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Abstract. In this paper, we consider chemostat-type plankton models in
which plankton feeds on a limiting nutrient and the nutrient is supplied at
a constant rate and is partially recycled after the death of plankton by
bacterial decomposition. We use a distributed delay to describe nutrient
recycling and a discrete delay to model the planktonic growth response to
nutrient uptake. When one or both delays occur, by constructing Liapunov
functionals, we obtain some sufficient conditions for the global attractivity of
the positive equilibrium, which can be regarded as estimates of the delays for
persistence of global attractivity.
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1 Introduction

The method of continuous culture, known as the chemostat, provides an
experimental system for researchers to simulate the growth of planktonic
communities of microscopic algae and to investigate the consequences of the
highly variable supply of their essential nutrient. It is the most simple idealiz-
ation of a biological system where the parameters are measurable, the experi-
ments are reasonable, and the mathematics is tractable. Tilman [32] provided
theoretical, experimental and correlational information and Smith and Walt-
man [30] provided interesting mathematics on the chemostat.

As in Monod [20], the classical chemostat equations modeling plankton
population dynamics originally related the growth rate of the cells to the
nutrient concentration in the medium. It is assumed that the nutrient uptake
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rate is proportional to the rate of reproduction. The constant of propor-
tionality which converts units of nutrient to units of organisms is called the
yield constant. Because of the assumed constant value of the yield, the classical
Monod model is refereed to as the constant-yield model by Grover [17].

Droop [10] observed that under nonequilibrium correlations the nutrient
concentration in the chemostat remained relatively high at the low dilution
rates, a phenomenon that cannot be explained by the Monod model. This led
him to introduce the notion of an internal nutrient pool and to propose that
nutrient uptake is a function of the ambient nutrient concentration while
growth rate varies with the internal nutrient level of the cells, called the cell
quota, which may be viewed as the average amount of stored nutrient in each
cell of the particular organism in the chemostat. The cell quota increases due
to nutrient uptake and decreases due to cell division, which acts to spread the
total stored nutrient over more cells. Grover [15, 17] refereed to the Droop
model as the variable-yield or the variable-internal-store model.

Cunningham and Maas [7] observed damped oscillations in cell numbers
when the dilution rate was increased in their experiments which involved the
growth of a Chlamydomonas reinhardii population on a nitrogen substrate. It
was hoped that the transient behavior of Droop model would explain the
phenomenon. However, Cunningham and Nisbet [8] noted that the variable-
yield Droop model could not reproduce these oscillations without the intro-
duction of time delays into the equations. In fact, in the Droop model only the
internal nutrient is immediately available for cell growth and nutrient storage
by the cells introduces inevitably time delays between the environmental
nutrient pool and population growth.

Though the nonequilibrium behavior of the constant-yield Monod model
and the variable-yield Droop model differs considerably (see Grover [16]), at
equilibria, the two models are equivalent (see Grover [17]). Moreover, Morel
[21] found that the Droop model can be reduced to the Monod model by
simple variable substitutions. Probably this is one of the reasons that many
theoretical biologists think that the predictions of the variable-yield Droop
model are identical to those of the simpler constant-yield Monod model.
Recently, Smith and Waltman [29] confirmed mathematically that the Droop
model makes the same predictions concerning the growth of a single popula-
tion as the Monod model. Based on this fact, we shall only consider the
simpler Monod model in this paper.

An important difference between a chemostat situation and a lake situ-
ation is that lakes generally have a residence time of nutrient and sediments
measured in years (see Powell and Richerson [24]). This implies that in
models of natural systems the washout rate is very small and the regeneration
of nutrient due to bacterial decomposition of the dead biomass must be
considered (see Svirezhev and Logofet [31]).

The effect of nutrient recycling on stability of closed ecosystems has been
studied by Nisbet and Gurney [22], Nisbet, McKinstry and Gurney [23], and
Ulanowicz [33], etc. Powell and Richerson [24] and Nisbet and Gurney [22]
regarded nutrient recycling as an instantaneous term, thus neglecting the time
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required to regenerate nutrient from dead biomass by bacterial decomposi-
tion. However, a delay in nutrient recycling is always present in a natural
system and it increases when temperature decreases (see Whittaker [34]).
Based on this observation, Beretta, Bischi and Solimano [1] proposed an
open system with a single species feeding on a limit nutrient which is partially
recycled after the death of the organisms. They used a distributed delay to
model nutrient recycling and studied its effect on the stability of the positive
equilibrium. Bischi [5] considered the same model and discussed the effect of
the delay on resilience.

Following Caperon [6] and Cunningham and Nisbet [8], in a previous
paper [26] one of us introduced a discrete delay in the growth response of the
species to nutrient uptake in the model of Beretta, Bischi and Solimano [1].
By using the discrete delay as a bifurcation parameter, it was shown that the
model undergoes a Hopf bifurcation. It was also found that both the distrib-
uted delay and the discrete delay do not change the property of persistence.
Recently, Beretta and Takeuchi [2] used another distributed delay to describe
the delayed growth response, namely, they considered a system of two re-
tarded functional differential equations with two distributed delays. By con-
structing Liapunov functionals, they investigated the global asymptotic stabil-
ity of the positive equilibrium for the case with a Lotka-Volterra coupling
between nutrient and the biotic species. In two other papers, they extended the
results to the cases that the biotic species has self-regulation which accounts
for a finite carrying capacity of the environment (Beretta and Takeuchi [3])
and that the growth response is described by the Michaelis-Menten law
(Beretta and Takeuchi [4]).

In this paper, we consider the model proposed in [26], a system of two
retarded functional differential equations with a distributed delay and a dis-
crete delay, and its special cases. By using Liapunov functional methods, we
obtain some sufficient conditions for the global asymptotic stability of the
positive equilibrium. We show that global stability of the positive equilibrium
persists if the delays are sufficiently small and we give explicit estimates of the
delays. The paper is organized as follows. In Sect. 2, we first consider the
model with continuously delayed nutrient recycling. In Sect. 3, we suppose
that the delay describing nutrient recycling is a discrete (constant or variable)
delay. The general case with a distributed delay and a discrete delay is
considered in Sect. 4. Finally, a discussion is carried out in Sect. 5.

2 Continuously delayed nutrient recycling

Consider the following integrodifferential model of plankton-nutrient inter-
action with a distributed time delay describing nutrient recycling

NQ "D(N0!N)!aº(N)P#bc P
=

0

f (s)P (t!s)ds,

PQ "P[!c#D)#cº(N )],
(2.1)
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where N is the limiting nutrient concentration and P is a measure of plankton
concentration at any time.

In system (2.1), all parameters are positive constants. N0 is the input
concentration of the limiting nutrient, a is the maximum uptake rate of
nutrient, c (6a) is the maximum specific growth rate of plankton,
b (0(b(1) is the fraction of the nutrient recycled by bacterial decomposi-
tion of the dead plankton, c is the death rate of plankton and D is the washout
rate, so c#D represents the total loss rate of the plankton.

The function º (N) describes the nutrient uptake rate of plankton. We
assume the following general hypotheses on º(N):
(i) º (N) is non-negative, increasing and vanishes when there is no nutrient;
(ii) there is a saturation effect when the nutrient is very abundant.
That is, º(N ) is a differentiable function defined on [0, R) and

º(0)"0,
dº

dN
'0, lim

N?=

º(N)"1.

These hypotheses are satisfied by the Michaelis-Menten function
(Caperon [6])

º(N)"
N

k#N
,

where k'0 is the half-saturation constant or Michaelis-Menten constant.
The delay-kernel f (s) is a non-negative bounded function defined on

[0, R) and describes the contribution of the plankton population dead in the
past to the nutrient recycled at time t. The presence of the distributed time
delay must not affect the equilibrium values, so we normalize the kernel such
that

P
=

0

f (s) ds"1. (2.2)

According to MacDonald [19], we define the average time lag as

¹
f
"P

=

0

sf (s) ds. (2.3)

In particular, the exponential kernel f (s)"ae~as, a'0, is called a weak
kernel, it is frequently used in biological modeling (see Cushing [9] and
Cunningham and Nisbet [8]). For the weak kernel, the average time lag is
¹

f
"1/a.
Note that E

0
"(N0, 0) is always an equilibrium for system (2.1), and if

c#D(c and º~1A
c#D

c B(N0, (2.4)

system (2.1) has a positive interior equilibrium E*"(N*, P*) with

N*"º~1A
c#D

c B, P*"
D(N0!N*)

aº(N*)!bc
. (2.5)
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Model (2.1) was proposed by Beretta, Bischi and Solimano [1]. They
studied the local stability of the positive equilibrium. Bischi [5] considered the
effect of delay on resilience, that is, the rate at which a system returns to
a stable steady state following a perturbation. His results show that when the
system is characterized by oscillating behavior, an increase of the delay can
have a stabilizing effect. The results in [26] indicate that if the kernel f (s) is
a weak kernel, then the system (2.1) is uniformly persistent, a term used to
describe long term survival of the interacting species. Global stability of some
models related to system (2.1) has been studied by Beretta and Takeuchi
[2—4]. In Sect. 4 of [2], they discussed the global stability of system (1.1) with
a Lotka-Volterra coupling between nutrient and the plankton; in Sect. 4 of
[3], they considered the global stability of system (1.1) with an additional
negative term !dP in the second equation, i.e., they supposed that the
planktonic species has self-regulation, but their results cannot be applied to
the case when d"0; in Sect. 4 of [4], they studied the global stability of
system (1.1) with the response function being of the Michaelis-Menten form.
Also, they derived global stability conditions for solutions with initial condi-
tions in Q

H
"M/ : E/E(HN and depending on K, the upper bound of the

solutions. In the following result, we do not require such restrictions on initial
conditions and the response function.

Theorem 2.1. Assume that
(a) the inequalities in (2.4) hold;
(b) ¹

f
(R, ¹*

f
(R, and

c [¹*
f
#¹

f
](

2a

bc
, (2.6)

where

¹
f
"P

=

0

sf (s) ds, ¹*
f
"

1

c#D P
=

0

f (s) [e(c`D)s!1] ds . (2.7)

¹hen the positive equilibrium E* of system (2.1) is globally asymptotically stable.

Proof. We first prove the global attractivity of E*. Define

x
1
"N!N*, x

2
"ln(P/P*) (2.8)

and
m (x

1
)"º(x

1
#N*)!º(N*) , (2.9)

such that !N*(x
1
(#R, !R(x

2
(#R, !º (N*)6m(x

1
)(

1!º (N*). Then
N"x

1
#N*, P"P*ex

2

and x
1
m (x

1
)'0 for any x

1
3(!R, #R) and x

1
m (x

1
)"0 if and only if

x
1
"0. By the variable change (2.8), system (2.1) can be written as follows:

xR
1
(t)"!Dx

1
(t)!aP*ex

2
(t)m(x

1
(t) )!aP*º(N*) [ex

2
(t)
!1]

#bcP* P
=

0

f (s[ex
2
(t!s)

!1] ds, (2.10)

xR
2
(t)"cm(x

1
(t) ,
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in which now the positive equilibrium has been transformed to the trivial
equilibrium x

1
"x

2
"0.

Using the second equation in (2.10) and (2.2), we can rewrite the first
equation in (2.10) in the following form

xR
1
(t)"!Dx

1
(t)!aP*ex

2
(t)m(x

1
(t))!aP*º (N*) [ex

2
(t)
!1]

#bcP*AC P
t

0

f (s) dsD [ex
2
(t)
!1] ds#P

=

t

f (s) [ex
2
(t!s)

!1] ds

!P
t

0

f (s) P
t

t~s

ex
2
(u) xR

2
(u) dudsB

"!Dx
1
(t)!aP*ex

2
(t)m (x

1
(t) )!P* Caº (N*)!bc#bc P

=

t

f (s) dsD
][ex

2
(t)
!1]#

1

2
bcP* P

=

t

f (s) [ex
2
(t!s)

!1] ds

!bccP* P
t

0

f (s) P
t

t~s

ex
2
(u)m (x

1
(u)) du ds . (2.11)

Now define

»
1
(x

1
)"P

x
1

0

m (u) du . (2.12)

Then »
1
(x

1
)70 and, along the solutions of (2.11),

»Q
1
(t)"m (x

1
(t) )xR

1
(t)

"!Dx
1
(t)m (x

1
(t) )!aP*ex

2
(t)m2 (x

1
(t))

!P*Caº (N*)!bc#bc P
=

t

f (s) dsD m(x
1
(t)) [ex

2
(t)
!1]

#bcP*m (x
1
(t) ) P

=

t

f (s) [ex
2
(t!s)

!1] ds

!

1

2
bccP*m (x

1
(t)) P

t

0

f (s) P
t

t~s

ex
2
(u)m (x

1
(u)) du ds

6!Dx
1
(t)m (x

1
(t) )!aP*ex

2
(t)m2 (x

1
(t) )

!P* Caº(N*)!bc#bc P
=

t

f (s) dsD m (x
1
(t) ) [ex

2
(t)
!1]

#bcP*m (x
1
(t) ) P

=

t

f (s) [ex
2
(t!s)

!1] ds

#

1

2
bccP* CA P

=

0

f (s) P
t

t~s

ex
2
(u) du dsB m2(x

1
(t))

#P
=

0

f (s) P
t

t~s

ex
2
(u)m2(x

1
(u)) du dsD . (2.13)
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Let x (t)"(x
1
(t), x

2
(t) ) and

»
2
(x(t) )"

1

2
bccP* P

=

0

f (s) P
t

t~s
P

t

v

ex
2
(u)m2(x

1
(u)) du dv ds . (2.14)

From (2.13) and (2.14), we have

d

dt
(»

1
#»

2
) (x (t))6!Dx

1
(t)m(x

1
(t) )!aP*ex

2
(t)m2 (x

1
(t) )

!P*Caº(N*)!bc#bc P
=

t

f (s)dsDm(x
1
(t))[ex

2
(t)
!1]

#bcP*m (x
1
(t) ) P

=

t

f (s) [ex
2
(t!s)

!1] ds

#

1

2
bccP*CA P

=

0

f (s) P
t

t~s

ex
2
(u) du dsB

#¹
f

ex
2
(t)D m2(x

1
(t) ) . (2.15)

On the other hand, from the second equation of (2.1) one can see
that

PQ (t)7!(c#D)P(t) ,
which implies that

ln
P(t)

P (s)
7!(c#D) (t!s) for t7s'0 .

Thus, we have

P (s)6e(c`D) (t~s)P(t) for t7s'0 (2.16)

and

P* P
=

0

f (s) P
t

t~s

ex
2
(u) du ds"P

=

0

f (s) P
t

t~s

P(u) du ds

6A P
=

0

f (s) P
t

t~s

e(c`D) (t~u) du dsBP (t)

"

1

c#D C P
=

0

f (s) (e(c`D)s!1) dsDP(t)

"¹*
f
P (t). (2.17)
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By (2.15) and (2.17), we obtain

d

dt
(»

1
#»

2
)(x (t))6!Dx

1
(t)m(x

1
(t))!aP*ex

2
(t)m2 (x

1
(t) )

!P*Caº(N*)!bc#bc P
=

t

f (s) dsD m (x
1
(t) ) [ex

2
(t)
!1]

#bcP*m(x
1
(t) ) P

=

t

f (s) [ex
2
(t!s)

!1] ds

#1
2
bcc[¹*

f
#¹

f
]P (t)m2 (x

1
(t)) . (2.18)

Let

»
3
(x

2
) (t)"

P*

c Caº(N*)!bc#bc P
=

t

f (s) dsD P
x
2
(t)

0

[es!1] ds (2.19)

and
»(t)"»

1
(x

1
) (t)#»

2
(x) (t)#»

3
(x

2
)(t) . (2.20)

Then »(t)70. From (2.20), (2.18) and (2.19),

»Q (t)6!Dx
1
(t)m(x

1
(t))#bcm(x

1
(t) ) P

=

t

f (s) [P(t!s)!P*] ds

#Pm2(x
1
(t) ) [!a#1

2
bcc (¹*

f
#¹

f
)] . (2.21)

Since Dm (x
1
) D61, we have

»Q (t)6!Dx
1
(t)m(x

1
(t) )![a!1

2
bcc(¹*

f
#¹

f
)]Pm2(x

1
(t) )

#bcC sup
!R(s60

P (s)#P*D P
=

t

f (s) ds . (2.22)

Notice that :t
0

:=
t

f (s) ds du6:=
0

sf (s) ds"¹
f
(R. Integrating (2.22) from

0 to t'0 and using the assumption (b), we obtain

»(t)#D P
t

0

x
1
(s)m (x

1
(s) ) ds6»(0)#bcC sup

!R(s60

P (s)#P*D¹f
. (2.23)

This, together with the definition of the nonnegative function », implies that
x(t)"(x

1
(t), x

2
(t)) is bounded and x

1
(t)m (x

1
(t))3¸

1
[0, R). Note that m is

uniformly continuous on [0, R). It then follows from the system (2.10) that
x(t) and hence xR (t) are uniformly continuous. Using Barbalat’s lemmas (see
Lemmas 1.2.2 and 1.2.3 in Gopalsamy [13]), lim

t?=
x
1
(t)m (x

1
(t))"0, which

leads to lim
t?=

x
1
(t)"0, and lim

t?=
xR
1
(t)"0. That is, lim

t?=
(N(t),

NQ (t) )"(N*, 0). Now taking the limit tPR on both sides of the first equa-
tion in (2.1), we obtain

lim
t?=

Caº(N*)P (t)!bc P
=

0

f (s)P (t!s) dsD"D(N0!N*) . (2.24)
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Since P (t) is bounded eventually, lim sup
t?=

P (t)"p
1
(R. Hence, there

exists a sequence Mt
n
N satisfying t

n
7t

m
for n7m and t

n
PR as nPR such

that lim
n?=

P (t
n
)"p

1
. Thus, from (2.24)

aº(N*)p
1
6D(N0!N*)#bcp

1
,

that is, p
1
6P*. Similarly, one can show that lim inf

t?=
P (t)"p

2
7P* .

Therefore, lim
t?=

P (t)"P*. This proves the global attractivity of E*.
Following Theorem 5 in [4], we know that E* is locally asymptotically

stable if

c¹
f
(

1

b C
D

ck
#

a

cD (2.25)

with k"º @ (N*)P*. From (2.7), one can see that ¹*
f
'¹

f
. It then follows

from (2.6) that c¹
f
(a/bc, which implies that (2.25) holds. This, together with

the global attractivity of E*, leads to the global asymptotic stability of E*. The
proof is completed. K

Remark 2.2. The local asymptotic stability condition c¹
f
(1/b[D/ck#a/c]

was derived in [4] by considering the associated characteristic equation
of the linearized system of (2.1) at the equilibrium E*. Following the
idea of the construction of the Liapunov functional in the proof of
Theorem 2.1, one can obtain the same condition on the local asymptotic
stability of E*.

3 Discretely delayed nutrient recycling

In this section, we suppose that the delay describing nutrient recycling is
discrete. We first consider the following equations

NQ "D(N0!N )!aº (N)P#bcP(t!q),

PQ "P[!(c#D)#cº(N)],
(3.1)

where q'0 is a constant. Notice that if the inequalities in (2.4) hold, then the
positive equilibrium E* given by (2.5) exists.

Theorem 3.1. Assume that

(a) the inequalities in (2.4) hold;
(b) q'0 is finite such that

c C
1

c#D
[e(c`D)q!1]#qD(

2a

bc
. (3.2)

¹hen the positive equilibrium E* of (3.1) is globally attractive.
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Proof. By using the transformation (2.8), the system (3.1) can be written as
follows:

x
1
(t)"!Dx

1
(t)!aP*ex

2
(u)m (x

1
(t) )!aP*º(N* ) [ex

2
(t)
!1]

#bcP*[ex
2
(t!q)

!1], (3.3)

xR
2
(t)"cm (x

1
(t) ) .

Define »
1
(x

1
) as in (2.12), then along the solutions of (3.3) we have

»Q
1
(x

1
(t) )"m(x

1
(t))xR

1
(t)

6!Dx
1
(t)m (x

1
(t))!aP*ex

2
(t)m2(x

1
(t) )

!P*[aº (N*)!bc]m(x
1
(t) ) [ex

2
(t)
!1]

#1
2
bccP*CA P

t

t~q
ex

2
(u) duBm2(x

1
(t))#P

t

t~q
ex

2
(u)m2(x

1
(u))duD (3.4)

for t7q. Now define

¼
2
(x(t))"

1

2
bccP* P

t

t~q P
t

v

ex
2
(u)m2 (x

1
(u)) du dv. (3.5)

From (3.4) and (3.5), it follows that

d

dt
(»

1
#¼

2
) (x (t) )6!Dx

1
(t)m (x

1
(t) )!aP*ex

2
(t)m2(x

1
(t))

!P*[aº(N*)!bc]m (x
1
(t) ) [ex

2
(t)
!1]

#

1

2
bccP* CA P

t

t~q
ex

2
(u) du dsB#qex

2
(t)D m2 (x

1
(t) ). (3.6)

Using (2.16) and following the argument in (2.17), we obtain

P* P
t

t~q
ex

2
(u) du6

1

c#D
[e(c`D)q!1] P(t) . (3.7)

Hence, (3.6) becomes

d

dt
(»

1
#¼

2
) (x(t) )6!Dx

1
(t)m (x

1
(t) )!aP*ex

2
(t)m2(x

1
(t) )

!P*[aº(N*)!bc] m (x
1
(t) )[ex

2
(t)
!1]

#

1

2
bccC

1

c#D
(e(c`D)q!1)#qDP(t)m2 (x

1
(t)) . (3.8)

Let ¼
3
(x

2
)":x

2
0

[es!1] ds. We can choose a such that

ac"P*[aº(N*)!bc] .
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Define a Liapunov functional as follows

¼(x)(t)"»
1
(x)(t)#¼

2
(x)(t)#a¼

3
(x)(t) . (3.9)

Then from (3.8) and (3.9), we have

¼Q (x)(t)6!Dx
1
(t)m(x

1
(t) )

#Pm2 (x
1
(t))C!a#

1

2
bccA

1

c#D
[e(c`D)q!1]#qBD . (3.10)

Using (3.10) and the same argument used in the proof of Theorem 2.1, one can
show that the positive equilibrium E* of (3.1) is globally attractive. This
completes the proof. h

We next consider the following equations with a variable delay

NQ "D(N0!N)!aº(N)P#bcP (t!q(t) ),

PQ "P[!(c#D )#º(N )],
(3.11)

where q(t) is differentiable and satisfies

06q(t)6¹, 06q5 (t)(1. (3.12)

Denote p (t)"t!q(t), then its inverse p~1(t) exists and denote q (t)"
p~1(t)!t. By modifying the Liapunov functionals constructed in the proof of
Theorem 3.1, we have the following result.

Theorem 3.2. Assume that

(a) the inequalities in (2.4) hold;
(b) the delay q(t) satisfies (3.12) and

cC
1

c#D
[e(c`D)q(t)!1]#q (t)D(

2a

bc
, (3.13)

where q (t)"p~1(t)!t and p (t)"t!q (t).
¹hen the positive equilibrium E* of (3.11) is globally attractive.

Proof. Under the transformation (2.8), we can rewrite (3.11) as follows:

xR
1
(t)"!Dx

1
(t)!aP*ex

2
(t)m (x

1
(t) )!aP*º(N* )[ex

2
(t)
!1]

#bcP*[ex
2
(t!q(t))

!1], (3.14)

xR
2
(t)"cm (x

1
(t) ) .

Define »
1
(x

1
) as in (2.12), then along the solutions of (3.14), we have

»Q
1
(x

1
(t) )"m(x

1
(t))xR

1
(t)6!Dx

1
(t)m(x

1
(t))!aP*ex

2
(t)m2(x

1
(t) )

!P*[aº (N*)!bc]m(x
1
(t) ) [ex

2
(t)
!1]

#

1

2
bccP*CA P

t

t~q(t)
ex

2
(u) duB m2 (x

1
(t))#P

t

t~q(t)
ex

2
(u)m2(x

1
(u)) duD

(3.15)

Global stability in chemostat-type plankton models 263



for t7¹. Now define

¼
4
(x (t) )"

1

2
bccP* P

p~1 (t)

t
P

t

p(s)
ex

2
(u)m2 (x

1
(u)) du dv . (3.16)

Then by (3.15) and (3.16), we obtain

d

dt
(»

1
#¼

4
) (x(t) )6!Dx

1
(t)m (x

1
(t) )!aP*ex

2
(t)m2 (x

1
(t) )

!P*[aº(N*)!bc]m(x
1
(t) )[ex

2
(t)
!1]

#
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2
bccP*CA P

t

t~q(t)
ex

2
(u) du dsB#q(t)ex

2
(t)D m2 (x

1
(t) ) .

(3.17)

Using (2.16) and following the argument in (2.17), we have

P* P
t

t~q(t)
ex

2
(u) du6

1

c#DCe(c`D)q(t)!1DP (t) .

Hence from (3.17)

d

dt
(»

1
#¼

2
)(x (t) )6!Dx

1
(t)m (x

1
(t) )!aP*ex

2
(t)m2(x

1
(t) )

!P*[aº(N*)!bc]m (x
1
(t) )[ex

2
(t)
!1]

#

1

2
bccC

1

c#D
(e(c`D)q(t)!1)#q (t)DP(t)m2(x

1
(t) ) .

(3.18)

Let ¼
3

be defined as in the proof of Theorem 3.1. One can select a such that
ac"P*[aº (N*)!bc]. Then

» (x)(t)"»
1
(x)(t)#¼

4
(x)(t)#a¼

3
(x)(t)

is the required Liapunov functional. This completes the proof. h

Remark 3.3. As pointed out in Remark 2.2, one can use the idea of construct-
ing the Liapunov functionals for Theorems 3.1 and 3.2 to derive the local
asymptotic stability conditions for the positive equilibrium E* of systems (3.1)
and (3.11).

4 Delayed growth response

In the chemostat, there are two obvious sources of delays. One is, as pointed
out by one referee, due to the possibility that the species takes up nutrient in
excess of immediate needs and stores the nutrient to be used later when
nutrient is scarce, so that the ‘‘free’’ nutrient concentration does not reflect the
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nutrient available for growth. An internal-store model (without time delays)
was considered by Grover [15—17] and Smith and Waltman [29]. Another
one is due to the cell cycle, which characterizes the time delay between
consumption and growth. Consequently there is a delay in the growth term of
the species equation but no delay in the consumption term in the nutrient
equation. In this section, we consider the second type of delay model with an
added nutrient recycling term. We suppose that there is a discrete delay in the
growth response of plankton to nutrient uptake, that is, we consider the
following system:

NQ "D(N0!N )!aº(N )P#bc P
=

0

f (s)P (t!s)ds,

PQ "P[!c#D)#cº(N (t!q))],
(4.1)

where q70 is a constant. Notice that system (2.1) is a special case of system
(4.1) when q"0. If the inequalities in (2.4) hold, then there is a positive
equilibrium E* given by (2.5).

System (4.1) was considered in [26]. It was shown that the solutions are
bounded, the discrete delay could destabilize the positive equilibrium E* and
Hopf bifurcations may occur. In the following, we will give estimates of the
delay such that the global attractivity of the positive equilibrium persists.

Theorem 4.1 Assume that

(a) the inequalities in (2.4) holds;
(b) the delay q'0 and the kernel f satisfy

¹q#¹q,f(a, (4.2)
where

¹q"
c

2
[aº (N*)!bc] C

1

c
1

(ec
1
q
!1)#rec

1
qD,

¹q,f"1
2
bcc [¹*c#¹

f
ec

1
q]

with c
1
"c!(c#D)'0 and ¹*

f
defined by (2.7).

¹hen the positive equilibrium E* of (4.1) is globally attractive.

Proof. Let x (t)"(x
1
(t), x

2
(t) ) be defined by (2.8) and m (x

1
) be defined by (2.9).

Then it follows from (4.1) that
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1
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0
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!1] ds, (4.3)
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=

0

[es!1] ds. (4.4)

Global stability in chemostat-type plankton models 265



Then along the solutions of system (4.3) we have
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Then it follows that
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Now define a nonnegative function as follows

» (t)"»
3
(x (t))#»

4
(t) , (4.9)

in which

»
4
(t)"

1

2
cP*Caº(N*)!bc#bc P

=

t

f (s) dsD
]P

t

t~q P
t

v

ex
2
(u#q)m2(x

1
(u)) dv du

#

1

2
bccC P

=

0

f (s) P
t

t~s
P

t

v

P (u)m2 (x
1
(u!q)) dv du ds

#¹
f P

t

t~q
P(s#q)m2(x

1
(s)) dsD .

Note that Dm (x
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) D61. Thus we have
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On the other hand, from the second equation of system (4.1), we have

PQ (t)6[c!(c#D)]P"c
1
P

and hence
P (s)6P (t)ec

1
(s!t) for s7t'0 . (4.11)
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It follows from (4.11) that
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By using (2.17), (4.12), we obtain

»Q 6!Dx
1
(t)m (x

1
(t) )!aP(t)m2(x

1
(t) )

#G
1

2
cCaº (N*)!bc#bc P

=

t

f (s) dsD
]C

1

c
1

(ec
1
q
!1)#qec

1
qD

#

bcc
2

[¹*
f
#¹

f
ec

1
q]HP (t)m2 (x

1
(t) )

#bcC sup
!R(s60

P(s)#P*D P
=

t

f (s) ds . (4.13)

Note that lim
t?=

bc :=
t

f (s) ds"0 and : t
0

:=
t

f (s) ds du6:=
0

sf (s) ds"
¹

f
(R. Then, using (4.13) and the same argument used in the proof of

Theorem 2.1, one can show that the positive equilibrium of (4.1) is global
attractive. This completes the proof. h

Remark 4.2. Obviously, when q"0, Theorem 4.1 reduces to Theorem 2.1 and
Remark 2.2.

A special case of system (4.1) is that when the kernel f is a Delta function,
that is, the nutrient recycling is instantaneous. The model now has the form

NQ "D(N0!N)!aº(N)P#bcP,

PQ "P[!(c#D)#cº(N(t!q) )].
(4.14)

System (4.14) was briefly discussed in [26]. It was found that the delay has
an effect on stability of the positive equilibrium. However, by Theorem 4.1, we
have the following result on the global attractivity of the positive equilibrium
of system (4.14).

Corollary 4.3. Assume that
(a) the inequalities in (2.4) holds;
(b) the delay q'0 satisfies

¹q(a . (4.15)

¹hen the positive equilibrium E* of (4.14) is globally attractive.
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Remark 4.4. If q"0, (4.15) is automatically satisfied. This is Theorem 3.2 of
Beretta et al. [1] or Theorem 2.7 of Ruan [25], that is, if the positive
equilibrium exists, it is globally attractive. Theorem 4.3 indicates that if the
delay q is sufficient small, then the positive equilibrium E* is still globally
attractive.

5 Discussion

In this paper, we have discussed global attractivity of the positive equilibrium
of plankton-nutrient models with delayed nutrient recycling. We supposed
that there is a delay in the growth response of plankton to nutrient uptake. We
also considered the case where the delay describing nutrient recycling is
a constant or variable discrete delay.

In the first model, system (2.1), we supposed that the limit nutrient is
partially recycled after the death of plankton due to bacterial decomposition
and used a distributed delay to model nutrient recycling. Recall that the
sufficient conditions we obtained for global attractivity of the positive equilib-
rium E* are as follows:

c#D(c, º~1A
c#D

c B(N0 (2.4)

and

c [¹*
f
#¹

f
](

2a

bc
, (2.6)

where ¹
f

is the average time delay defined in (2.3) and ¹*
f

is defined in
Theorem 2.1 and is somehow similar to the average time delay. The first
inequality in (2.4) indicates that c, the maximum specific growth rate of
plankton, must be greater than c#D, the total loss rate of plankton and the
second inequality in (2.4) means that there must be enough nutrient input
concentration. Notice that the inequalities in (2.4) are required throughtout
the paper to gurantee the existence of the positive equilibrium and when the
delays are absent, they are exactly the global stability conditions. Condition
(2.6) demonstrates that the positive equilibrium is still globally attractive if the
average time delay involved in nutrient recycling is relatively small, in other
words, if the process of recycling is relatively short.

The results in Sect. 3 show that if the delay describing nutrient recycling is
a constant or variable discrete delay, one can still have global attractivity of
the positive equilibrium as long as the delay is sufficient small.

In Sect. 4, we introduced a discrete delay in the planktonic growth re-
sponse term. It has been found (see Ruan [26]) that this delay has a distabiliz-
ing effect on stability of the positive equilibrium. In Theorem 4.2, we showed
that if the inequalities in (2.4) hold and if

¹q#¹q,f(a , (4.2)
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then the positive equilibrium E* of (4.1) is globally attractive, where ¹q
depends on the discrete delay q and ¹q,f depends on both the discrete delay
q and the distributed delay kernel f. Inequality (4.2) thus gives us an estimate
for the delays: when the delays are sufficiently small such that (4.2) holds, then
the equilibrium is globally attractive; when the delays are increased and (4.2) is
invalid, the equilibrium may lose its stability and a Hopf bifurcation may
occur (see Ruan [26]).

The results in this paper indicate that in order to have global attractivity,
delays must be relatively small. These results justify the common belief that
‘‘small delays are negligible in some modelling processes as far as stabilities are
concerned’’.

It should be pointed out that our method can be used to analyze models
with two or more various delays appearing in the first equation. In fact, the
global asymptotic stability of the chemostat-type competition models
(Freedman and Xu [12]) has been studied by us (see Ruan and He [27]). It
would be interesting to investigate the global stability of the predator-prey
models (see Ruan and Wolkowicz [28]). Also, as suggested by the referee, it
would be very interesting to consider the Droop model with delays. We leave
this for future study.

Acknowledgements. The authors are grateful to Prof. K. P. Hadeler for his kind advice and
to the referee for his/her helpful comments.
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