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This paper deals with a plant-pollinator model with diffusion and Received 15 October 2015
time delay effects. By considering the distribution of eigenvalues Accepted 19 April 2016

of the corresponding linearized equation, we first study stabil- KEYWORDS

ity of the positive constant steady-state and existence of spatially Unidirectional
homogeneous and spatially inhomogeneous periodic solutions are consumer—resource
investigated. We then derive an explicit formula for determining the interaction; diffusion; delay;
direction and stability of the Hopf bifurcation by applying the normal stability; Hopfbifurcation
form theory and the centre manifold reduction for partial functional
differential equations. Finally, we present an example and numerical
simulations to illustrate the obtained theoretical results.
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CLASSIFICATION

35K51; 35K57; 35B32; 35Q92;
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1. Introduction

It is believed that the explosive diversification and present-day abundance of flowering
plants is due to their co-evolution with animal pollinators, especially insects [13]. The
interactions between flowering plants and their insect pollinators remain an important
ecological relationship crucial to the maintenance of both natural and agricultural ecosys-
tems [15]. Mathematical modeling plays a useful role in pollination research and various
mathematical models have been proposed to study plant-pollinator population dynamics,
see Soberon and Del Rio [24], Lundberg and Ingvarsson [19], Jang [14], Neuhauser and
Fargione [20], Fishman and Hadany [8], Wang et al. [29], Wang [26], and the references
cited therein.

Consumer-resource systems model some biological phenomena and relationships
between consumer and resource in the real world. A resource is considered to be a biotic
population that helps to maintain the population growth of its consumers, whereas a
consumer exploits a resource and then reduces its growth rate. Consumer-resource sys-
tems have been extensively studied by many researchers (see Chamberlain and Holland
[3], Holland and DeAngelis [11], Li et al. [17], Neuhauser and Fargione [20], Wang and
DeAngelis [27], Wang et al. [28]). Bi-directional consumer-resource interactions occur
when each species acts as both a consumer and a resource of the other. Uni-directional
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consumer-resource interactions occur when one acts as a consumer and the other as a
material and/or energy resource, but neither acts as both.

Recently, Wang, DeAngelis and Holland [29] derived a plant-pollinator model based
on unidirectional interactions between plants and pollinators [11]. Pollinators travel from
their nest to a foraging patch, collecting food, flying back to their nests, and unloading
food. Interacting with flowers individually, the pollinators remove nectar, contact pollen,
and provide pollination service. Therefore, the plants provide food, seeds, nectar, and other
resources for the pollinators, while the pollinators have both positive and negative effects
on the plants. Let N; and N, represent the population densities of plants and pollinators,
respectively. The plant-pollinator model takes the following form:

dN, apNIN, 2

— = N4+ —————-— — B{N;N, — d|N7,

a - N TN ren, AN —d 0
dN a1 NIN,

& T TraN, bN, PN

where a,b,71, B1,d1,d2, 012, and oy are positive constants. The parameter r; is the
intrinsic growth rate of the plants and d; the self-incompatible degree. Following Fish-
man and Hadany [8], the positive effect of pollinators on plants is described by the
Beddington-DeAngelis functional response aN1N,/(1 4+ aNj + bN,), where the param-
eter a is the effective equilibrium constant for (undepleted) plant-pollinator interaction,
which combines traveling and unloading times spent in central place pollinator foraging,
with individual-level plant-pollinator interaction. b denotes the intensity of exploita-
tion competition among pollinators (Pianka [21]). Since a is fixed, the parameter o, is
regarded as the plants efficiency in translating plant-pollinator interactions into fitness
(Beddington [2], DeAngelis et al. [6]) and «>; is the corresponding value for the pollina-
tors. B1 denotes the per-capita negative effect of pollinators on plants. d, is the per-capita
mortality rate of pollinators. Wang et al. [29] studied the globally asymptotically stability
of the positive equilibria and demonstrated mechanisms by which interaction outcomes of
this system vary with different conditions. In particular, it was shown in [29] that system (1)
has no periodic orbits or cycle chains in the positive quadrant.

In order to reflect the dynamical behaviours of models depending on the history, it
is necessary to incorporate time delay into the models. Following Adams et al. [1], we
assume that there is a time delay 7 > 0 in the process when the pollinators translate
plant-pollinator interactions into the fitness. Also, as pollinators travel between their nests
and foraging patches, we further introduce the spatial diffusion with zero-flux bound-
ary conditions. Thus, the plant-pollinator model with diffusion and time delay effects is
described by the following delayed reaction-diffusion system:

N1 (t,x) Ny(tx) |y + a12N(t, x) BINy (6, %) — dyNy (8 %)
— = ,X) | 7 — ,X) — %) |
at ! YT AN (b0 + DNy (5 x) 1
x € Q,t>0,
aNZ(t>x) 21Ny (t - 'C,X)
—"" = D, ANy (t, Ny (t, —dy|,
ot 2AN (1) + Na x)|:1+aN1(t—t,x)+bN2(t—r,x) 2]

xeQ,t>0, (2)
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Ni(t,x) = ¢(t,x) =0, Na(t,x) = ¥ (t,x) = 0, (£,x) € [-7,0] x &,

oN; 0N,
—=—"=0, t>0,x€0%,
av v
where D, > 0 denotes the diffusion coefficient of pollinators. 2 is a bounded open domain
inR"(n > 1) and itsboundary Q2 is smooth, A = 9%/9x% + - - - 4+ 32 /9x2 is the Laplacian
operator in R”, v is the outer normal direction on 92, and the homogeneous Neumann
boundary conditions reflect the situation where the population cannot move across the
boundary of the domain.
Throughout this paper, without of loss of generality, we consider the domain 2 = (0, ).
Thus, A = 8?/9x%. We also assume that (¢, ) € C := C([—7,0],X) and X is a suitable
Hilbert space. For example, we can take

>

INY (1, AN, (¢,
X:{(Nl,Nz):Nl,NzeW“(O,n): la( Y _ 28( *) =0x—0,7r}
X X

with the inner product (-, -).

The rest of the paper is organized as follows. In Section 2, we consider the correspond-
ing characteristic equation of system (2) and give conditions on the stability of the positive
constant steady-state and the existence of Hopf bifurcation. In Section 3, by applying the
normal form theory and centre manifold reduction of partial functional differential equa-
tions (PFDEs) (Wu [30], Faria [7]), an explicit algorithm for determining the direction
and stability of the Hopf bifurcation is given. Finally, some numerical simulations are
included to support our theoretical predictions in Section 4 and a brief discussion is given
in Section 5.

2. Stability and Hopf bifurcation

In this section, we consider the local stability of the positive constant steady-state and the
Hopf bifurcation of system (2) by regarding the time delay t as the bifurcation parameter.
We assume that

(A1) a2 > ady,a; < 0,a3 — 4agay = 0;
(A2) wp1 > ady,4apay < 0.

where
bp1 d,dyb? B1 — bry 2d1drb a2
apg = 5 ar = _—
0 o —ady (a2 — ady)? ! o —ady (a1 —ady)?  ay
1 did,
ap; =

g —ady | (a1 — ady)?

We can prove that, if (A1) or (A2) hold, then system (2) has two boundary equilibria
Ey(0,0), E1(r1/d1,0), and a unique positive constant steady-state E*(N}, N5 ), where

2a0dy — a1bd, + bd, ll% — 4apay —a; + a% — 4apay
NF = v N = v .
2a0(az1 — ady) 2ag
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Letu = N; — Nf,v = N, — Nj. Then system (2) can be rewritten as

du(t, x) . a(v+N3) . .
— N — N3 —d ND |
ar Mt 1)[”+1+a(u+N;‘)+b(v+N;) Prlvt No) = di(ue N
dv(t, x) 3% (t,x) N a1 (u(t — 7,%) + N})
=D N - d >
ot 2 e TN T — 0 + N + b - N 2
dN; 0N,
— =——=0,t>0,x € 0%,
av v
u(t,x) = ¢p(t,x) —Nf, v(t,x) =¥ (tx) —Nj,te[-7,0,xe Q.
3)
The positive equilibrium E* (N7, N3) of system (2) is transformed into the zero equilibrium
of system (3).
Let

ap(v+N3)
1+ a(u+ NY) + b(v + N3)
a1 (u+ NY) —d]
1+aw+N)+bw+N) 2]

P, v) = (u+ Ny) [n + — pi(v+N3) —dl(u+N1")],

f(z)(u,v,w) =(w+Nj3) [

By the definition of the above functions, for i,7,/ € No = {0,1,2...}, deﬁnefi(-l)(i +j>1

il
andfij(.lz)(i +j+1>1)as follow:

W _ 8i+]f(l)(0, 0) o _ ai+j+lf(2)(0’ 0,0)
/ Juiow 7T duidvigw!
in particularly
Otu(fll\fikl\/vix<
(1 4+ aN{ + bNj)?
. _ N7+ aNy)

— £

o] = 0 = —leT — < 0,

= = — B1N%,
20 T (T aNT 4 bNE)? Al
) (XZIN;(l + bN;)
V1= J100 = > U,
(1+ aN} + bN})?
@ bay 1 NYN3
V2

= = — <0
010 (1 + aN; + bN})2

Obviously, we have o1 + y2 < 0. By Taylor expansion, Equation (3) becomes

ou(t, x) 1 _
5 aqu(t, x) + opv(t, x) + iJrJZ>2 z'_]'f’f u' (t, )V (8, x),
dv(t, x) 0%v(t, x)
=Dy + yu(t — 7,x) + y2u(t — 7,%)
ot 0x2
1 2) i . )
+ ) Wfiﬂ W (t — 1,00 (t — 7,00 (1, %). (4)

i+j+1>2
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Let u; (t) = u(t, ), uz(t) = v(t,-) and U = (uy,u2)T. Then system (4) can be rewritten as
an abstract differential equation in the phase space C := C([—7, 0], X),

U'(t) = DAU(#) + L(Uy) + F(Uy), (5)

where

0
— 0
(0 0 | ax2
D_<O Dz)’ A= 0 L
ax2

Ui(0) =U(({t+0),—t <0 <0,L:C—> Xand F: C —> X are defined by

_( @191(0) + a292(0)
Loy = <V1§01(—T) + )/2§02(—T)>
and
1 o
Cijz gy #1020
F(p) = 1 ‘ )
Rtz i 0l (D= 1)@ (0)

respectively, for ¢ = (¢1,¢,)T € C. The linearized system of system (5) at (0, 0) has the
form:

U'(t) = DAU(t) + L(Uy), (6)
and its characteristic equation is
Ay — DAy — L(e" - y) =0, (7)

where y € dom(A)\{0} and dom(A) C X. It is well known that the Laplacian operator A
on X has eigenvalues —k? k = 0,1,2, .. ., with corresponding eigenfunctions

1_(coskx) 2_< 0 )
b= o ) P = coskx)

Clearly, (8}, B2, form a basis of X. Thus, any y € X can be expanded as Fourier series
in the following form:

00 1
=2 (%) and = 008000800

k=0 k

Therefore, (7) is equivalent to

0o 1
1 2 A— oy —Q2 'Bk —
Z((% ﬂk)) (}’> ﬂk)) (_yle—)ﬂ,’ )\‘ + D2k2 _ yze—)n‘[) <ﬁ2> —_— 0)

k=0
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Hence, we conclude that the characteristic equation (7) is equivalent to the following
sequence of characteristic equations:

A2+ (Dak? — a)h — a1 Dok* + (—yah +a1ys —aay)e T =0,k =0,1,2,.... (8)
Set

Ar(A, T) = 22 + (D2k2 — oA — O(1D2k2 + (A +ar1ys — azyl)e_“,k =0,1,2,....

)
Notice that (8) with 7 = 0 is the characteristic equation of the linearization of (2) with-
out delay at the positive equilibrium. Because D2k*> — oy — ¥ > 0, so the characteristic
equation (8) with T = 0 does not have a pair of purely imaginary roots for any k € Ny with
Np :={0,1,2,...}. According to the Hopf bifurcation theorem, we obtain the following
result.

Theorem 2.1: Assume that (A1) or (A2) hold. Then system (2) without delay cannot
undergo a Hopf bifurcation at the positive constant steady-state E* (N}, N3).

Lemma 2.2: Assume that (A1) or (A2) hold. Assume further that o1y, — azy1 > 0. Then
A = 0 is not a root of Equation (8) for any k € Ny with Ny :={0,1,2,...}.

Proof: From Equation (9), we have
Ar(0,7) = —OtlDzkz + o1y — oy

Sincea; < 0,D; > Oand a1y, — 2y1 > 0, we obtain Ag(0,7) > 0 for any k € Ny, which
implies that A = 0 is not a root of Equation (8) for any k € N. |

Lemma 2.3: Assume that (A1) or (A2) hold. Assume further that o1 y> — oz > 0. Then all
roots of Equation (8) with t = 0 have negative real parts forallk € Nog = {0, 1,2, ...} and the
positive constant steady-state E*(N7, N3) of Equation (2) with T = 0 is locally asymptotically
stable.

Proof: When t = 0, Equation (9) is equivalent to the following equation:
Ak(1,0) = A% + (D2k* — a1 — YA — a1 Dok + oy ys — aay1, k€ Ny.
Let A; and A, be two roots of the above equation. Then

M+ A2 = a1 + yr — Dok,

My = —a1Dok* + ary, — oy

Since A1 + A2 < 0 and A;A2 > 0, all roots of Equation (8) with T = 0 have negative real
parts. |
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Let A = iw(w > 0) be a purely imaginary root of Equation (8) for k € Ny with Ny :=
{0,1,2,...}. Then we have
—61)2 + i(Dzk2 — 061)0) — CUlDzkz + (a1y2 — azyl)e_im—iyzwe_im =0.
Separating the real and imaginary parts in the above equation, we obtain

—0’ — 01Dk = posin(r) — (@1y2 — @p1) cos(@1),

(Dok* — o) = (172 — a2y1) sin(wt) + 20 cos(wt), 1o
which imply that
(—a1 Dyl — %)% + (D2k — a1)’w? = (a1y2 — aa1)” + yr 07, (11)
ie.
o* + (D3k* + of — yHo® + (—a1 D2k — (a1ys — aay1)? = 0. (12)
Set z = w?, (12) is transformed into
2 + (D3k* + af — Yz + (—a1 D2k?)* — (a1y2 — aay1)* = 0. (13)

If a1Dyk* + a1ys — azyr > 0, then Equation (13) has only one positive root which
is denoted by zx. Hence Equation (12) has only one positive root wﬁ_ = /2. From
Equation (10), we know that Equation (8) with k € Ny has a pair of purely imaginary roots
:I:iw’f|r when t = rjk,j =0,1,2,..., where

D+ at —

k2 _
(W+) = )
\/(V22 —af — D3k%? — 4[(—a1 D2k?)? — (a1 y2 — c2y1)?]
+ 2 bl

1

W—k(arccos E(w’i) + 2jm), if F(w]_i) >0,

k
'L'j = 1+ . ) ) . (14)

W—k(27r — arccos E(w')) + 2jm), if F(w) <0

+

with

— 7wk (Wh)2 4+ a1 D2k?) + wh (D2k? — ) (1 y2 — aay1)

F(wk) := sin(wk 1) =
* - y2WE)2 + (a1y2 — aay1)?

(15)

a1D2k* (1 s — aay1) + yaDa(WE )2 — apyr (wh )2

E(wk ) = cos(wk T) =
i i yEWE)2 + (@1ys — oan)?

Lemma 2.4: Assume that (Al) or (A2) hold. Assume further that a1 Dk 4+ oy —
azy1 > 0. Then
dAr(A, T)

ax 7 0.

ik
A=iwl

Therefore, .. = iwi is a simple root of (8) for k € Ny.
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Proof: Firstly, we have

dAr (A, T)

Ckk
) = iZwﬁ + (Dzkz —ay1) — ye WG

ik
A=iwl

k *iwk ‘L'.k . k _k 7iwk '[.k
— (i —ay) e T Fipwitie T

Then, from Ar(X, T) = 0, we obtain that

_ —ardA (D)
24 + (D2k* — 1) — y2e " — T(a1y2 — a2yt — ah)e ”]?
= Moy, — aay1 — yah)e 7.
Thus, if dAg (A, T)/dMA:iw’_j_ = 0, then
.k .k —iw’j_r-k _
Wy (a1y2 — ooy — yiwple 77 =0.
Since wlfF > 0, we have
a1y2 — oy — J/ziwlfr =0
which implies that
aryy —oryr ==y =0.
However, —y, > 0. Hence, we have
dAL(A, T
k(A T) %0,
da r=iwk.
This completes the proof. |

Lemma 2.5: Assume that (Al) or (A2) hold. Assume further that a1 D2k 4 ayys — az
y1 > 0. Let A(t) = () + iw(t) be the root of Equation (8) for k € Ny satisfying u(tjk) =

0, w(rjk) = w]jr, j € No. Then \(t) satisfies the following transversality condition:

ign 1R az 0
— > 0.
sign j Re { L
]

Proof: Differentiating both sides of Equation (8) with respect to t yields

(a1y2 — cay)A — yad? r

(d}\,>_1 B 20T — () — Dok —y, 7
dt
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From Equation (10), we have

) da\ ! ) 20e* — () — DakP)e T —y, T
sign {Re | — = signRe T T
de K (@172 — @2y — y2 A) r=rk

o 20WK)? — y2 + (a1 — DoK?)? 4 201 Dok
= sign + = W .
(a1y2 — aay1)?® + 5 (Wh)?

By inserting the expression of (w’fir)2 into the last expression, we obtain that

i R dr) ™ 0
sign { Re | — > 0.
8 dr '
T=T

=Y

The proof is complete. |

Notice that Equation (8) with k=0 is the characteristic equation of the linearization
of (2) without diffusion at the positive equilibrium. By Rouché theorem and Lemmas 5- 7,
we have the following results [22,23] :

Theorem 2.6: Assume that (A1) or (A2) hold. Assume further that a1y, — a2y1 > 0. The
following statements hold:

(i) Ifr €0, 1:00), then all roots of Equation (8) with k= 0 have negative real parts;
(i) Ift > 1), then system (8) with k= 0 has at least one root with positive real part;
(ili) Ift = 1§, then system (8) with k=0 has a pair of simple purely imaginary roots £iw",
and all roots of (8) with k = 0, except &iw',, have negative real parts.

Furthermore, we can obtain the following results:

Theorem 2.7: Assume that (Al) or (A2) hold. Assume further that o1y, — a2y > 0,
a1(Dy 4+ y2) —o2y1 < 0 and D% + af - )/22 > 0. Then Equation (8) with t = rjo (G=
0,1,2,...) has a pair of simple purely imaginary roots £iw'., and all roots of Equation
(8) for any k € Ny, except £iw., have no zero real parts. Moreover, for T = 13, all roots
of Equation (8) for any k € Ny, except +iw’,, have negative real parts.

Theorem 2.8: Assume that (A1) or (A2) hold. Assume further that o1y, — a2y > 0,
a1(Dy 4+ y2) — aay1 < 0and D% + af — )/22 > 0. The following statements hold:

(i) If T €10,17)), then the positive constant steady-state E*(N},N3) is asymptotically
stable;
(i) Ift > té) , then the positive constant steady-state E* (N7, N5) is unstable;
(iii) = rjo(j =0,1,2,...) are Hopf bifurcation values of system (2) and these Hopf bifur-
cations are all spatially homogeneous.
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. - N—-1, NeN.
N = loexys — aayi| and Ny =1 . )
—a1D; [N], N ¢ N.
From Equation (14), we have rjk < r]lfH for any 0 < k < Nj,j € Ny. In the rest of this

paper, we assume that F (Wﬁ_) > 0 and have the following lemma. The case for F (wl_i) <0
can be discussed in a similar way.

Denote

Lemma 2.9: Let ‘(jk be defined as Equation (14). Assume that (A1) or (A2) hold. Assume
further thatalDsz 4+ a1y, —axyr > 0,01 < ¥, yzDsz — oY1 > 0and a1 Dy (o1 ys —
a2y1) + )/2D2(w£_)2 — azyl(wi)z < 0. Then forany 1 < k < Nj,j € Ny, 'cjk < rjk+1.

Proof: From Equation (12), we have
2

[v2 ., 4 ’
Yk+Wk+Yk

_ D3k + o — v}
(a1y2 — oay1)? — (—a D2k2)?’
Wi = (12 — a2y1)* — (—a1 D2k

W)? =

where

Yk

Simple computation shows that
dwk - —(1+ Y/ JYZ +4/ W)

Ve 2(,/Y2 + 4,/ Wi + V)32

dyy _ 4D3R [(a1y2 — ay1)? + af(af — )]
dk [(a1y2 — a2y1)? — (1 D2k?)?]?

<0,

> 0.

Notice that Wy is strictly decreasing in k for 0 < k < Nj. Then we obtain that w’_i is strictly
decreasing in k for 0 < k < Nj. From Equation (15), we have

a1D2k* (@12 — aay1) + yaDa(WE )22 — anyr (Wh)?

Ewr) =
- y2WE)2 + (a1y2 — aay1)?

By direct computation, we have

dE(WY)  [201Dak(arys — aayn) + 2kya Dy (wh) 2113 (WE)2 + (anyz — 02)1)?]
dk [ (W) + (12 — aay)?)?
dwﬁ

d k
|:2y2D2k2wﬁ (—k> — 2021w, (%ﬂ [y2Wh)? + (c1y2 — aan)?]

+
[y2(WR)2 + (1 ys — aay1)?]?

d k
2y3wh (%) (a1 D2k (a1y2 — aay1) + 2 Da(Wh)2K2E — anyn (Wh)?2]

[y2(WE)2 + (arys — aay1)?]?
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Since dwﬁ_/dk < 0, by the fact that o1 D> (0172 — a2y1) + )/ZDZ(M/}Q2 - ozzyl(wﬂr)z <0
and yzDsz — oY1 > 0, we obtain dE(wﬁ) /dk < 0. That s, E(w’i) is strictly decreasing
in k for 1 <k < Nj. So arccos(E(w’i)) is strictly increasing in k for 1 < k < Nj. From

Equation (14), if F (w’_i) > 0, then rjk is strictly increasing in k for 1 < k < Nj. [ |
From the above lemma, we have ré‘ < le < ‘czk <. < rjk <.+ forany0 <k <N;
1 2 3 n Ny
and'cj <t <7< <7 < <7 ,j € Np. Denote

F = {rjk:rjkgér;,rjkaérlo,l§n<k§N1,j<mor1§k<n§N1,

j>m, j,m,leNpl
From the above analysis, we have the following conclusion.

Theorem 2.10: Assume that (Al) or (A2) hold. Assume further that a1D2N12 +
a1y, — ooy > 0,01 < ¥2,72DaNE — axyr > 0 and e Da (a2 — aayr) + y2Da(wh)? —
azy1(wh)? < 0. The following statements are true:

(i) Ifr €0, min{fé), 1'01 1), then the positive constant steady-state E*(N7, NY) is asymptot-
ically stable;
(i) Ift > min{rg, ‘501}, then the positive constant steady-state E* (N}, N3) is unstable;
(ili) t € F is a Hopf bifurcation value of system (2) and these Hopf bifurcations are all
spatially inhomogeneous.

3. Properties of Hopf bifurcations

In this section, we shall study the direction, stability and the period of bifurcating periodic
solution by applying the normal form theory and the centre manifold theorem presented
in [7,10,30]. Let 1'jk e FU {tjo, j € No}. Normalizing the delay 7 in system (4) by the time-
scaling t — t/t, Equation (4) is transformed into

1 4 .
o u(t,x) + eav(t,x) + Y ﬁﬁj(-l)u’(t,x)vf(t,x) ,

i+j>2

ou(t, x)
=1
at

dv(t, x) d%v(t, x)
=t |D—22
ot 0x2

+ yiu(t — 1,x) + ppv(t — 1,x) (16)

1 . ;
+ Z Wﬁ']('lz)”l(t — 1,0V (t — 1, 0)0'(t, %)
iTen

Let 7 = Tjk +o,0 € Roup(t) = ult, ), ua(t) = v(t,-), and U = (uy, u3)T. Then sys-
tem (16) can be rewritten in the abstract form in the space C := C([—1, 0], X) as

%U(t) = rjkDA U + L(tjk)(Ut) + F(Up, @), (17)
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where L(«)(-): C — Xand F: C x R — X are defined by

a1¢1(0) + a2¢02(0) )
Ve (=1 + ye2(=1) )’

F(p,a) = aDAg(0) + L()(¢) + f (g, ),

Lie)(p) =« (

respectively, for ¢ = ((pl,tpz)T e C:=C([—1,0],X), with

1 . .
> ;j!ﬁﬁl) ¢ (0)¢} (0)

i+j>2

flg,0) = (tf +a) ' : (18)
L o !
Y — el (=D (—=1)p5(0)
ijiry
i+j+1>2
Consider the linear equation
d k k
&U(t) = 17 DAU() + L(7;)(Up). (19)

According to results in Section 3, we know that the origin (0,0) is an equilibrium of

Equation (16), and under some conditions, the characteristic equation of (19) has a pair of
k _k k k}

simple purely imaginary eigenvalues Ay = {iw LT Wl T
We now consider the ordinary functional differential equation:
X'(t) = —tfDIPX(t) + L(t})(X). (20)

By the Riesz representation theorem, there exists a 2 x 2 matrix function 7(0, rjk),Q €
[—1, 0], whose entries are of bounded variation such that

0
~ R8O + L@ = [ dine.Ploe) @y

for ¢ € C([—1,0],1R?). In fact, we can choose

(03} o)
Tk , 0=0,
0 —Dk?

7’](9, 'L']k) = O, 9 e (_1,0)) (22)

[0 O
- , 60 =-—1.
Yi "2

Let A(rjk) denote the infinitesimal generator of the semigroup induced by the solutions of

system (20) and A* be the formal adjoint of A(rjk) under the bilinear pairing

0
¥.9) = V(0P (0) + TF / D (fl ﬁz) 6 (&) ds (23)

for ¥ € C([0,1],IR?),¢ € C([—1,0],]R?). From the previous section, we know that A('cjk)

has a pair of simple purely imaginary eigenvalues iiwitjk. Because A(‘cjk) and A* are a
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pair of adjoint operators (see Hale [9]), :tiwlfF tjk are also eigenvalues of A*. Let P and P*

be the centre subspace, that is, the generalized eigenspace of A(‘L'jk) and A* associated with
Ay respectively. Then P* is the adjoint space of P and dim P = dim P* = 2.
Direct computations yield the following results.

Lemma 3.1: Let

-k sk
it —a WS — g ik Lk
£ = +a—1’ n= +y—leIW+Tj . (24)
2 1
Then
ok k -
p16) =" 16T, pa®) =p1(0), —1<6<0
form a basis of P with Ay and
Sk k -
q1(s) =e "), qa(s) = qi(s), 0<s<1
form a basis of P* with Ay.
Let ® = (&), ®;) and ¥* = (¥}, U5)T with
k _k
cosw' 70
p1(0) +p2(0) +
PO =T = k]
——cosw! T;0 — —sinw!, 7;°0
(0% J (0% J
. k k
sin w' 0
oo P10 =20 _ 57
2O == e W
1 —smw+rj9+a—cosw+rj9
o) 2
for 6 € [—1,0], and
T
cosw’ifjks
o k _k W]fi- ok k k _k
Wi (s) = q1(s) + q2(s) _ 7cosw+7:j — ?smw T | COSWL TS ’
2
k
—01 o Wy k kY o k. _k
+<751nw+1'j +ZCOSW tj>smw+fjs
. k _k T
—sinwi 7j's
o k _k Wl—i ok _k k _k
WEGs) = q1(5) — q2(s) _ 7cosw+rj + Zsmertj cos Wi Tj's
21
k
—a w
— —lsinwk rk—icoswﬁrk sinwﬁrks
Y1 / Y1 J J

for s € [0, 1]. Now we define

¥ P Wk b
(Who®) = (4, ®0 = (E\IJ*,CDS E\I’*,CDS)



JOURNAL OF BIOLOGICAL DYNAMICS 151

and construct a new basis W for P* by W = (¥}, W,)T = (W*, ®)~'W* Then (¥, ®) = I,
where I is the identity matrix. In addition, fi := (ﬂll, ﬂ,f), where

1_(coskx 2_< 0
b= 0 )’ b= coskx>'

Let ¢ - fi be defined by ¢ - fx = 61,3]1 + 62,3]% for ¢ = (c1,¢2)T € C([—1,0],X). Then the
centre subspace of linear equation (19) is given by PcnC, where

PenC(@) = (W, (0. /i) “ fo ¢ €C, (25)

and we can decompose C([—1,0],X) as C = PcnC @ PsC, in which PsC denotes the
complement subspace of PcyC in C.
Let A« be the infinitesimal generator induced by the linear system (19), and

j
Equation (17) can be rewritten as the following abstract form:

U; = AxUs + XoF(Up, @), (26)
]
where
0, 6¢€[-1,0),
Xo(0) =
o®) {1, 6 =0.
By the decomposition of C, the solution of Equation (17) can be written as
x1(f)
U= S+ h(xr, x0, @), 27
t <x2(t)> S + h(x1,x2, ) (27)

where

(), x2(0)T = (W, (Up, i),

and h(x1, x;, ) € PsC, h(0,0,0) = 0, Dh(0,0,0) = 0. In particular, the solution of (17) on
the centre manifold is given by

U= o (28) S+ h(x1, %2, 0), (28)

Let W(0) = (W;(0), W, (0) T,z = x; — ixy, and p; = ®; + iP,. Then we obtain

1 _
(1) = 300470

Hence, Equation (28) can be transformed into
U= o1z +p12) - fi + W(z,2), (29)

where

W(z,z)zh(”z,—z_.z,o)
2 2i
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From Wu [30], z satisfies

z= 1wJr kr 4+ g(z,2), (30)

where
8(z,2) = (W1(0) — iW2(0))(f(Us, 0), fx). (31)

Let
2 ) 27
W(z,z) = Wzo— + Whzz + Woz— + W21_ +- (32)
_ Z2 _ Z2 2’z

g(Z,Z)Zgzog +g1122+g02? +g21—+-~ . (33)

Notice that [ cos® kxdx = 0,Vk € N = {1,2,...}. Let (1, %) = W1(0) — iW;(0). Then
by computation, we obtain the following quantities:

0, keN,
<§f<1> Ly 1 Sz (1)) "
£20=17 1
5 (2) (2) (2) , k=0,
2 ik ot §fio + 200 + 252 020
+e +i )
! e Sf(” venh)
0, keN,
) (G +Of +f“> + &5/,
gll = T
Tl (Erere IR e | | k=0
2
1wk 2 2 2 2
T + sfoﬂi) + a0 + §€f3a0
802 = £20
o Who+s W(Z) (0)
< o W cos kx, cos kx >
W11 (0)5 + _Wzo (0)%—
g1=1 ¥

+< 0 (Wﬁ)«» oWl (0>> cos kx, cos kx>

+ (1) (WS) (0 + 5 Wé (0)&) cos kx, cos kx>



(e

i

)
101

iwk ok ik ok 1
e M Wﬁ) 0) + elW+TJ
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Wiy (— 1>+W§ (—1)&
2i 2
+e 1W+ Wéo)( 1) cos kx, coskx>
+e EW%)(—I)é
Wi (0)
cos kx, cos kx>
FW(=DE + = wé}f( 1)E

1w+ g sz)(O)f

+ ,L,jk 1//2.
+ < 0(12; +elw+rj 5 W%) (0)& cos kx, cos kx>
WP (—DE + > w@)( 1)E
+ l 2) ze_IWJrrj Wﬁ)(_l) cos kx, cos kx
27200 iwk ok (1) ’
4" T WD (—1)
—iwk £k 2
+<l OF e o Wh)(_l)s cos kx coskx>
2020 Wk o) B >
+e" T W (—1)E
where
W 820 go2 2iwk ko
20(0) = 5 kP1(9)+ kP2(9) S+ Ee7H Y, (34)
Wit 3W+ j
with
W20(0), k e N,
E= o _ (35)
WZO(O) - E pl( )+ OPZ(O) 'fO) k:()
wJr s
Wi(0) = ——[p2(0)gi1 — p1(O)gu] + E (36)
wiT,
with
E+ s>f<” f(” +EEfy
1 _
F=gb| &+ s>f?3 +e IR D) otk (7)
T E D+ BRI + fi D
and
—1
[~ —ay
B= (—71 Dyk* — 7/2) '
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So far, we have obtained W5 (6) and W1, (0) which can be expressed by the parameters
of system (2). Hence, we can compute the following quantities:

i , 1\ 1

1(0) = —— | 20811 — 2[gn|” = 7 lg02l” | + 58215

2w 3 2
Re(c1(0))

BT R ()

02 = 2Re(c1(0)),

Im(c1(0)) + p2 Im(A (/)
2T Wh o '
7

Thus, we obtain the following results:

Theorem 3.2: For any critical value 1'jk, we have

(i) w2 determines the direction of the Hopf bifurcation: if i > 0 then the Hopf bifurcation
is forward, and if L, < 0 then the Hopf bifurcation is backward;

(ii) oy determines the stability of the bifurcated periodic solutions on the centre manifold:
if o < 0 then the bifurcated periodic solutions are asymptotically stable, and if o5 > 0
then the bifurcated periodic solutions are unstable;

(iii) T, determines the period of the bifurcated periodic solutions: if T, < 0 then the period
decreases, and if Ty > 0 then the period increases.

4. Numerical simulations

In this section, we present some numerical simulations to illustrate the theoretical analysis
for the system (2).

Choose the parameter values as follows so that the conditions in Theorem 2.8 are
satisfied:

D, = 2.735375,a = 0.391625, b = 0.391625,d; = 0.001,
dy = 0.391625,r; = 0.001, 81 = 0.001, 12 = 0.001, rp; = 1.5635.

The initial conditions are taken as

b (t,x) = 0.427839 x (1 + 25sin(3.732x) + 0.13 sin(1.4142x — 0.6)),
W (t,x) = 1.380211 x (1 + 25sin(2.732x) + 0.13 sin(0.74142x + 0.5)).
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Then system (2) becomes

ON;(t,x) 0.001N7 (t, )N, (t, x)
—— = 0.001N; (t,x) +
at 1+ 0.391625N (t, x) + 0.391625N, (¢, x)
— 0.001N/ (£, x)N (£, x) — 0.001N? (¢, %),
N2 (LX) _ ) ea 97N, (t, x) 1.5635N (t — 7, )N, (t, X)
at dx2 1+ 0.391625N, (t — 7, x) + 0.391625N,(t — 7, x)
— 0.391625N; (t, x),
N (t,x) = 0.427839 x (1 4 2sin(3.732x) 4 0.13 sin(1.4142x — 0.6)),
Na(t,x) = 1.380211 x (1 + 2sin(2.732x) 4 0.13 5in(0.74142x + 0.5)),
Ny AN
S TR 0> 0,x€ 0. (38)
av av
(@)

S ARANSNNSANN

X\
T TR TR LRI

X
\\\\\\\\Q&&QQ\\}}&}“‘\\\\\\\\““‘}83\\“\“}&8&
WA NN N
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N/ 111T7)) [LARRRARRARRVARARARR RN e,
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Figure 1. The positive equilibrium £*(0.427839, 1.380211) is asymptotically stable when t = 10 <
9 = 12518011
T . .
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By computation, we have E*(N},N3) = (0.427839, 1.380211),W(J)r = 0.123963, ‘[(()) =
12.518011. First we choose T = 10 < rg and plot the solutions N (t,x) and Ny(t,x) by
using the software Matlab in Figure 1. From the numerical simulations we can see that
the solutions of system (38) with v = 10 tend asymptotically to the positive equilib-
rium E* (N}, N3) = (0.427839,1.380211). Under the same initial values, now we choose
T =20 > 1’8 and plot the graphs of N (t, x) and N, (t, x) in Figure 2. From Figure 2, we see
that there exists a family temporal periodic solutions, which implies that Hopf bifurcation
occurs for system (38) at r((,) .

5. Discussion

Various mathematical models have been proposed to study plant-pollinator popula-
tion dynamics, see Soberon and Del Rio [24], Lundberg and Ingvarsson [19], Jang [14],
Neuhauser and Fargione [20], Fishman and Hadany [8], Wang et al. [29], and Wang [26].
Most of these models are described by ordinary differential equations. Since pollinators

(a)

2000

2000

Figure 2. The temporal periodic solutions bifurcated from the equilibrium are stable, where t = 20 >
9 = 12518011
75 . .
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travel between their nests and foraging patches, we believe that reaction-diffusion equa-
tions are more suitable to model the interactions between the plants and pollinators.
We also assumed that there is a time delay in the process when the pollinators translate
plant-pollinator interactions into the fitness and considered a plant-pollinator model with
diffusion and time delay effects. As far as we know, there are no results for system (2) with
diffusion and time delay.

Firstly, by considering the distribution of eigenvalues of the corresponding linearized
equation, stability of the positive constant steady-state and existence of spatially homoge-
neous and spatially inhomogeneous periodic solutions were studied. Secondly, by applying
the normal form theory and the centre manifold reduction for partial functional differen-
tial equations, an explicit formula for determining the direction and stability of the Hopf
bifurcation was given. Finally, to explain the obtained results, numerical simulations were
presented.

Our results showed that if ay; > ad, and either (A1) a; < 0, a% — 4aga; = 0 or (A2)
4apa, < 0 holds, where

bp1 didyb? p1 — bry 2d1dyb a2
agp = 5 ar = _—,
*" w1 —ads (021 — ady)? ' o) — ad (021 —ady)?>  ay
r did,
a; =

ay —ady (a1 — ady)?’
then system (2) has a unique positive constant steady-state E* (N}, N5), in which

. 2a0d; — a1bd, + bdz,/a% — 4apay . —ay +,/ a% — 4apay
Ny = N, = .

e 2a¢(a21 — ads) T 2a

The first inequality a; > ad, ensures the existence of ag, a1, a,, and Nj. Recall that
o) is regarded as the pollinators efficiency in translating plant-pollinator interactions
into fitness, a is the effective constant for plant-pollinator interaction, and d is the per-
capita mortality rate of pollinators. This inequality means that the efficiency in translating
plant—pollinator interactions into fitness of the pollinators must be greater than their
mortality rate; otherwise the pollinators even cannot survive.

The inequality a; < 0 in (A1) is equivalent to

B1 — bry 2d1dyb a2
<
o —ady (a1 —ady)?  an

>

which indicates that the ratio of the efficiencies in translating plant-pollinator interactions
into fitness of the plants and pollinators is greater than a certain value. In this case, an addi-
tional condition a% — 4apa; = 0 is needed to ensure the existence of E*(N}, N5). Under
the assumption (A2), it requires that 4apa, < 0. Note that now ay > 0, so the condition is
equivalent to a, < 0, which, in turn, is equivalent to

didy
rn>——:-.:
o1 — adz

The last inequality means that the intrinsic growth rate r; of the plants must be large
enough compared to the death rates of the plants and pollinators.
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We were interested in not only the effect of diffusion but also the effect of delay [4,12,31].
We found that system (2) without delay cannot undergo Hopf bifurcations at the pos-
itive constant steady-state. But, under certain conditions, system (2) undergoes Hopf
bifurcations at the positive constant steady-state under the effect of delay. Recall that

appaNFN* a12N¥(1 + aN7¥)
Ollz—leik— *1 2*2<0, o) = 1* }kz—ﬂlNik,
(14 aNy + bN3) (14 aNy + bN3)
0[21Nik(1 + bNik) baZlNikN;
V1 V2=

~ (1+aN7 + bN})? " (1+aN7 + bN3)?

Our results demonstrated that if
a1y —aoyr > 0, a1(Dy+y2) —oy1 <0, D3 +af —y3 >0

then the positive equilibrium E* is locally asymptotically stable if the time delay is less than
a critical value v < 79, unstable when 7 > 79, and a family of periodic solutions bifur-
cates from E* when 7 passes through 7y via Hopf bifurcation. Moreover, the direction,
stability and period of the bifurcating periodic solutions can be determined analytically.
Notice that Wang et al. [29] showed that the ODE model (2) does not have periodic
solutions and Wang et al. [25] proved that the unique positive steady-state solution of
a reaction-diffusion plant-pollinator model is a global attractor. Our results thus indi-
cate that the time delay causes bifurcations and induces temporal periodic patterns in the
diffusive plant-pollinator model. Such properties have been observed in many delay dif-
ferential equation models [5,16]. This is similar to the observation in our other work [18]
that oscillations occur in age-structured resource—consumer (plant—pollinator) models.

Wang et al. [29] and Wang [26] indeed investigated three species plant—pollinator-robber
models. Since the movement of the nectar robbers plays an important role in their inva-
sibility and coexistence of all species, it will be very interesting to study the population
dynamics of the three species diffusive plant-pollinator-robber models. We leave this for
future consideration.
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