrium point (u0, 0, w0, 0) and there is a small amplitude
periodic solution, which corresponds to a small amplitude traveling wave train
solution of system (2).
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3. Proofs of the main results

3.1. Proof of Theorem 2.2

The eigenvalues of the linearization of (5) at (b, 0, 0, 0) are

λ1 =
c
d
−

√
c2

d2 + 4αb
d

2 , λ2 =
c −

√
c2 − 4(bβ−1−b)

1+b

2
,

λ3 = c+
√
c2− 4(bβ−1−b)

1+b

2 , λ4 =
c
d

+
√

c2

d2 + 4αb
d

2
.

If 0 < c <

√
4(bβ−1−b)

1+b
, λ2 and λ3 are a pair of complex conjugate eigenvalues with

positive real part. By Theorems 6.1 and 6.2 in [9], there is a 2-dimensional unstable
manifold base at (b, 0, 0, 0), the point is a spiral point on this unstable manifold,
and the trajectory approaching (b, 0, 0, 0) as s → −∞ must have w(s) < 0 for
some s. This violates the requirement that the traveling wave solution must be
nonnegative. So the first part of Theorem 2.2 is proved.

We only need to discuss the case c ≥
√

4(bβ−1−b)
1+b

in the following. It is easy
to know that λ1 < 0 < λ2 < λ3 < λ4, the eigenvectors e2, e3, e4 associated with
λ2, λ3, λ4, respectively, are

e2 = (1, λ2, p(λ2), λ2p(λ2)), e3 = (1, λ3, p(λ3), λ3p(λ3)), e4 = (1, λ4, 0, 0),

wherep(λ) = 1+b
b

[(d−1)λ2 − βb−1−b
1+b

−αb] < 0.By Theorems 6.1 and 6.2 in [9],
we know that there is a strongest unstable manifold *1 tangent to e4 at (b, 0, 0, 0),
and a parametric representation for the 1-dimension strongest unstable manifold
*1 in a small neighborhood of (b, 0, 0, 0) is

f1(m) = (b, 0, 0, 0) + me4 + O(|m|).
There is also a 2-dimension strongly unstable manifold *2 tangent to the span

of e4 and e3 at (b, 0, 0, 0), and a parametric representation for the 2-dimension
strongly unstable manifold *2 in a small neighborhood of (b, 0, 0, 0) is

f2(m, n) = (b, 0, 0, 0) + me4 + ne4 + O(|m| + |n|).
Finally, there is a 3-dimension unstable manifold *3 tangent to the span of

e4, e3 and e2 at (b, 0, 0, 0), and a parametric representation for the 3-dimension
unstable manifold *3 in a small neighborhood of (b, 0, 0, 0) is

f2(m, n, l) = (b, 0, 0, 0)T + me4 + ne4 + le2 + O(|m| + |n| + |l|).
The idea of constructing the Wazewski set W is similar to that in Dunbar [2]:

it will be the complement of four blocks in R4, two of which are chosen so that z′
has the same sign as z so solutions entering these blocks would not have z → 0 as
s → ∞, the other pair of blocks are chosen so that v′ has the same sign as v and
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so solutions entering these blocks will not have v → 0 as s → ∞. Define W as
follows

W = R4\(P ∪ Q ∪ T ∪ S),

where

P = {(u, v,w, z)|u < u0, w > w0, z > 0},
Q = {(u, v,w, z)|u > u0, w < w0, z < 0},
S = {(u, v,w, z)|u > u0, α(u − b) + w

1 + u
> 0, v > 0},

T = {(u, v,w, z)|u < u0, α(u − b) + w

1 + u
< 0, v < 0}.

Note that P ∩T �= Ø,Q∩S �= Ø, while all other pairwise intersections are empty.
We have

∂W = (∂P \T ) ∪ (∂Q\S) ∪ (∂T \P) ∪ (∂S\Q),

W− = ∂W\({(u0, 0, w0, 0)} ∪ J1 ∪ J2),

N = {(u, v,w, z)|w = z = 0},
H = {(u, v,w, z)|u = v = 0}.

Also

J1 = {(u, v,w, z)|u > u0, w ≤ 0, z = 0}
∪{(u, v,w, z)|u = b,w ≤ w0, v < 0, z = 0}
∪{(u, v,w, z)|u > u0, α(u − b) + w

1 + u
> 0, v ≤ 0, z = 0}

∪{(u, v,w, z)|u > u0, α(u − b) + w

1 + u
= 0, w ≤ w0, v = 0, z = 0}

∪{(u, v,w, z)|u > u0, α(u − b) + w

1 + u
= 0, w > w0, v < 0, z = 0}

∪{(u, v,w, z)|u > u0, α(u − b) + w

1 + u
= 0, w > w0, z < 0},

J2 = {(u, v,w, z)|u = 0, w ≤ αb, z < 0, v = 0}
∪{(u, v,w, z)|u = 0, w ≤ w0, z ≥ 0, v = 0}
∪{(u, v,w, z)|u < 0, α(u − b) + w

1 + u
= 0, v = 0}

∪{(u, v,w, z)|u < 0, α(u − b) + w

1 + u
< 0, w ≥ w0, z < 0, v = 0}

∪{(u, v,w, z)|u < u0, α(u − b) + w

1 + u
< 0, w < w0, v = 0}

∪{(u, v,w, z)|u < u0, α(u − b) + w

1 + u
= 0, z < 0, v < 0}.

J1 is the set of points on ∂W which do not exit from W into Q,T or S, this can
occur in three ways. Some points in the invariant manifold N may not enter T or
S immediately, of course, they will remain in N for all time and so do not enter Q.
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Points on ∂W with z = 0, w < 0 will enterW fromQ and so will not be immediate
exit points. Points on ∂W with α(u − b) + w

1+u
= 0, u > u0, w > w0, z < 0 will

not be immediate exit points.
J2 is the set of points on W which do not exit immediately from W into P, or

T , this can also occur in three ways. Some points in the invariant manifold H may
not enter P immediately, they will remain in H for all time and so do not enter T .
Points on ∂W with u < 0, α(u − b) + w

1+u
< 0, v = 0 will not be immediately

exit points. Points on ∂W with α(u − b) + w
1+u

= 0, u < u0, z < 0 will not be
immediate exit points.

The details of proving that W− is the set described above are tedious, we just
give the proof of one part of ∂W , ∂T \P , and the other proofs are similar.

The boundary of ∂T are u = u0, α(u − b) + w
1+u

= 0 or v = 0. We consider
the following cases to discuss ∂T \P .

(1) u = u0, w = w0, v < 0.
(i) z < 0, then w < w0. v < 0 implies that u < u0. Direct calculation shows

that[
α(u−b)+ w

1 + u

]′∣∣∣
(u0,v,w0,z)

=
[
v
(
α− w

(1 + u)2

)
+ z

1 + u

]∣∣∣
(u0,v,w0,z)

< 0.

Hence, the trajectory enters T .
(ii) z = 0, since v < 0, then u < u0, and[

α(u − b) + w

1 + u

]′∣∣∣
(u0,v,w0,z)

=
[
v(α − w

(1 + u)2

]∣∣∣
(u0,v,w0,z)

< 0.

So the trajectory also enters T .
(iii) z > 0, then w > w0, z > 0, u < u0, the trajectory enters P .

(2) u = u0, w < w0, v < 0.
Since v < 0 implies that u < u0, and at the point u = u0, we have

α(u − b) + w

1 + u
= α(u0 − b) + w

1 + u0
< α(u0 − b) + w0

1 + u0
= 0.

That is, the trajectory enters T .
(3) u = u0, w = w0, v = 0.

(i) z = 0, this is a singular point and is not in the immediate exit set.
(ii) z > 0, then w > w0. We have

v′ = 1

d

[
cv + αu(u − b) + wu

1 + u

]∣∣∣
(u0,w0)

= 0,

v′′ = 1

d

[
cv′+v

(
α(u−b)+ wu

1 + u

)
+u[αv + z

1 + u
− wv

(1 + u)2 ]
]∣∣∣
(u0,w0)

= 1

d

[ uz

1 + u

]
(u0,w0)

> 0.

This implies that u is increasing, and v has a minimum, hence v > 0.
Since [α(u − b) + w

1+u
]′ = w′

1+u
> 0 and α(u0 − b) + w0

1+u0
= 0, we get

α(u − b) + w
1+u

> 0. Therefore, the trajectory enters S.
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(iii) z < 0, then w < w0. We have

v′ = 1

d

[
cv + αu(u − b) + wu

1 + u

]∣∣∣
(u0,w0)

= 0,

v′′ = 1

d

[
cv′+v

(
α(u−b)+ wu

1 + u

)
+u[αv + z

1 + u
− wv

(1 + u)2 ]
]∣∣∣
(u0,w0)

= 1

d

[ uz

1 + u

]
(u0,w0)

< 0,

which implies that α(u − b) + w
1+u

< 0. Hence, u is decreasing, v has a
maximum, and v < 0, so the trajectory enter T .

(4) u = u0, w < w0, v = 0.
Since

v′|u=u0 = 1

d

[
cv + u[α(u − b) + w

1 + u
]
]
u=u0

= 1

d

[
u0[α(u0 − b) + w

1 + u0
]
]

<
1

d

[
u0[α(u0 − b) + w0

1 + u0
]
]

= 0,

and

α(u − b) + w

1 + u
|u=u0 = α(u0 − b) + w

1 + u0

< α(u0 − b) + w0

1 + u0
= 0.

Hence, the trajectory enters T .
(5) 0 < u < u0, α(u − b) + w

1+u
= 0, v < 0.

(i) z > 0, since w = α(b−u)(1+u), w0 = α(b−u0)(1+u0), and β < b
1+b

,
then u0 > b − 1, and w − w0 = α(u − u0)(u + u0 + 1 − b) > 0. Hence
w > w0, the trajectory enters P .

(ii) z = 0, since β < b
1+b

, then 1 − β + β
1+u

> 1 − β + β
1+u0

> 0, and

z′ = cz + w − βuw
1+u

= w[1 − β + β
1+u

] > 0, that is, z > 0. Similar to that
proof of (5i), we have w > w0, so the trajectory enters P .

(iii) z < 0, the trajectory does not enter either P or T , and this is included in the
portions of J2.

(6) 0 < u < u0, α(u − b) + w
1+u

= 0, v = 0.

(i) z < 0, then w is decreasing, and
[
α(u − b) + w

1+u

]′ = z
1+u

< 0, that is,

α(u − b) + w
1+u

< 0. Since v′ = 1
d

[
cv + αu(u − b) + wu

1+u

]
= 0 and

v′′ = 1
d

[
cv′ + v[α(u − b) + w

1+u
] + u[αv − wv

(1+u)2+ z
1+u

]
]

= 1
d

uz
1+u

< 0,

then v is decreasing and has a maximum. Hence v < 0, the trajectory enters
T .

(ii) z = 0, then z′ = cz+w[1− βu
1+u

] = w[1−β+ β
1+u

] > w[1−β+ β
1+u0

] = 0,
which implies that z > 0. Similar to (5i), we have w > w0, the trajectory
enters P .
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(iii) z > 0, the trajectory enters P .
(7) −1 < u < 0, α(u − b) + w

1+u
= 0, v = 0.

(i) z < 0, then v′ = 0, v′′ = 1
d

uz
1+u

> 0, so v has a minimum and v > 0, but

[α(u− b)+ w
1+u

]′ = w′
1+u

< 0, which implies that α(u− b)+ w
1+u

< 0, the
trajectory does not enter either T , S or P, Q immediately.

(ii) z = 0, then z′ = cz + w[1 − β + β
1+u

] > 0, which implies that z > 0,

v′′ = 0, v′′′ = uz′
1+u

< 0, so v is decreasing and has a maximum. Hence
v < 0. Direct calculation shows that [α(u− b)+ w

1+u
]′ = z

1+u
> 0, that is,

α(u−b)+ w
1+u

> 0, the trajectory does not enter T . Similarly, the trajectory
does not enter P,Q, S;

(iii) z > 0, the trajectory does not enter either T , S or P,Q immediately.
Hence, regardless of the sign of z, this is a part of J2.

(8) 0 < u < u0, α(u − b) + w
1+u

< 0, v = 0, w > w0.

(i) z < 0, then v′ = 1
d

[
cv + u[α(u − b) + w

1+u
]
]
< 0, this implies that v is

decreasing and v < 0, so the trajectory enters T .
(ii) z = 0, then z′ = cz + w[1 − β + β

1+u
] > w[1 − β + β

1+u0
] = 0, that is, z

is increasing, and z > 0. The trajectory enters P .
(iii) z < 0, these points are in P and not considered.
(9) 0 < u < u0, α(u − b) + w

1+u
< 0, w < w0, v = 0.

We have v′ = 1
d

[
cv + u[α(u − b) + w

1+u
]
]
< 0, which implies that v is

decreasing and v < 0. Hence, the trajectory enters T .
(10) u < 0, α(u − b) + w

1+u
< 0, w ≥ w0, v = 0.

(i) z > 0, these points are in P and will not be considered.
(ii) z = 0, since z′ = cz+w[1 − βu

1+u
] = w[1 − β + β

1+u
] > 0, which implies

that z is increasing, we have z > 0, so the trajectory enters P .

(iii) z < 0, then v′ = 1
d

[
cv + u[α(u − b) + w

1+u
]
]
> 0, that is, v is increasing

and v > 0, the trajectory does not enter either T ,Q or P, S immediately,
this is included in J2.

(11) u < 0, α(u − b) + w
1+u

< 0, w < w0, v = 0.

We have v′ = 1
d

[
cv + u[α(u − b) + w

1+u
]
]
> 0, and v > 0, the trajectory

does not enter either T ,Q or P, S immediately, this is included in J2.
(12) u = 0, v = 0, α(u − b) + w

1+u
< 0.

The points are on the invariant manifold H. The trajectory are the solution of
the equations {

w′ = z,

z′ = cz + w.

Thenw<αb. Since β< b
b−1 <

b+1
b−1 , we have αb−w0 = αu0[ 1

β−1 +1−b]>
0, so αb > w0.

(i) z > 0, if w > w0, then these points are in P and will not be considered;

if w ≤ w0, then v′ = 1
d

[
cv + u[α(u − b) + w

1+u
]
]

= 0, v′′ = 0, · · ·,
v(n) = 0. The trajectory does not enter either T , Q or P, T immediately,
this is included in J2.
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(ii) z = 0, then z′ = cz+w[1− βu
1+u

] = w > 0, z is increasing and z > 0. Sim-
ilar to (12i), if w > w0, these points are in P and will not be considered; if
w ≤ w0, then the trajectory does not enter either T ,Q or P, S immediately,
this is included in J2.

(iii) z < 0, the trajectory does not enter either T ,Q or P, S immediately, this is
included in J2.

(13) u = 0, v = 0, α(u − b) + w
1+u

= 0, that is w = αb > w0.
(i) z > 0, these points are in P and will not be considered.

(ii) z = 0, then z′ = w > 0, the trajectory enters P.
(iii) z < 0, the trajectory does not enter either T , Q or P, S immediately, this

is included in J2.

In order to use Lemma 2.1, we construct the set! by a series of lemmas (Lemma
3.1 to Lemma 3.6). Then we prove that there must be a trajectory through ! which
does not leave W by Lemmas 3.7 and 3.8. Finally, we choose a Liapunov func-
tion and use LaSalle’s Invariance Principle to show that the trajectory approaches
(u0, 0, w0, 0).

Lemma 3.1. Consider a solution y(s, y0) with y0 ∈ *1, and u0 < b, then there
is a finite s0 such that u(s0, y0) < u0, v(s0, y0) < 0, that is, if choose m1,m2
such that m1 < c

d
< λ4 < m2, m2[u(0) − b] < v(0) < m1[u(0) − b], then

m2[u(s) − b] < v(s) < m1[u(s) − b].

Proof. Consider the system

{
u′ = v,

v′ = c
d
v + u

d
[α(u − b)].

(6)

The solution of (5) in N is given by (u(s), v(s), 0, 0), where (u(s), v(s)) is the
solution of (6), so the strongest unstable manifold *1 is contained in the invari-
ant manifold N . Similarly, the strongest unstable manifold *1 is contained in the
invariant manifold W .

We first consider the solution of (6), it is easy to know the solution in *1 must
approach (b, 0) tangent to the eigenvector (−1,−λ4) in the region u < b, v < 0.
If the initial condition y0 satisfies m2[u(0) − b] < v(0) < m1[u(0) − b], take
m1 < c/d < λ4 < m2, then in the region 0 < u < b, v < 0, the trajectory of a
solution starting from *1 satisfies

m2[u(s) − b] < v(s) < m1[u(s) − b].

In fact, if there exists some s > 0 such that m2[u(s) − b] ≥ v(s), let s1 =
inf{s|m2[u(s)−b] ≥ v(s)}. For s ∈ [0, s1),we have v(s) > m2[u(s)−b], v(s1) =
m2[u(s1) − b] and u(s) > 0, so v′(s1) < m2u

′(s1). Substituting (6) into v′(s1) <

m2u
′(s1), we obtain

(
c

d
− m2)v(s1) + α

d
u(s1)[u(s1) − b] < 0.
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Using v(s1) = m2[u(s1) − b], we have

(
c

d
− m2)m2[u(s1) − b] + α

d
u(s1)[u(s1) − b] < 0.

If there exists some s2 such that u(s2) − b = 0, u′(s2) ≥ 0, 0 < s2 ≤ s1,
0 ≤ u′(s2) < 0, then u(s2) < b. Thus,

m2(m2 − c

d
) − α

d
u(s1) < 0.

Since 0 ≤ u(s1) ≤ b,m2(m2 − c
d
)− αb

d
< 0, we have m2 <

c/d+
√

(c/d)2+4bα/d
2 =

λ4, this is a contradiction to the choice ofm2 > λ4. So we havem2[u(s)−b] < v(s).
Similarly, we can prove that

v(s) < m1[u(s) − b].

Since u′ = v, integrating yields

b − c1e
m2s < u(s) < b − c2e

m1s

for s such that u(s) satisfies 0 < u(s) < b. Then for s0 large enough, u(s0) <

u0, v(s0) < 0.
Using the vector field, the outward direction of the linem2[u(s)−b]−v(s) = 0

is denoted as nt = {m2,−1}, then nt · F ′ = [b − u(s)][−m2 + c
d
m2 − αb

d
] < 0

in the region u(s) < b, v < 0. So the trajectory enters transversally into this re-
gion. Similarly, we can prove the trajectory transversally intersects the line v(s) =
m1[u(s) − b].

Lemma 3.2.

(i) A solution y(s, y0) on *1 which approaches (b, 0, 0, 0) as s → −∞ in the
region u > b, v > 0 will remain in that region for all s.

(ii) Any trajectory which has a point such that w(0) > 0, z(0) > c
2w(0) will have

w(s) > 0 and z(s) > c
2w(s) for all s > 0 such that u ≤ b.

Proof. It is easy to check that the outward direction of the line v = 0(u > b) is nt =
{0, 1}, so nt · F ′ = α

d
u(u − b] > 0. The outward direction of line u = b, (v > 0)

is nt = {1, 0}, so nt · F ′ = c
d
v > 0. Thus, the region u > b, v > 0 is an invariant

region.
Suppose to the contrary that there exists an s such that u(s) < b, but z(s) ≤ c

2
w(s), let s1 = inf {s|z(s) ≤ c

2 , u(s) < b}. Sincew(0) > 0, for s ∈ [0, s1), w
′(s) =

z(s) > c
2 , we havew(s1) > 0, z′(s1)− c

2w
′(s) ≤ 0. Using that z(s1) = (c/2)w(s1),

we obtain c2

4 +1−β+ β
1+u(s)

≤ 0.Sinceu(s) ≤ b, it follows that c
2

4 +1−β+ β
1+b

<

0, that is, c2 ≤ 4(bβ−b−1)
1+b

, a contradiction with c2 >
4(bβ−b−1)

1+b
. This completes

the proof of Lemma 3.2.
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Lemma 3.3. Let y(s) be a solution approaching (b, 0, 0, 0) and tangent to e3 in

the region where u < b as s → −∞. Suppose that (1−α)(β−1) ≥ 2β
1+b

√
bβ−1−b

1+b

and u(s) is decreasing until y(s) enters the region

T = {(u, v,w, z)|u > u0, w > 0, α(u − b) + w

1 + u
< 0}.

Then the solution must satisfy v(s) < − c
2α(1+b)

w(s).

Proof. The solution y(s) approaches (b, 0, 0, 0) and is tangent to e3. The eigen-
vector e3 at (b, 0, 0, 0) has components v = λ3(u− b),w = p(λ3)(u− b), where
p(λ3) < 0, then v = u′ < 0. Thus u is decreasing in the region u < b. Because
0 < d ≤ 1, we have

α(u − b) + w

1 + u
= α(u − b) + p(λ3)(u − b)

1 + u
= (b − u)[−p(λ3)

1 + u
− α]

≥ (b − u)[−p(λ3)

1 + u
− α]

≥ b − u

b
[(1 − d)λ2

3 + βb − 1 − b

1 + b
] > 0.

Then in the region u < b, the eigenvector e3 at (b, 0, 0, 0) lies in the region where
α(u − b) + w

1+u
> 0.

Therefore, asymptotically as s → −∞, the solution y(s) satisfies

u0 < u < b, v < 0, w > 0, α(u − b) + w

1 + u
> 0.

Now we suppose y(s) ∈ T , v(s1) ≥ − c
2α(1+b)

w(s), and s1 is the first value
such that u(s) ≤ b for s < s1. Lemma 3.2 implies that z(s1) > c

2w(s1), thus,
α(1 + b)v(s1) + z(s1) > 0. Let

s2 = sup{s < s1|α(u − b) + w

1 + u
≥ 0}.

Since as s → −∞, α(u−b)+ w
1+u

> 0, the value s2 is finite. Sinceα(u−b)+ w
1+u

<

0 for s > s2 andα(u(s2)−b)+ w(s2)
1+u(s2)

= 0, we have [α(u(s)−b)+ w(s)
1+u(s)

]′s=s2
≤ 0.

Rewrite the last inequality as v(s2)[α(1 − b) + 2αu(s2)] + z(s2) ≤ 0. But as
s = s1, we have

v(s1)[α − w(s1)

1 + u(s1)2 ] + z(s1)

1 + u(s1)

= 1

1 + u(s1)
[v(s1)(α + αu(s1) − w(s1)

1 + u(s1)
] + z(s1)

≥ 1

1 + u(s1)
[v(s1)(α(1 + b) − v(s1)w(s1)

1 + u(s1)
+ z(s1)]

≥ 1

1 + u(s1)
[α(1 + b)v(s1) + z(s1)] > 0.
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By the continuity, α(u− b)+ w
1+u

has a positive minimum for some s3 ∈ (s2, s1),

and y(s3) ∈ T . Then

[α(u − b) + w

1 + u
]′s=s3

= 0, [α(u − b) + w

1 + u
]′′s=s3

≥ 0,

which can be written as

αv′(s3) + z′(s3)

1 + u(s3)
+ 2αv(s3)

2

1 + u(s3)
− w(s3)v(s3)

(1 + u(s3))2 ≥ 0.

Since s2 < s3 < s1, α(u(s3) − b) + w(s3)
1+u(s3)

< 0, by the assumption that (1 − α)

(β − 1) ≥ 2β
1+b

√
bβ−1−b

1+b
, it follows that (1−α)w(s3)

1+u(s3)
+ 2αv(s3) ≥ 0. Since y(s3) ∈

T , β > b+1
b
, we can see that

w(s3)

1 + u(s3)
[1 − α2u(s3)

2

1 + u(s3)
+ (α2b − β)u(u3)

1 + u(s3)
− 2αw(s3)u(s3)

(1 + u(s3)2 ] < 0.

Therefore

αv′(s3) + z′(s3)

1 + u(s3)
+ 2αv(s3)

2

1 + u(s3)
− w(s3)v(s3)

(1 + u(s3))2 < 0,

a contradiction. Thus, the inequality v(s1) ≥ − c
2α(1+b)

w(s) cannot hold. This
proves Lemma 3.3.

Consider a small circle on *2 parametrically given by

g(θ) =



b + ε cos(θ + ϕ) + ε sin(θ + ϕ) + O(ε)

λ4ε cos(θ + ϕ) + λ3ε sin(θ + ϕ) + O(ε)

p(λ3)ε sin(θ + ϕ) + O(ε)

λ3p(λ3)ε sin(θ + ϕ) + O(ε)


 ,

The phase ϕ is fixed so that g(0) is on * in the region u < b, and the parameter θ ∈
[0, 2π ]. Chooseg so that as θ increases from 0, b+ε cos(θ+ϕ)+ε sin(θ+ϕ)+O(ε)

decreases and p(λ3)ε sin(θ +ϕ)+O(ε) increases from 0. Let A be the component
of the set {θ ∈ [0, 2π ], there exists s0 such that u(s0, g(θ)) = u0, v(s, g(θ)) ≤
0, s ≤ s0}. Then A contains 0 from Lemmas 3.1 and 3.2, A is nonempty and
bounded. Let θ1 = supA and y1 = g(θ1).

Lemma 3.4. There exists an s0 such that

u(s0, y1) = u0, w(s0, y1) > w0, v(s0, y1) = 0.

Proof. We prove the lemma in the following several steps.
(a) Since g(0) ∈ *1 with u < b, if (u(s0), g(0)) = u0, then v(s0, g(0)) =

(d/ds)(u(s0), g(0)) < 0, so (u(s0(θ)), g(0)) = u0 for θ in a small neighborhood
of θ = 0. Therefore, θ1 �= 0. By Lemma 2, if g(θ∗) is in the branch of *1 with
u > b, then θ1 < θ∗.



Predator-prey waves 145

(b) y(s, y1) �∈ {(u, v,w, z)|u0 < u < b, 0 < w < w0,∀s > 0}. Otherwise,
w′ = z > 0,∀s > 0, so w could not be bounded.

(c) There is no s1 such that v(s1, y1) = 0, u0 < u(s1, y1) < b,w(s1, y1) > 0.
Otherwise, if there exists such an s1, it is easy to know from Lemma 3.3 that
α(u − b) + w

1+u
≥ 0, u0 < u(s) < b,w(s) > 0. If α(u − b) + w

1+u
= 0,

then from z(s) > 0, it follows that w is increasing. Since v(s1, y1) = 0, we have
[α(u−b)+ w

1+u
]′ = z(s1)

1+u(s1)
> 0 andα(u(s)−b)+ w(s)

1+u(s)
> 0, u(s) > 0 for s > s1.

There exists δ > 0 such that α(u(s) − b) + w(s)
1+u(s)

< 0 for s ∈ (s1 − δ, s1), then
the trajectory y(s) enters T , as in Lemma 7 of [2], it follows that v(s) > − c

4w(s).
This is a contradiction to Lemma 3.3. If there exists s1 such that u(s1) > 0,
α(u−b)+ w

1+u
> 0, then v′(s1) = cv+u[α(u−b)+ w

1+u
] > 0, so v increases, based

on the assumption that v(s1, y1) = 0, u(s1, y1) > u0. The Implicit Function Theo-
rem and the continuity of solutions on the initial conditions imply that there exists an
s1 = s1(θ) such that v(s1(θ), y1(θ)) = 0, u(s1(θ), y1(θ)) > u0 for all θ in a small
neighborhood of θ1. Since it does not occur in T , α(u(s1(θ))−b)+ w(s(θ))

1+u(s1(θ))
> 0,

then v′(s1(θ), g(θ)) > 0 for θ < θ1. This contradicts the definition of θ1 and proves
the case (c).

(d) It is impossible thatu(s, y1) > u0 holds for all s. Sinceu(s) is decreasing and
w(s) is increasing, w(s) cannot be bounded. If it is true, then α(u(s)−B)+ w

1+u
>

α(u(s)− b)+ w
1+b

. Thus, α(u(s)−B)+ w
1+u

cannot be bounded. Argued as in the
proof of Lemma 3.1, we have v(s) > m1(u(s) − b), where m1 > λ4. This means
that v(s) is bounded from low by m1(u0 − b). Then v′ = c

d
v+ u

d
[α(u− b)+ w

1+u
]

is increasing, this means that v does not remain negative, so u is not decreasing,
and this contradicts with part (c).

(e) It follows from part (c) that v(s, g(θ)) < 0 as long as u(s, g(θ)) ≥ u0, and
if there exists an s0 such that u(s0, y1) = u0, w(s0, y1) < w0, then

α(u0 − b) + w

1 + u0
< α(u0 − b) + w0

1 + u0
= 0.

This means that the trajectory will enter T , then we have v(s0, g(θ)) < 0. This
contradicts with the definition of θ1. Thus there is no s0 such that u(s0, y1) =
u0, w(s0, y1) < w0.

(f) There is no s0 such that u(s0, y1) = u0, w(s0, y1) = w0. Otherwise, from
part (e), if v(s0, y1) < 0, it contradicts with the definition of θ1. If v(s0, y1) = 0,
the trajectory will enter T , by using the similar argument in part (c), a contradiction.

Summarizing (a) to (f), we complete the proof of Lemma 3.4.

Lemma 3.5. There exists a value θ2 such that the v coordinate of g(θ2) is zero and
θ2 > θ1.

Proof. The proof is similar to that of Lemma 8 in [2] and is omitted.

We know from Lemmas 3.4 and 3.5 that solutions starting from the arcg(θ), 0 <

θ < θ1, on *2 enter either the region T or P. Arg g(θ) provides one side of the
quadrilateral !, the second side of the quadrilateral is composed of two portions,
one portion is an arg g(θ), θ1 < θ < θ2, where θ2 satisfies λ4ε cos(θ + ϕ) +
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2
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.
.

.
g(0)

y

y

Fig. 1. The second side of the quadrilateral !.

λ3ε sin(θ + ϕ) + O(ε) = 0, let y2 = g(θ2), the second is an arc of the circle
of intersection of a small sphere surrounding (b, 0, 0, 0) in * and the hyperplane
v = 0 (see Figure 1).

Now, we construct the other sides of the quadrilateral !.

Lemma 3.6. The sphere intersects the hyperplane defined by v = 0 and z = 0 in
a smooth closed curve, and there exists a point, say y3, on the sphere such that the
v and z coordinates of y3 are both zero.

Proof. Denote

g1(θ, ϕ) =




b + ε cos θ sin ϕ + ε sin θ sin ϕ + ε cosϕ + O(ε)

λ4ε cos θ sin ϕ + λ3ε sin θ sin ϕ + λ2ε cosϕ + O(ε)

p(λ3)ε sin θ sin ϕ + p(λ2)ε cosϕ + O(ε)

λ3p(λ3)ε sin θ sin ϕ + λ2p(λ2)ε cosϕ + O(ε)


 .

We will show that there exists aC1 function ϕ(θ) for θ ∈ [0, 2π ] and ϕ(θ) ∈ [0, π ]
such that the v,w coordinates of g1(θ, ϕ) = 0 satisfy

λ4ε cos θ sin ϕ + λ3ε sin θ sin ϕ + λ2ε cosϕ + O(ε) = 0, (7)

λ3p(λ3)ε sin θ sin ϕ + λ2p(λ2)ε cosϕ + O(ε) = 0. (8)

Divide (7), (8) by ε on both sides respectively and denote

G(θ, ϕ) = λ4 cos θ sin ϕ + λ3 sin θ sin ϕ + λ2 cosϕ + O(1), (9)

H(θ, ϕ) = λ3p(λ3) sin θ sin ϕ + λ2p(λ2) cosϕ + O(1). (10)

At (θ2, π/2), ∂G/∂ϕ = −λ2 �= 0, ∂H/∂ϕ �= 0, so the Implicit Function Theorem
implies that, for ε sufficiently small, there exists a curve defined by

cot ϕ = (λ4 cos θ + λ3 sin θ)/(−λ2)

such that θ and ϕ lie in a neighborhood of the curve.
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The points which satisfy ∂G/∂ϕ �= 0 are in a neighborhood of the curve defined
by

cot ϕ = λ2/(λ4 cos θ + λ3 sin θ).

Thus, θ on the sphere given by ϕ(θ) may be extended to a smooth closed curve
h(θ, ϕ) on the sphere. We can get the similar result about (10). The proof of the
rest is similar to the first part of this lemma.

Now, we choose a small enough neighborhood of (b, 0, 0, 0) such that the con-
ditions required in Lemma 3.1 to Lemma 3.6 are satisfied.

Let ε be small enough to ensure the conditions required in Lemmas 3.5 and
3.6. We know from Lemma 3.1 to Lemma 3.6 that there is a topological triangle
defined on the sphere, the three corners are y0 which is determined by Lemma 3.1,
y2 = g(θ2), and y3 which is determined by Lemma 3.6. But this triangle does not
satisfy the requirement (ii) of Lemma 2.1 because there has a small neighborhood
in R4 around the point (b, 0, 0, 0) which contains points of W−. So we need to
modify the corner y0. As in [2], from Lemma 3.6, let U be a small neighborhood
in R4 around the point y0. Let U be small enough so that it does not contain y1 or
y3. Also let U be small enough so that if y∗ ∈ U , then there is an s0(y

∗) such that
u(s0(y

∗), y∗) = u0. Recall that y(s, y0) crosses u = u0 transversally at s = s0.
Let E be a small ball in R4 centered at y0 contained in U . Consider the curve of the
intersection of the sphere ∂E with the sphere in *3 defined by h(θ, ϕ). This curve
is the fourth side of !. Let y4 be the intersection of ∂W with the arc of intersection
of the sphere defined by h(θ, ϕ) and the hyperplane z = 0, let y5 be intersection
of the sphere defined by g(θ). Thus, we have determined the third and fourth sides
(see Figure 2).

Lemma 3.7. There exists a y∗ ∈ ! such that the solution y(s, y∗) = (u(s), (v1(s),

w1(s), z1(s)) remains in the regionW, and 0 < u1(s) < b, 0 < w1(s) < L,where
L is a some positive real for all s.

Proof. It is easy to see that the set W is closed. In order to use Lemma 2.1 to prove
this lemma, we need to check the conditions (ii) and (iii) of Lemma 2.1. Suppose

y

y1
y2

y4

y5
.

.

.
g(0)

Fig. 2. The four sides of the quadrilateral !.
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y0 ∈ !, s < T (y0), Y (s, y0) ∈ W and Y (s, y0) �∈ W−. Since W− ⊆ intW or
W− ⊆ ∂W\W−, if Y (s, y0) ∈ intW , then there is an open set U around Y (s, y0)

disjoint from ∂W .
IfY (s, y0) ∈ ∂W\W−, becauseN andH are invariant manifolds,Y (s, y0) �∈ N

or H . There are several cases need to be eliminated.
If Y (s, y0) is in the portion of ∂W\W− with u > u0, w < 0, z = 0, then

z′ = cz + w(1 − β + β
1+u

) > w(1 − β + β
1+u0

) = 0 and the trajectory was
previously in the set Q, this contradicts with the assumption that s < T (y0).

If Y (s, y0) is in the portion of ∂W\W− with u < 0, α(u−b)+ w
1+u

< 0, v = 0,
then v′ = c

d
v + u

d
[α(u − b) + w

1+u
] > 0 and the trajectory was previously in T ,

this contradicts with the assumption that s < T (y0).
By construction it follows that ! is compact, intersects each trajectory only

once and is simply connected. If ! = !0, since W− is not simply connected, by
Lemma 2.1, this is impossible. So ! �= !0, that is, there exists some point y∗ such
that Y (s, y∗) ∈ W for all s.

Suppose s1 is the first time such that w1(s1) > L with u(s1) ≤ u0, since
Y (s, y∗) is in W , Y (s, y∗) �∈ P, so z1(s1) < 0. This implies that w1(s) is decreas-
ing and must have exceeded L at some other time s2 �= s1. This contradicts with
the first time s1. Therefore, w1(s) is bounded. Similarly we can prove that u1(s) is
bounded.

Lemma 3.8. The solution y(s, y∗) remains in * for all s, where

q >
1

2

(
c +

√
c2 − 4(β − 1 − β

1 + b

)
.

*={(u, v,w, z)|0 < u < b, 0<w<L,−1

c
w < z < qw,−L + 1

c
u<v<

bα

c
u}.

Proof. Suppose there exists an s1 such that z1(s1) < − 1
c
w1(s1). If there exists an

s2 such that z1(s2) = − 1
c
w1(s2), then z′

1(s2) + 1
c
w′

1(s2) ≥ 0. Substitution from

w′ = z and z′ = cz + w − βuw
1+u

yields

−1

c
(
1

c
+ c)w1(s2) + w1(s2)[1 − β + β

1 + u1(s1)
] ≥ 0,

−1

c
(
1

c
+ c)w1(s2) + w1(s2)[1 − β + β

1 + b
] ≥ 0.

These imply that − 1
c2 ≥ 0, a contradiction, so it follows that z1(s1) < − 1

c
w1(s1).

The inequality continues to hold for s > s1, so z′
1(s) = cz1(s) + w1(s)[1 − β +

β
1+u1(s)

] ≤ cz1(s) + w1(s) < 0 and z1(s) < z1(s1) for s > s1. Therefore w′
1(s) is

strictly negative and bounded away from zero by z1(s1), and w1(s1) < 0 for some
finite s. This is a contraction. The proof of the rest of the lemma is similar.

Lemma 3.9. The trajectory y(s, y∗) → (u0, 0, w0, 0) as s → +∞.
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Proof. The characteristic equation of systems (5) linearized at (u0, 0, w0, 0) is
given by

λ4 − (c + c

d
)λ3 + c2 − r

d
λ2 + cr

d
λ + αb(β − 1) − α

dβ
= 0. (11)

where r(β) = α(1+b)
β

− 2α
β−1 . Since b+1

b
< β < b+1

b−1 , we have r < 0, αb(β−1)−α
dβ

>

0. By using the Routh-Hurwitz criteria, we can see that the characteristic equa-
tion has two eigenvalues with positive real part and two eigenvalues with nega-
tive real part. By Theorem 6.2 of [9], there is a 2-dimensional stable manifold at
(u0, 0, w0, 0). In order to show the trajectory will approach the point (u0, 0, w0, 0),
we construct a Liapunov function as follows

V = [c(u−u0)−dv]+u0[d
v

u
−c log

w

w0
]+u0[c(w−w0)−z]+u0w0[

z

w
−c log

w

w0
].

It is easy to see that V (u, v,w, z) is continuous and bounded below on *, and

dV

ds
= ∂V

∂u
· ut + ∂V

∂v
· vt + ∂V

∂w
· wt + ∂V

∂z
· zt

= −u0v
2

u2 + α(u − u0)(b − u) − uw

1 + u
− u0w0z

2

w2 +
[ u0w

1 + u
− u0w

]
+βu0uw

1 + u
+ w0u0 − βu0w0u

1 + u

= −u0v
2

u2 + α(u − u0)(b − u) − uw

1 + u
− u0w0z

2

w2 − u0uw

1 + u

+βu0uw

1 + u
+ w0u0 − βu0w0u

1 + u

= −u0v
2

u2 + α(u − u0)(b − u) +
[βu0uw

1 + u
− uw

1 + u
− u0uw

1 + u

]
− u0w0z

2

w2

+w0u0 − βu0w0u

1 + u

= −u0v
2

u2 + α(u − u0)(b − u) − u0w0z
2

w2 + w0u0 − βu0w0u

1 + u

= −u0v
2

u2 − u0w0z
2

w2 + α(b − u)(u − u0) − w0u0[1 − βu

1 + u
]

= −u0v
2

u2 − u0w0z
2

w2 + α(u − u0)
2

1 + u
[b − 1 − u0 − u].

Since b+1
b

< β < b
b−1 ,

dV
ds

is always non-positive in *. dV
ds

= 0 if and on-
ly if u = u0, z = 0, the largest invariant subset of this segment is the single
point (u0, 0, w0, 0). By the LaSalle’s Invariance Principle, it follows that y(s) →
(u0, 0, w0, 0) as s → +∞.
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3.2. Proof of Theorem 2.3

In order to prove Theorem 2.3, we take α, d, and b as fixed, β and c as parame-
ters. This parameter choice amounts to fixing the values of the growth rate and the
carrying capacity of the prey and allowing the predator effectiveness to vary. We
search for purely imaginary roots of the characteristic equation (11). Substituting
λ = ki into (11) and simplifying, we have

{
k4 − c2−r(β)

d
k2 + p(β) = 0,

k2 = − r(β)
1+d

,

where r(β) = α(1+b)
β

− 2α
β−1 , p(β) = αb(β−1)−α

dβ
. Since β < b+1

b−1 , we obtain that
r(β) < 0, p(β) < 0. Thus, a pair of imaginary eigenvalues exists if the parameters
β and c satisfy the condition c2 = 1

d+1 − d(1+d)
r

p.
Considering λ as a function of β, and differentiating the characteristic equation

(11) with respect to β, we obtain

dλ(β)

dβ
=

r ′
d
λ2(β) − cr ′

d
λ(β) − p′

4λ3(β) − 3λ2(β)(c + c
d
) + 2(c2−r)

d
λ(β) + cr

d

. (12)

Substituting λ = ki into (12), we obtain

dλ(β)

dβ
= − (r ′k2 + p′d) + cr ′ki

3(k2c(1 + d) + cr) + (2k(c2 − r) − 4dk3)i
.

After some calculation, we have

Re
(dλ(β)

dβ

) = −cr
[ rr ′(3 − d)

(1 + d)2 − 2dp′ + (r − 2c2)r ′

1 + d

]

= −2cαr

1 + d

{( 2

β − 1
− 1 + b

β

) 2α

1 + d

(1 + b

β2 − 2

(β − 1)2

)
+1 + b

β2 (c2 − 1 − d) − 2c2

(β − 1)2

}
.

Let m = ( 2
β−1 − 1+b

β
) 2α

1+d
, and rewrite Re( dλ(β)

dβ
) as

Re
(dλ(β)

dβ

) = −2αcr

1 + d

{
(m + c2)

(1 + b

β2 − 2

(β − 1)2

) − (1 + b)(1 + d)

β2

}
.

Since b+1
b

< β ≤ 1
1−√

2/(1+b)
, we have Re( dλ(β)

dβ
) < 0. This implies that the

transversal condition is satisfied. Thus, we have proved Theorem 2.3.
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4. Discussion

Since the pioneering work of Fisher [5] and Kolmogorov et al. [10], many re-
searchers have been paying attention to the existence of traveling wave solutions in
biological systems, see the monographs Fife [4], Murray [13], Volpert et al. [16],
and the references cited therein. The basic idea is that a reaction-diffusion system
can give rise to a moving zone of transition from absence to an equilibrium state,
that is, a traveling wave front.

In this paper we have studied the existence of traveling wave solutions and the
small amplitude traveling wave train solutions for a reaction-diffusion system based
on a predator-prey model with Holling type-II functional response. By constructing
the Wazewski set, using a shooting argument and LaSalle’s Invariance Principle,
we showed the existence of a heteroclinic orbit connecting two equilibrium points
in R4 which corresponds to a traveling wave solution for the reaction-diffusion
system. By using the Hopf Bifurcation theorem, we proved that there is a small
amplitude periodic solution in R4 which corresponds to a small amplitude travel-
ing wave train solution to the reaction-diffusion system. In comparison, Dunbar [2]
investigated a Lotka-Volterra type predator-prey model while we studied a preda-
tor-prey model with Holling type-II functional response. Dunbar [3] studied system
(1) with d1 = 0 and considered the traveling wave equations in R3, we considered
system with d1 �= 0 and d2 �= 0 and established the existence of traveling wave
solutions in R4.

In Theorem 2.2, sufficient conditions were given to ensure the existence of
traveling wave solutions connecting two steady states (b, 0) and (u0, w0). Re-
turning to the original parameters in system (1) we know that the traveling wave
solutions connect the prey carrying capacity steady state (K, 0) and the predator-
prey coexistence steady state (ū, w̄); that is, there is a zone of transition from the
state (K, 0) with saturation of prey and none or few predator to the state (ū, w̄)

with decreased prey level and increased predator level. Biologically, if we consid-
er a one dimensional habitat such as a coastline or river and if the linear habitat
is initially uniformly saturated with prey at its carrying capacity, introducing a
few predators at one end of the habitat may result in a “wave of invasion” of
predators. We refer to Owen and Lewis [14], Sherratt et al. [15] and the refer-
ences cited therein for further study on traveling waves and predator-prey inva-
sion.

One of the generalizations of the basic idea of Fisher and Kolmogorov et al. is
that there could be a traveling wave train solution connecting an equilibrium state
and a periodic solution (see Dunbar [3] and Sherratt et al. [15]). It would be inter-
esting to investigate the existence of such traveling wave solutions for system (1).
Also, it would be very interesting to study the existence of traveling wave solutions
in system (1) with nonlocal effect (see Gourley and Britton [8]). We leave these for
future consideration.

Acknowledgements. We would like to thank the two referees for their careful reading and
helpful comments.
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