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A B S T R A C T

We consider a deterministic model of Methicillin-resistant Staphylococcus aureus infections in hospitals with
seasonal oscillations of the antibiotic prescription rate. The model compartments consist of uncolonized patients
with or without antibiotic exposure, colonized patients with or without antibiotic exposure, uncontaminated or
contaminated healthcare workers, and free-living bacteria in the environment. We apply optimal control theory
to this seven-compartment periodic system of ordinary differential equations to reduce the number of colonized
patients and density of bacteria in the environment while minimizing the cost associated with environmental
cleaning and antibiotic use in a particular time period. Characterizations of optimal control strategies are for-
mulated and the ways hospitals should adjust these strategies for different scenarios are discussed. Numerical
simulations strongly suggest that environmental cleaning is essential in the control of MRSA infections and
antibiotic usage is suggested to be maintained at the least possible level. Screening, isolating, and shortening the
extremely lengthened stays of colonized patients with antibiotic use history are all effective intervention stra-
tegies.

1. Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is a type of staph
bacteria considered as one of the most common causes of hospital-ac-
quired infections, especially in intensive care units. Infections caused by
staph bacteria are usually treated by antibiotics. However, a report
released by the Centers for Disease Control and Prevention (CDC) in
2017 stated that 30–50% of the antibiotic treatments in hospitals are
unnecessary or inappropriate [5]. As a result of the overuse of anti-
biotics in recent decades, MRSA is now resistant to multiple commonly
used antibiotics, which makes MRSA infections harder to be treated and
even causes life-threatening cases in intensive care units. According to a
WHO report [33], patients infected by MRSA are 64% more possible to
die compared to those infected by non-resistant bacteria in hospitals.

The spread of MRSA has been widely studied in
[1,3,4,6–9,11,29–31]. Direct contact between healthcare workers
(HCWs) and patients is believed to be the major transmission route of
MRSA in hospitals. Until recently, strategies for controlling MRSA in-
fections focus on improving HCW-patient hygiene measures, such as
enhancing hand hygiene compliance with HCWs, screening and deco-
lonizing colonized patients, and isolating positive cases. However, less
attention has been paid to reducing the environmental contamination

levels. It is found that MRSA has the ability to survive for weeks in
environments such as healthcare facilities, doors, and sinks, which
means that indirect transmission via environmental contamination is
also crucial. In addition, some studies show that patients with antibiotic
exposure are more likely to be colonized by MRSA, which leads to
lengthier hospital stays, higher chances of failed or delayed treatments,
more expensive costs, and even higher death rates [6,10,27,28]. Thus
the pattern of antibiotic prescription rates in hospitals could also in-
fluence the spread of MRSA, and in the work of Sun et al. [26], seasonal
oscillations of antibiotic prescription rates have been observed. Inspired
by the above findings, Huang et al. [17] developed a deterministic
model that considered both periodic antibiotic prescribing rates and
environmental contaminations and found that environmental cleaning
may be the most important intervention to control nosocomial MRSA
infections, which corresponds to the suggestions on enhancing the en-
vironmental hygiene standard by better monitoring strategies, and
using technology (cleaning robots) to supplement the cleaning manuals
[14].

In this paper, we aim to seek for optimal and cost-effective strategies
of environmental cleaning and antibiotic use, and also to better un-
derstand how environmental cleaning and antibiotic use would affect
the transmission and control of MRSA infections in hospitals. In
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Section 2, we present our seven-compartment periodic system and in-
troduce the objective functionals and the two control variables. We aim
to minimize the number of colonized patients, the density of bacteria in
the environment, and the cost associated with environmental cleaning
and antibiotic use for a particular time period. In Section 3, we develop
the adjoint equations and formulate the characterization of optimal
control strategies by applying the optimal control theory [12,20,23,25].
In Section 4, we present simulation results and discussions on the op-
timized strategies.

2. The model

The model in [17] was developed to describe the transmission of
MRSA in the following seven compartments (see Fig. 1):

Pu(t) = number of uncolonized patients without antibiotic exposure
at time t.

PuA(t) = number of uncolonized patients with antibiotic exposure
at time t.

Pc(t) = number of colonized patients without antibiotic exposure at
time t.

PcA(t) = number of colonized patients with antibiotic exposure at
time t.

Hu(t) = number of uncontaminated healthcare workers at time t.
Hc(t) = number of contaminated healthcare workers at time t.
Be(t) = density of the free-living bacteria of a ward in the en-

vironment at time t.
Patients are divided as uncolonized without or with antibiotic ex-

posure, colonized without or with antibiotic exposure, where a patient
is said to be with antibiotic exposure if he or she has received anti-
biotics within the month on admission or is currently receiving anti-
biotic treatment in the hospital. Healthcare workers are categorized
regarding their contamination status. Environmental contamination is

Fig. 1. Transmission flowchart of MRSA among patients, health-care works and the environment in hospitals [17].
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assumed to be homogeneous, that is, the free-living bacteria are uni-
formly distributed in the environment. Patients are admitted to the
hospital at a total rate Ω(t) from any of these four compartments with
the corresponding fractions θu, θuA, θc, θcA, respectively, and have an
average length of stay ,u

1 ,uA
1 ,c

1 ,cA
1 respectively. By assuming that

the total number of patients in a unit is a constant Np, we set
= + + +t P P P P( ) u u c c uA uA cA cA. Moreover, uncolonized patients

without antibiotic exposure can move to colonized patients without
antibiotic exposure either by contacting contaminated HCWs,

P H(1 ) ,p p u c or by touching the contaminated environment, κpPuBe.

A similar process occurs when uncolonized patients with antibiotic
exposure become colonized patients with antibiotic exposure,

+P H P B(1 )p pA uA c pA uA e. αp is the contact rate, η is the compliance
rate with the hand hygiene, βp and βpA are the probabilities of coloni-
zation for Pu and PuA after a contact with Hc, respectively, κp and κpA are
the colonization rates from contaminated environment for Pu and PuA,
respectively. To model the seasonal use of antibiotics in hospitals, we
assume that patients without antibiotic exposure become patients with
antibiotic exposure at a rate of + t(1 sin( ( 240))),0 1

2
365 which has a

period of 365 days, and this rate increases from the beginning of

Fig. 2. Baseline model without control. Simulations are based on the fixed parameters in Table 1. (a) Proportion of patients; (b) environmental bacteria density.

Table 1
Parameters and descriptions [17].

Symbol Description Value References

ϵ0 Antibiotic prescription rate (day 1) 0.12 (varied) [13,22]
ϵ1 Magnitude of change of antibiotic prescription rate (no dimension) 0.25 [26]
θu Proportion of Pu on admission (day 1) 0.617 [6,13]
θuA Proportion of PuA on admission (day 1) 0.349 [6,15]
θc Proportion of Pc on admission (day 1) 0.003 [6,13]
θcA Proportion of PcA on admission (day 1) 0.031 [6,15]
γu Discharge rate of Pu (day 1) 0.2 [6]
γuA Discharge rate of PuA (day 1) 0.2 [6]
γc Discharge rate of Pc (day 1) 0.06 [13]
γcA Discharge rate of PcA (day 1) 0.055 [6,13]
γb Disinfection (cleaning) rate of environment (day 1) 0.7 (varied) [30]
αp Contact rate (day 1 person 1) 0.0435 [30]
βp Probability of colonization for Pu after a contact with Hc (no dimension) 0.42 [30]
βpA Probability of colonization for PuA after a contact with Hc (no dimension) 0.42× 1.67 [6,13]
βh Probability of contamination for HCWs after a contact with Pc (no dimension) 0.2 [6,30]
βhA Probability of contamination for HCWs after a contact with PcA (no dimension) 0.25 [6]
η Hand hygiene compliance with HCWs (no dimension) 0.4 [30]
μc Decontamination rate of HCWs (day 1) 24 [30]

p Shedding rate to environment from Pc (day 1 person 1 ACC/cm2) 235 [30]

pA Shedding rate to environment from PcA (day 1 person 1 ACC/cm2) 470 [13,31]

h Contamination rate to environment by Hc (day 1 person 1 ACC/cm2) 235 [30]
κp Colonization rate from environment for Pu (day 1 cm(ACC/ )2 1) 0.000004 [30]
κpA Colonization rate from environment for PuA (day 1 cm(ACC/ )2 1) 0.000005 [6,30]
κh Colonization rate from environment for Hu (day 1 cm(ACC/ )2 1 0.00001 [30]
Np Total number of patients 23 [30]
Nh Total number of HCWs 23 [30]
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August, peaks in winter and decreases from the beginning of February
according to the data shown in [26]. ϵ0 is the baseline antibiotic pre-
scription rate and ϵ1 is the magnitude of change. Besides, un-
contaminated HCWs become contaminated HCWs either by contacting
colonized patients or by touching contaminated environmental sur-
faces, +P H P H(1 ) (1 )p h c u p hA cA u. βh and βhA are the prob-
ability of contamination for HCWs after a contact with Pc and PcA, re-
spectively. Contaminated HCWs have a decontamination rate μcHc
every day. The total number of HCWs is also a constant = +N H Hh u c.
In addition, colonized patients shed bacteria at a rate of +P P ,p c pA cA
where p and pA are the bacteria shedding rate of patients without and
with antibiotic exposure, respectively. Contaminated HCWs touching
environmental surfaces is another way of environmental contamina-
tion, which happens at a rate of Hh c. We denote γb as the environ-
mental disinfection rate.

The model in [16,17] strongly suggests that environmental cleaning
is the most important intervention and antibiotic usage is also necessary
for the control of MRSA infections. Our goal here is to find optimal cost-
effective strategies of environmental cleaning and antibiotic use.
Therefore, we identify ϵ0, γb as functions of time, then ϵ0(t), γb(t) are our

control variables, we hence formulate the model as follows [17]:

= +dP
dt

t P H P B P t t P( ) (1 ) ( ) 1 sin 2
365

( 240) ,u
u p p u c p u e u u u0 1

(1)

= + + +

=

+ +

= + +

+ +

= +

= + +

= + +

dP
dt

t P H P B P t t P

dP
dt

t P H P B P

t t P

dP
dt

t P H P B P

t t P

dH
dt

P H P H H B µ H

dH
dt

P H P H H B µ H

dB
dt

P P H t B

( ) (1 ) ( ) 1 sin 2
365

( 240) ,

( ) (1 )

( ) 1 sin 2
365

( 240) ,

( ) (1 )

( ) 1 sin 2
365

( 240) ,

(1 ) (1 ) ,

(1 ) (1 ) ,

( ) ,

c
c p p u c p u e c c c

uA
uA p pA uA c pA uA e uA uA

u

cA
cA p pA uA c pA uA e cA cA

c

u
p h c u p hA cA u h u e c c

c
p h c u p hA cA u h u e c c

e
p c pA cA h c b e

0 1

0 1

0 1

(2)

subject to initial values

Fig. 3. Baseline model simulations with optimal two-control strategies. (a) Proportion of patients; (b) environmental bacteria density; (c) optimal environmental
cleaning rate; (d) optimal antibiotic prescription rate.
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= = = = =
= =

P P P P P P P P H H H
H B B

(0) , (0) , (0) , (0) , (0) , (0)
, (0) ,

u u uA uA c c cA cA u u c

c e e

0 0 0 0 0

0 0

where = + + +t P t P t P t P t( ) ( ) ( ) ( ) ( )u u c c uA uA cA cA and
= +t t( ) 1 sin( ( 240))1

2
365 . Parameter interpretations and values are

listed in Table 1.
The control set is

= =U u t t m t M m t

M Lebesgue measurable

: { ( ( ), ( )) | ( ) , ( )

, },
b b0 1 0 1 2

2

where the constants M1, M2 (m1, m2) are the maximum (mimimum)
control efforts for antibiotic prescription rate and disinfection/cleaning
rate of environment, respectively.

Our goal is to minimize the objective functional:

= + + +

+ + +

+

u a P t a P t a B t b t t

b t t P t b t t P t c t

c t B t dt

( ) [ ( ) ( ) ( ) ( ( ) ( ))

( ) ( ) ( ) ( ) ( ) ( ) ( ( ))

( ) ( )] .

T
c cA e

u c b

b e

0 1 2 3 1 0
2

2 0 3 0 1
2

2 (3)

The term +a P t a P t( ) ( )c cA1 2 counts the number of colonized patients
without or with antibiotic exposure and a3Be counts the density of
bacteria in the environment. b1(ϵ0(t)ϕ(t))2 means the nonlinear cost
associated with antibiotic use, and +b t t P t b t t P t( ) ( ) ( ) ( ) ( ) ( )u c2 0 3 0
represents the linear cost associated with antibiotic use. Similarly,
c1(γb(t))2 and c2γb(t)Be(t) represent the nonlinear and linear cost of
environmental cleaning, respectively. All the coefficients ai, bi, and cj,

= …i 1, ,3, =j 1, 2, are nonnegative, representing weights on the dif-
ferent terms of objective functional. We aim at minimizing the numbers
of colonized patients, the density of bacteria in the environment, and
the cost associated with environmental cleaning and antibiotic use in a
particular time period.

3. Optimal control

In order to use the Pontryagin’s Maximum Principle [23], we must
first verify the existence of an optimal control [18,25].

Theorem 3.1. There exists an optimal control vector =u U* ( *, *)b0
with the corresponding state solutions =x P P P P H H B* ( *, * , *, * , *, *, *)u uA c cA u c e

that minimizes the objective functional u( ) in (3).

Proof. Firstly we can prove that the solutions of system (2) are
nonnegative and uniformly bounded if the initial values are
nonnegative [16,17]. It is easily seen that the objective functional
values are nonnegative, i.e., the objective functional is bounded below.
So there exists a minimizing sequence of controls =u U( , )k k

b
k

0 such
that

=u ulim ( ) inf ( ).
k

k
u U

The controls in U are uniformly bounded in L∞, which implies uniform
boundedness in L2([0, T]). Since the space L2([0, T]) is reflexive [24],
there exists =u U* ( *, *)b0 such that on a subsequence,

L T k*, * weakly in ([0, ]) as .k
b
k

b0 0
2

Next, it is obvious that the state sequence
=x P P P P H H B( , , , , , , )k

u
k

uA
k

c
k

cA
k

u
k

c
k

e
k corresponding to the minimizing

sequence of controls uk is also uniformly bounded. Moreover, the
right-hand sides of system (2) are uniformly bounded, which gives us
uniformly bounded derivatives for xk. Hence the corresponding state
sequence xk is equicontinuous. According to the Arzelà-Ascoli Theorem,
there exists =x P P P P H H B* ( *, * , *, * , *, *, *)u uA c cA u c e such that on a
subsequence,

x x T* uniformly on [0, ].k

Finally, by choosing the proper subsequence and passing the limit to
system (2), we are able to obtain that x* is the state solution
corresponding to the control u*. Based on the lower semi-continuity
of the L norm2 with respect to L2 weak convergence, we have

=u u uinf ( ) lim ( ) ( *).
u U k

k

Hence, u* is an optimal control. □

Theorem 3.2. Given an optimal control vector =u U* ( *, *)b0 and the
corresponding state solutions =x P P P P H H B* ( *, * , *, * , *, *, *)u uA c cA u c e in system
(2), there exist adjoint variables = …t i( ), 1, , 7,i satisfying

Fig. 4. Optimal control strategies with various colonization ratios upon admission. (a) Optimal environmental cleaning in 1000 days; (b) optimal environmental
cleaning in initial 10 days.
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Fig. 5. Control results with various colonization ratios upon admission corresponding to optimal control strategy shown in Fig. 4. (a) Proportion of uncolonized
patients without antibiotic exposures; (b) proportion of uncolonized patients with antibiotic exposures; (c) proportion of colonized patients without antibiotic
exposures; (d) proportion of colonized patients with antibiotic exposures; (e) density of bacteria in 1000 days; (f) density of bacteria in initial 10 days.
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=

+ + +

b t t H B t t

H B t t

( ) ( ) [ (1 ) ( ) ( )]

[ (1 ) ] [ ( ) ( )]

,

u u p p c p e u

c u p p c p e uA u

cA u

1 2 0 1 0

2 3 0

4

(4)

=

+ +

a b t t t t

t t H H

( ) ( ) [ ( ) ( )]

[ ( ) ( )] (1 ) (1 )

,

u c c c c uA c

cA c p h u p h u

p

2 1 3 0 1 2 0 3

4 0 5 6

7

(5)

=
+ +

H B
H B

[ (1 ) ]
[ (1 ) ],
u uA c uA uA uA p pA c pA e uA

cA uA p pA c pA e

3 1 2 3

4

(6)

=
+

a
H H

[ ]
(1 ) (1 ) ,
u cA c cA uA cA cA cA cA

p hA u p hA u pA

4 2 1 2 3 4

5 6 7 (7)

= + +
+ +

P P B
P P B

[ (1 ) (1 ) ]
[ (1 ) (1 ) ],
p h c p hA cA h e

p h c p hA cA h e

5 5

6 (8)

Fig. 6. Optimal control strategies with various antibiotic exposure ratios upon admission. (a) Optimal environmental cleaning in 1000 days; (b) optimal environ-
mental cleaning in initial 10 days.

Fig. 7. Optimal control strategies with various discharge rates for colonized patients with antibiotic exposures. (a) Optimal environmental cleaning in 1000 days; (b)
optimal environmental cleaning in initial 10 days.
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= +
+

P P P
P µ µ

(1 ) (1 ) (1 )
(1 ) ,

p p u p p u p pA uA

p pA uA c c h

6 1 2 3

4 5 6 7 (9)

= + +
+ +

a c t P P P P
H H t

( )
( )

b p u p u pA uA pA uA

h u h u b

7 3 2 1 2 3 4

5 6 7 (10)

with the transversality conditions:

= = …T i( ) 0, 1, ,7.i (11)

Furthermore, the optimal control vector is given by =u t t* ( ( )*, ( )*),b0
where

= +t m b P t b P t
b t

M( )* min max , ( ) ( ) ( ) ( )
2 ( )

, ,u c
0 1

1 3 2 2 4 3

1
1

(12)

=t m c B t
c

M( )* min max , ( ) ( )
2

, .b
e

2
7 2

1
2

(13)

Proof. By the Pontryagin’s Maximum Principle, we obtain the
Hamiltonian as follows:

= + + + +
+ + +

+
+ + +

+

+
+ + +

+
+ +
+ + +
+ + +

a P a P a B b t t b t t P
b t t P c t c t B t

t P H P B P t t P
t P H P B P t t P

t P H P B P

t t P
t P H P B P

t t P
P H P H H B µ H

P H P H H B µ H
P P H t B

( ( ) ( )) ( ) ( )
( ) ( ) ( ( )) ( ) ( )

[ ( ) (1 ) ( ) ( ) , ]
[ ( ) (1 ) ( ) ( ) ]

[ ( ) (1 )

( ) ( ) ]
[ ( ) (1 )

( ) ( ) ]
[ (1 ) (1 ) ]
[ (1 ) (1 ) ]
[ ( ) ],

c cA e u

c b b e

u p p u c p u e u u u

c p p u c p u e c c c

uA p pA uA c pA uA e uA uA

u

cA p pA uA c pA uA e cA cA

c

p h c u p hA cA u h u e c c

p h c u p hA cA u h u e c c

p c pA cA h c b e

1 2 3 1 0
2

2 0

3 0 1
2

2

1 0

2 0

3

0

4

0

5

6

7

(14)

Fig. 8. Control results with various discharge rates for colonized patients with prior antibiotic exposures corresponding to optimal control strategy shown in Fig. 7.
(a) Proportion of uncolonized patients without antibiotic exposures; (b) proportion of uncolonized patients with antibiotic exposures; (c) proportion of colonized
patients without antibiotic exposures; (d) proportion of colonized patients with antibiotic exposures.
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where = +t t( ) 1 sin( ( 240))1
2
365 and =t( ) u

+ + +P t P t P t P t( ) ( ) ( ) ( )u c c uA uA cA cA .
We define adjoint variables = …t i( ), 1, , 7i , by:

= = = =
P P P P

, , , ,
u c uA cA

1 2 3 4

= = =
H H B

, ,
u c e

5 6 7

with the transversality conditions = = …T i( ) 0, 1, ,7.i We obtain the
characterization of optimal controls by letting:

= =
t t( )

0,
( )

0.
b0

From =t/ ( ) 0,0 we have

+ + +
+ =

b t t b t P b t P t P t P t P
t P

2 ( ( )) ( ) ( ) ( ) ( ) ( ) ( )
( ) 0,

u c u c u

c

1
2

0 2 3 1 2 3

4

which implies that

= +t b P t b P t
b t

( ) ( ) ( ) ( ) ( )
2 ( )

,u c
0

1 3 2 2 4 3

1

where = +t t( ) 1 sin( ( 240))1
2
365 would never be 0 for all t. From

=t/ ( ) 0,b we have

+ =c t c B B2 ( ) 0,b e e1 2 7

which implies that

=t c B t
c

( ) ( ) ( )
2

.b
e7 2

1

By taking the upper and lower bounds for ϵ0(t) and γb(t) into account,
we have the following characterization of the optimal controls:

= +t m b P t b P t
b t

M( )* min max , ( ) ( ) ( ) ( )
2 ( )

, ,u c
0 1

1 3 2 2 4 3

1
1

=t m c B t
c

M( )* min max , ( ) ( )
2

, .b
e

2
7 2

1
2

This completes the proof. □

4. Numerical results

Without any control strategies for 1000 days, Fig. 2 represents the
proportions of uncolonized patients without or with antibiotic ex-
posure, colonized patients without or with antibiotic exposure and
density of bacteria in the environment, respectively, based on the
parameter values in Table 1 and initial values

=P P P P H H B( , , , , , , ) (4, 2, 7, 10, 17, 6, 1000)u uA c cA u c e
0 0 0 0 0 0 0 .
Next, we introduce optimal control strategies into our system.

According to Lenhart and Workman [20], a Forward-Backward Sweep
method is used to solve such optimal control problems numerically.
Roughly speaking, we first divide the time interval [0, T] into equal
parts and make an initial guess for control values. By using a Runge-
Kutta 4 (RK4) routine, we are able to solve the state system in (2)
forward in time with the given initial values. After that, based on the
initial guess of control values, the values of state system solutions ob-
tained and the transversality conditions of adjoint variables, we can
solve the adjoint system (3)-(9) backward in time by RK4. Then, we
update our control value by entering the new state and adjoint values
into the characterization of the control in (11)(12). Finally, a con-
vergence test is conducted and the recurrent process will not stop until
values converge sufficiently.

4.1. Optimal control with baseline control parameters

Since we do not have enough data on the detailed cost, we choose
the values of our weighted coefficients, ai ( =i 1, 2, 3), bi ( =i 1, 2, 3), ci
( =i 1, 2), by comparing the relative size of each term without being
multiplied by the corresponding values of their weighted coefficients in
the objective functional (3). In particular, by observing that the linear
cost associated with environmental cleaning, given as γb(t)Be, and the
density of bacteria, Be, are relatively large in comparison to the other

Fig. 9. Optimal control strategies with various transmission rates. (a) Optimal environmental cleaning in 1000 days; (b) optimal environmental cleaning in initial 10
days.
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Fig. 10. Control results with various transmission rates corresponding to optimal 2-control strategies shown in Fig. 9. (a) Proportion of uncolonized patients without
antibiotic exposures; (b) proportion of uncolonized patients with antibiotic exposures; (c) proportion of colonized patients without antibiotic exposures; (d) pro-
portion of colonized patients with antibiotic exposures; (e) density of bacteria in 1000 days; (f) density of bacteria in initial 10 days.
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terms, we choose their weighted coefficients, a3 and c2, to be relatively
small in comparison to the remaining coefficients. Similarly, we choose
b1, b2 and b3 to be relatively large in comparison to the remaining
coefficients. We believe that, once the detailed data is known, it can be
incorporated into the appropriate values of control parameters to get a
more realistic result. Therefore, we choose = =a a 1,1 2 =a 0.015,3

=c 5,1 =b 50,1 = =b b 10,2 3 =c 0.012 as the baseline weights in the
objective functional (3). We choose the upper and lower bounds of the
cleaning rate and antibiotic prescription rate based on their baseline
values in Table 1: =m 0.05,1 =M 0.12,1 =m 0.5,2 =M 102 .

Fig. 3 gives us the results of optimal two-control strategies. Com-
paring to the case with no control as shown in Fig. 2, the percentage of
colonized patients with antibiotic exposure PcA is reduced from
35%∼40% to 15%∼20%, as well as the density of bacteria in the
environment. Moreover, we observe that the optimal environmental
cleaning rate γb(t) has a similar seasonal pattern as PcA and Be, which
implies that hospitals should be aware of intensifying their cleansing
efforts during the peak period of antibiotic prescription. In the fol-
lowing subsections, we focus on exploring how hospitals should adjust
their environmental cleaning strategy when different hospital and
community scenarios happen. Justification of control parameters and
initial values is presented in the Appendix.

4.2. Impacts of community situations on control strategies

First, we investigate the impacts of the colonization level in the
community. To do this, we increase the fraction of colonized patients
with antibiotic exposure on admission, θcA, and decrease the fraction of
uncolonized patients with antibiotic exposure on admission, θuA, with

+ = 0.38,uA cA i.e., the fraction of patients with antibiotic exposure of
new admission is always equal to 0.38 [6,15]. That is to say, antibiotic
use in the community does not change, but more patients with anti-
biotic exposure are colonized in the community. Figs. 4 and 5 show that
hospitals should pay more attention to the environmental cleaning
when the colonization ratio is higher in the community level. However,
optimized cleaning would not reduce the proportion of PcA and the
density of bacteria in the environment to levels comparable with those
lower colonized communities. Hence, even though environmental
cleaning is the most effective intervention as suggested in [17], it is not
enough to only consider environmental cleaning. To reduce θcA, one
way is to highlight the public education about how to prevent MRSA
infections in the community, such as maintaining good hand and body
hygiene especially after exercise, avoiding sharing personal items such
as towels and razors, keeping scrapes and wounds clean and covered
until healed [5], the other way is to increase active screening on ad-
mission and isolation of positive cases.

Second, we study the influences of community-level antibiotic
prescription rates. We increase the fraction of uncolonized patients with
antibiotic exposure on admission, θuA, and decrease the fraction of
uncolonized patients without antibiotic exposure on admission, θu, with
θc and θcA fixed. That is to say, the number of colonized patients in the
community does not change, while, more antibiotics are used in the
community. Fig. 6 implies that enhanced cleaning efforts are needed for
communities with high prescription rates.

4.3. Impacts of lengthened hospital stays on control strategies

As discussed above, it was observed in many studies that colonized
patients with antibiotic exposure tend to have a lengthier stay in hos-
pitals. Our baseline value = 0.055cA implies that PcA stay in hospitals
for about 18 days ( = 18.18cA

1 ). In this subsection, we explore what can
happen if PcA have a lengthier stay in hospitals due to lack of the

efficient treatment, say 22 days ( = 0.035cA ), and 28 days ( = 0.035cA ).
Figs. 7 and 8 show that hospitals should increase the environmental
cleaning effort corresponding to the lengthier stay of PcA. However, an
increase of the percentage of PcA and density of bacteria still occurs,
even with an increase of effort to environmental cleaning. Hence, rapid
diagnosis and efficient treatment of colonized patients, especially those
with prior antibiotic exposures, is also essential in controlling MRSA
infections.

4.4. Impacts of transmission rate between patients and HCWs on control
strategies

Another scenario we consider is an increase in the transmission rate
between patients and HCWs, (1 )p p and (1 )p pA . Such an
increase occurs for many reasons, one of which being an understaffed
hospital where HCWs may not follow proper rules such as adequate
washing of hands and wearing of gloves when necessary. Fig. 9 shows
how such an increase in (1 )p p and (1 )p pA affects the op-
timal environmental cleaning, where =(1 ) 0.011p p and

= ×(1 ) 0.011 1.67p pA are our original choices. As expected, we
should increase the environmental cleaning rate. The resulting solu-
tions are illustrated in Fig. 10 for the increased transmission rate. In
particular, the proportions of Pc, PcA and density of bacteria increase
even though an increase of environmental cleaning is applied. Hence,
preventing the direct transmission between HCWs and patients is also
crucial in the control of MRSA infections.

5. Conclusion and discussion

As one of the most common causes of hospital-acquired infections,
especially in intensive care units, MRSA, which is resistant to multiple
commonly used antibiotics, calls for attention to find effective strategies
for prevention. In our previous work [16,17], numerical simulations
strongly suggest that environmental cleaning is the most important
intervention to control MRSA infections, which gives us another way to
control MRSA infections. Hospitals should use more effective products,
enhance the monitoring of cleaning by ongoing assessments and feed-
backs, and even use technology (cleaning robots) to supplement the
manual cleaning [14]. To better understand how environmental
cleaning and antibiotic use affect the transmission and control of MRSA
infections in hospitals, we applied the optimal control theory to a
seven-compartment system of ordinary differential equations. Our goal
was to reduce the number of colonized patients and bacteria in the
environment while minimizing the cost associated with environmental
cleaning rate and antibiotic use in a particular time period. Char-
acterizations of optimal control strategies were formulated.

Our simulations considered 1000-day time periods since we wanted
to observe the seasonality of MRSA infections. Simulation results
strongly showed that with our control strategies the percentage of co-
lonized patients with antibiotic exposure PcA reduced dramatically.
Hence environmental cleaning is key in the control of MRSA infections.
Moreover, according to our observation, the optimal environmental
cleaning rate γb(t) has a similar seasonal pattern as the number of co-
lonized patients with antibiotic exposure, PcA, and the density of bac-
teria in the environment, Be, which implies that hospitals should be
aware of intensifying their cleansing efforts during peak periods.

Further, we discussed how other hospital and community factors
would impact the optimal control strategies and outcomes. On the
community level, reducing the MRSA colonization ratio and antibiotic
prescription rates will relieve the burden of cleaning efforts in the
hospitals regarding controlling nosocomial MRSA transmissions and
infections. Upon admission of new patients, screening, decolonization,
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and isolation are also considered as effective intervention strategies.
Inside the hospital, it is essential to shorten the lengthened stays of
colonized patients, especially those who have prior exposures to anti-
biotics, which implies the importance of rapid diagnosis and efficient
treatments.

Last but not least, our model can be enhanced to capture other
important features about nosocomial transmissions of bacteria. For the
sake of simplicity, we assumed uniformly distributed bacteria density,
however, environmental heterogeneity should be considered to make
the model assumptions more realistic. To do so, clinical studies on the
correlations about bacteria density of different surfaces in the hospitals
will be helpful in subdividing the environment into further categories
[19,21]. We also assumed constant ratios for different patient status
upon admission and related such ratios to the community factors, in
reality, this is usually a stochastic process, and we investigated this

possibility by using stochastic models in another study [16]. Further-
more, real data on the costs of treating infections, environmental
cleaning, as well as penalties on overdosing antibiotics will be helpful
in applying the methods of this study to provide cost-effectiveness
analysis for certain nosocomial infection containment and antibiotic
stewardship programs.
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Appendix. Justification of control parameters and initial values

In order to justify our choice of the control parameters, we vary the value for each control parameter while keeping the values of all others.
Firstly, we observe that the optimal antibiotic prescription rate is always equal to the lowest prescription rate, i.e., =t m( ) ,0 1 no matter how we

Fig. 11. Optimal control strategies with various m1 values. (a) Optimal environmental cleaning in 1000 days; (b) optimal environmental cleaning in initial 10 days;
(c) optimal antibiotic prescription rate.
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Fig. 12. Control results with various m1 values corresponding to optimal 2-control strategies shown in Fig. 11. (a) Proportion of uncolonized patients without
antibiotic exposures; (b) proportion of uncolonized patients with antibiotic exposures; (c) proportion of colonized patients without antibiotic exposures; (d) pro-
portion of colonized patients with antibiotic exposures; (e) density of bacteria in 1000 days; (f) density of bacteria in initial 10 days.
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choose m1. This is not a surprising result: lower antibiotic prescription rate ϵ0(t) always leads to increased Pu and Pc, decreased Be, PuA and PcA, and
unchanged +P P ,c cA thus all items in the objective functional (3) yield lower values except for b2ϵ0(t)ϕ(t)Pu(t) and b3ϵ0(t)ϕ(t)Pc(t). Our experimental
results show that, except for extremely large weights on b2 and b3 (as large as 5,000 with the other weights being their baseline values), smaller ϵ0(t)
would always lead to smaller objective functional values. Intuitively speaking, our model assumes that a higher prescription rate leads to a higher
patient colonization rate, a lengthier hospital stay, and a higher bacteria shedding rate to the environment, so a low prescription rate always help on
reducing the value of the cost function. We present some simulations with various m1 values in Figs. 11 and 12, where we see that the lower
antibiotic prescription rate would not only require smaller optimal environmental cleaning rate but also yield less colonized patients and lower cost.
Therefore, maintaining the use of antibiotics at the least possible level is essential in the control of MRSA infections.

Secondly, we justify the choices of the key weighted parameters c1, c2 and a3. We vary each of them in a significantly large range around the
baseline value, with c1 ∈ [1, 15], c2 ∈ [0.01, 1], and a3 ∈ [0.005, 0.15], and plot the optimal control results with representative values in
Figs. 13–17(a), in which no qualitative change in the optimal control results is observed. Thus we consider the control results as robust under
reasonable variations of the baseline weighted parameters. Further, in Fig. 17(b), we gradually increase the lower bound for environmental cleaning
(m2) from the baseline value of 0.5 to 2. We observe that there is no difference in the optimal control strategy for m2 being as large as 1, but the
optimal cleaning rate is suggested to be maintained at the least possible value whenm2 exceeds 2, which means that no extra cleaning is needed if the
minimum cleaning effort is already good enough. Besides, our optimal control results are still robust under small variations of the minimum cleaning
effort as we set our baseline m2 to be 0.5.

Lastly, we justify our choice of =P P P P H H B( , , , , , , ) (4, 2, 7, 10, 17, 6, 1000)u uA c cA u c e
0 0 0 0 0 0 0 as the initial conditions upon the implementation of the

control efforts. The initial bacteria density =B 1000e
0 is based on data from clinical hygiene evaluation studies in [2,32], and we choose the initial

patient and HCW distributions randomly while keeping the total number of patients and HCWs being both 23 to reflect the situation in Beijing
Tongren Hospital [29]. We modify our initial distributions of patients and HCWs, as well as bacteria density to generate several other initial
conditions and we observe that the optimal control results only differ during the initial period of enforcement and coincide for the long-term period
as shown with some representative cases in Fig. 18.

Fig. 13. Optimal control strategies with various c1 values. (a) Optimal environmental cleaning in 1000 days; (b) optimal environmental cleaning in initial 10 days.
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Fig. 14. Control results with various c1 values corresponding to optimal control strategies shown in Fig. 13. (a) Proportion of uncolonized patients without antibiotic
exposures; (b) proportion of uncolonized patients with antibiotic exposures; (c) proportion of colonized patients without antibiotic exposures; (d) proportion of
colonized patients with antibiotic exposures; (e) density of bacteria in 1000 days; (f) density of bacteria in initial 10 days.
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Fig. 15. Optimal control strategies with various c2 values. (a) Optimal environmental cleaning rate in 1000 days; (b) optimal environmental cleaning in initial 10
days.

Fig. 16. Control results with various c2 values corresponding to optimal control strategies shown in Fig. 15. (a) Proportion of uncolonized patients without antibiotic
exposures; (b) proportion of uncolonized patients with antibiotic exposures; (c) proportion of colonized patients without antibiotic exposures; (d) proportion of
colonized patients with antibiotic exposures.
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