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Electronic Appendix A: Interpretation of reproduction numbers (R0,Rc,R∗)

Each term of Rc (as given in Section 2.7) has an epidemiological interpretation. The mean
duration in the asymptomatic class E is 1/D1 with contact rate εEβ, giving a contribution to Rc

of εEβ/D1. A fraction κ1/D1 goes from E to the symptomatic class I, with contact rate β and
mean duration 1/D2, giving a contribution of βκ1/D1D2. A fraction γ1/D1 goes from E to the
quarantined class Q, with contact rate εQβ and mean duration 1/(µ+κ2), giving a contribution of
εQβγ1/D1(µ+κ2). A fraction κ1γ2/D1D2 goes from E to I to the isolated class J , with a contact
rate of εJβ and a mean duration of 1/D3, giving a contribution of εJβκ1γ2/D1D2D3. Finally, a
fraction γ1κ2/D1(µ + κ2) goes from E to Q to J with a contact rate of εJβ and a mean duration
of D3 giving a contribution of εJβγ1κ2/D1D3(µ + κ2). The sum of these individual contributions
gives Rc.

The two reproduction numbers R0 and Rc give the expected number of secondary cases
produced by an index case. There is also a time-dependent effective reproduction number R∗
which continues to track the expected number of secondary infections caused by each infective
as the epidemic continues with control measures (quarantine of asymptomatic individuals and
isolation of symptomatic individuals) in place. It is not difficult to show that if the inflow into
the population from travellers and new births is small (i.e., if the epidemiological time scale is
much faster than the demographic time scale), our model implies that R∗ will become and remain
less than unity, so that the epidemic will always pass. Even if Rc > 1, the epidemic will abate
eventually when the effective reproduction number becomes less than unity. For the model (1)-(6)
with p = 0, the effective reproduction number is essentially

R∗ = Rc
S

N
,

but allows time-dependent parameter values as well.
In practice, control measures are implemented quickly and the number of infected individuals

is small relative to the total population size, N . This implies S/N is approximately one and R∗
is simply Rc with possibly time varying parameters. Thus, R0 determines whether there will be
an outbreak, and Rc determines whether the control measures introduced when an outbreak is
recognized will suffice to turn matters around right away. In our simulations we will assume that
the parameters γ1 and γ2 are zero initially but are changed instantaneously to positive values
when control measures are instituted, as an approximation to continuous increases to new values
over a short time interval.

However, it should be remembered that if the epidemic takes so long to pass that there are
enough new births and travellers to keep R∗ > 1, there will be an endemic equilibrium, meaning
that the disease will establish itself and remain in the population.

If p > 0, there is no disease-free equilibrium. Consequently, there is at least one endemic
equilibrium with a positive number of SARS-infected components. In this case, strictly speaking,
the reproduction numbers are not defined.
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Electronic Appendix B: Estimation of model parameters

The associated parameters of the model are estimated using currently available data, as is now
described. Note that we focus on values for GTA and make comments when values are different
for other locations.

Recruitment rate (Π) and natural death rate(µ)

The parameter Π models the daily net in-flow of people into the region. This accounts for birth,
immigration and emigration, tourism etc. For a city such as Toronto, an estimate of Π = 136
people per day is plausible. Health Canada (Health Canada 2003a) reported an estimated 5-10
travel-related SARS infections for the entire country. Consequently, it is prudent to calculate p

based on the recruitment of six infected individuals over the course of the first 100 days of the
epidemic. Thus, p = 0.0004424. The analytic theory developed for the reproduction numbers
(R0, Rc and R∗) depends on the existence of a disease-free equilibrium, which requires p = 0.
However, we use p > 0 in the simulations. The parameter p is small and was observed to have
little effect on the simulation results (see Figure 4a). Although not done in this study, both time-
dependent and stochastic recruitment rates could be used for the simulations. The parameter p

could also be interpreted as the rate of animal-to-human transmission of SARS.
The natural death term (µ) represents the per capita rate at which individuals die of causes

other than SARS. This is typically obtained from the expression
1
µ

= life expectancy. Using

a life-expectancy of 80 years, it follows that µ = 0.000034 per day. The parameter µ would be
different for the different locations to which we apply the model, but is sufficiently small that
its variation can be ignored. In the absence of disease, the steady-state population is Π/µ = 4
million for Π = 136 people and µ = 0.000034 per day. Estimates for Π and p for the other three
SARS-affected regions are given in the caption to Figure 2.

Rate of development of clinical symptoms (κ1, κ2)

These parameters measure the rate at which asymptomatic and quarantined individuals develop
clinical symptoms (and transfer to the symptomatic class). The estimated median time for self-
reported earliest known exposure to onset of symptoms in GTA ranges from 6 days to 9 days
(Booth et al. 2003). A study of SARS epidemiology in Hong Kong (Donnelly et al. 2003) esti-
mated the mean incubation period to be 6.4 days. Taking all these into account, it is reasonable
to assume that the parameters κ1, κ2 lie in the interval 0.1 ≤ κ1 < κ2 ≤ 0.167. For simulation
purposes, we choose κ1 = 0.1, κ2 = 0.125 per day.

Recovery and mortality rates (σ1, σ2, d1, d2)

It is conceivable, due to the strength of their immune systems, that some symptomatic SARS-
infected individuals recover from the disease prior to their hospitalization and subsequent isolation.
We model the rate at which symptomatic individuals recover using the parameter σ1. Further-
more, σ2 is used to model the recovery rate of isolated individuals. The parameters d1 and d2

model, respectively, the rates at which symptomatic and isolated individuals die because of SARS.
Since the symptomatic individuals are not treated prior to isolation, it is assumed that the death
rate of symptomatic individuals is higher than that of isolated individuals (d1 > d2). The four
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parameters considered here are estimated as follows: suppose the case mortality is X and the ex-
pected time until recovery or death (or expected time in isolation) is T . Then, the SARS-induced
mortality, d, is defined by d = (1 − µT )X/T and σ = (1 − µT )(1 − X)/T (as per (Day 2002)).
The WHO (2003a) estimated the SARS-induced fatality to be between 15% − 19%. Assuming
that symptomatic individuals are not treated prior to isolation (d1 > d2), we set X1 = 0.19 and
X2 = 0.15. Furthermore, recent data suggests that isolated individuals typically stay in hospitals
(or in isolation) for a period of 10 to 22 days, it is appropriate to choose T1 = 24 and T2 = 22.
Using these values of X1, X2, T1 and T2 in the expressions for d and σ gives σ1 = 0.0337,
σ2 = 0.0386, d1 = 0.0079 and d2 = 0.0068 per day. It should be noted that the case mortality
rate is age-dependent. While the mortality rate in people younger than 64 is estimated to be
between 15% − 19%, the rate rises to 50% or higher (Booth et al. 2003; Donnelly et al. 2003)
in people older than 64. Although not considered here, it would be instructive to incorporate
age-dependent mortality in models of SARS epidemiology. It should also be noted that the case
fatality rate calculated from the Beijing data used here is markedly different from that for other
regions (case fatality for Beijing is approximately 7%; see Wang & Ruan 2003). As a result, we
used a lower set of parameter estimates when running simulations for Beijing. In particular, we
use X1 = 0.11, X2 = 0.09 and T1 = 22, T2 = 21 giving σ1 = 0.0413, σ2 = 0.0431, d1 = 0.0055
and d2 = 0.0041.

Quarantine rate (γ1) and isolation rate (γ2)

The parameters γ1 and γ2 model the rate of quarantining asymptomatic and isolating symp-
tomatic individuals respectively. The asymptomatic individuals are assumed to be identified
through the use of contact tracing. Quarantined individuals are assumed to be at home receiving
partly-effective treatment. Owing to SARS morbidity, symptomatic individuals are likely to seek
medical attention and therefore be placed in isolation. Since detecting symptomatic individuals
seem easier than detecting asymptomatic individuals, it is reasonable to assume that γ2 ≥ γ1.

During the initial stages of the epidemic, we take γ1 = γ2 = 0. At some point, health officials
recognized the epidemic and began to implement quarantine and isolation procedures. These
control measures were refined and enhanced over time, leading to a gradual improvement in their
effectiveness. This could be modeled using continuous, time-varying parameter values for γ1 and
γ2, but little data is available to guide a choice for the form of these functions. Consequently, we
approximate this situation by supposing that both γ1 and γ2 are step functions in time, switching
from γ1 = γ2 = 0 to some other constant value at a particular date. We take the post-switch val-
ues to be γ1 = 0.1 per day and γ2 = 0.5 per day. These choices reflect the fact that SARS-infected
individuals likely remained in the community for a relatively long period of time (10 days) before
quarantine, and in fact many were not quarantined before developing symptoms. We take the
date at which the switch occurs to be March 30, 2003. In reality, quite effective control measures
were probably put into place at least as early as mid-March, but given we are using a step function
as an approximation for their implementation, choosing a slightly later starting date is warranted.

Transmission coefficients (β, εEβ, εQβ, εJβ)

Contact between a susceptible and an infected individual is associated with a risk of infection.
The transmission coefficients β, εEβ, εQβ and εJβ measure the infectiousness and contact rate
associated with the interaction between a susceptible and a SARS-infected individual in the
symptomatic, asymptomatic, quarantined, and isolated classes, respectively. Currently there are
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insufficient data to estimate these parameters, and therefore we were forced to make some sim-
plifying assumptions. It should be stressed, however, that the quantitative outcome of this study
is strongly affected by these parameters.

Although SARS is known to be transmitted primarily by symptomatic patients, infrequent
asymptomatic transmission has not been ruled out. The latter may indeed have triggered the
second outbreak in GTA (Health Canada 2003a). Asymptomatic transmission may be possible
due to the failure of a few individuals with weakened immune systems to elicit detectible clinical
symptoms such as fever and cough. This possibility is included in the model through the modifi-
cation factors εE and εQ associated with the asymptomatic transmission of SARS. Although, for
simplicity, the parameters εQ and εE will be set to zero in all the numerical simulations of this
study (Section 3), these parameters are retained in the model formulation and mathematical anal-
ysis components of the paper. It should be emphasized that qualitatively similar numerical results
are obtained when employing a small value for these asymptomatic transmission coefficients.

The modification parameter εJ reflects the level of hygienic precautions during isolation. If
these measures were perfect, then εJ would be zero, resulting in no further SARS infections from
isolated individuals. Health Canada data shows that isolated individuals were responsible for
most infections in Canada (Health Canada 2003a), suggesting that the transmission coefficient,
εJβ, associated with this class was larger before stringent hygienic measures were put in place.
This is, primarily, due to two reasons. One is the lack of adequate knowledge of modes of SARS
transmission during the early stages of the epidemic. The second is the fact that, at the early
stage of the epidemic (prior to the implementation of stringent hygienic measures in isolation),
care givers (e.g., family members or health care workers) attending to isolated individuals tend
to have frequent and very close contact with the isolated individuals, resulting in numerous cases
of nosocomial infections.

Once it was recognized that in-hospital transmission of infection was common, stricter hygienic
control measures, including use of negative pressure rooms for patients, and N95 face masks,
gloves, and gowns for medical personnel, were adopted. To include this important component
of the transmission process in our model, we assume that εJ was positive for some period of
time until the inadequacy of the isolation measures was recognized, at which point we suppose
that εJ then becomes zero. For the GTA, for instance, we take the date at which εJ becomes
zero to be 3 weeks after the initiation of isolation and quarantine (i.e., April 20, 2003). Again,
it would be more realistic to take εJ as a continuously decreasing function of time (reflecting
gradual improvements in hygienic precautions), but we approximate this as a step function. We
used a 3 week lag between the onset of control measures (isolation and quarantine) and the
improvement of hygienic precautions to reflect the fact that 1-2 weeks would elapse before the
care givers of initially quarantined or isolated individuals would display symptoms, and some
period of time after that would be required before health care officials could coordinate stricter
hygienic precautions in isolation.

The two parameters that remain to be specified are the transmission rate coefficient, β, and
the value of the modification parameter, εJ , before it switches to zero on April 20, 2003. Both
parameters were chosen to produce model predictions that best matched the data on cumulative
deaths over time for each of the four regions. Specifically, we chose the values of these param-
eters that yielded the smallest sum-of-squared-deviations (SSD) of the models predictions for
cumulative deaths from the data, over the total time period for which data were available.
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