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In this work, we consider a three species Lotka–Volterra food web model with 
omnivory which is defined as feeding on more than one trophic level. Based on 
a non-dimensional transformation, the model actually becomes a system of three 
first order ordinary differential equations with seven parameters. Analytically, we 
completely classify the parameter space into three categories containing eight cases, 
show the extinction results for five cases, and verify uniform persistence for the 
other three cases. Moreover, in the region of the parameter space where the system is 
uniformly persistent we prove the existence of periodic solutions via Hopf bifurcation 
and present the chaotic dynamics numerically. Biologically, the omnivory module 
blends the attributes of several well-studied community modules, such as food chains 
(food chain models), exploitative competition (two predators–one prey models), 
and apparent competition (one predator–two preys models). We try to point out 
the differences and similarities among these models quantitatively and give the 
biological interpretations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Three species food web models are fundamental building blocks of large scale ecosystems. To clarify 
the local or global and short-term or long-term behavior of ecosystems, it is essential to understand the 
interacting dynamics of three species food web models. A monotone ecosystem whose interactions among 
n-species are all cooperative or competitive (n = 2) have been well studied in the past three decades thanks 
to the theory of monotone dynamical systems [9]. However, for a non-monotone system whose interactions 
are blended at least with one consumption (i.e. herbivory, predation or parasitism), most known results 
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Fig. 1.1. All possible schematic diagrams of the direct and indirect interactions among three species predator–prey systems. The 
arrows present the directions of biomass. (a) Food chain; (b) two predators–one prey; (c) one predator–two preys; (d) food chain 
with omnivory; and (e) food chain with cycle.

are constrained on two species cases since the classical Poincaré–Bendixson Theorem can be applied. Hence 
recently attentions have been attracted to the dynamics of a non-monotone ecosystem with at least 3-species.

Since 1970’s, there have been some interesting and impressive results on investigating the dynamics 
of three species predator–prey systems [7,8,11,12,15]. In particular, Krikorian [15] has classified all three-
species food web Lotka–Volterra models into four types in all 34 cases: food chains (Fig. 1.1(a)), two 
predators competing for one prey (Fig. 1.1(b)), one predator acting on two preys (Fig. 1.1(c)), and loops 
(Fig. 1.1(d), (e)). We separate the case loop into two sub-cases, food chain with omnivory (Fig. 1.1(d)) and 
cycle (Fig. 1.1(e)). We observe that all species except for species z of case (d) with consumption in the 
above cases are the so-called specialist predators which have a limited diet. On the other hand, the species 
z of case (d) is called the generalist predator which can make use of a variety of different resources from 
two trophic levels.

In this paper, we will focus on three species food web models of predator–prey type with an omnivorous 
top predator which is defined as feeding on more than one trophic level. Actually, this is a general part of 
marine or terrestrial food web ecological systems. For example, species x are plants, species y are herbivores, 
and species z consume not only plants but also other herbivores. One can find more examples in the 
complex marine food web systems. This type of models has been reported in the past two decades [10,
20,21,23,24]. This phenomenon has been variously called “trophic level omnivory”, “intraguild predation”, 
“higher order predation”, or “hyperpredation”. Moreover, Holt and Polis [10] point out that there is growing 
evidence for the importance of intraguild predation in many natural communities, yet little formal ecological 
theory addresses this particular blend of interactions, a mixture of competition and predation between two 
predators.

Motivated by the articles [4,10,13,15,17,27], we consider the following three species food web model with 
the Lotka–Volterra type interaction between populations,

dN1

dτ
= N1(B − a11N1 − a12N2 − a13N3),

dN2

dτ
= N2(−D1 + a21N1 − a23N3),

dN3

dτ
= N3(−D2 + a31N1 + a32N2),

N1(0) ≥ 0, N2(0) ≥ 0, N3(0) ≥ 0, (1.1)

where N1, N2, and N3 denote the densities of a basal resource, an intermediate consumer (intraguild prey), 
and an omnivorous top predator (intraguild predator), respectively. The parameters are all positive and B, 
D1, and D2 are the intrinsic growth rate of the resource N1, the death rate of the prey N2, and the death rate 
of the predator N3, respectively. In the absence of other species, species N1 follows the traditional logistical 
growth model and the functional responses between different species are assumed to be Lotka–Volterra 
type. The coefficient a11 denotes the intraspecific competition in the resource and aij (i < j) is the rate of 
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Fig. 1.2. Three most simple interactions between three species with one renewable resource.

consumption; and aij (i > j) measures the contribution of the victim (basal resource or intraguild prey) to 
the growth of the consumer.

System (1.1) can be regarded as a food-chain or two predators–one prey model when a13 = a31 = 0
or a23 = a32 = 0, respectively (see Fig. 1.2). In this work, we would like to clarify the global dynamics 
and corresponding biological interpretations of (1.1). But this task is non-trivial since it blends the at-
tributes of several well-studied community modules, such as food chains, and exploitative competition (two 
predators–one prey). Actually, Holt and Polis [10] highlight similarities and differences among these modules 
and system (1.1). We provide detailed and completed mathematical analysis of model (1.1) with related 
biological implications. Our results provide us new insights in addition to some parallel results that have 
been discussed in [10].

The rest of the paper is organized as follows. In Section 2, we show the boundedness of solutions of (2.1)
and recall some known local and global results for two-dimensional subsystems. Then some global behaviors 
of the boundary equilibria are investigated by the methods of Lyapunov and McGehee Lemma. In Section 3, 
we classify all parameters into six categories to investigate the existence of positive equilibria. Global 
dynamics are presented analytically for five cases including y die-out or z die-out, bi-stability phenomenon, 
and global stability of the coexistence state. In Section 4, two numerical results are given. One presents the 
existence of periodic solutions resulted from the Hopf bifurcation. The other presents complex behaviors 
routed by a period-doubling cascade. In Section 5, we give some discussions and remarks.

2. Preliminaries

In this section, first of all, we show that solutions of (2.1) are bounded. Then some well known two-
dimensional results are recalled. Moreover, stabilities of all boundary equilibria in R3 are clarified. Finally, 
a necessary and sufficient condition which can reduce system (2.1) to the one- or two-dimensional subsystem 
is given.

For mathematical simplification, we write model (1.1) in non-dimensional forms. Let

t = Bτ, x = a11N1/B,

y = a12N2/B, z = N3/B,

then (1.1) takes the form

dx

dt
= x(1 − x− y − γ̄z),

dy

dt
= y(−d1 + αx− βz),

dz = z(−d2 + γx + δy), (2.1)

dt
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with initial conditions, x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0, where the parameters are all positive with the rescaling:

d1 = D1/B, d2 = D2/B,

α = a21/a11, β = a23,

γ = a31/a11, γ̄ = a13, δ = a32/a12. (2.2)

If we rewrite the first equation of (1.1) as the form,

dN1

dτ
= BN1

(
1 − a11

B
N1 −

a12

B
N2 −

a13

B
N3

)
,

then we can see that the traditional environmental carry capacity K of the logistic growth model is B/a11. 
The parameters proportioned to K are α = a21K/B and γ = a31K/B which are positive relative to the 
basal resource productivity. The parameter

δ = a32

a12
= a32

a23

a23

a21

a21

a12

measures the efficiency of biomass in the direction from x to y (a21/a12) and y to z (a32/a23), and the 
conversion rate for species y (a23/a21). The more biological details and implications will be discussed in the 
last section.

We can easily see that the solutions of (2.1) are positive (nonnegative) with positive (nonnegative) initial 
conditions. The following results on the boundedness of solutions of system (2.1) can be verified easily.

Proposition 2.1. The system (2.1) is dissipative.

Proof. From the first equation in system (2.1) we have

dx

dt
≤ x(1 − x),

so that the comparison principle implies that

lim sup
t→∞

x(t) ≤ 1.

Thus, for ε > 0 small, we have x(t) ≤ 1 + ε when t is sufficiently large. Denote M = max{α, βγ/(γ̄δ)} and 
D = min{d1, d2, 1}. From the equations in (2.1) we have

d

dt

(
Mx + y + (β/δ)z

)
= Mx(1 − x− y − γ̄z) − d1y + αxy − d2(β/δ)z + (βγ/δ)xz

≤ Mx−D
(
y + (β/δ)z

)
≤ K −D

(
Mx + y + (β/δ)z

)
,

where K = (D + 1)(1 + ε)M . Using the comparison principle a second time, we have

lim sup
t→∞

(
Mx + y + (β/δ)z

)
≤ K

D
,

which implies that system (2.1) is dissipative. �
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2.1. Boundary equilibria and subsystems

By the previous result, it is easy to see that all solutions with nonnegative initial conditions will stay in a 
bounded region of the first octant with boundary. In this subsection, we will list all trivial and semi-trivial 
equilibria on the boundary of the first octant. It will help us to clarify the dynamics of all solutions on the 
boundary.

Based on biological meanings, we ask all equilibria to be nonnegative. Hence it is straightforward to 
calculate that there are one trivial equilibrium, E0 ≡ (0, 0, 0), and three semitrivial equilibria in system (2.1), 
Ex ≡ (1, 0, 0), Exy ≡ (d1/α, 1 −d1/α, 0), and Exz ≡ (d2/γ, 0, (γ−d2)/(γγ̄)). It is obvious that the equilibria 
E0 and Ex always exist without any restriction, the equilibrium Exy exists if α > d1, and the equilibrium 
Exz exists if γ > d2. We recall some well-known one or two dimensional results.

Proposition 2.2. The subspaces, H1 = {(x, 0, 0) :x ≥ 0}, H2 = {(x, y, 0) :x, y ≥ 0}, H3 = {(x, 0, z) :x, z ≥ 0}
and H4 = {(0, y, z) : y, z ≥ 0}, are invariant. Moreover, the following statements are true.

(i) On H1, system (2.1) is reduced to the one-dimensional subsystem

dx

dt
= x(1 − x). (2.3)

Then the trivial equilibrium E0 is unstable and Ex is globally asymptotically stable.
(ii) On H2, system (2.1) is reduced to the two-dimensional subsystem

dx

dt
= x(1 − x− y),

dy

dt
= y(−d1 + αx). (2.4)

If α ≤ d1 then Exy doest not exist and Ex is globally asymptotically stable; otherwise, if α > d1 then 
the equilibria E0, Ex are saddles and Exy is globally asymptotically stable.

(iii) On H3, system (2.1) is reduced to the two-dimensional subsystem

dx

dt
= x(1 − x− γ̄z),

dz

dt
= z(−d2 + γx). (2.5)

If γ ≤ d2 then Exz doest not exist and Ex is globally asymptotically stable; otherwise, if γ > d2 then 
the equilibria E0, Ex are saddles and Exz is globally asymptotically stable.

(iv) On H4, the trivial equilibrium E0 is globally asymptotically stable.

2.2. Local stability and some global dynamics of boundary equilibria in R3

In this subsection, the dynamics of all solutions in R3 near the boundary equilibria will be addressed. It 
is easy to find the Jacobian matrix of system (2.1) by direct computation,

J(x, y, z) =

⎡
⎣ 1 − 2x− y − γ̄z −x −γ̄x

αy −d1 + αx− βz −βy

γz δz −d2 + γx + δy

⎤
⎦ . (2.6)

We now consider the local stability of equilibria on the boundaries, H1–H4.
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(a) E0: The trivial equilibrium E0 is a saddle point, where H1 is the unstable subspace and H4 is the stable 
subspace.

(b) Ex: The semi-trivial equilibrium Ex with the Jacobian evaluated at Ex,

J(Ex) =

⎡
⎣−1 −1 −γ̄

0 α− d1 0
0 0 γ − d2

⎤
⎦ , (2.7)

is asymptotically stable if α < d1 and γ < d2. Otherwise, it is a saddle if α > d1 or γ > d2.

(c) Exy: The equilibrium Exy exists if α > d1 and the Jacobian evaluated at Exy is given by

J(Exy) =

⎡
⎣−d1/α −d1/α −d1γ̄/α

α− d1 0 −β(1 − d1/α)
0 0 −d2 + γd1/α + δ(1 − d1/α)

⎤
⎦ . (2.8)

It easy to see that the top left 2 ×2 sub-matrix is exactly the Jacobian matrix for the subsystem (2.4) at the 
equilibrium Exy and the third eigenvalue is given by λ = −d2 + γd1/α+ δ(1 − d1/α). Thus the semi-trivial 
solution Exy is asymptotically stable in R3 if and only if

−d2 + γ
d1

α
+ δ

(
1 − d1

α

)
< 0.

(d) Exz: Similarly, the equilibrium Exz exists if γ > d2 and the Jacobian evaluated at Exz is given by

J(Exz) =

⎡
⎣ −d2/γ −d2/γ −d2γ̄/γ

0 −d1 + αd2/γ − β(1 − d2/γ)/γ̄ 0
(γ − d2)/γ̄ δ(γ − d2)/(γγ̄) 0

⎤
⎦ .

It is similar to case (c). We can get the 2 ×2 sub-matrix by erasing the second row and column of the Jacobian 
matrix J(Exz) and it is exactly the Jacobian matrix for subsystem (2.5) at the equilibrium Exz. The third 
eigenvalue is given by λ = −d1 +αd2/γ−β(1 − d2/γ)/γ̄. Thus the equilibrium Exz is asymptotically stable 
in R3 if and only if

−d1 + α
d2

γ
− β

γ̄

(
1 − d2

γ

)
< 0.

Summarizing the above discuss, we have results on the local stability of boundary equilibria in R3.

Proposition 2.3. For system (2.1), the following statements are true.

(i) The trivial equilibrium E0 is always a saddle with the unstable subspace H1 and the stable subspace H4.
(ii) The semi-trivial equilibrium Ex is asymptotically stable if α ≤ d1 and γ ≤ d2. Otherwise, it is a saddle.
(iii) If α > d1, then Exy exists and is asymptotically stable in R3 if and only if

−d2 + γ
d1

α
+ δ

(
1 − d1

α

)
< 0. (2.9)

(iv) Similarly, if γ > d2 then Exz exists and is asymptotically stable in R3 if and only if

−d1 + α
d2

γ
− β

γ̄

(
1 − d2

γ

)
< 0. (2.10)
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To clarify the global behaviors of the semi-trivial equilibria of system (2.1) with the restriction α ≤ d1, 
we have the following extinction results.

Proposition 2.4. Let (x(t), y(t), z(t)) be a solution of system (2.1) with initial condition p = (x(0), y(0), z(0))
where x(0) > 0, y(0) > 0, and z(0) > 0. Then the following statements are true.

(i) If α < d1 and γ < d2, then the semi-trivial equilibria Exy and Exz do not exist and we have the limits 
limt→∞ y(t) = 0 and limt→∞ z(t) = 0. Furthermore, Ex is globally asymptotically stable.

(ii) If α < d1 and γ > d2, then one semi-trivial equilibrium Exy does not exist but the other semi-trivial 
equilibrium Exz exists. Moreover, we have the limit limt→∞ y(t) = 0 and the equilibrium Exz is globally 
asymptotically stable.

Proof. (i) By the first equation of (2.1), for any positive number ε we have x(t) < 1 + ε for enough large t. 
Take ε = (d1 − α)/2α > 0, then for large t consider

ẏ

y
= α− d1 + α(x− 1) − βz <

α− d1

2 < 0.

Hence we have the limit limt→∞ y(t) = 0. Similarly, take ε = (d2 − γ)/4γ and t large enough such that 
x(t) < 1 + ε and y(t) ≤ (d2 − γ)/4δ. Consider

ż

z
= γ − d2 + γ(x− 1) + δy <

γ − d2

2 < 0.

Hence we also have limt→∞ z(t) = 0. Therefore we can find a point q ∈ H1 ∩ω(p) where ω(p) is the ω-limit 
set of p. Since the equilibrium Ex is globally asymptotically stable on H1, by the property of invariance of 
the ω-limit set, Ex ∈ ω(p). The assumptions α < d1 and γ < d2 guarantee that Ex is asymptotically stable 
in R3. Hence limt→∞(x(t), y(t), z(t)) = Ex.

(ii) The assumptions α < d1 and γ > d2 imply that Exy does not exist and Exz exists. And Exz is 
asymptotically stable in R3 since the inequality

−d1 + α
d2

γ
− β

γ̄

(
1 − d2

γ

)
< −d1 + α < 0

holds. Similar to case (i) by taking ε = (d1 − α)/2α > 0, for large t consider

ẏ

y
= −d1 + αx− βz ≤ α− d1

2 < 0.

So we have the limit limt→∞ y(t) = 0. The remaining arguments of the proof of this part are similar to 
case (i), so we omit it. The proof is complete. �

These results can be easily interpreted in the biological point of view. If the mortality rate d1 of species 
y is greater than the conversion rate α, then y will die out eventually and system (2.1) is reduced to the 
one-dimensional x subsystem (2.3) or two-dimensional x–z subsystem (2.5). Thus classical two-dimensional 
results, Proposition 2.2, can be applied. Therefore, from now on, we generically make the assumption,

(A1) α > d1,

which will be used in the rest of this article. However, for species z the dynamics are more complicated due 
to the omnivorous effects. We consider this in the next section.
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Fig. 3.1. All generic possibilities of classification of parameters with varied d2 in regions (1)–(6) with d1 < α.

3. Existence, local stability and global dynamics of the equilibria in RRR3

By the results of the last section, we always assume that assumption (A1) holds. Logically, we have six 
generic cases of classification of parameters based on the relation of γ and δ respect to the death rate of 
species z, d2. See Fig. 3.1. Biologically, if γ > δ, then the top predator’s conversion rate γ of x is larger 
than the conversion rate δ of y. It means that z will prefer to eat x because of the better efficiency. In this 
section, we will classify the dynamics of (2.1) according to d2 within regions (1)–(6) by the following four 
categories,

(I) d2 > max{γ, δ} (in region (3) and (6) of Fig. 3.1);
(II) γ > max{δ, d2} (in region (1) and (2) of Fig. 3.1);

(III) d2 < γ < δ (in region (4) of Fig. 3.1);
(IV) γ < d2 < δ (in region (5) of Fig. 3.1).

We will discuss the dynamics of each category in the following subsections.

3.1. Category (I): d2 > max{γ, δ}

In this category, assumption (A1) and d2 > max{γ, δ} imply that one boundary equilibrium Exy exists 
and the other boundary equilibrium Exz does not exist. In order to complete the classification, we consider 
the possible existence of positive equilibria. To find the positive coexistence equilibrium E∗ = (x∗, y∗, z∗) is 
to find positive numbers x∗, y∗ and z∗ satisfying the following linear equations

0 = 1 − x− y − γ̄z,

0 = −d1 + αx− βz,

0 = −d2 + γx + δy. (3.1)

With the substitution, x = 1 − y − γ̄z, we obtain two straight lines, L1 and L2,

L1 : αy + (αγ̄ + β)z = α− d1, (3.2)

L2 : (γ − δ)y + γγ̄z = γ − d2. (3.3)

Hence the coexistence state exists if and only if these two straight lines L1 and L2 intersect in the interior 
of the first quadrant of the yz-plane. The only possibility of existence of a positive equilibrium is that 
parameters satisfy inequalities γ < δ and d2−γ

δ−γ < α−d1
α . But, this is impossible since if γ < δ then d2−γ

δ−γ >

1 > α−d1
α . Hence there is no positive equilibrium in category (I). However, we have the following extinction 

and globally stability results and the dynamics of category (I) are summarized in Table 3.1.

Proposition 3.1. Let assumption (A1) and d2 > max{γ, δ} hold. Then equilibria Exz and E∗ do not exist. 
Moreover, we have the limit limt→∞ z(t) = 0 and the equilibrium Exy is globally asymptotically stable.

Proof. We first claim that the semi-trivial equilibrium Exy is asymptotically stable. Consider two subcases, 
γ ≥ δ or γ < δ. If γ ≥ δ then
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−d2 + γ
d1

α
+ δ

(
1 − d1

α

)
≤ −d2 + γ

d1

α
+ γ

(
1 − d1

α

)
= −d2 + γ < 0

holds. On the other hand, if γ < δ then

−d2 + γ
d1

α
+ δ

(
1 − d1

α

)
= δ − d2 + (γ − δ)d1

α
≤ (γ − δ)d1

α
< 0

holds. Hence Exy is locally asymptotically stable in R3 by Proposition 2.3.
Without loss of generality, we may assume that x(t) ≤ 1 for t large enough. Define c = max{γ, δ} and 

consider

ż

z
+ c

ẋ

x
= (−d2 + γx + δy) + c(1 − x− y − γ̄z)

= c− d2 + (γ − c)x + (δ − c)y − cγ̄z

≤ c− d2 < 0.

Then we have z(t)(x(t))c approaches 0 as t approaches ∞. There are two possibilities that should be 
considered. The first one is that we can find a sequence of time {tn} such that tn approaches ∞ and x(tn)
approaches 0 as n approaches ∞. Another one is that there is a positive number ε such that x(t) ≥ ε for 
all time t.

Assume that there is a sequence {tn} such that x(tn) approaches zero as n approaches infinity. Since the 
solutions of (2.1) are bounded, there is a point q = (0, ȳ, ̄z) ∈ H4 ∩ω(p). By Proposition 2.2, the solution of 
(2.1) with initial condition q ∈ H4, φ(t, q), will approach E0 when time goes to infinity. Hence E0 ∈ ω(p). It 
is clear that ω(p) �= {E0}. Applying Butler–McGehee Lemma [6], there is a point r = (x̄, 0, 0) ∈ H1 ∩ω(p). 
Clearly, r �= E0 and φ(t; r) approaches Ex as time goes to infinity. Similarly, {Ex} � ω(p) and applying 
Butler–McGehee Lemma again, we can find a point s ∈ ω(p) ∩ H2 since the unstable manifold of Ex is 
contained in H2. Again, φ(t; s) approaches Exy, hence Exy ∈ ω(p). Since Exy is asymptotically stable in 
R3, we have the limit limt→∞ φ(t; p) = Exy.

On the other hand, if x(t) ≥ ε > 0 for all t then we have z(t) approaches zero as t approaches infinity. 
Similar to the previous arguments, we can find a point s1 ∈ H2 ∩ ω(p). The remaining arguments of the 
proof are almost the same as the previous one, so we omit them. We complete the proof. �
3.2. Category (II): γ > max{δ, d2}

In this category, assumptions (A1) and γ > d2 imply the existence of boundary equilibria Exy and Exz. 
Similarly, we solve (3.2) and (3.3) to find the positive equilibrium E∗. Note that all coefficients of these two 
straight lines, L1 and L2, are positive. Hence category (II) has four generic cases as shown in Fig. 3.2.

In Fig. 3.2(a), the two straight lines do not intersect in the first quadrant if (α−d1)/α > (γ−d2)/(γ− δ)
and (α−d1)/(αγ̄+β) > (γ−d2)/(γγ̄). These two inequalities are equivalent to (2.9) and the reversed (2.10). 
Hence in this case Exy is stable, Exz is unstable and E∗ does not exist. The arguments of local dynamics in 
other three cases of category (II) are similar, so we omit them and summarize the results of local stability 
of the boundary equilibria and existence of positive equilibrium of category (II) in Table 3.1.

From Eq. (2.6), if E∗ exists then the Jacobian evaluated at E∗ is given by

J(E∗) =

⎡
⎣−x∗ −x∗ −γ̄x∗
αy∗ 0 −βy∗

⎤
⎦ .
γz∗ δz∗ 0
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Fig. 3.2. The four possible generic cases for the intersection of the two straight lines L1 and L2 for category (II).

Let λ be an eigenvalue. Then the characteristic equation is

λ3 + x∗λ
2 + (αx∗y∗ + γγ̄x∗z∗ + βδy∗z∗)λ + (αγ̄δ + βδ − γβ)x∗y∗z∗ = 0. (3.4)

By Routh–Hurwitz criterion, the real parts of three roots of the characteristic equation are all negative if 
and only if

αγ̄δ + βδ − γβ > 0 (3.5)

and

αx∗y∗ + γγ̄x∗z∗ > (αγ̄δ − γβ)y∗z∗. (3.6)

For this category, we obtain two extinction results and one bistability phenomenon.

Proposition 3.2. Let assumption (A1) hold and parameters be of category (II). Then the following statements 
are true.

(i) In case (a) of category (II), that is α−d1
α > γ−d2

γ−δ and α−d1
αγ̄+β > γ−d2

γγ̄ , if (3.5) holds, then the species z
dies out eventually and the equilibrium Exy is globally asymptotically stable.

(ii) In case (b) of category (II), that is α−d1
α < γ−d2

γ−δ and α−d1
αγ̄+β < γ−d2

γγ̄ , if (3.5) holds, then the species y
dies out eventually and the equilibrium Exz is globally asymptotically stable.

(iii) In case (c) of category (II), that is α−d1
α > γ−d2

γ−δ and α−d1
αγ̄+β < γ−d2

γγ̄ , the equilibrium E∗ is a saddle point 
with one positive eigenvalue and two eigenvalues with negative real part, that is, there is a bistability 
phenomenon.

Proof. (i) It is easy to see that the inequality of (3.5) is equivalent to the inequality γ−δ
α β − γ̄δ < 0. Let 

μ ≡ γ−δ
α (α− d1) − (γ − d2) > 0. Consider

ż

z
+ δ

ẋ

x
− γ − δ

α

ẏ

y
= −d2 + γx + δy + δ(1 − x− y − γ̄z) − γ − δ

α
(−d1 + αx− βz)

= (γ − d2) − γ(1 − x) + δ(1 − x) − δγ̄z − γ − δ

α

(
α− d1 − α(1 − x) − βz

)

= (γ − d2) −
γ − δ

α
(α− d1) +

(
γ − δ

α
β − δγ̄

)
z ≤ −μ.

Hence we have z(t)(x(t))δ approaches zero as t approaches infinity. The remaining arguments are similar, 
so we omit them.

(ii) Similarly, (3.5) is equivalent to the inequality β− αγ̄+β
γ δ < 0. Let us define μ ≡ (αγ̄+β)γ−d2

γ − γ̄(α−
d1) > 0 and consider
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γ̄
ẏ

y
− β

ẋ

x
− αγ̄ + β

γ

ż

z
= γ̄(−d1 + αx− βz) − β(1 − x− y − γ̄z) − αγ̄ + β

γ
(−d2 + γx + δy)

= γ̄(α− d1) − αγ̄(1 − x) − β(1 − x) + βy − αγ̄ + β

γ

(
γ − d2 − γ(1 − x) + δy

)

= γ̄(α− d1) −
αγ̄ + β

γ
(γ − d2) +

(
β − αγ̄ + β

γ
δ

)
y ≤ −μ.

Hence y(t) approaches zero as t approaches infinity. The remaining arguments are similar, so we omit them.
(iii) It is easy to see that the assumptions α−d1

α > γ−d2
γ−δ and αγ̄+β

α−d1
> γγ̄

γ−d2
imply the inequality,

αγ̄ + β

α
>

γγ̄

γ − δ
.

This inequality is in turn equivalent to αγ̄δ + δβ − γβ < 0. Hence the coexistence state E∗ is unstable. By 
simple computing, the Routh array for (3.4) is

⎛
⎜⎜⎝

1 αx∗y∗ + γγ̄x∗z∗ + δβy∗z∗ 0 0
x∗ (αγ̄δ + δβ − γβ)x∗y∗z∗ 0 0
b1 0 0 0
c1 0 0 0

⎞
⎟⎟⎠ ,

where b1 = αx∗y∗ + γγ̄x∗z∗ + (γβ − αγ̄δ)y∗z∗ and c1 = (αγ̄δ + δβ − γβ)x∗y∗z∗ < 0. We claim that (3.4)
cannot have a purely imaginary root. If not let λ = iω, then we have

i
(
w − w3) = x∗w

2 − (αγ̄δ + δβ − γβ)x∗y∗z∗ < 0.

This is impossible for any ω ∈ R. So whenever b1 is positive or negative, the signs of first column always 
change once. Hence the equilibrium E∗ is a saddle point with one positive eigenvalue and two eigenvalues 
with negative real part. We complete the proof. �
3.3. Category (III): d2 < γ < δ

In this category, assumptions (A1) and γ > d2 imply that the boundary equilibria Exy and Exz exist. 
Similarly, we solve (3.2) and (3.3) to find the positive equilibrium E∗. Note that all coefficients of these two 
straight lines, L1 and L2, are positive except for γ − δ. Hence category (III) has two generic cases as shown 
in Fig. 3.3.

For category (III), it is obvious that Exy is unstable, since

−d2 + γ

(
d1

α

)
+ δ

(
1 − d1

α

)
= (δ − γ)

(
1 − d1

α

)
+ γ − d2 > 0.

Remaining arguments of local dynamics of category (III) are similar to the previous category, so we omit 
them and summarize the results on the local stability of boundary equilibria and the existence of a positive 
equilibrium of category (III) in Table 3.1. We obtain the following global extinction result.

Proposition 3.3. Let assumption (A1) hold and parameters be of category (III). In case (b) of category (III), 
that is α−d1

α > γ−d2
γ−δ and α−d1

αγ̄+β < γ−d2
γγ̄ , the species y dies out eventually and the equilibrium Exz is globally 

asymptotically stable.
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Fig. 3.3. The two possible generic cases for the intersection of the two straight lines L1 and L2 for category (III).

Proof. We first show that inequality (3.5) holds in this case. Note that d2 < γ < δ in the category. Hence 
inequalities

α− d1

α
>

γ − d2

γ − δ
and α− d1

αγ̄ + β
<

γ − d2

γγ̄

directly imply that

αγ̄ + β

α
>

γγ̄

γ − δ

which is equivalent to (3.5). Moreover, it is also equivalent to β < αγ̄+β
γ . Moreover, the condition α−d1

αγ̄+β <
γ−d2
γγ̄ holds if and only if the inequality (2.10) holds, hence the equilibrium Exz is asymptotically stable.
Take a positive number μ ≡ αγ̄+β

γ (γ − d2) − γ̄(α− d1). Consider

γ̄
ẏ

y
− β

ẋ

x
− αγ̄ + β

γ

ż

z
= γ̄(−d1 + αx− βz) − β(1 − x− y − γ̄z) − αγ̄ + β

γ
(−d2 + γx + δy)

= γ̄(α− d1) − αγ̄(1 − x) − β(1 − x) + βy − αγ̄ + β

γ

(
γ − d2 − γ(1 − x) + δy

)

= γ̄(α− d1) −
αγ̄ + β

γ
(γ − d2) +

(
β − αγ̄ + β

γ
δ

)
y ≤ −μ.

Hence y(t) → 0 as t → ∞. The remaining arguments are similar, so we omit them. �
3.4. Category (IV): γ < d2 < δ

In this category, assumption (A1) and γ < d2 < δ imply that one boundary equilibrium Exy exists 
and the other boundary equilibrium Exz does not exist. Similarly, we solve (3.2) and (3.3) to find the 
positive equilibrium E∗ and there are two generic cases as shown in Fig. 3.4. In Fig. 3.4(b), the inequality 
(α − d1)/α < (d2 − γ)/(δ − γ) is equivalent to (2.9) hence Exy is asymptotically stable. The other case of 
category (IV) is similar, so we summarize the results in Table 3.1. In this category, we show the extinction 
result in case (b) and the globally stability of the positive equilibrium in case (a) in the following.

Proposition 3.4. Let assumption (A1) hold and parameters be in the case (b) of category (IV). Then we 
have the limit limt→∞ z(t) = 0 and the equilibrium Exy is globally asymptotically stable.

Proof. Inequality α−d1
α < d2−γ

δ−γ implies that Exy is asymptotically stable and is equivalent to the following 
inequality,

d2 − γ >
δ − γ (α− d1).

α
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Fig. 3.4. The two possible generic cases for the intersection of the two straight lines L1 and L2 for category (IV).

Let μ = d2 − γ − δ−γ
α (α− d1) > 0 and consider

ż

z
+ δ

ẋ

x
+ δ − γ

α

ẏ

y
= (−d2 + γx + δy) + δ(1 − x− y − z) + δ − γ

α
(−d1 + αx− βz)

= γ − d2 − γ(1 − x) + δ(1 − x) − δz + δ − γ

α

(
α− d1 − α(1 − x) − βz

)

≤ γ − d2 + δ − γ

α
(α− d1) = −μ.

Hence we have (x(t))δ(y(t))(δ−γ)/αz(t) approaches zero as t approaches infinity. Similarly, we consider two 
possibilities. One is that we can find a sequence of time {tn} such that x(tn) approaches zero as n approaches 
infinity. The proof of this case is similar to previous one, we can obtain that Exy is globally asymptotically 
stable. So we omit the details.

Another one is that x(t) ≥ ε for all time t. This implies that (y(t))(δ−γ)/αz(t) approaches zero as t
approaches infinity. We still have two-subcases, that is, we can find a sequence of time {tn} such that y(tn)
approaches zero as n approaches infinity or y(t) ≥ ε for all time t. If y(tn) approaches zero as n approaches 
infinity then by Butler–McGehee lemma again we can find a point q ∈ H3 ∩ ω(p). By Proposition 2.2(iii), 
the solution φ(t; q) approaches Ex as t approaches infinity. Hence Ex ∈ ω(p). The remaining arguments are 
similar, so we omit them. However, if y(t) ≥ ε for all t then z(t) approaches zero as t approaches ∞. Similar 
arguments are omitted. We complete the proof. �
Proposition 3.5. Let assumption (A1) hold and parameters be in the case (a) of category (IV), that is, α−d1

α >
γ−d2
γ−δ and α−d1

αγ̄+β > γ−d2
γγ̄ . If β and γ̄ are small enough, then the equilibrium E∗ is globally asymptotically 

stable.

Proof. First note that the condition α−d1
α > γ−d2

γ−δ implies that the reversed (2.9) holds, hence equilibrium 
Exy is unstable. Moreover, it can be showed that E∗ is asymptotically stable by checking the Routh–Hurwitz 
criteria (3.5) and (3.6) since δ > γ and 0 < γ̄, β 
 1.

Consider a Lyapunov function

V (x, y, z) = − ln x

x∗
− 1

α
ln y

y∗
− 1

δ
ln z

z∗
,

then

d

dt
V = − ẋ

x
− 1

α

ẏ

y
− 1

δ

ż

z

= −(1 − x− y − γ̄z) − 1
α

(−d1 + αx− βz) − 1
δ
(−d2 + γx + δy)

=
(
−1 + d1 + d2

)
− γ

x +
(
γ̄ + β

)
z ≤ 0,
α δ δ α
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if γ̄ and β/α are small enough. Let

M =
{

(x, y, z) :
(
−1 + d1

α
+ d2

δ

)
− γ

δ
x +

(
γ̄ + β

α

)
z = 0

}
.

By tedious computations, we obtain

E∗ = (x∗, y∗, z∗) =
(
β(δ − d2) + γ̄δd1

αγ̄δ + βδ − γβ
, y∗,

α(δ − d2) − d1(δ − γ)
αγ̄δ + βδ − γβ

)
∈ M.

We would like to clarify the maximal invariant set of M .
The set M is a two-dimensional plane whose projection on the x–z plane is the straight line

(
γ̄ + β

α

)
z = γ

δ
x +

(
1 − d1

α
− d2

δ

)

or in this form
(
γ̄ + β

α

)
(z − z∗) = γ

δ
(x− x∗).

Hence the values x − x∗ and z − z∗ of orbits of (2.1) which are invariant in M must have the same sign or 
be zero simultaneously. M can be separated into nine disjoint parts as the forms,

M = M1 ∪M2 ∪M3 ∪M4 ∪N1 ∪N2 ∪N3 ∪N4 ∪ {E∗},

where

M1 = M ∩ {x > x∗, z > z∗, y > y∗}, M2 = M ∩ {x > x∗, z > z∗, y < y∗},
M3 = M ∩ {x < x∗, z < z∗, y > y∗}, M4 = M ∩ {x < x∗, z < z∗, y < y∗},
N1 = M ∩ {x = x∗, z = z∗, y > y∗}, N2 = M ∩ {x = x∗, z = z∗, y < y∗},
N3 = M ∩ {x > x∗, z > z∗, y = y∗}, N4 = M ∩ {x < x∗, z < z∗, y = y∗}.

Solutions which are invariant in M should have tangent vectors

dz

dx
= z(−d2 + γx + δy)

x(1 − x− y − γ̄z) = z(γ(x− x∗) + δ(y − y∗))
x((x∗ − x) + (y∗ − y) + γ̄(z∗ − z)) ≥ 0 (3.7)

if (x∗ − x) + (y∗ − y) + γ̄(z∗ − z) �= 0, or

dx

dz
= x(1 − x− y − γ̄z)

z(−d2 + γx + δy) = x((x∗ − x) + (y∗ − y) + γ̄(z∗ − z))
z(γ(x− x∗) + δ(y − y∗))

≥ 0 (3.8)

if γ(x − x∗) + δ(y − y∗) �= 0. It is clear that solutions of (2.1) cannot go into regions N1–N4, M1 and M4, 
since dzdx < 0 if orbits are on these six regions.

Let solutions of (2.1) with initial conditions on M2 be invariant in M2. We consider two cases, (x∗ −
x) + (y∗ − y) + γ̄(z∗ − z) > 0 or (x∗ − x) + (y∗ − y) + γ̄(z∗ − z) ≤ 0. Let the first case hold, that is, 
(x∗ − x) + (y∗ − y) + γ̄(z∗ − z) > 0, then γ(x − x∗) + δ(y − y∗) < 0. This contradicts to dzdx ≥ 0. Hence, we 
always have (x∗−x) +(y∗ − y) + γ̄(z∗ − z) ≤ 0 and γ(x −x∗) + δ(y− y∗) ≤ 0 on M2. These two inequalities 
imply that the x(t)- and z(t)-coordinates of solution of (2.1) are decreasing for all time. But there is only 
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Fig. 3.5. A typical picture of the parameter space with varied γ, δ, and fixed d1, d2, m1, m2, α, β with α > d1. The dynamics 
in each region of the parameter space are indicated with different color. First, in the yellow regions species z dies out eventually 
because of results in Propositions 3.1, 3.2(i) and 3.4. In the orange region, species y dies out eventually (Propositions 3.2(ii) and 
3.3). Moreover, in the green region, the bistability phenomenon occurs (Proposition 3.2(iii)). Finally, the coexistence state appears 
in the pink region and the model (2.1) is uniformly persistent (Proposition 3.6). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

one equilibrium E∗ on M , solutions of (2.1) on M2 approaches to E∗ as time goes to infinity. It is similar 
to handle solutions with initial conditions on M3, so we omit it.

Finally, by LaSalle’s invariant principle, solutions with positive initial conditions will approach E∗. This 
completes the proof. �
3.5. Dynamics of the positive equilibrium

Note that all global dynamics of (2.1) are clarified analytically except for cases of parameters in (II)(d), 
(III)(a), and part of (IV)(a). Hence, in this subsection, we would like to discuss the dynamics of (2.1) with 
parameters in these three regions. We show an analytical result in which system (2.1) is uniformly persistent 
and present some numerical simulations.

3.5.1. Uniform persistence
First, we present a typical picture, Fig. 3.5, of the γ–δ parameter space with fixed α, β, d1, d2 and γ̄

and the restriction α > d1 (see Proposition 2.4 and assumption (A1)). We use different colors to clarify the 
dynamics of solutions of (2.1) by the two inequalities of Table 3.1. One straight line, γ d1

α + δ(1 − d1
α ) = d2, 

and one horizontal line,

γ = γ∗ = (αγ̄ + β)d2

γ̄d1 + β
, (3.9)

are obtained to separate regions (II)–(IV) into two or four subregions by the inequalities of Table 3.1.
We indicate the dynamics in each region of the parameter space with different colors. First, in the 

yellow regions species z dies out eventually because of results in Propositions 3.1, 3.2(i) and 3.4. In the 
orange region, species y dies out eventually (Propositions 3.2(ii) and 3.3). Moreover, in the green region, 
the bistability phenomenon occurs (Proposition 3.2(iii)). Finally, the coexistence state appears in the pink 
region. The detailed biological interpretations will be discussed in the last section.
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Table 3.1
Dynamics of equilibria of classifications categories (I)–(IV) (GAS means globally asymptotically stable).

Exy Exz E∗

Category (I): d2 > max{γ, δ} GAS does not exist does not exist

Category (II): γ > max{δ, d2}
(a) α−d1

α > γ−d2
γ−δ , α−d1

αγ̄+β > γ−d2
γγ̄ GAS* unstable does not exist

(b) α−d1
α < γ−d2

γ−δ , α−d1
αγ̄+β < γ−d2

γγ̄ unstable GAS* does not exist
(c) α−d1

α > γ−d2
γ−δ , α−d1

αγ̄+β < γ−d2
γγ̄ stable stable exists (saddle)

(d) α−d1
α < γ−d2

γ−δ , α−d1
αγ̄+β > γ−d2

γγ̄ unstable unstable exists

Category (III): d2 < γ < δ

(a) α−d1
α > γ−d2

γ−δ , α−d1
αγ̄+β > γ−d2

γγ̄ unstable unstable exists
(b) α−d1

α > γ−d2
γ−δ , α−d1

αγ̄+β < γ−d2
γγ̄ unstable GAS does not exist

Category (IV): γ < d2 < δ

(a) α−d1
α > d2−γ

δ−γ , α−d1
αγ̄+β > γ−d2

γγ̄ unstable does not exist exists
(b) α−d1

α < d2−γ
δ−γ , α−d1

αγ̄+β > γ−d2
γγ̄ GAS does not exist does not exist

* With an extra inequality (3.5).

Now we are in the position to show that system (2.1) with parameters in the pink region is uniformly 
persistent. It is easy to check that system (2.1) is persistent by the results of [6]. Moreover, we now have 
the following results on the uniform persistence of system (2.1) (Bulter et al. [2], Freedman et al. [5]).

Proposition 3.6. Let assumption (A1) hold and 0 < γ < γ∗ defined in (3.9). If δ > αd2−γd1
α−d1

then (2.1) is 
uniformly persistent.

To show this proposition, we need the following results.

Lemma 3.7. If assumption (A1) and δ > αd2−γd1
α−d1

hold, then the semi-trivial equilibrium Exy exists and 
is a saddle with a two-dimensional stable manifold, the interior of the x–y plane, and a one-dimensional 
unstable manifold with tangent vectors which are non-zero in the z coordinate.

Proof. It is easy to see that the inequality δ > αd2−γd1
α−d1

is equivalent to

−d2 + γ
d1

α
+ δ

(
1 − d1

α

)
> 0.

By Proposition 2.3(iii), we only need to check that the z coordinate of a tangent vector of its unstable 
manifold is non-zero. To simplify the notation, let Exy = (d1/α, 1 − d1/α, 0) = (x1, y1, 0) and p = −d2 +
γ d1

α + δ(1 − d1
α ) > 0. Then the Jacobian of Exy (2.8) can be simplified as

⎡
⎣−x1 −x1 −γ̄x1
αy1 0 −βy1
0 0 p

⎤
⎦ .

To find a tangent vector (u, v, w) of the one-dimensional unstable manifold with respect to the positive 
eigenvalue p, we solve the linear equations

−x1u− x1v − γ̄x1w = pu

αy1u− βy1w = pv.
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Rearrange the above equations, we have
[
−x1 − p −x1
αy1 −p

] [
u

v

]
=

[
γ̄x1w

βy1w

]
.

Since the determinant of the previous 2 ×2 matrix is positive, the existence of a non-zero eigenvector implies 
that the z coordinate of the eigenvector is non-zero. We complete the proof. �
Lemma 3.8. If assumption (A1) and d2 < γ < γ∗ hold, then the semi-trivial equilibrium Exz exists and 
is a saddle with a two-dimensional stable manifold, the interior of the x–z plane, and a one-dimensional 
unstable manifold with tangent vectors which are non-zero in the y coordinate.

Proof. We only would like to point out that the inequality γ < γ∗ is equivalent to

−d1 + α
d2

γ
− β

γ̄

(
1 − d2

γ

)
> 0

which implies that equilibrium Exz is a saddle by Proposition 2.3(iv). The rest of the proof is similar to the 
previous lemma, so we omit it. �
Lemma 3.9. If assumption (A1) and 0 < γ ≤ d2 hold, then the semi-trivial equilibrium Ex is a saddle with 
a two-dimensional stable manifold, the interior of the x–z plane, and a one-dimensional unstable manifold 
with tangent vectors on the x–y plane.

Proof. In the case of 0 < γ ≤ d2, the equilibrium Exz does not exist. Assumption (A1) implies that Exy

exists and is globally asymptotical stable on the x–y plane. The Jacobian matrix evaluated at Ex is
⎡
⎣−1 −1 −γ̄

0 α− d1 0
0 0 γ − d2

⎤
⎦ .

Whatever γ < d1 or γ = d2, it is easy to verify that the equilibrium Ex is a saddle with a two-dimensional 
stable manifold, the x–z plane, and a one-dimensional unstable manifold with tangent vectors on the x–y
plane. �
Proof of Proposition 3.6. Our strategy is to use the main result in [5] to verify the uniform persistence 
of (2.1). It is sufficient to show that the boundary of the first octant for the solution of (2.1) is isolated and 
acyclic.

The parameters which satisfy the assumptions are exactly in the interior of the pink region of Fig. 3.5. 
We separate the pink region of the parameter space into two cases, 0 < γ ≤ d2 or γ > d2. It is clear that the 
isolated invariant sets of solutions on the boundary are {E0, Ex, Exy} if 0 < γ ≤ d2 or {E0, Ex, Exy, Exz}
if d2 < γ < γ∗. Showing that the set of equilibria on the boundary is acyclic is sufficient to complete the 
proof. This can be done by identifying the invariant manifolds of equilibria in each case. So we recall results 
of Proposition 2.2 and Proposition 2.3 on the dynamics of solutions on the boundary of the first octant.

1. The trivial equilibrium E0 is always a saddle with a two-dimensional stable manifold, the y–z plane 
with boundaries, the y-axis and z-axis, and a one-dimensional unstable manifold, the x-axis.

2. By Proposition 2.3(iii), the semi-trivial equilibrium Exy exists because of assumption (A1). By 
Lemma 3.7, assumption δ > αd2−γd1

α−d1
implies that it is a saddle with a two-dimensional stable manifold, 

the interior of the x–y plane, and a one-dimensional unstable manifold with non-vanish z-coordinate 
tangent vectors.
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3. Similarly, the interior of the x–z plane is the stable manifold of the semi-trivial equilibrium Exz.
4. The whole x-axis is the stable manifold of the equilibrium Ex and the unstable manifold of E0.

Summarize the above results, we can find a chain from E0 to Exy,

E0 → Ex → Exy,

if 0 < γ ≤ d2, but Exy cannot be chained to E0 or Ex. Similarly, if γ > d2 then there is either a chain from 
E0 to Exy,

E0 → Ex → Exy,

or a chain from E0 to Exz,

E0 → Ex → Exz.

And neither Exy nor Exz can be chained to E0 or Ex. Thus, the set of equilibria {E0, Ex, Exy, Exz} on the 
boundary is acyclic and the system is uniformly persistent. This completes the proof. �
3.5.2. Hopf bifurcation

In this part, we investigate the existence of periodic solutions via the Hopf bifurcation in the pink region 
of the parameter space. By the previous arguments, the coexistence state E∗ is stable if and only if the 
inequalities (3.5) and (3.6) hold. Since condition (3.5) is always true in this region, we manipulate the 
inequality (3.6) and use similar arguments in Ruan [25] to establish the existence of periodic solutions 
bifurcated from the equilibrium E∗. Moreover, in this part we assume that the inequality

αγ̄δ > γβ (3.10)

holds. Otherwise, if αγ̄δ < γβ then the positive equilibrium E∗ is always asymptotically stable.
Let us reconsider the characteristic function (3.4) at E∗ with a complex eigenvalue λ = a + bi,

(a + bi)3 + x∗(a + bi)2 + F (x∗, y∗, z∗)(a + bi) + Ax∗y∗z∗ = 0, (3.11)

where A = αγ̄δ + βδ − γβ and

F (x, y, z) = αxy + γγ̄xz + βδyz.

Solving (3.11), we have

a3 − 3ab2 + x∗
(
a2 − b2

)
+ F (x∗, y∗, z∗)a + Ax∗y∗z∗ = 0,

3a2b− b3 + 2abx∗ + F (x∗, y∗, z∗)b = 0. (3.12)

If a = 0, then we obtain

F (x∗, y∗, z∗) = Ay∗z∗

and the coexistence state E∗ loses its stability. Moreover, this is equivalent to failure of the inequality (3.6). 
Simultaneously, the characteristic equation (3.4) can be factored as the form

(λ + x∗)
(
λ2 + (αx∗y∗ + γγ̄x∗z∗ + βδy∗z∗)

)
= 0.

Hence we obtain one negative real eigenvalue and two purely imaginary eigenvalues. Let μ be a parameter, 
x∗, y∗, and z∗ depend on μ, and μ̄ be the value such that a(μ̄) = 0. Hence to verify the existence of 
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periodic solutions bifurcated from E∗, we only need to establish the transversality condition da
dμ |μ=μ̄ �= 0. 

Differentiating (3.12) with respect to μ and solving linear system of dadμ |μ=μ̄ and db
dμ |μ=μ̄, we obtain

da

dμ

∣∣∣∣
μ=μ̄

=
(

x∗
2b2 + 2x2

∗

)
d

dμ

(
Ay∗z∗ − F (x∗, y∗, z∗)

)∣∣∣∣
μ=μ̄

=
(

x∗
2b2 + 2x2

∗

)
d

dμ

(
y∗z∗

(
A− F (x∗, y∗, z∗)

y∗z∗

))∣∣∣∣
μ=μ̄

=
(

x∗y∗z∗
2b2 + 2x2

∗

)
dF̄

dμ
(μ̄), (3.13)

where the function

F̄ (μ) ≡ A− F (x∗, y∗, z∗)
y∗z∗

= (αγ̄δ − γβ)y∗z∗ − αx∗y∗ − γγ̄x∗z∗. (3.14)

Note that the inequality (3.6) holds if and only if F̄ < 0. Therefore we have the following conclusion on the 
Hopf bifurcation at the coexistence state E∗.

Proposition 3.10. Assume that (3.10), F̄ (μ̄) = 0 and dF̄ /dμ(μ̄) > 0 hold. Then the positive equilibrium E∗
is locally stable when μ < μ̄ and loses its stability when μ = μ̄. When μ > μ̄, E∗ becomes unstable and a 
family of periodic solutions bifurcates from E∗.

Straight forward to solve Eqs. (3.2) and (3.3), we can find the positive equilibrium explicitly,

E∗ = (x∗, y∗, z∗)

=
(

1 − y∗ − γ̄z∗,
((α− d1)γ̄γ − (γ − d2)(αγ̄ + β))

αγ̄δ + βδ − γβ
,
(α(γ − d2) − (α− d1)(γ − δ))

αγ̄δ + βδ − γβ

)
. (3.15)

It is possible to set μ in any one of the seven parameters, {α, β, γ, ̄γ, δ, d1, d2} to cause the existence of 
periodic solutions bifurcated from the instability of coexistence E∗. For example, if we take μ = δ and δ̄ is 
the value such that Ay∗z∗ − F (x∗(δ̄), y∗(δ̄), z∗(δ̄)) = 0 then the transversality condition is

∂

∂δ

(
A −F (x∗, y∗, z∗)

y∗z∗

)∣∣∣∣
δ=δ̄

> 0.

We present some numerical simulations of the function A − F (x∗, y∗, z∗)/(y∗z∗) and Hopf bifurcation 
with respective to parameter δ. Choose parameter values as follows:

α β γ γ̄ d1 d2
2.5 0.2 0.25 1.0 0.4 0.24

. (3.16)

The graph of F̄ , Fig. 3.6, can be obtained by varying δ from 1.5 to 3.5 and calculating the value of the 
function F̄ in (3.14) with respective to δ. Since the function F̄ is negative if and only if the inequality (3.6)
holds, the positive equilibrium E∗ is unstable if F̄ (δ) > 0. Hence there is a periodic solution bifurcated from 
the positive equilibrium E∗. Furthermore, numerical simulations of (2.1) at δ = 0.25, 1.0 are performed and 
presented in Fig. 3.7(a) and (b), respectively. We can see that the positive equilibrium is asymptotically 
stable (see Fig. 3.7(a)) if δ = 0.25. Now, using δ as a bifurcation parameter, increase δ will destabilize 
the positive equilibrium and Hopf bifurcation will occur. When δ = 1.0, the positive equilibrium loses its 
stability and a periodic solution bifurcates from it (see Fig. 3.7(b)).
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Fig. 3.6. The graph of the function F̄ in terms of δ.

Fig. 3.7. (a) The coexistence state is asymptotically stable when δ = 0.25. (b) A periodic solution bifurcates from the coexistence 
state via Hopf bifurcation when δ = 1.0.

3.5.3. Chaos
In this section, some numerical simulations are presented to show the chaotic phenomenon. Tanabe and 

Namba [27] have numerically presented a bifurcation diagram of system (1.1) with parameters B = 5, 
D1 = 1, D2 = 1.2, a11 = 0.4, a12 = 1, a21 = 1, a23 = 1, a32 = 1, and a31 = 0.1. And the parameter a13
varies from 0 to 20. They found that chaotic dynamics appear via a period-doubling cascade. We take the 
same parameter values as in [27] after the nondimensional scaling, d1 = D1/B = 0.2, d2 = D2/B = 0.24, 
α = a21/a11 = 2.5, γ = a31/a11 = 0.25, and δ = a32/a12 = 1. The parameter β varies from 0.2 to 0.06 
with stepsize −0.0001. We fix all parameters mentioned above and use β as the bifurcation parameter. 
A bifurcation diagram is drawn in Fig. 3.8. The vertical axis is the population density of the top predator z
on the section of which y is fixed at the equilibrium value. It is easy to see that the period-doubling cascade 
occurs numerically.

4. Comparison of omnivory models to food chain and two predators–one prey models

In this section, we rewrite system (2.1) in the following form

dx

dt
= x

(
1 − x− y − (sγ)z

)
,

dy

dt
= y

(
−d1 + αx− (μδ)z

)
,

dz = z(−d2 + γx + δy), (4.1)

dt
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Fig. 3.8. The numerical simulation of a period-doubling cascade when the bifurcation parameter β varies from 0.2 to 0.06.

where s and μ are scaling parameters of γ̄, γ and β, δ, respectively. It is clear that if γ = 0 then system 
(4.1) takes the following form,

dx

dt
= x(1 − x− y),

dy

dt
= y(−d1 + αx− μδz),

dz

dt
= z(−d2 + δy). (4.2)

It is actually a Lotka–Volterra food chain model. Similarly, if δ = 0 then system (4.1) becomes the following 
form,

dx

dt
= x(1 − x− y − sγz),

dy

dt
= y(−d1 + αx),

dz

dt
= z(−d2 + γx). (4.3)

It is actually a Lotka–Volterra two predators–one prey model. If we take system (4.1) as a general three species 
food web model with the “specialist predator” y and the “generalist predator” z, then the parameters γ
and δ are taken as the factors of the species z how general it is. Since the species z is actually a specialist 
predator when either γ or δ is equal to zero.

Before comparing the dynamics of these three models, we clarify the dynamics of the food chain model 
(4.2) and the two predators–one prey model (4.3) in the following two subsections.

4.1. Dynamics of food chain models (4.2)

It is straightforward to calculate that E0 ≡ (0, 0, 0), Ex ≡ (1, 0, 0), and Ēxy ≡ (d1/α, 1 − d1/α, 0) are 
equilibria of system (4.2). The equilibria E0 and Ex always exist without any restriction and the equilibrium 
Exy exists if α > d1. The following extinction results also can be easily obtained in R3.
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Proposition 4.1. If d1 ≥ α then limt→∞ y(t) = 0 and limt→∞ z(t) = 0. Moreover, system (4.2) can be reduced 
to the one-dimensional subsystem with Ex as its global attractor.

By previous proposition we always assume that the inequality α > d1 holds for (4.2) in this subsection 
and it clearly implies the existence of Exy. The local stability of the equilibrium Exy can be obtained easily 
by linearization since the Jacobian matrix evaluated at Exy is given by

J(Exy) =

⎡
⎣−d1/α −d1/α 0
α− d1 0 −β(1 − d1/α)

0 0 −d2 + δ(1 − d1/α)

⎤
⎦ .

Hence Exy is asymptotically stable if and only if 1 − d1/α < d2/δ. Actually, we can show the following 
global results.

Proposition 4.2. If inequalities α > d1 and

1 − d1

α
<

d2

δ

hold, then limt→∞ z(t) = 0. Moreover, the equilibrium Exy is globally asymptotically stable.

Proof. Let μ = 1 − d1/α− δ2/δ < 0. Consider

1
δ

ż(t)
z(t) + 1

α

ẏ(t)
z(t) + ẋ(t)

x(t) = 1
δ
(−d2 + δy) + 1

α
(−d1 + αx− βz) + (1 − x− y)

≤ 1 − d2

δ
− d1

α
= μ.

Hence z(t)1/δy(t)1/αx(t) → 0 as t → ∞. Applying Butler–McGehee Lemma and similar arguments in 
Proposition 2.4, we can show that limt→∞ z(t) = 0. Finally, system (4.2) can be reduced to a two-dimensional 
subsystem with only species x and y eventually, hence Exy is globally asymptotical stable. We complete the 
proof. �

The coexistence state of (4.2) Ē∗ = (x̄∗, ȳ∗, ̄z∗) = (1 − d2
δ , d2

δ , 1
αβ (α−d1

α − d2
δ )) exists if and only if the 

inequality,

α− d1

α
>

d2

δ
,

holds. Since Eq. (4.4) is equivalent to

1 >
d1

α
+ d2

δ
(4.4)

and implies α > d1 and δ > d2. The following global result of Ē∗ can be obtained by the Lyapunov method.

Proposition 4.3. If inequality (4.4) holds then the coexistence state Ē∗ exists and is globally asymptotically 
stable.

Proof. Define a Lyapunov function

V
(
x(t), y(t), z(t)

)
=

x(t)∫
η − x̄∗

η
dη + 1

α

y(t)∫
η − ȳ∗

η
dη + β

αδ

z(t)∫
η − z̄∗

η
dη.
x(0) y(0) z(0)
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Table 4.1
Classification of equilibria and global dynamics of system (4.2).

Cases Ēxy Ē∗ Global dynamics

FI: α ≤ d1 does not exist does not exist y, z die out
Ex is GAS.

FII: α > d1

(a) 1 < d1
α + d2

δ stable does not exist z dies out
Exy is GAS.

(b) 1 > d1
α + d2

δ unstable exists Ē∗ is GAS.

Fig. 4.1. The δ–α parameter space and its corresponding dynamics of (4.2) with varied α, δ and fixed d1, d2, β. The species y will 
die out by the reason of the high mortality d1 in the gray region (i). And the species z dies out too, since it is a specialist predator 
with food y only (Proposition 4.1). In the yellow regions (ii) and (iii), the species z dies out due to the high mortality d2 and low 
conversion rate δ of species z (Proposition 4.2). Finally, the species can coexist if inequality (4.4) holds, since the flow of biomass 
can sustain exploitation of species z. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Along the trajectories of system (4.2) we have

dV

dt
= (x− x̄∗)

ẋ

x
+ 1

α
(y − ȳ∗)

ẏ

y
+ β

αδ
(z − z̄∗)

ż

z

= −(x− x̄∗)2 ≤ 0.

Then dV/dt ≤ 0 and dV/dt = 0 if and only if x = x̄∗. The largest invariant set of {dV/dt = 0} is 
{(x̄∗, ȳ∗, ̄z∗)}. Therefore, LaSalle’s Invariant Principle implies that Ē∗ = (x̄∗, ȳ∗, ̄z∗) is globally stable. This 
completes the proof. �

We summarize the results on the dynamics of (4.2) in Table 4.1 and a picture of the parameter space of 
(4.2) with varied α, δ and fixed d1, d2, β is presented in Fig. 4.1. Detailed biological interpretations will be 
given in Section 4.3 and Section 5.

4.2. Dynamics of two predators–one prey model (4.3)

Similarly, it is straightforward to calculate that E0 ≡ (0, 0, 0), Ex ≡ (1, 0, 0), Ẽxy ≡ (d1
α , 1 − d1

α , 0), Ẽxz ≡
(d2
γ , γ−d2

sγ2 , 0) are equilibria of system (4.3). The equilibria Ẽxy, Ẽxz exist if α > d1, γ > d2, respectively. 
Actually, the following extinction results can be easily obtained in R3.

Proposition 4.4.

(i) If d1 ≥ α and d2 ≥ γ, then limt→∞ y(t) = 0 and limt→∞ z(t) = 0. Moreover, system (4.3) can be 
reduced to a one-dimensional subsystem with Ex as its global attractor.
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Table 4.2
Classification of equilibria and global dynamics of system (4.3).

Cases Ẽxy Ẽxz Global dynamics
TI: α ≤ d1, γ ≤ d2 does not exist does not exist y, z die out

Ex is GAS.

TII: α > d1, γ ≤ d2 stable does not exist z die out
Exy is GAS.

TIII: α ≤ d1, γ > d2 does not exist stable y die out
Exz is GAS.

TIV: α > d1, γ > d2, d1
α > d2

γ unstable stable y dies out
Exz is GAS.

(ii) If d1 < α and d2 ≥ γ, then limt→∞ z(t) = 0. Moreover, system (4.3) can be reduced to a two-
dimensional subsystem with Exy as its global attractor.

(iii) If d1 ≥ α and d2 < δ, then limt→∞ y(t) = 0. Moreover, system (4.3) can be reduced to a two-dimensional 
subsystem with Exz as its global attractor.

By previous proposition we always assume that the inequalities α > d1 and γ > d2 hold for (4.3) in this 
subsection and it clearly implies the existence of Ẽxy and Ẽxz.

It is well known that the coexistence state of (4.3) does not exist generically by the reason of Competitive 
Exclusion Principle. Considering the linearization of (4.3), it is easy to see that equilibrium Exz is asymp-
totically stable if and only if d1

α > d2
γ . Moreover, we can show the following global result which says that the 

species z wins the exploitative competition because of the lower death rate d2 or the better conversion rate γ.

Proposition 4.5. Let α > d1 and γ > d2. If d1
α > d2

γ then the species y will die out eventually. Moreover, the 
equilibrium Exz is globally asymptotically stable.

Proof. Consider

1
α

ẏ

y
− 1

γ

ż

z
= −d1

α
+ d2

γ
< 0.

Similarly, we can easily verify that species y will die out eventually. This completes the proof. �
We summarize the results of dynamics of (4.3) in Table 4.2 and a picture of the parameter space of (4.2)

with various α, γ and fixed d1, d2, β is presented in Fig. 4.2. Detailed biological interpretations will be given 
in Section 4.3 and Section 5.

4.3. Food chain, two predators–one prey and omnivory models

Now we are in the position to compare these three models. First, let us re-examine the biological meanings 
of model (4.2) in the graph of the α–δ parameter space, Fig. 4.1. The species y will die out by the reason of 
the high mortality d1 in the gray region (i). And the species z dies out too, since it is a specialist predator 
with food y only (Proposition 4.1). In the yellow regions (ii) and (iii), the species z dies out due to the 
high mortality d2 and low conversion rate δ of species z (Proposition 4.2). Finally, the species can coexist 
if inequality (4.4) holds, since the flow of biomass can sustain exploitation of species z.

Similarly, we re-examine the biological meanings of model (4.3) in the graph of the α–γ parameter space, 
Fig. 4.2. In the gray region (i), yellow region (ii), and orange region (iii), the death rates of species y and 
z dominate the dynamics of (4.3). However, in the two white regions separated by the line d1

α = d2
c , the 

positive equilibrium cannot exist due to the Competitive Exclusion Principle. Furthermore, those with lower 
death rate or higher conversion rate win the exploitation competition and survive.
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Fig. 4.2. The α–γ parameter space and its corresponding dynamics of (4.3) with varied α, δ and fixed d1, d2, β. In the gray region (i), 
yellow region (ii), and orange region (iii), the death rates of species y and z dominate the dynamics of (4.3). In the two white 
regions separated by the line d1

α = d2
c , the positive equilibrium cannot exist due to the Competitive Exclusion Principle. Those 

who have lower death rate or higher conversion rate can win the exploitation competition and survive. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4.3. The α–γ–δ-parameter space and its corresponding dynamics of model (2.1). Fig. 4.2 is put on the left two-dimensional plane 
which presents the dynamics of model (4.3) and is denoted by “α–γ plane”. Similarly, Fig. 4.1 is put on the under two-dimensional 
plane which is denoted by “α–δ plane”. Finally, we put Fig. 3.5 on the γ–δ plane with α > d1. The biological meanings and 
quantitative properties of these pictures and models will be given in the final section. (For interpretation of the colors in this 
figure, the reader is referred to the web version of this article.)

We note that there are more rich dynamics of (2.1) than the other two models, (4.2) and (4.3). A fun-
damental difference between the omnivory model (2.1) and food chain model (4.2), two predators–one prey 
models (4.3) is that the omnivory model contains a generalist predator z. It is well known that the existence 
of a positive equilibrium implies the globally asymptotically stability in two species predator–prey systems 
with Lotka–Volterra functional response and there is no periodic solution in this kind of models for any 
parameters. Similar results without any periodic solutions are obtained in the models of (4.2) and (4.3). 
However, the coexistence of (2.1) can be found in the state of a positive equilibrium or in the state of 
periodic solutions. Moreover, the phenomenon of bistability also are found in the omnivory model.

Finally, we present a picture, Fig. 4.3, of the α–γ–δ-parameter space to interpret the relations of these 
three models. Fig. 4.2 is put on the left two-dimensional plane of Fig. 4.3 which presents the dynamics 
of model (4.3) and is denoted by “α–γ plane”. Similarly, Fig. 4.1 is put on the under two-dimensional 
plane of Fig. 4.3 which is denoted by “α–δ plane”. Finally, we put Fig. 3.5 on the γ–δ plane with α > d1. 
The biological meanings and quantitative properties of these pictures and models will be given in the final 
section.
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5. Discussion

In this work, we considered a three-species food web model with omnivory (intraguild predation) which 
are the species feed at more than one tropic level. Using a non-dimensional scaling model with seven 
parameters, all possible dynamics of (2.1) are clarified and classified theorically and numerically. We not 
only analyzed the model (2.1) but also found the connections of the three basic models (2.1), (4.2), (4.3)
by two factors s and μ.

Recall that the parameters proportioned to K are α = a21K/B and γ = a31K/B which are positive 
relative to the basal resource productivity. Parameter

δ = a32

a12
= a32

a23

a23

a21

a21

a12

measures the efficiency of biomass in the direction from x to y (a21/a12) and from y to z (a32/a23), and 
conversion rate for species y (a23/a21).

First, for the two predators–one prey model (4.3), exploitative competition occurs between the two 
predators, because both predators share the same basal resources. Let the ratio α

d1
and γ

d2
be defined the 

index of resource exploitation of species y and z, respectively. The inequality α
d1

< (>) γ
d2

means that the 
species y is inferior (superior) at resource exploitation to species z. So Proposition 4.5 says that in model 
(4.3) species y loses and dies out since it is inferior at resource exploitation to species z. This result is the 
so-called Competitive Exclusion Principle. On the other hand, for the food chain model (4.2), if species y
and z overcome their mortalities, i.e. α > d1 and δ > d2, then they coexist if the resource exploitation (d1/α) 
is good for y and the conversion efficiency (d2/δ) is excellent for z. Hence the inequality (4.4) guarantees 
the existence and globally asymptotical stability of the positive equilibrium.

Next, let us look at the omnivory model (2.1) and the γ–δ plane of Fig. 4.3 carefully. The straight line

d1

α
+ δ

γ

(
1 − d1

α

)
= d2

γ
(5.1)

of the γ–δ plane which connects the straight line d1/α = d2/γ of the left α–γ plane and the curve 1 = d1
α + d2

δ

of the bottom α–δ plane separates the whole γ–δ plane into two parts. This straight line implies that the 
ability of persistence of species z is depend on two factors, the resource exploitation of y and the conversion 
efficiency of z. If the resource exploitation of y is inferior (d1/α is large) and the conversion efficiency of z
is excellent (δ is large), then parameters fall into the right hand side. So the dynamics of model (2.1) are 
that z will persist (the orange and pink regions). The horizontal line

γ

d2
= αγ̄ + β

d1γ̄ + β
(5.2)

indicates that the borderline of the real resource exploitation of y, αγ̄+β
d1γ̄+β , with a positive predation factor β

by species z. Hence in the orange regions, species z wins and y dies out since γ
d2

> αγ̄+β
d1γ̄+β , i.e. the resource 

exploitation of z is superior to y. On the contrary, all species coexist in the pink regions. This result has 
been indicated in [10] which states that model (2.1) can coexist and suggests that coexistence requires that 
the species y be superior at exploiting shared resources. Since the inferior competitor z can gain sufficiently 
from predation on the species y to offset competitive inferiority on the shared resource.

For the left hand side of the straight line (5.1), if γ
d2

< αγ̄+β
d1γ̄+β then species z cannot persist. Since it is 

neither superior at exploiting shared resources nor efficient in converting species y. But, there is a different 
story in the green region. Mathematically, we obtain a bistability phenomenon here (Proposition 3.2(iii)), 
hence the final dynamics is depend on the initial condition. Biologically, species z is superior just a little 
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bit in resource exploitation to y. So the advance in this point can be eliminated by the large amount of 
species y. Therefore, the solution will approach Exy eventually if the population of species z is rare. The 
other symmetric case can be argued similarly. This mathematical result and its biological interpretations 
have not been reported in the literature so far in our best knowledge.

Moreover, we would like to mention the recent works by Kang and Wedekin [13]. They consider an IGP 
model with a specialist predator:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′ = x(1 − x− y − z)

y′ = γ1y

(
x− a1yz

y2 + β2 − d1

)

z′ = γ2z

(
x + a2y

2

y2 + β2 − d2

)
,

and an IGP model with a generalist predator:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′ = x(1 − x− y − z)

y′ = γ1y

(
x− a1yz

y2 + β2 − d1

)

z′ = γ2z

(
a3 − a4z + x + a2y

2

y2 + β2

)
.

(5.3)

They call species z of model (5.3) the generalist predators since they feed on the basal resource x, IG-prey y, 
and other diet resources described by the logistic growth γ2z(a3−a4z). By theoretical analysis and numerical 
simulations, they obtain the following implications:

1. IGP with generalist predator can have potential “top down” regulation.
2. The persistence of species y requires it being superior competitor to IG predator [10].
3. The IGP model with a generalist predator is prone to have coexistence of three species.
4. Holling-Type III functional response between IG-prey and IG-predator in IGP models lead to much 

more complicate dynamics than IGP models with only Holling-Type I functional response.

Not only the functional response but also the nonlinear interactions of our model (1.1) are much simpler 
than Kang’s. Even though model (1.1) only consists of Lotka–Volterra type functional responses but the 
model has very rich dynamics, such as extinction, coexistence, bistability, periodic solutions, and chaos.

Finally, we would like to discuss a longstanding debate in ecology [14]: Does omnivory destabilize [19,18]
or stabilize [16,28,20,3,22,26,1] the food web system? Based on our analytical and simulation results, we 
try to answer this question by transferring it to the following: How does the omnivorous effect γ affect the 
stability of the positive equilibrium of an omnivory model? Before answer this question, we should do some 
numerical works.

By the persistent result of (2.1) Proposition 3.6, if parameters are in the pink region of Fig. 3.5 then all 
solutions of (2.1) with positive initial conditions are in a bounded set of first octant and ε-away from xy-, 
yz-, and xz-planes for some positive number ε. We have showed global stability of E∗ for some parameters 
in the pink region near the region of parameters of the food chain model (Proposition 3.5). However, it is 
difficulty to determine the global dynamics of a system with dimension large than two. So we numerically 
check the conditions (3.5) and (3.6) for the local stability of E∗ with a particular set of parameters, α = 2.5, 
β = 1.0, d1 = 0.8, d2 = 0.9, s = 1.0 and discretized parameters γ and δ in the pink region of Fig. 3.5.

It is straightforward to see that the first condition (3.5) of Routh–Hurwitz criterion is always true if 
parameters are in the pink regions because of the inequalities
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Fig. 5.1. A typical picture of the parameter space with variously γ, δ, and fixed d1, d2, m1, m2, α, β with α > d1. Numerically, 
we verify that the coexistence equilibrium E∗ is stable with parameters γ, δ in the shadow region and α = 2.5, β = 1.0, d1 = 0.8, 
d2 = 0.9, s = 1.0. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

γ < γ∗ and γ
d1

α
+ δ

(
1 − d1

α

)
> d2.

Based on the explicit form of y∗ and z∗ in (3.15), the second condition (3.6) of Routh–Hurwitz criterion 
can be checked numerically for the previous setting parameters. We find numerically that inequality (3.6)
is true in the shadow region of Fig. 5.1.

Now we are on the position to answer the question. Our answer is that it is depend on the values of γ
and δ. For medium values of δ, the equilibrium E∗ is stable if 0 < γ < γ∗ or unstable if γ > γ∗. For larger δ, 
the equilibrium E∗ will be stable, unstable, stable or unstable when γ increases from 0 to the orange region 
of Fig. 5.1. Finally, the equilibrium E∗ is stable only for large δ and small γ.
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