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Abstract. We consider a chemostat-type model in which a single species feeds on a limiting
nutrient supplied at a constant rate. The model incorporates a general nutrient uptake function
and two distributed (infinite) delays. The first delay models the fact that the nutrient is partially
recycled after the death of the biomass by bacterial decomposition, and the second delay indicates
that the growth of the species depends on the past concentration of the nutrient. By constructing
appropriate Liapunov-like functionals, we obtain sufficient conditions for local and global stability
of the positive equilibrium of the model. Quantitative estimates on the size of the delays for local
and global stability are also obtained with the help of the Liapunov-like functionals. The technique
we use in this paper may be used as well to study global stability of other types of physical models
with distributed delays.
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1. Introduction. The effect of material (nutrient) recycling on ecosystem sta-
bility has been previously studied for closed systems (see Nisbet and Gurney [16],
Nisbet, McKinstry, and Gurney [17], and Ulanowicz [22]). Powell and Richerson [18]
and Nisbet and Gurney [16] regarded nutrient recycling as an instantaneous process,
thus neglecting the time required to regenerate the nutrient from the dead biomass
by bacterial decomposition. However, as pointed out in Whittaker [23], a delay in
nutrient recycling is always present in a natural system and it increases when tem-
perature decreases. To simulate the growth of planktonic communities of unicellular
algae in the lakes, Beretta, Bischi, and Solimano [1] proposed an open system in
which a single species feeds on a limiting nutrient supplied at a constant rate. They
assumed that the nutrient is partially recycled after the death of the organisms and
used a distributed delay to model nutrient recycling. Bischi [5] observed that the
delay involved in nutrient recycling alone does not have a destabilizing effect on the
equilibrium.

Evidence of delayed growth response has also been observed from chemostat ex-
periments with microalgae Chlamidomonas Reinhardii even when the limiting nutrient
is at undetectable small concentration (see Caperon [7]). Following Caperon [7], Ruan
[19] introduced a discrete delay to the model of Beretta, Bischi, and Solimano [1] to
describe the delayed growth response of the species to nutrient uptake. It is shown
(see He and Ruan [11]) that the positive equilibrium is globally stable if the delays
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are sufficiently small. However, there is a threshold value of the discrete delay involved
in the growth response; when the discrete delay is increased and passes this critical
value, the equilibrium may lose its stability and a Hopf bifurcation may occur (see
Ruan [19]). Recently, Beretta and Takeuchi [2–4] used an additional distributed
delay to model the delayed growth response. By assuming that the response function
is either a Lotka–Volterra function or a Michaelis–Menten function, they studied the
global stability of the positive equilibrium.

In this paper, we consider a chemostat-type model with (distributedly) delayed
growth response and (distributedly) delayed nutrient recycling, namely, a system of
two retarded functional differential equations with two distributed delays. This model
was first proposed and studied by Beretta and Takeuchi [2]. However, their stability
results are only local. Although global stability was also considered in [2–4] for similar
models with an additional instantaneous negative feedback or without delayed growth
response at all, the problem is more difficult to study when delayed growth response
is introduced. By constructing appropriate Liapunov-like functionals, we study both
local and global stability of the positive equilibrium of the model. It turns out that
the positive equilibrium can be globally asymptotically stable if the mean delays
are sufficiently small, and quantitative estimates on the size of these delays can be
obtained with the help of the Liapunov-like functionals. Moreover, our approach to
the local stability problem is slightly different than that used by Beretta and Takeuchi
[2], and we improve their local stability result.

We remark that distributed (infinite) delay equations have been used in biolog-
ical modeling since the work of Volterra (see Scudo and Ziegler [20]) and they are
regarded to be more realistic than discrete (finite) delay equations (see Caperon [7]).
The fundamental theory and some properties such as stability, existence of periodic
solutions, etc. of distributed delay equations are well understood now and are dis-
cussed in the books of Burton [6], Hale and Verduyn Lunel [10], and Hino, Murakami
and Naito [12]. The monographs of Cushing [8] and MacDonald [15] give excellent
descriptions of distributed delay models and study the local stability, bifurcation,
and periodic solutions of these models. Although global stability of some biologi-
cal models with distributed delays has been studied (see Gopalsamy [9], Kuang [14],
Wolkowicz, Xia, and Ruan [24] and the references cited therein), in general global
results for models involving distributed delays are hard to obtain. The reason prob-
ably is that there are few methods available in investigating the global stability of
infinite delay equations. The most powerful and most important method is perhaps
the Liapunov function(al) method. However, there is no general procedure to follow
in constructing a desirable Liapunov function(al), and completely different forms of
Liapunov function(al)s are used for different kinds of equations. In the present pa-
per, we try to construct the Liapunov-like functionals step by step so that the idea
and technique can be easily followed. We believe that our technique can be used
as well to study global stability of some other types of physical models with infinite
delays.

The paper is organized as follows. In section 2 we describe the model equations.
Local stability is studied in section 3 and global stability is discussed in section 4.
Finally, a brief discussion is carried out in section 5.

2. The model. Let N(t) denote the limiting nutrient concentration and P (t)
denote the plankton concentration at time t. Consider the following integrodifferential
equations model of plankton–nutrient interaction with delayed growth response and
delayed nutrient recycling:
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Ṅ =D(N0 −N)− aU(N)P + bγ

∫ ∞
0

f(s)P (t− s) ds

Ṗ =P
[
− (γ +D) + c

∫ ∞
0

g(s)U(N(t− s)) ds
]
,

(2.1)

with initial value conditions

N(θ) = φ1(θ) ≥ 0, P (θ) = φ2(θ) ≥ 0, θ ∈ (−∞, 0],(2.2)

where φ1(θ), φ2(θ) ∈ BC(−∞, 0], the Banach space of all continuous bounded func-
tions, and all parameters are positive constants. N0 is the input concentration of the
limiting nutrient, a is the maximum uptake rate of nutrient, c (≤ a) is the maximum
specific growth rate of plankton, b (0 < b < 1) is the fraction of the nutrient recycled
by bacterial decomposition of the dead plankton, γ is the death rate of plankton, and
D is the washout rate, so γ +D represents the total loss rate of the plankton.

The function U(N) describes the nutrient uptake rate of plankton. Throughout,
we assume that U(N) is nonnegative, increasing, and vanishes when there is no nu-
trient, and there is a saturation effect when the nutrient is very abundant. That is,
we assume that U(N) is a continuously differentiable function defined on [0,∞) and

U(0) = 0,
dU

dN
> 0, lim

N→∞
U(N) = 1.(2.3)

These general hypotheses are satisfied by the Michaelis–Menten function (see [21])

U(N) =
N

L+N
,

where L > 0 is the half-saturation constant or Michaelis–Menten constant.
The delay kernels f(s) and g(s) are nonnegative bounded functions defined on

[0,∞). f(s) describes the contribution of the plankton population dead in the past
to the nutrient recycled and g(s) describes the delayed growth response of plankton
to nutrient uptake. The presence of the distributed time delays must not affect the
equilibrium values, so we normalize the kernels such that∫ ∞

0
f(s)ds =

∫ ∞
0

g(s)ds = 1.

As in MacDonald [15], we define the average time delays as

Tf =
∫ ∞

0
sf(s)ds, Tg =

∫ ∞
0

sg(s)ds.

Note that E0 = (N0, 0) is always an equilibrium for system (2.1), and if

γ +D < c and U−1
(
γ +D

c

)
< N0,(2.4)

system (2.1) has a positive interior equilibrium E∗ = (N∗, P ∗) with

N∗ = U−1
(
γ +D

c

)
, P ∗ =

D(N0 −N∗)
aU(N∗)− bγ .(2.5)

Throughout, we always assume that (2.4) is satisfied and Tf and Tg are finite.
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Denote by X(t, φ) = (N(t, φ), P (t, φ)) the solution of system (2.1) satisfying the
initial value conditions (2.2), where φ = (φ1, φ2). We say that the positive equilibrium
E∗ = (N∗, P ∗) of (2.1) is (locally) stable if for any ε > 0 there exists δ = δ(ε)
such that |X(t, φ) − E∗| < ε for t ≥ 0 and φ ∈ B(E∗, δ), where B(E∗, δ) is an
open δ-ball of E∗. E∗ is said to be (locally) asymptotically stable if it is (locally)
stable and there is a δo > 0 such that φ ∈ B(E∗, δo) implies X(t, φ) → E∗ as
t→∞. E∗ is said to be globally asymptotically stable if it is (locally) asymptotically
stable, and for any positive solution X(t, φ) of (2.1) and (2.2), we have X(t, φ)→ E∗

as t→∞.
System (2.1) was introduced and studied by Beretta and Takeuchi [2, 4]. It

was shown there that all solutions of system (2.1) are nonnegative if the initial data
chosen from BC(−∞, 0] are nonnegative. They also discussed stability of the positive
equilibrium E∗. However, their stability results about system (2.1) are only local,
and global stability results hold only for systems (similar to (2.1)) with an additional
instantaneous negative feedback or without delayed growth response at all. The object
of this paper is to improve their local stability result and investigate as well the global
stability of the positive equilibrium.

3. Local asymptotic stability. We first study the local stability of the positive
equilibrium E∗ = (N∗, P ∗). Let

x1 = N −N∗, x2 = P − P ∗,

where −N∗ ≤ x1 <∞, −P ∗ ≤ x2 <∞, and define

ξ(x1) = U(N)− U(N∗)(3.1)

so that −U(N∗) ≤ ξ(x1) < 1 − U(N∗) by assumption (2.3). Then the linearized
equations about E∗ are

ẋ1 = −
(
D + aP ∗U ′(N∗)

)
x1 − aU(N∗)x2 + bγ

∫ ∞
0

f(s)x2(t− s)ds,

ẋ2 = cP ∗U ′(N∗)
∫ ∞

0
g(s)x1(t− s)ds.

(3.2)

Note that the asymptotic stability of the trivial equilibrium x1 = x2 = 0 of (3.2)
implies the local asymptotic stability of the positive equilibrium E∗ of (2.1). For
convenience, we define

A = D + aP ∗U ′(N∗), B = acP ∗U(N∗)U ′(N∗), C = bγcP ∗U ′(N∗).(3.3)

Then B > C, and system (3.2) becomes

ẋ1 = −Ax1 −
B

C
bγx2 + bγ

∫ ∞
0

f(s)x2(t− s)ds,

ẋ2 =
C

bγ

∫ ∞
0

g(s)x1(t− s)ds.
(3.4)

Let (x1(t), x2(t)) be an arbitrary solution of system (3.4). We first consider the
function V11(t) = x2

1(t). It follows from (3.4) that
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V̇11(t) = 2x1(t)ẋ1(t)

= −2Ax2
1(t)− 2bγBC x1(t)x2(t) + 2bγx1(t)x2(t)

− 2bγx1(t)
∫ t

0
f(s)

∫ t

t−s
ẋ2(u)duds+ I(t)

= −2Ax2
1(t)− 2bγ

(
B
C − 1

)
x1(t)x2(t) + I(t)

− 2Cx1(t)
∫ t

0
f(s)

∫ t

t−s

∫ ∞
0

g(v)x1(u− v)dvduds

≤ −2Ax2
1(t)− 2bγ

(
B
C − 1

)
x1(t)x2(t) + I(t)

+ C

∫ ∞
0

f(s)
∫ t

t−s

∫ ∞
0

g(v)[x2
1(t) + x2

1(u− v)]dvduds

= −2Ax2
1(t)− 2bγ

(
B
C − 1

)
x1(t)x2(t) + CTfx

2
1(t)

+ C

∫ ∞
0

f(s)
∫ t

t−s

∫ ∞
0

g(v)x2
1(u− v)dvduds+ I(t),(3.5)

where

I(t) = −2bγx1(t)
∫ ∞
t

f(s)
(
x2(t)− x2(t− s)

)
ds.(3.6)

For technical reasons, we assume that
∫∞

0 s2f(s) ds <∞. Then the function

V12(t) = C

∫ ∞
0

f(s)
∫ t

t−s

∫ t

r

∫ ∞
0

g(v)x2
1(u− v)dvdudrds

is well defined, and by (3.5), we have

V̇11(t) + V̇12(t) ≤ −2Ax2
1(t)− 2bγ

(
B
C − 1

)
x1(t)x2(t) + CTfx

2
1(t)

+ C

∫ ∞
0

f(s)
∫ t

t−s

∫ ∞
0

g(v)x2
1(t− v)dvduds+ I(t)

= −2Ax2
1(t)− 2bγ

(
B
C − 1

)
x1(t)x2(t) + CTfx

2
1(t)

+ CTf

∫ ∞
0

g(s)x2
1(t− s) ds+ I(t).(3.7)

We now consider the function

V1(t) = V11(t) + V12(t) + CTf

∫ ∞
0

g(s)
∫ t

t−s
x2

1(u)duds.

It follows from (3.7) that

V̇1(t) ≤ −2
(
A− CTf

)
x2

1(t)− 2bγ
(
B
C − 1

)
x1(t)x2(t) + I(t).(3.8)

On the other hand, by the second equation of (3.4), we have

d

dt

[
x2 +

C

bγ

∫ ∞
0

g(s)
∫ t

t−s
x1(u)duds

]
=
C

bγ
x1(t).
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Assume
∫∞

0 s2g(s)ds <∞ and define

V2(t) =
[
x2 +

C

bγ

∫ ∞
0

∫ t

t−s
g(s)x1(u)du

]2

+
(
C

bγ

)2 ∫ ∞
0

g(s)
∫ t

t−s

∫ t

v

x2
1(u)dudvds.

We find that

V̇2(t) ≤ 2C
bγ
x1(t)x2(t) + 2

(
C

bγ

)2

Tgx
2
1(t).(3.9)

Therefore, for the function

V (t) = V1(t) +
(bγ)2

C

(∫ ∞
t

f(s) ds+
B

C
− 1
)
V2(t),

we have from (3.6), (3.8), and (3.9) that

V̇ (t) ≤− 2
[
A− CTf −

(
C

∫ ∞
t

f(s) ds+B − C
)
Tg

]
x2

1(t)

+ 2bγx1(t)x2(t)
∫ ∞
t

f(s) ds+ I(t)

=− 2
[
A− CTf −

(
C

∫ ∞
t

f(s) ds+B − C
)
Tg

]
x2

1(t)

+ 2bγx1(t)
∫ ∞
t

f(s)x2(t− s) ds

≤− 2
[
A− CTf −

(
C

∫ ∞
t

f(s) ds+B − C
)
Tg

]
x2

1(t)

+ 2bγ|x1(t)|‖φ2‖
∫ ∞
t

f(s) ds

≤− 2
[
A− CTf −

(
C

∫ ∞
t

f(s) ds+B − C
)
Tg

]
x2

1(t)

+ bγx2
1(t)

∫ ∞
t

f(s) ds+ bγ‖φ2‖2
∫ ∞
t

f(s) ds

=− 2
[
A− CTf −

(
B − C

)
Tg
]
x2

1(t)

+
(
2CTg + bγ

)
x2

1(t)
∫ ∞
t

f(s) ds+ bγ‖φ2‖2
∫ ∞
t

f(s) ds,(3.10)

where φ2 ∈ BC(−∞, 0] is the initial data of x2(t). By using (3.10), we now can prove
the following local stability result.

THEOREM 3.1. Assume that
∫∞

0 s2f(s) ds <∞ and
∫∞

0 s2g(s)ds <∞. If

CTf + (B − C)Tg < A,(3.11)

then the positive equilibrium E∗ of system (2.1) is locally asymptotically stable.
Proof. Let (x1(t), x2(t)) be an arbitrary solution of (3.4) with φ2 ∈ BC(−∞, 0]

being the initial data for x2(t). By (3.11), we can find ε > 0 such that

Q(ε) , CTf + (B − C)Tg +
(
CTg +

1
2
bγ

)
ε < A.
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Let T = T (ε) > 0 be such that
∫∞
t
f(s) ds < ε for all t ≥ T. It then follows from

(3.10) that for all t ≥ T,

V̇ (t) ≤ −2
(
A−Q(ε)

)
x2

1(t) + bγ‖φ‖2
∫ ∞
t

f(s) ds.

Integrating V̇ (t) from T to t ≥ T gives

x2
1(t) +

(bγ)2

C2

(
B − C

)
V2(t) + 2

(
A−Q(ε)

) ∫ t

T

x2
1(s) ds

≤ V (t) + 2
(
A−Q(ε)

) ∫ t

T

x2
1(s) ds

≤ V (T ) + bγ‖φ2‖2
∫ t

T

∫ ∞
s

f(u) duds

≤ V (T ) + bγ‖φ2‖2
∫ ∞

0
sf(s) ds

= V (T ) + bγ‖φ2‖2Tf <∞.

Therefore, x1(t) and x2(t) are bounded, and x2
1(t) ∈ L1[0,∞). By the mean value

theorem and the equations in (3.4), x1(t), x2(t), and their derivative functions are
thus uniformly continuous on [0,∞). Applying the Barbǎlat lemma (see Lemmas 1.2.2
and 1.2.3 in Gopalsamy [9]), we conclude that

(
x1(t), ẋ1(t)

)
→ 0 as t→∞. Therefore,

from the first equation of (3.4), we must have

lim
t→∞

[
− B

C
x2(t) +

∫ ∞
0

f(s)x2(t− s) ds
]

= 0.(3.12)

Let α = lim inft→∞ x2(t), β = lim supt→∞ x2(t), and {tm} ↑ ∞ be a sequence such
that x2(tm)→ β as m→∞. Then β <∞, and from (3.12) we obtain

B

C
β = lim

m→∞

∫ ∞
0

f(s)x2(tm − s) ds ≤ β.

Since B > C, this implies that β ≤ 0. A similar argument shows that α ≥ 0. Therefore
α = β = 0, and

(
x1(t), x2(t)

)
→ (0, 0) as t → ∞ for every solution

(
x1(t), x2(t)

)
of

system (3.4).
Note that the characteristic equation of (3.4) is

∆(λ) = λ2 +Aλ+G(λ)
(
B − CF (λ)

)
= 0,

where

F (λ) =
∫ ∞

0
f(s)e−λsds, G(λ) =

∫ ∞
0

g(s)e−λsds.

Since B > C and every solution of (3.4) approaches zero as t→∞, ∆(λ) has no roots
with Re(λ) ≥ 0. Therefore, all roots of ∆(λ) have negative real parts and E∗ is thus
locally asymptotically stable. This completes the proof.

Remark 3.2. Beretta and Takeuchi [2, 4] observed that system (3.4) has the same
characteristic equation as the following system:

ẏ1 = y2,

ẏ2 = −Ay2 −
∫ ∞

0
Bg(s)y1(t− s)ds+ C

∫ ∞
0

∫ ∞
0

g(s− v)f(v)y1(t− s)dvds.
(3.13)
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They then constructed a Liapunov functional for (3.13) and showed that the sufficient
condition for the local stability of E∗ is (Theorem 2 in [4])

CTf + (B + C)Tg < A.

Our condition (3.11) improves the above condition.

4. Global asymptotic stability. To study the global stability of E∗, we con-
sider any positive solution X(t, φ) = (N(t, φ), P (t, φ)) of (2.1) and (2.2). We make
the change of variables

x1 = N −N∗, x2 = ln(P/P ∗),(4.1)

and define ξ(x1) as in (3.1). Then

N = x1 +N∗, P = P ∗ exp(x2),(4.2)

and x1ξ(x1) > 0 for any x1 ∈ [−N∗,+∞); x1ξ(x1) = 0 if and only if x1 = 0. Using
(4.1), we rewrite system (2.1) as follows:

ẋ1(t) =−Dx1(t)− aP ∗ exp(x2(t))ξ(x1(t))− P ∗G
(
exp(x2(t))− 1

)
− bγP ∗

∫ t

0

∫ t

t−s
f(s) exp(x2(u))ẋ2(u)du ds+ J(t),

ẋ2(t) =c
∫ ∞

0
g(s)ξ(x1(t− s))ds,

(4.3)

where G = aU(N∗)− bγ > 0 and

J(t) = −bγP ∗
∫ ∞
t

f(s)
[
exp(x2(t))− exp(x2(t− s))

]
ds.(4.4)

Let (x1(t), x2(t)) be an arbitrary solution of system (4.3). We consider the func-
tion

V11(t) =
∫ x1(t)

0
ξ(s) ds.

Then upon using (4.3), we obtain

V̇11(t) = −Dx1(t)ξ(x1(t))− aP (t)ξ2(x1(t))− P ∗G
(
exp(x2(t))− 1

)
ξ(x1(t))

− bγP ∗ξ(x1(t))
∫ t

0

∫ t

t−s
f(s) exp(x2(u))ẋ2(u)duds+ ξ(x1(t))J(t)

= −Dx1(t)ξ(x1(t))− aP (t)ξ2(x1(t))

− P ∗G
(
exp(x2(t))− 1

)
ξ(x1(t)) + ξ(x1(t))J(t)

− bcγP ∗ξ(x1(t))
∫ t

0

∫ t

t−s
f(s) exp(x2(u))

∫ ∞
0

g(v)ξ(x1(u− v))dvduds

≤ −Dx1(t)ξ(x1(t))− aP (t)ξ2(x1(t))− P ∗G
(
exp(x2(t))− 1

)
ξ(x1(t))

+
1
2
bcγ

(∫ ∞
0

∫ t

t−s
f(s)P (u)duds

)
ξ2(x1(t)) + ξ(x1(t))J(t)

+
1
2
bcγ

∫ ∞
0

∫ t

t−s
f(s)P (u)

∫ ∞
0

g(v)ξ2(x1(u− v))dvduds.(4.5)
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Let us now consider the following two functions:

V12(t) =
1
2
bcγ

∫ ∞
0

f(s)
∫ t

t−s

∫ t

w

P (u)
∫ ∞

0
g(v)ξ2(x1(u− v))dvdudwds,

V13(t) =
1
2
bcγTf

∫ ∞
0

g(s)
∫ t

t−s
P (u+ s)ξ2(x1(u))duds.

We now assume that
∫∞

0 s2f(s) ds < ∞ so that V12 is well defined. To see the
existence of V13, we note from (2.1) that

Ṗ (t) ≤ P (t)[c− (γ +D)] = kP (t)(4.6)

with k = c− (γ +D) > 0. This implies

P (s) ≤ P (t)ek(s−t) for s ≥ t ≥ 0.(4.7)

Since |ξ(x)| ≤ 1, using (4.7), we have from the definition of V13 that

V13(t) ≤ 1
2
bcγTfP (t)

∫ ∞
0

g(s)
∫ t

t−s
ek(u+s−t)duds

=
1
2k
bcγTfP (t)

∫ ∞
0

g(s)[eks − 1]ds.(4.8)

It follows that if
∫∞

0 g(s)[eks − 1] ds < ∞, then V13(t) exists. Thus, for V1(t) =
V11(t) + V12(t) + V13(t), we obtain from (4.5) that

V̇1(t) ≤ −Dx1(t)ξ(x1(t))− aP (t)ξ2(x1(t))− P ∗G
(
exp(x2(t))− 1

)
ξ(x1(t))

+
1
2
bcγξ2(x1(t))

∫ ∞
0

∫ t

t−s
f(s)P (u)duds

+
1
2
bcγTfξ

2(x1(t))
∫ ∞

0
g(s)P (t+ s) ds+ ξ(x1(t))J(t).(4.9)

Notice that from the second equation of system (2.1), we have Ṗ (t) ≥ −(γ +D)P (t)
for all t > 0. Thus

P (s) ≤ P (t) exp
[
(γ +D)(t− s)

]
for t ≥ s ≥ 0.(4.10)

This implies that∫ ∞
0

∫ t

t−s
f(s)P (u) duds =

∫ t

0

∫ t

t−s
f(s)P (u) duds+

∫ ∞
t

∫ t

0
f(s)P (u) duds+K(t)

≤ P (t)
∫ t

0

∫ t

t−s
f(s) exp

[
(γ +D)(t− u)

]
duds

+ P (t)
∫ ∞
t

∫ t

0
f(s) exp

[
(γ +D)(t− u)

]
duds+K(t)

≤ P (t)
γ +D

∫ ∞
0

f(s)
(
exp[(γ +D)s]− 1

)
ds+K(t)

= T ∗f P (t) +K(t),(4.11)
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where

K(t) =
∫ ∞
t

f(s)
∫ 0

t−s
P (u) duds,(4.12)

T ∗f =
1

γ +D

∫ ∞
0

f(s)
(
exp
[
(γ +D)s

]
− 1
)
ds.(4.13)

Similarly, using (4.10), we have∫ ∞
0

g(s)P (t+ s)ds ≤ P (t)
∫ ∞

0
g(s) exp

[
ks
]
ds =

(
1 + kT ∗g

)
P (t),(4.14)

where

T ∗g =
1
k

∫ ∞
0

g(s)[eks − 1]ds <∞.(4.15)

Then (4.9), together with (4.11) and (4.14), implies that

V̇1(t) ≤ −Dx1(t)ξ(x1(t))− aP (t)ξ2(x1(t))

− P ∗G
(
exp(x2(t))− 1

)
ξ(x1(t))

+
1
2
bcγ
(
T ∗f + Tf + kTfT

∗
g

)
P (t)ξ2(x1(t))

+ ξ(x1(t))J(t) +
1
2
bcγξ2(x1(t))K(t).(4.16)

On the other hand, from the second equation of system (4.3), we have

d

dt

[
x2(t) + c

∫ ∞
0

g(s)
∫ t

t−s
ξ(x1(u))duds

]
= cξ(x1(t)).

Let

y(t) = x2(t) + c

∫ ∞
0

g(s)
∫ t

t−s
ξ(x1(u))duds.

We define

V21(t) =
∫ y(t)

0

[
exp(s)− 1

]
ds.

Then it follows that

V̇21(t) = cξ(x1(t))
{

exp
[
x2(t) + c

∫ ∞
0

g(s)
∫ t

t−s
ξ(x1(u))duds

]
− 1
}

= cξ(x1(t))
[

exp(x2(t))− 1
]

+ cξ(x1(t))
{

exp
[
x2(t) + c

∫ ∞
0

g(s)
∫ t

t−s
ξ(x1(u))duds

]
− exp(x2(t))

}
= cξ(x1(t))

[
exp(x2(t))− 1

]
+ c exp(x2(t))ξ(x1(t))

{
exp

[
c

∫ ∞
0

g(s)
∫ t

t−s
ξ(x1(u))duds

]
− 1
}

= cξ(x1(t))
[

exp(x2(t))− 1
]

+ c2 exp(x2(t))ξ(x1(t)) exp(α(t))
∫ ∞

0
g(s)

∫ t

t−s
ξ(x1(u))duds
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for some function α(t) between 0 and c
∫∞

0 g(s)
∫ t
t−s ξ(x1(u))duds. Since |ξ(x1)| ≤ 1,

we have

|α(t)| ≤ c
∫ ∞

0
g(s)

∫ t

t−s
|ξ(x1(u))|duds ≤ cTg.

Therefore,

V̇21(t) ≤ cξ(x1(t))
[

exp(x2(t))− 1
]

+
1
2
c2 exp(x2(t)) exp(α(t))

∫ ∞
0

∫ t

t−s
g(s)

[
ξ2(x1(t)) + ξ2(x1(u))

]
duds

= cξ(x1(t))
[

exp(x2(t))− 1
]

+
1
2
c2 exp(x2(t)) exp(α(t))

[
Tgξ

2(x1(t)) +
∫ ∞

0

∫ t

t−s
g(s)ξ2(x1(u))duds

]
≤ cξ(x1(t))

[
exp(x2(t))− 1

]
+

1
2
c2Tg exp(x2(t)) exp(cTg)ξ2(x1(t))

+
1
2
c2 exp(x2(t)) exp(cTg)

∫ ∞
0

∫ t

t−s
g(s)ξ2(x1(u))duds.(4.17)

We now define

V22(t) =
1
2
c2 exp(cTg)

∫ ∞
0

g(s)
∫ t

t−s
exp(x2(v + s))

∫ t

v

ξ2(x1(u)dudvds.

Then, by using (4.7) and∫ ∞
0

g(s)
∫ t

t−s
P (v + s)

∫ t

v

du dv ds

≤
∫ ∞

0
sg(s)

∫ t

t−s
P (v + s) dv ds

≤ P (t)
∫ ∞

0
sg(s)

∫ t

t−s
ek(v+s−t) dv ds =

1
k
P (t)

∫ ∞
0

sg(s)[eks − 1]ds,

we can see that, under the assumption that
∫∞

0 sg(s)[eks − 1]ds < ∞, V22(t) exists.
Let V2(t) = V21(t) + V22(t); we have from (4.17) that

V̇2(t) ≤ cξ(x1(t))
[

exp(x2(t))− 1
]

+
1
2
c2Tg exp(cTg) exp(x2(t))ξ2(x1(t))

+
1
2
c2 exp(cTg)ξ2(x1(t))

∫ ∞
0

g(s)
∫ t

t−s
exp(x2(u+ s))duds.

Note that from (4.7) we have∫ t

t−s
exp(x2(u+ s))du ≤ 1

k
[eks − 1] exp(x2(t)).
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Therefore,

V̇2(t) ≤ cξ(x1(t))
[

exp(x2(t))− 1
]

+
1
2
c2 exp(cTg)

(
Tg + T ∗g

)
exp(x2(t))ξ2(x1(t)).(4.18)

We finally define the following function:

V (t) = V1(t) +
P ∗

c

(
bγ

∫ ∞
t

f(s) ds+G

)
V2(t).

It then follows from (4.16) and (4.18) that

V̇ (t) ≤ −Dx1(t)ξ(x1(t))− 1
2
(
2a− L

)
P (t)ξ2(x1(t))

+
1
2
bcγP ∗ exp(cTg)

(
Tg + T ∗g

)
exp(x2(t))ξ2(x1(t))

∫ ∞
t

f(s) ds

+ bγP ∗ξ(x1(t))
∫ ∞
t

f(s)
[
exp(x2(t− s))− 1

]
ds

+
1
2
bcγξ2(x1(t))K(t),(4.19)

where

L = bcγ
(
T ∗f + Tf + kTfT

∗
g

)
+ cG exp(cTg)

(
Tg + T ∗g

)
.

Notice that from (4.2), P (u) = P ∗ exp(φ2(u)) for u ≤ 0 and exp(x2(t − s)) =
exp(φ2(t − s)) for t ≤ s, where φ2 ∈ BC(−∞, 0] is the initial data for x2(t). By
(4.12), we have

|K(t)| ≤ P ∗ exp
(
‖φ2‖

) ∫ ∞
t

sf(s) ds,∣∣∣∣∫ ∞
t

f(s)
[
exp(x2(t− s))− 1

]
ds

∣∣∣∣ ≤ [exp
(
‖φ2‖

)
− 1
] ∫ ∞

t

f(s) ds.

Since |ξ(x1)| ≤ 1, using the above inequalities, we obtain from (4.19) that

V̇ (t) ≤−Dx1(t)ξ(x1(t))− 1
2
(
2a− L

)
P (t)ξ2(x1(t))

+
1
2
bcγ exp(cTg)

(
Tg + T ∗g

)
P (t)ξ2(x1(t))

∫ ∞
t

f(s) ds

+ bγP ∗
[
exp
(
‖φ2‖

)
− 1
] ∫ ∞

t

f(s) ds

+
1
2
bcγP ∗ exp

(
‖φ2‖

) ∫ ∞
t

sf(s) ds.(4.20)

The above analysis now leads to the following global stability result.
THEOREM 4.1. Let G = aU(N∗)− bγ and T ∗f and T ∗g be the constants defined in

(4.13) and (4.15), respectively. Assume that
∫∞

0 sg(s)[eks − 1]ds <∞ and

L , bcγ
(
T ∗f + Tf + kTfT

∗
g

)
+ cG exp(cTg)

(
Tg + T ∗g

)
< 2a(4.21)
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with k = c− (γ +D) > 0. Then the positive equilibrium E∗ is globally asymptotically
stable.

Proof. Let (x1(t), x2(t)) be an arbitrary solution of system (4.3) with φ2 ∈
BC(−∞, 0] being the initial data of x2(t). We choose ε > 0 such that

L(ε) , L+
1
2
bcγ exp(cTg)

(
Tg + T ∗g

)
ε < 2a

and find T = T (ε) > 1 such that
∫∞
t
f(s) ds < ε for all t ≥ T. Notice that L < 2a

and
∫∞

0 s2g(s)[eks − 1]ds <∞, thus V (t) is well defined and (4.20) holds. Therefore,
for all t ≥ T, we have

V̇ (t) ≤−Dx1(t)ξ(x1(t))− 1
2
(
2a− L(ε)

)
P (t)ξ2(x1(t))

+
1
2
bγP ∗

[
(c+ 2) exp

(
‖φ1‖

)
− 2
] ∫ ∞

t

sf(s) ds

≤−Dx1(t)ξ(x1(t)) +M

∫ ∞
t

sf(s) ds,

where M = 1
2bγP

∗[(c+ 2) exp
(
‖φ1‖

)
− 2
]
> 0. Integrating V̇ (t) from T to t ≥ T now

gives

V11(t) +
P ∗G

C
V2(t) +D

∫ t

T

x1(s)ξ(x1(s)) ds

≤ V (t) +D

∫ t

T

x1(s)ξ(x1(s)) ds

≤ V (T ) +M

∫ t

T

∫ ∞
s

uf(u) duds

≤ V (T ) +M

∫ ∞
0

s2f(s) ds

≤ V (T ) + 2(γ +D)MT ∗f <∞.

This implies that x1(t) and x2(t) are bounded, and x1(t)ξ(x1(t)) ∈ L1[0,∞). Since ξ is
uniformly continuous on [0,∞), it follows from the equations in system (4.3) and the
boundedness of x1(t) and x2(t) that x1(t)ξ(x1(t)) is also uniformly continuous. Thus,
by the Barbǎlat lemma (see Lemma 1.2.2 in [9]), x1(t)ξ(x1(t)) → 0 as t → ∞. This
leads to limt→∞ x1(t) = 0, so limt→∞N(t) = N∗ by (4.2). Note further that ẋ1(t) is
also uniformly continuous on [0,∞) by the equations in (4.3). Applying the Barbǎlat
lemma (see Lemma 1.2.3 in [9]) once again gives limt→∞ ẋ1(t) = limt→∞ Ṅ(t) = 0.
Now taking the limit (t→∞) on both sides of (2.1), we obtain

lim
t→∞

(
aU(N∗)P (t)− bγ

∫ ∞
0

f(s)P (t− s) ds
)

= D
(
N0 −N∗

)
.(4.22)

Let α = lim inft→∞ P (t), β = lim supt→∞ P (t), and {tm} ↑ ∞ be a sequence such
that limm→∞ P (tm) = β. Since β <∞, it follows from (4.22) that

aU(N∗)β = D
(
N0 −N∗

)
+ lim
m→∞

bγ

∫ ∞
0

f(s)P (tm − s) ds

≤ D
(
N0 −N∗

)
+ bγβ.
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Thus,

β ≤
D
(
N0 −N∗

)
aU(N∗)− bγ = P ∗.

Similarly, we can show that α ≥ P ∗. Therefore, limt→∞ P (t) = P ∗. This proves the
global attractivity of E∗.

On the other hand, we claim that L < 2a implies (3.11). In fact,

CTf + (B − C)Tg = cP ∗U ′(N∗)[bγTf +GTg](4.23)

with G = aU(N∗) − bγ > 0. It is noticed that Tf ≤ T ∗f and Tg ≤ T ∗g . Then, from
L < 2a, we have

2a > bcγ(T ∗f + Tf ) + cG(Tg + T ∗g ) ≥ 2c[bγTf +GTg]

and hence

CTf + (B − C)Tg ≤ P ∗U ′(N∗)a < A,

which shows that (3.11) holds. By Theorem 3.1, E∗ is locally asymptotically stable.
This, together with global attractivity, implies that E∗ is globally asymptotically
stable.

5. Discussion. In this paper, we have considered a chemostat-type plankton
model with nutrient recycling. We assumed that there are a (distributed) delay in the
growth response of plankton to nutrient uptake and a (distributed) delay in nutrient
recycling. We have obtained some sufficient conditions for both local and global stabil-
ity of the positive equilibrium by constructing appropriate Liapunov-like functionals.
It is known that the delay in the growth response of the populations to nutrient up-
take can cause oscillations in population density (see Caperon [7] and Ruan [19]); our
results indicate that one can still have global stability of the positive equilibrium if
the delays are sufficiently small, and explicit estimates (see (3.11), (4.18), and (4.19))
on the size of these delays for local and global stability can also be obtained.

We should point out that model (2.1) and other related models have been studied
by Beretta and Takeuchi [2–4], He and Ruan [11], and Kolmanovskii, Torelli, and
Vermiglio [13]. For local stability, following the arguments of Kolmanovskii, Torelli,
and Vermiglio [13], Beretta and Takeuchi [2, 4] chose a Liapunov functional for the
equivalent system (3.13) and obtained some sufficient conditions. Our local stability
conditions improve their conditions. For global stability, Beretta and Takeuchi [2, 4]
considered the special cases of model (2.1) when the second delay does not appear, that
is, the system (2.1) with Dirac delta function g(s) = δ(s). In [2], they assumed that
the interaction between nutrient and biotic species is described by (no-delayed) Lotka–
Volterra coupling (i.e., U(N) = N). In [4], they adopted a (no-delayed) Michaelis–
Menten law (i.e., U(N) = N/(L+K)), which is better than the former to describe the
interaction from the biological point of view. With this choice, they proved (Theorem
7 in [4]) that the positive equilibrium E∗ is attractive if

γTf < min
{

1
b
,

2
b

√
aDN∗

c2U(N∗)K

}
≤ 1
b
,(5.1)

where K = max{β,No/(1− bγTf )}, β = (1 + bγTf )H, and H is the bound for initial
functions. Hence, the attractivity of N∗ is indeed for all the solutions whose initial
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functions are bounded by H. Obviously, γTf → 0 as H →∞. If we consider Beretta
and Takeuchi’s model in [4] as a special case of our system (2.1), then we have Tg =
T ∗g = 0 and our global asymptotic stability condition in Theorem 4.1 becomes

bcγ[T ∗f + Tf ] < 2a.(5.2)

Condition (5.2) was also obtained in He and Ruan [11, Theorem 2.1] for the system
(2.1) with g(s) = δ(s) and the general growth response U(N). Rewrite (5.2) as

γTf +
1
2
γ[T ∗f − Tf ] <

a

bc
.(5.3)

Note that c ≤ a, so a/bc ≥ 1/b. Compared with (5.1), we can see that (5.3) is more
restrictive on the delay kernel function f but less restrictive on the initial functions.
Since condition (5.1) depends on the bound of the initial values, basically it is not
a global stability condition. Thus, our condition (5.3) complements Beretta and
Takeuchi’s results in [4] by providing really global stability results with a little more
restriction on the delay. Furthermore, our global stability results hold for the general
case when both distributed delays are present and the growth response function is a
general function satisfying (2.3).
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