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ABSTRACT 

Three-species food-chain models, in which the prey population exhibits group 
defense, are considered. Using the carrying capacity of the environment as the 
bifurcation parameter, it is shown that the model without delay undergoes a 
sequence of Hopf bifurcations. In the model with delay it is shown that using a delay 
as a bifurcation parameter, a Hopf bifurcation can also occur in this case. These 
occurrences may be interpreted as showing that a region of local stability (survival) 
may exist even though the positive steady states are unstable. A computer code 
BIFDD is used to determine the stability of the bifurcation solutions of a delay 
model. 

1. INTRODUCTION 

In [32], Rosenzweig considered six different mathematical models of 
predator-prey or parasite-host interactions and showed that sufficient 
enrichment (increase of the prey carrying capacity) can cause destabi- 
lization of an otherwise stable interior equilibrium. He also integrated 
the model equations numerically and obtained extinction of the preda- 
tor by using a truncation for the sake of biological reality. As a 
consequence he warned that “Man must be c-.,,eful in attempting to 
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enrich ecosystems in order to increase their food yield. There is a real 
chance that such activity may result in a decimation of the food species 
that are wanted in greater abundance.” This is the so-called paradox of 
enrichment. Rosenzweig’s prediction was criticized by Gilpin [14], May 
[26], McAllister et al. [27], and Riebesell [31]. However, there is experi- 
mental evidence by Huffaker et al. [22], Luckinbill [23], and Schaffer 
and Rosenzweig [36] indicating that in some situations Rosenzweig’s 
warning is valid. 

Freedman and Wolkowicz [13] provided additional support for 
Rosenzweig’s warning for different reasons. They introduced a model of 
predator-prey interaction in which the prey exhibits group defense. 
Group defense is a term used to describe the phenomenon whereby 
predation is decreased or even prevented altogether owing to the ability 
of the prey to better defend or disguise themselves when their numbers 
are large. An example of this phenomenon is described by Tener [37]. A 
lone musk ox can be successfully attacked by wolves. Small herds of 
musk oxen (2-6 animals) are attacked but with rare success. No success- 
ful attacks have been observed in large herds. A second example, 
described by Holmes and Bethel [21], involves certain insect popula- 
tions. Apparently, large swarms of the insect make individual identifica- 
tion difficult for their predators. Related examples are considered in 
Boon and Laudelout [l] and Yalrg and Humphrey [40]. 

The model with group defense differs from the classical models of 
predator-prey interactions in that the predator response function is not 
a monotone increasing function of prey density, but rather is only 
monotone increasing until some critical density and then becomes 
monotone decreasing. Freedman and Wolkowicz 1131 showed that for 
sufficient enrichment there is always a set of initial conditions of 
positive measure for which extinction of the predator results, and they 
gave a numerical example to indicate a sequence of bifurcations as the 
carrying capacity of the environment is increased. Wolkowicz [39] showed 
that there is actually a threshold of enrichment above which extinction 
of the predator results for all but a set of initial conditions of measure 
zero, unless the prey isocline is monotone decreasing for all values of 
the carrying capacity. In [28] and [29], Mischaikow and Wolkowicz 
introduced a connection matrix approach to analyze the bifurcation of 
the predator-prey systems involving group defense. 

Freedman and Quan [9] introduced a method whereby the predator 
is prevented from tending to extinction in the models, namely through 
interactions of the predator-prey system with a third population. In 
[35], we consider two Gause-type, three-species food chain models with 
group defense, one with mutual interference and one without, and 
derived utilizable criteria for persistence for those models. These persis- 
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tence criteria depended on the fact that the top predator was also a 
predator of the bottom prey. 

Time delays of one type or another have been incorporated by many 
authors, (see Cushing [5], Erbe, Freedman and Rao [6], Freedman and 
Gopalsamy [8], Freedman and Rao [lo, 111, Gopalsamy [15], Gopalsamy 
and Aggarwala 1161, MacDonald [24], Thingstad and Langeland 1381). In 
general it has been found that the introduction of time delays is a 
destabilizing process, in the sense that increasing the time delay could 
cause a stable equilibrium to become unstable and/or cause the popu- 
lations to fluctuate. 

In this paper, we first consider a three-species food chain model with 
group defense given by three autonomous ordinary differential equa- 
tions. Using the carrying capacity of the environment as the bifurcation 
parameter, we show that the model undergoes a sequence of Hopf 
bifurcations. Secondly, we introduce a discrete delay in the model in the 
top-level predator population. This delay may be regarded as a delay 
due to gestation, i.e., a time delay in converting predator into prey. We 
discuss the change of stability and bifurcation of the interior equilib- 
rium. 

The biological purpose in both models is to show that in the case of 
simple food chains with group defense, even though persistence cannot 
occur (as in [35]), there could be a region (of initial values) of stability in 
which all three populations would survive, notwithstanding the fact that 
the positive steady state may itself be unstable. 

2. THE MODELS 

We first consider the instantaneous model given by the following 
system of autonomous ordinary differential equations as a food-chain 
model with group defense: 

i==g(.&K)-yp(x), 

>‘=y[-r+cP(x)l-zq(Y), 
i=z[-s+dq(y)], 

x(0) z 0, y(O) 2 0, z(0) 2 0, 

(2.1) 

(‘= $1, where x(t) denotes the prey population, y(t) denotes the 

intermediate population that feeds upon x and is in turn fed upon by z, 
and z(t) denotes the top predator population that feeds upon y. We 
assume that g, p, and q are analytic functions and that K, r, c and d 
are positive constants. 
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The function g(x, K) represents the specific growth rate of thsprey 

in the absence of predation. Logistic growth g(x, K) = r(l- x.) is 

considered as a prototype. g(x, K) is assumed to satisfy the following 
foranyx>O,K>O: 

g(O, K) > 0, g(K,K) =O, g,(x,K) ~0, 

&WJo <o g,(x,K) > 0, gxK(x, K) > 0. (2.2) 

The function p(x) denotes the predator functional response. To 
model group defense, it is assumed that there exists M > 0 such that 

p’(x)>0 forO< ,x<M and p’(x)<0 forx>M. (2.3) 

Further, it is assumed that p(x) satisfies 

p(O)=O,p(x)>O forx>O and p(M)>;. (2.4) 

For technical reasons in the bifurcation analysis it is assumed that 

p(x)-xp’(x)>O forall x>O. (2.5) 

A function of the form p(x) = mw/(ux* + bx + 1) where m, a, and b 
are positive constants satisfies these assumptions and approximates 
Holling-type dynamics for small x (see [20]). 

The function q(y) is interpreted as a predator functional response of 
z on y. Therefore we assume thai 

q(O) = 0, q(y)>0 and q’(y)>0 fory>O. (24 

We have assumed that p(M) > :, since otherwise the predator y 

cannot survive on the prey at any density in the absence of the predator 
z. Therefore, there exists A < A4 < K such that p(A) = f . (Note if 

A > K, the group defense has no effect.) 
Similar to the analysis of [35], we know that the system has the 

following equilibria: 

&I = (0,070) 

& = (K,O,O) 

Eh= (h,+K),O). 
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There may also exist an equilibrium of the form 

77 

Eh, = (h,,cr-‘h,g( A,,K),O) with p( h,) = rc-‘, P’(4) co* 

It follows that M < h, < K, so that Eh, is a saddle point and hence no 
Hopf bifurcation can occur at Eh,. 

In general, system (2.1) may or may not possess an interior equilib- 
rium, E* = (x*,y*, z*). Such an equilibrium, if it exists, is obtained by 
solving the system 

xg(x,K)-Yp(x) =O 

Y[-‘+c&)l-4Y) =o 

- s + dq( y) = 0. 

(2.7) 

If x* < A,, there may be a homoclinic bifurcation at E* (see Chow and 
Hale [2]). Since we are interested in Hopf bifurcation in this paper, we 
always assume that system (2.1) has an interior equilibrium E* = 
(x*, y*, z*> with 

h<x*<M<K. (2.8) 

The second model is a modification of the first one so as to 
incorporate a discrete time delay in the gestation of the top level 
population z. The model now takes the form 

i = xg( x, K) - YP(X> 

P=Y[-r+cpWl -4Y) 

i = z[ - s + dq( y(t _T))] 

(2.9) 

with initial conditions given by 

x(0) = x0 > 0, Y(t) = Ye(t) > 07 z(0) = z. > 0 

where yo(t> is a given continuous function on - T =G t < 0. The functions 
g, p, and q have the same meanings and properties as for system (2.1). 
Similarly, we assume that system (2.9) possesses an interior equilibrium 
E* =(x*, y*, z*) with A < x* < M < K. 

3. HOPF BIFURCATION ANALYSIS OF THE 
INSTANTANEOUS MODEL 

In this section we shall vary K in system (2.1) so as to obtain a Hopf 
bifurcation. To do so, we need to compute the stability of EA and E*. 
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For general x, y, and z, the variational matrix of system (2.1) has the 
form 

g(x* K) +%(x, K) -YP'(X) -P(X) 0 

V(x,y,z> = w’(x) -r+cp(4 -q’(Y) -q(Y) 
0 M'(Y) -s+&(Y) 1 

The variational matrix at EA has the form 

I 

g(A,K)+hg,(h,K)-~g(h,K)p’(A) -p(A) 0 

G= +g(M)p’(A) 0 -q $g(M) 
( 1 

. 

0 0 -s+dq +A, K) 1 
Hence the characteristic equation is 

x[y+s-dq(+,K))]=O (3.1) 

where 

Equation (3.1) has three roots: 

Y~,~=; G,(A,K)f 
I 

G:(A,K)-+(A,K)p(A)p’(A) 
I 

y3=-s+dq (DEW)). 

Clearly y, is a real root; y, and y2 are purely imaginary if and only if 
there is a K, such that G&A, K,) = 0. Further, y1 and yz are complex 

in a neighborhood of K,. By (2.2) and (2.51, g( A, K) > 0, p(A) - Ap’( A) 
> 0, g,( A, K) G 0, so there is always a K, such that G,( A, K,) = 0 and 

y3(Kl)= -s+dq 
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Since Re[y,(K,)l= 0, Im[yi(K,)l Z 0, i = 1,2, and by (2.2) and (2.51, 
g,(x,K,)>O, p(A)- hp’(h)>O, g,,(A,K,)>O, so that 

dYi 
Re z K-K, [ 1 =~gK(h,K,)[p(A)-Ap’(A)l+SgrK(A,K,)>O. 

Hence there is a Hopf bifurcation at K = K, (see [251X We can now 
formulate the following: 

THEOREM 3. I 

There is a Hopf bifurcation for system (2.1) as K passes through K, 
emanating from the steady state EA leading to periodic solutions for either 
K>K, orK<K, oratK=K,. 

Now for the steady state E* with A < x* < M < K, we have 

g(x*,K)+x*g,(x*,K)-Y*p’(x*) - P(x*) 0 

v*= 
CY*P’(x*) -r+cp(x*) -z*q’(y*) -q(y*) 

0 dz*q’(Y*) 0 1 (3.2) 
The characteristic equation is given by 

ml,-Y ml2 0 

det m21 mz2-y m23 
0 m32 -Y 

= 0 

where 

ml1 =g(x*,K)+ x*g,(x*,K) -Y*P’(x*), 

m12 = - P(x*) < 0, m2, = cy*p’( x*) > 0, 

m22 = CP( x*) - [r + z*q’(y*)l, 

m23 = - q(y*) CO, m32 = dz*q’( y*) > 0. 

Hence Equation (3.3) has the form 

y3 + a,y2 + a,y + a3 = 0 

where 

(3.3) 

(3.4) 

al = -h + mz2) 
a2 = ml1m22 - @h2mz1 + m23m32) 

a3 = m231m23m32- 
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By the Routh-Hurwitz criterion, a set of necessary and sufficient 
conditions for all the roots of (3.4) to have negative real parts is 

a, > 0, a,>0 and a,a,>a,. 

Now suppose that inll < 0 and mz2 Q 0. Then a, > 0, a2 > 0, clearly 
(3.4) has two pure imaginary roots if and only if ala2 = a3 for some 
value of K, say K = K,. Since a2 > 0 at K = K,, there is an interval 
containing K,, say (K, - E, K, + E) for some E > 0 for which K, - E > 
0, such that a2 > 0 for K E (K, - E, K, + E). Thus, for K E (K, - E, K, 
+ E), the characteristic equation (3.4) cannot have real positive roots. 
For K = K,, we have 

(Y’ + a2)(y + ad =O, (3.5) 

which has three roots 

y,=iJa,, y,=-iJa,, y,=-a,. 

For K E (K, - E, K, + E), the roots are in general of the form 

y,(K) = a(K) + iP(K) 

y,(K) = a(K) - iP(K) 

Y,(K) = -a,(K). 

To apply Hopfs bifurcation theorem as given in [25] to (2.11, we need to 
verity the transversal&y condition 

dYj 
Re z K=K 1 1 #OF j=1,2. 

2 
(3.6) 

Substituting yj(K) = a(K)+ iP(K) into (3.6), and calculating the 
derivative, we get 

A(K)B(K)p’(K)+C(K)=O 

B(K)a’(K)+A(K)/3’(K)+D(K)=O 
(3.7) 

where 

A(K)=3a2(K)+2al(K)a(K)+a2(K)-3P2(K) 

B(K) = WK)P(K) +2adK)P(K) 
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C(K)=a*(K)a;(K)+a;(K)a(K)+a;(K)-a;(K)p*(K) 

D(K) = 2a(K)kqK)4(9 +4(K)@(K). 

Since 

we have 

dYj 
[ 1 BK+AC 

Re a K=KZ=2(A2+B2) K=K +” z 

and y&K*) = - a,(K,) # 0. We summarize the details in the following: 

THEOREM 3.2 

Suppose E* =(x*,y*, z*) exists and A < x* < M < K, WI,, < 0, rn2* < 0. 
Then system (2.1) exhibits a Hopf bifurcation in the first octunt leading to a 

family of periodic solutions that bifurcates from E* for suitable values of K 
in a neighborhood of K,. 

Using the formula of [25, p. 261, one could establish two lengthy and 
tedious stability criteria for the bifurcation solutions described in Theo- 
rems 3.1 and 3.2. And one also can use the computer code in [19] to 
determine the stability of those bifurcation solutions. We shall do 
computer analysis for the delay model in the next section. 

We know that solutions of system (2.1) are bounded (see Freedman 
and So [12]). We also know that the steady state EK is a saddle point, 
and by Theorems 3.1 and 3.2, K, and K, are two bifurcation points; a 
periodic solution bifurcates from Eh when K passing through K,, 
denoted by (x0, K,),y(t, K,), z(t, K,)); and another periodic solution 
bifurcates from E* when K passing through K,, denoted by 
(x(t, K2), y(t, K2), z(t, K,)). By Rabinowitz’s Theorem (see [30]), we 
have the following: 

THEOREM 3.3 

There is a continuum (a closed and connected subset) meeting both of 
the bifurcation solutions (x(t, K,), y(t, K,), z(t, K,)) and x(t, K,), 
yk K2), z(t, K,)). 

4. HOPF BIFURCATION ANALYSIS OF THE TIME-DELAY 
MODEL 

In this section, we determine criteria for Hopf bifurcation, using the 
time delay as the bifurcation parameter. We first derive the characteris- 
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tic equation for the linearization of system (2.9) near its interior 
equilibrium E* = (x*, y*, z*). Let X(t), Y(t), and Z(t) be the respective 
linearized variables of system (2.9). Then the variational system is 

X’(t) = m,,X(t) + m,,Y(t) 

Y’(t) = m,,X( t) + m,,Y( t) + m,,Z( t) 

z’(t) =m,Y(r-7). (4.1) 

where mij (i,j = 1,2,3) are the same as in Section 3. This leads to the 
characteristic equation 

A3 + ah* + /3A = SeeA’ + ThePA’ (4.2) 

where 

a = -Cm,, + m2,), 
P = me22 - m12m21T 

6 = - m,,m,,m,,, 
77 = m23m32 < 0. 

It is the sign of the real parts of the solutions A of equation (4.2) that 
determines the stability of E* = (x*, y*, z*>. Hence we assume as before 
thatm,,<0,m2,~0sothatReA<0atr=0.Letting A=p+ivand 
substituting into (4.2), we obtain the following equations: 

We consider A and hence p and v as functions of the delay 7, and 
we will be interested in the change of stability of E*, which will occur at 
any values of r for which j.~ = 0. If p = 0, then v # 0, and hence we 
assume that S # 0. Let ? be such that CL(+) = 0. Then equations (4.3) 
reduce to 

- aG2 = 6cos+t++sinEi, 

-i3+/3ir=7ji,cos~P-SsinF~. 
(4.4) 

Squaring and adding the equations of (4.4) and simplifying, gives an 
equation for 6 of the form 

t6+(a*-2p)i,4+(p*-7p)P-8*=0. (4.5) 



HOPF BIFURCATION AND GROUP DEFENSE 83 

This is a cubic equation in i* that has one or more real roots, Go’, since 
when i = 0, the left side of (4.5) is negative, and for sufficiently large 
values of i, it is positive. 

Then from (4.4) we can solve for +, which is of the form 

This implies that as r “bifurcates” from r = 0, infinitely many branches 
of ~(7) appear, of which one crosses Al. = 0 at each ?,. 

To establish Hopf bifurcation at r = i, we need to show that $P(?) 

# 0. From (4.3), differentiating with respect to T and setting r = ?, 
dE.L dv dp 

v = i, p = 0, and solving for - and -, we get for z, 
dr dr 

dp(?) AC - BD p= 
dr A2 + B2 

where 

(4.7) 

(4.8) 

We note, using (4.4) that 

AC-BD=~2[3i4+2(a2-2~)~2+(~2-~2)]. (4.9) 

Suppose we let 

@(z) =23+(& -2p)z* +( p* - $)z - 62, 

which is the left side of (4.5) with z = i*. Then we may note that from 
(4.7) and (4.9), 

Hence if Go is the first positive root of (4.51, 

From the preceding, the following are valid. 
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THEOREM 4. I. 

Let m,, < 0, mz2 < 0. Let B, be the first positive root of Equation (4.5). 
Then a Hopf bifurcation occurs as r passes through 6,. 

THEOREM 4.2. 

If at r = r,, E* is unstable, then E* is unstable for all r > r,. 

COROLLARY 4.3. 

E* is unstable for r > i,. 

Now we use a computer code BIFDD developed by Hassard (cf [Ml) 
to discuss the stability of the bifurcation solutions. Let 

g(x,K)=l-$, 

p(x) = xemx, 

q(y) = Y. 

Obviously, g(x, K), p(x) and q(y) satisfy all the conditions in (2.2)-(2.6). 
For the parameter values 

K = 1.2, r = 0.2, c = 1, s = 0.6, d = 0.6678 

and the steady state 

we found 

(x*,y*,z*)=(O.62,0.8985,0.1335), 

i, = 1.57, /_L~ = 4.2441, 

r2 = 3.0556, & = -2.448. 

Since pz > 0, a Hopf bifurcation occurs and a family of small amplitude 
periodic orbits exists for values of r slightly greater than the critical 
value i,. Since p2 < 0, the individual periodic orbits are locally attract- 
ing. Since r2 > 0, the period of the solutions increases with r. 

5. DISCUSSION 

The notion of “paradox of enrichment” leading to possible extinction 
of predators, introduced by Rosenzweig, was shown to be a real possibil- 
ity in [13] in predator-prey systems with group defense. 

Here we have considered simple food-chain models where the prey 
exhibits group defense. Since the predator is faced with possible extinc- 
tion in the absence of the superpredator, the question arises as to 
whether there is any chance of its survival when the superpredator is 
present. 
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Of course, persistence in this case is impossible. However, we have 
shown that there may be a stable region in the neighborhood of an 
interior steady state, whether or not the steady state itself is stable. This 
was done by obtaining conditions for a Hopf bifurcation that could lead 
to the introduction of stable periodic solutions when the environment or 
time delay changes so as to destabilize the steady state. 

A computer code BIFDD is applied to analyze Hopf bifurcations in a 
delay model; for some parameter values, the critical value ?, of delay is 
found and the stability of the bifurcation solutions is determined. 

Applying a computer code BIFDD to determine the stability of the 
bifurcation solutions was suggested by the referees. The code was provided 
by Dr. J. W. H. So, Theorem 3.3 was inspired by a talk with Dr. S, 
Busenberg The authors are grateful to all of them. The second author also 
thanks Mr. H. Xia for helpfil discussions. 
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