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ABSTRACT

In this paper, we consider a deterministic malaria transmission model with standard incidence rate and treat-
ment. Human population is divided into susceptible, infectious and recovered subclasses, and mosquito pop-
ulation is split into susceptible and infectious classes. It is assumed that, among individuals with malaria who
are treated or recovered spontaneously, a proportion moves to the recovered class with temporary immunity
and the other proportion returns to the susceptible class. Firstly, it is shown that two endemic equilibria may
exist when the basic reproduction number Ry < 1 and a unique endemic equilibrium exists if Rg > 1. The
presence of a backward bifurcation implies that it is possible for malaria to persist even if Ry < 1. Secondly,
using geometric method, some sufficient conditions for global stability of the unique endemic equilibrium
are obtained when R > 1. To deal with this problem, the estimate of the Lozinskil measure of a 6 x 6 matrix
is discussed. Finally, numerical simulations are provided to support our theoretical results. The model is also
used to simulate the human malaria data reported by the Chinese Ministry of Health from 2002 to 2013. It
is estimated that the basic reproduction number Ry ~ 0.0161 for the malaria transmission in China and it is

found that the plan of eliminating malaria in China is practical under the current control strategies.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Malaria, one of the most common infectious diseases, is a major
cause of mortality in the Africa region (see [1]) with a large nega-
tive impact on local economies (see [2]). Increased prevention and
control measures have led to a reduction in malaria mortality rates
by more than 25% globally and by 33% in the World Health Orga-
nization (WHO) African region since 2000 (see [3]). However, ac-
cording to the World Malaria Report 2012, after a rapid expansion
between 2004 and 2009, global funding for malaria prevention and
control leveled off between 2010 and 2012, and progress in the de-
livery of some life-saving commodities have slowed. This means that
many households will be unable to replace existing bed nets when
required, exposing more people to the potentially deadly disease (see
[4]). In 2010, there were about 219 million malaria cases and an es-
timated 660 000 malaria deaths. 90% of all malaria deaths occurred
in the WHO African Region, mostly among children under five years
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of age. In March 2013, WHO Fact Sheet reported that about 3.3 billion
people - half of the world’s population - are at risk of malaria. The
Democratic Republic of Congo and Nigeria are the most affected
countries in sub-Saharan Africa, while India is the most affected
country in Southeast Asia. In 2011, it was reported that 99 countries
and territories had ongoing malaria transmission (see [5]).

Malaria has been endemic in China for hundreds of years. It was
said that Kangxi Emperor of the Qing Dynasty was infected with
malaria in 1692 (see [7]). Before the establishment of the People’s Re-
public of China in 1949, there were at least 30 million malaria cases
every year. There were three large malaria outbreaks in 1954, 1960
and 1970, after the establishment of the People’s Republic of China
(see [8]). In the next thirty years, great progresses and outstanding
achievements have been made in controlling and preventing malaria,
and the number of cases declined rapidly from 24 million in the early
1970s to 24,088 in 2000. However, since 2000, there was a resurgence
of malaria in some areas of China. Nearly 77.4% of the total malaria
cases in China were reported in Anhui, Yunnan, Henan, Hubei, and
Jiangsu provinces (see [9]). In 2006, the Ministry of Health of China
developed the “2006-2015 National Malaria Control Program”. In
2007, malaria was integrated into the major communicable diseases
program subject to free treatment. It was reported that there were
14,098 malaria cases in 2009 which was down 46.6 percent compared
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Table 1

Reported malaria cases in China, 2002-2013 (NHFPC [6]).
Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Confirmed cases 35298 40681 38972 42319 64178 50148 26873 14491 7855 4498 2718 4128
Indigenous cases 31605 37290 32678 32726 55335 44069 22934 11119 4262 1308 182 85
Imported cases 3693 3391 6294 9593 8843 6079 3939 3372 3593 3190 2536 4043
Deaths cases 49 57 32 45 34 14 22 10 14 30 15 20

with 2008. This strongly demonstrates that the malaria control ef-
forts are successful. On May 19, 2010, the Ministry of Health of China
further published the “Action Plans for the Elimination of Malaria
(2010 - 2020)". Table 1 presents the data on malaria cases reported to
disease prevention and control bureau of National Health and Family
Planning Commission (NHFPC [6]) from 2002 to 2013, which indicate
that the number of malaria infections decreased year after year from
2006 to 2012. However, in 2013, the number of cases increased again.
In recent years, along with frequent international exchanges, more
and more Chinese have traveled to Africa and Southeast Asian areas,
in which malaria is hyperendemic, for business, tourism and work.
As aresult, the proportion of imported malaria cases increased every
year in China. In fact, among the reported 2,451 malaria cases in 2012,
the proportion of imported malaria cases reached 91.1% (see [10]). It
is believed that this phenomenon may lead to the reemergence of
malaria in China.

Malaria is caused by protozoal parasites of the genus Plasmodium.
Five species of Plasmodium that cause disease in humans are Plas-
modium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium
malariae and Plasmodium knowlesi. Female anopheline mosquitoes
transmit malaria during a blood feed by inoculating microscopic
motile sporozoites, which seek out and invade hepatocytes and then
multiply (liver stage). After about 7-9 days, the liver schizonts rup-
ture to release merozoites into the blood and clinical symptoms such
as fever, pain, chills and sweats may develop [11]. These merozoites
invade red blood cells and begin the asexual cycle. Illness starts when
total asexual parasite numbers in the circulation reach roughly 100
million. Some parasites develop into sexual forms (blood stage). Ga-
metocytes are taken up by a feeding anopheline mosquito and re-
produce sexually, forming an ookinete and then an oocyst in the
mosquito gut. The oocyst bursts and liberates sporozoites, which mi-
grate to the salivary glands to await inoculation at the next blood feed
(mosquito Stage)[12]. The three stages complete the lifecycle of Plas-
modium in the human body and the anopheline mosquito.

There has been a great deal of work about using mathemati-
cal models to study malaria transmission (see [15-33] ) since the
seminal papers of Ross [13] and Macdonald [14]. Earlier models
mainly followed the structure of the Ross-Macdonald model involv-
ing infected hosts (humans) and vectors (mosquitoes) (see Macdon-
ald [15], Bailey [16], Aron and May [17], Koella [18], etc). Recently,
Ngwa and Shu [19] and Ngwa [20] proposed a deterministic com-
partmental model for malaria transmission involving variable human
and mosquito populations. In their model, human population has a
susceptible-exposed-infectious-recovered-susceptible (SEIRS) struc-
ture, and mosquito population has a SEI structure. Their results sug-
gest that a threshold parameter Ry exists and the disease could persist
if and only if Ry > 1. The disease-free equilibrium always exists and
is globally stable when Ry < 1. Chitnis et al. [21] extended the Ngwa
model when human immigration is considered. When the basic re-
production number Ry > 1, the existence of at least one endemic equi-
librium point was proved. In the absence of disease-induced death,
they proved that the transcritical bifurcation at Ry = 1 is supercriti-
cal (forward). Numerical simulations showed that for larger values of
the disease-induced death rate, a subcritical (backward) bifurcation
is possible at Ry = 1. Tumwiine et al. [23] studied a malaria trans-
mission model in which some infected humans that recover from
infection and immune humans after loss of immunity join the sus-

ceptible class again. It was shown that the disease-free equilibrium
exists and is globally asymptotically stable if Ry < 1 and disease-free
equilibrium becomes unstable and the endemic equilibrium is glob-
ally asymptotically stable if Ry > 1. Wan and Cui [22] proved mathe-
matically that if the disease-induced death rate is large enough, there
may be an endemic equilibrium when Ry < 1 and the model under-
goes a backward bifurcation and a saddle-node bifurcation, and the
existence of a unique endemic equilibrium was proved when Ry > 1.
For other related studies, we refer to Tumwiine et al. [24], Chamchod
and Britton [25], Vargas-De-Ledn [26], Wang et al. [27], Agusto et al.
[28], Okosun et al. [29], Buonomo and Vargas-De-Leé6n [30], Ngong-
hala et al. [31], and references cited therein.

Motivated by the above studies, we take a standard infection rate
in modelling malaria transmission. It is generally known that among
the recovered individuals due to the treatment or natural immu-
nity, a portion of them return to the recovered class with tempo-
rary immunity and the other proportion move to the susceptible
class (see Okosun et al. [29]). Therefore, we divide the total human
population, denoted by Nj, into the following subclasses: individ-
uals who are susceptible to infection with malaria (Sy,), individuals
with malaria symptoms (1), and recovered individuals (R,). So that
N, = Sy, + I, + Rp,. The total mosquito population, denoted by Ny, is
divided into susceptible mosquitoes (S,) and infectious mosquitoes
(Iy). Thatis, N, = Sy + I,,.

Susceptible humans are recruited at a rate A,. They move to the
infected class by acquiring malaria through contact with infectious
mosquitoes at a rate 81, /Ny, where B is the transmission rate per bite
per unit time. The natural death rate of humans is p. Infectious indi-
viduals are assumed to recover at a rate m + bu,, where m is the rate
of spontaneous recovery, u, is the control on treatment of infected
individuals and b € [0, 1] is the efficacy of treatment. Among the re-
covered naturally, p; portion of them progress to a temporarily im-
mune state and the remaining portion immediately become suscep-
tible to re-infection. Similarly, among the recovered due to the treat-
ment control, p, portion of them progress to a temporarily immune
state and the remaining portion immediately become susceptible to
re-infection. Untreated infected individuals die at a rate y. Recovered
individuals lose immunity at a rate § and become susceptible again.

Susceptible mosquitoes are generated at a rate A,. They move
to the infected class by acquiring malaria through contact with in-
fected humans at a rate «I,/Ny,, where « is the transmission rate for
a mosquito to get infected by an infectious human. The death rate of
mosquitoes is 7. Fig. 1 illustrates the five compartments and model
variables.

Combining the above described parameters and the flowchart
(Fig. 1), we have

SO _ g~ BSOO s 6y L m(1 - po)l0)
dt N,
+buy (1 — p2)Ip(t) 4+ SRy (2), (1a)
dip(¢) _ BSh(Oh(t)
e Ny
— plp (t) = y 1, (t) — (m + buy)I; (t), (1b)
RO _ (mpy + buzpa) () — (1 + $Ra(t), (10

dt
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Fig. 1. Flowchart of the malaria transmission between mosquitoes and humans.

ds(;t(t) A KSU(Ii’iIh(t) . (aa)
dlzlit) _ KSU(Il;’)hIh(t) i ®. o)

The organization of this paper is as follows. In Section 2, the basic
properties on the positivity and boundedness of solutions, the ba-
sic reproduction number and the existence of an endemic equilib-
rium for the system are discussed. In Section 3, the occurrence of
a backward bifurcation is considered. In Section 4, the stability of
the disease-free equilibrium and endemic equilibrium is studied. In
Section 5, some examples and simulations are given to illustrate the-
oretical results. In Section 6, the system is applied to simulate the
malaria data in China. A brief discussion is given in Section 7.

2. Basic properties

For the malaria transmission system (1) to be epidemiologically
meaningful, it is important to prove that all solutions with non-
negative initial data will remain non-negative for all time.

Theorem 2.1. If initial values S,(0), I,(0), Ry(0), Sv(0), I,(0) are non-

negative, then the solution (Sp(t), In(t), Ry(t), Su(t), Iy(t)) of system (1) is

non-negative for all t > 0. Moreover,

limsup N, (t) < An and limsupN,(t) < &
t—o0 ,LL t—o0 77

Ah

Furthermore, if N,(0) < %’1, then Nj(t) < = and if Ny(0) < %, then

Ny(t) < A—,;’. In particular, the region

Q= {(anln,Rh,Su,Iu) eR S+ 1 +Ry < %,Suﬂvs ':"}

is positively invariant.

- K BILAy
Ro = p(FV1) = ,
o=pEVT) \/nZAh(M+y+m+bu2)
where
0o B W+y+m+bu, 0
(e 0) v- (")

Remark 2.1. In order to interpret the biological meaning of =g, we
rewrite it in the following form

Ro=\/,3'/<

It can be seen that a primary case in the human population makes
infectious contacts with mosquitoes at a rate j - % for an expected

Av/n 1 1
Ap/l m+y +m+buy n

. ‘l . . . .
time Ty T and a primary case in the mosquito population
makes infectious contacts with humans at a rate « for an expected
time ;..

Remark 2.2. Observe that R is independent of the parameters p1,
P, and 4. It is easy to see that Ry is increasing in 8, k¥ and A, while it
is decreasing with respect to n, y and Ap,.

From Theorem 2 given in [35], we have the following result re-
garding the stability of Eg.

Theorem 2.2. The disease-free equilibrium Eq of system (1) is locally
asymptotically stable if Ry < 1 and unstable if Ry > 1.

Let E* = (S;. Iy, Ry, Sp. Iy) represent an endemic equilibrium of
system (1). Using the approach in [36],

. _ BL

Ay = N;;

KI¥
and Aj =", (2)
v Nh

wherg Ny =S; +1I; + Ry, then S, Ii, Ry, S and I}, satisfy the following
equations

Ay = A S; — uSt+ (m(1 = p1) + buy (1= p2))I; + 8R; =0, (3a)
ASp— (u+y +m+buy)l; =0, (3b)
(mp1 + buy p2)I; — (u + 8)R; =0, (30)
Ay — AiSE— 1S =0, (3d)

ASSE—nl = 0. (3e)
Solving (3b)-(3e) we obtain:

ASE R — (mpq + buy py) I
w4y +m+buy M Ww+9
A s
A EnT T Gy’

Substituting them into (3a), we get

B

*
h

S

o _ Ap( +8) (1 + ¥ +m+ buy)
P 8) (A Y+ mtbup) + A+ 8) (1 + ) + e (mpy + buzp2)]

Moreover, by (2), we have

= p M (e +8)( +y +m+buy) + AL (1 +8) (U +y) + (mpy + bz )] @)
LTV ) A +8) (U +y +m+buy) + XAy (1 + 8 + mpy + buz ;)
and
The proof is omitted for simplicity. W kAp (e +3)
v

System (1) always has a disease-free equilibrium Ey=
(%’1,0, 0, %,0). Applying the next generation matrix method in
[34,35], we can calculate the basic reproduction number Ry of
system (1) as follows

T (W) (It y +m+buy) + AL (L + 8 + mpy + buzpy)

Substituting A}, into (4), A satisfies the following equation

aq }\,;2 + (12)\2 +a3; =0, (5)
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where
ap = n(+38 +mpy + buz )

x [n(p + 8 +mpy +buyp2) + k(e + )],
ay = n*(u+8)(+y +m+ buy)

" (u+8)(u+y)4/;u(mpl +bu2,02)(G_R%)’
as = N*(+8)* (i +y +m+buy)*(1 - R).

and
_ 2un(p+38 +mpy +buzpy) + puk (1 +9)
nl(u +8) (1 +y) + n(mpy + buz po)]

Note that Ry <1< a3 >0 and Ry < /G < a, > 0. Moveover,
G = 1is equivalent to
mi p(mpy +buypy) L
+ =
Y==K 1 TR =Y
and G is decreasing with respect to y.

Let A(Rg) = a3 — 4a,a3, we have A(v/G) = —4a,a3 and A(1) =
a%. Therefore, when Ry < 1, there is a unique R* € (+/G, 1) such that
A(R*) = 0. Thus, we have the following results on the existence of
equilibria of model (1).

Theorem 2.3.

(1). System (1) always has a disease-free equilibrium Ej,.
(2). When0 <y < y*, we have
(i) if Rg > 1, then system (1) has a unique endemic equilibrium
E*(S; Ii Ry S T
(ii) if Rg < 1, then system (1) has no endemic equilibrium.
(3). When y > y*, we have
(i) if Rg = 1, then system (1) has a unique endemic equilibrium
E*;
(ii) if Rg < v/G < 1, then system (1) has no endemic equilibrium;
(iii) ifV'G < Rg < 1, then we further have
(iii1) when Rg = R*, system (1) also has a unique endemic equilib-
rium E*;
(iii2) when R* <Rg <1, system (1) has two distinct en-
demic equilibria E; (S1 I} R} SV 1)) and Ey (S2, 12, R, S%. 17);

h'h h*h*

where )

i M A1 +8)

" (A8 (A y +me+bup) + AL (1 +8) (1 +y) + pu(mpy +biz )]
i=1,2and

Al_—az—«/Z Az_—a2+\/K'

h= 2a, ' h= 2a4 ’

(iii3) when vG < Rg < R*, system (1) has no endemic equilib-
rium.

Proof. Conclusions (1), (2) and (3)(i) can be easily proved, we hence
omit them. In the following, we give a brief proof for conclusions
(3)(ii) and (3)(iii).

When y > y*, we have v/G < 1. If VG > Rg and Ry < 1, then a,
> 0 and a3 > 0. Hence, Eq. (4) does not have any positive root. Con-
clusion (3)(ii) is proved.

If VG<Rg <1, then there exists a VG <R* <1 such that
A(R*) =0, and A(Rp) <0 when v/G <Ry < R* and A(Rg) > 0
when R* < Rg < 1. It follows that conclusion (3)(iii) holds. O

Remark 2.3. From the expression of G, we know that when y =0

2un(p +8 +mpy 4 buy o) + ke (e + 8)
un(p +38 +mpy + bu p7)

Therefore, Theorem 2.3 shows that a forward (transcritical) bifurca-
tion exhibits in system (1) when y = 0.

G= > 1.

The epidemiological implication of Remark 2.3 is that, if the
disease-induced death rate y is equal to zero, when Ry is less than
unity, a small influx of infected mosquitoes into the population will

not generate a large outbreak, and the disease will die out. Further-
more, the disease will persist when Ry is larger than unity. However,
if y > 0, we will show in the next section that the disease may still
persistevenif Ry < 1.

3. The backward bifurcation

Conclusion (3)(iii) of Theorem 2.3 indicates that a backward bi-
furcation may occur for values of Ry when R* < Ry < 1. Consider

Ro = 1. Let B* be given by
B e 2A,,(/L+y+m+bu2)
’ K LAy

Let Ny(t) =Sy(t) +I,(t), then we have Ny(t) =Ay, — nNy(t).
Therefore, N, (t) — A” as t — oo. Thus, in model (1) we can represent

(6)

Sy(t) by 4z 5 —Iy(t), and system (1) can be reduced to the following
form with four equations:
dSy (¢ SO (t
Boll) gy B 5,0+ m(1 = oo

+buy (1 = p2)In (8) + Ry (£), (7a)
O _ BSOVO g 6)  y10) — (m b (0). - (7b)
h

dR
B _ (mpy + bupo2) 1y (0) — (1 + SRy (0, (70)
O _ (A” - u(r)) WO o). (74)

Theorem 3.1. System (7) exhibits a backward bifurcation at Ry = 1
whenever y > y*.

Proof. Let
I
dsg t(t) =M g (t)ﬂ-fhl,ft()t) if)Rh © 15O +m( = ppl(©)
+bU2(l - ,02)Il1(t) + (SRh(t) = f]7
dl,(t) _ BSp(©)1y(t)

TN (3 BN (o s R A
—yh(©) — (m+ bu) I (6) = fo,

ar = (Mo +buz )l () = (U + Ru(t) = f5.

ity k(5 = L))
dt 7 Sp(t) +1,(t) + Ry (t)

Choosing B8 as a bifurcation parameter. Solving Ry = 1 gives (6). The
Jacobian matrix at the disease-free equilibrium Ey with = B* is

dRy (t)

—nhy(t) 1= fa.

- m(1—py)+buy(1—py) ) -B*
0 —(u+y +m+buy) 0 *
JE) =1 o mpr + by ~(u+8) 0
0 kﬁ‘h/;; 0 -

Hence, its characteristic roots are Aq
Ag=—p—y—m-buy;—1n

Now, we denote by w = (wy, wy, w3, ws)T a right eigenvector cor-
responding to the zero eigenvalue. Then,

W ((_ mp1 +buzpy M+7/>W2’W2’
n+4 "

m,01 + buz oo Ayt T
/L+8 W2,KAhn2W2> .

:—M,)\.ZZ—,U,—(S,)\._Q,:O&HCI

Furthermore, the left eigenvector v = (vq,v;,v3,V4) satisfying
v-w = 1is given by
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—uv; =0,
—(U+ Y + M+ biy)v, + K 48wy =0,
—(u+8)v3 =0,
B*v2 —nvg=0.
Therefore,

KAy
v=|(0, Uy,0,v4 ).
( Am(+y +m+buy) 4)
Using B* given by (6), we obtain

_ Awn
Wy = PR
n(u+y +m+buy)
Vg =

W+y+m+buy+n’

By computing the second-order partial derivatives of f; (i=1,2, 3, 4)
at the disease-free equilibrium Ey, we obtain

2h g B gk
1,01, Ay’ ORI, Ay’
32f4 B Au,uz
35n0lh " pa?
02 f4 Ap? 9%y "

0k, " paZ 0ol Ay

and their cross derivatives are coincide. Moreover,

@ — _2]{14]27/\'1'2 32f2 =1
a2 T a2 LB T
and the other second-order partial derivatives of f; (i=1,2,3,4) at
the disease-free equilibrium E, are equal to zero.
According to coefficients a and b defined in Theorem 4.1 of
Castillo-Chavez and Song [37], it follows that

B 02f; . 02 f; .
a=1 <2W2W423’I,,8L,(E0’ B+ 2W3W4m(50, B)

02 02
+ V4 <2W1W235h£41h(50’ B*) +W5W§4(Em B*)
9% fs . 3% fy .
+2W2W3m(507 B*) + 2W2W4m(50’ B*)
and
b v,

= V2W4W(EO, BH).

Substituting the eigenvectors and the above partial derivatives into a
and b, we obtain

202 (i +y +m+buy) (y

W w38

_ 1ok mp1 + buy pp
" kA(+y +m+buy +1n)

and
b= KAy
A4y +m+buy+1n)°

Obviously, the coefficient b is positive. When y > y*, a is positive.
It follows that model (7) undergoes a backward bifurcation when

y>y* 0O

Remark 3.1. It is interesting to point out that y is a threshold value
not only for the existence of equilibria (Theorem 2.3) but also for the
existence of the backward bifurcation (Theorem 3.1). To the best of
our knowledge, this phenomenon has not been observed in any liter-
ature.

Remark 3.2. The backward bifurcation also provides some informa-
tion on the local stability of the endemic equilibria. For example,
we may obtain that the endemic equilibrium E; is locally asymptot-
ically stable and the endemic equilibrium E; is unstable. In fact, in
Section 5, numerical simulations (see Fig. 6) show that E; is unstable
and E; is locally asymptotically stable.

Remark 3.3. The existence of a backward bifurcation shows that
even if Ry < 1 by some control measures, malaria may still persist.
The control of malaria becomes more difficult when y > y*.

It is worth stating that the sign of a is negative when 0 < y < y*.
Therefore, we have the following result.

Theorem 3.2. When 0 <y < y*,if Ry < 1, then the disease-free equi-
librium Eq of system (7) is locally asymptotically stable, and if Rg > 1,
then the unique endemic equilibrium E* is locally asymptotically stable
and the disease-free equilibrium E is unstable.

Remark 3.4. If the disease-induced death rate satisfies 0 < y < y*,
then the disease can be eradicated as long as the basic reproduction
number Ry is less than unity by some control strategies.

4. Stability of equilibria

Firstly, on the global stability of the disease-free equilibrium, we
have the following result.

Theorem 4.1. If Rg < A, then the disease-free equilibrium Eg of system
(7) is globally asymptotically stable, where

KBy Ay

A=1- .
n?Ap( +y +m+ buy)

Proof. By Theorem 2.2, Ej is locally stable when Rg < 1. Let
Ay
KkpB i

(W+y+m+buy)

Ry =
1 T) An
nty

We notice that Ry = R2 + 1 — A, thus Rq < 1 is equivalent to R3 <
A.If Rq < 1, then there is a sufficiently small constant € > 0 such
that

KB(% +¢)
(2 — &) (U +y +m+ buy)

Let (Sp(t), In(t), Ry(t), I,(t)) be any positive solution of system (7),
then there is a Ty such that

< 1.

Ny(t) < %—i—&‘ forall t>Tj.

Since

Ny (t) = Ap — Ny (£) = Y1 (),
> Ap— (L + V)N, (0),

we conclude that there is a T, > T; such that

—¢ forall

Ap
Ny (t) > t>T.
h()_M+y >T

Consider the following Lyapunov function

V1) =l + 11,

B

Computing the derivative of V(I}, I,) along the solutions of system (7),
we have

V(Ih, Iy) = Iy + %ih,

Sl Snl;

+ Y +m+ buy)ly,
Nh Nh /B(M V Z)h
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Sh
Nj

)Iv,

(8)

Ss 7
(KN—h - B(,u+)/ +m+bu2)>1,,—n<l

Av/n+e n
K—————— — 2 (+y +m+buy) |l
( A/ +y —¢ ,B(M Y 2))h

for all t > T,. Obviously, we have V (I, I,) < 0 for all I, > 0O and I,, > 0.
LetM = {(Sh, Ih’ Rl’l' Iy) . V(Ih, Iy) = 0}, then M C {(Sh’ Ih’ Rh’ Iy) . Ih =
0}. Let NCM be the largest invariant set with respect to system (7)
and let (Sy(t), In(t), Ru(t), I,(t)) be any solution of system (7) in N, then
(Sp(E), In(t), Ry(8), Iy(t)) is defined and bounded on t € R = (—o0, +00).

Since N c {(Sy, I, Ry, Iy) = I, = 0}, we have I;(t) = 0. From (7d), we

IA

obtain
dRy (t)
= = (i + DRy(D),
dly(t)

By solving these two equations, it is obvious that R,(t) = 0 and I,(t) =

0. Furthermore, from (7a), we have
dSp (t)
dt
Hence, S, (t) = %. Thus, we obtain (Sy(t), I(t), Ry(t), Iu(t)) = Ep. This

shows that N = {E,}. By LaSalle’s invariance principle, E, is glob-
ally attractive. Therefore, the disease-free equilibrium Ej is globally
asymptotically stable when R% <A. O

= Ap — USy(0).

In the case of the occurrence of a backward bifurcation in model
(1), the above result shows that in order to eliminate malaria, basic
reproduction number R must be lower than a threshold value A,
and A is strictly less than 1.

In Theorem 4.1, when y = 0, then A = 1. Therefore, we have the
following corollary.

Corollary 4.1. When y = 0 in system (1), if Rg < 1, then the disease-
free equilibrium Eg of system (1) is globally asymptotically stable.

Now we discuss the global stability of the endemic equilibrium.
For system (7),

= {(Sh,lh,Rth) eRYy:

Ap Ay
< — < —
Sh+1+Ry < m I, < 7 }
is a positively invariant set. By Theorem 2.3, there is a unique en-
demic equilibrium in the interior of Q when Ro > 1. We use the ge-
ometric approach to discuss its global stability. However, up to now,
this method is usually applied to three-dimensional systems. In the
following, we expand its application to four-dimensional systems.

Theorem 4.2. If Ry > 1, then the endemic equilibrium of system (7) is
globally asymptotically stable provided that

4 > max {mm + buy py + max{n, y +m+ buy}

(9)

_ g Bnt0)nAy +2pAyy }
nAy — 2BAy

Proof. Firstly, Q is simply connected in R4 and system (7)
has a unique endemic equilibrium in the interior of Q when
Ro > 1. Moreover, the instability of the disease-free equilibrium
(Theorem 2.2) implies the uniform persistence of system (7) (see
[39]), i.e. there exists a constant ¢ > 0 such that any solution x(t, xg) =
(Sp(0). Iy (), Ry (£), I (£)) with xo = (5,(0), I, (0), R, (0), I,(0)) in the
interior of 2 satisfies

min{litm inf Sy, (t), lign infI,,(t), litm inf Ry, (t), litm infl,(t)} > c.

The uniform persistence together with boundedness of Qis equiva-
lent to the existence of a compact absorbing set I in the interior of
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Q (see [40]). Therefore, it remains to find conditions for which the

Bendixson’s criterion can be verified.

The Jacobian matrix J of system (7) is given by:

— = Bl Bz m(1— ) +buz (1= p2) + Bl s

Bl —(W+y +m+buy) - Bl 3y
h h
0 mp; + buy oy
SICRO ORI OE
For a general 4 x 4 matrix
apip Gz 43 Qi
Qp1 G2 O3 Q4
(31 a3y 033 034
Q41 Q42 043 Qag

8+ Bluyls
Bl
—(n+9)

,K(

the second additive compound matrix is given by

ayp +ax a3 a4 —as3 —014
as an +as3 (34 arp 0
ag ag3 Ay + Aag 0 arp
—a3; an 0 ay; + a33 (34
—y 0 ax1 a43 (2 + 44
0 —ay as —ay asy

Hence, the second additive compound matrix J2! of ] is given by

My *,311/,\% & *5*,311/% B
mpy +buyp, My, 0 Qi 0
Q2 -3 Ms3 0 a1
0 ,31”% 0 Mag 0
qs 0 ﬂlv% —q3 Mss
0 q3 0 -2 mp; + buy py
where
Iy Sh
My = —p — Bly — 4y +mabu) - Bl o,
Ny
I, +R
My = —u —,Bluh h—( +4),
I +R I
M3z = - —,31uh h KN*h—U,
h
Myy = —(+y +m+buy) — ﬂlv —(u+38),
Ih
Mss =—(M+V+m+bu2)—,310F -1,
h
I
Mes = —(M+5)—K1\T =1,
h
S
g1 = m(1—py) +buy(1 - p2) + ﬂIvN—"Z,
h
Ay Sh+Rp
q2 =K<n—lu) th ,

P=P(Sy, Iy, Ry, Iy) =

o O O o oFF
o O o oFfF o
o O o ©o o
o O oFfF o o

o O O © o
o O o o o

=8

0

—014

a3

—024

az3

a33 + Q44

0
5,
B

8+ Bl

h

_ﬁ N’!
,}3[1/ 5h
MGG
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where a; and a, are two undetermined positive constants, then the [; norm (see [38]). To calculate the values of g;, we firstly obtain
Ih I iu) that

PP~ ‘—dlug( T T T T
F e atat I
A o1(Qu) = —/«L—ﬁ—”—(u+y+m+buz)—rh,

Let
Q(Sh. Iy Ry, Iy) = PP~ + PJ2Ip~1 01(Q2) = -2 =6 — 71
My — IL —/311/ Sh -6 — ,311/ S” %ﬁ% %ﬂ% 0 Ih iy
mpy + buy py Mzz—* a1 0 0 %ﬂ% 61(%3):_M_n_Kﬁh_E’
0 B My - 0 0 o g Sik I !
_ o PR Maog SN o1(Qu) = (&) Ky -
s Uk Zf,f‘ 0 Ms3 — ¢ G S+ Blls Ny v
0 2 0 g ﬁu% Mss— k=Bl and 1
0w w0 mptbup Me-f Qal =8+ Al [Qul = Bt 2,
2 Nplp
The matrix Q(Sy, Iy, Ry, Iy) can be written in block form: h
(Shr In, R, Iv) |Qu| =0, |Qu1] = mpy + busps.
Qu Qi Qi Qu 0 = 0. [Qaa = ,Bal Snly
Qan Q2 Q23 Qxn 31 =0, 4| =
SnoIn, Ry, Iy) = , 11 a Nply’
Q( hs th> 8h 1/) Q’Sl Q32 Q33 Q34 ( ) 4 | 4 )
Qi Qa2 Qa3 Qua Q31| = & (U_IU>NhI’ Q5] < <U_I)Nhl’
where n S hly n nlv
Iy Sh Sh |Q34 =5+2/31th7 |Qu|=0
Qn =My - I’ Q= (-ﬂlthzv -8 - ,BIUNTZ . N2
A I
_ Snly @ 5h’v) _ Q2| < < b —Iu)h, |Qa3| = mpy + buy 0.
Qi3 = ( IBNhIh az’BNhI . Qu=0, n Nil
S I a .S/ Moreover, from (7b) and (7d), we have
= (Mpy +buzp;.0)", Qus = (*,3 L U) .
Nplp," az"™ Nyly Iy Suly
i T =B — Wty +m+buy),
Op=(M2-n @ o <0 0) I Ny
2= ' i | 3= )
Bl My b 00 and
I A I
T v v h
@l aly\" =K<Iv>
Q31 = (‘bﬁ, %ﬁ) ;o Q= (8 +,31v ,BI,, ) , Ly n Nply
v
Choosing g—; = % then we further have
—qz %2 0 Ms; — ¢ q1
Qs = ( q?)all” @ a21h>s Q33 = (ﬂ[ Ih+R: Mss , 81 < —H+3,
. %2 , _h
il g =—(+8)+y+mQ+p1) +buz(1+ p2),
azlh (121;, r
Qu =0 Q42=(3f,—2 ) 3b 5 s gt Y) In
al a1, 83 < U+ n+38+28 A, "—= KNh
iy ;
= = _ 2t I I
Q43 = (0,mp; +buzz),  Qas = Mg L g4<Il+n+m’01+bu2p2_(u+8)_KNih'
v

. 4
Letz = (21, 2y, 23, Z4, Z5, Zg) denote a vector in R® = R®), we select Let
anormin RS as

B:min{ 3, +8—y —m(1+ p;) = buy(1+ py),
[(z1,22,23, 24,25, 26) | = max{|zi], |za] + |23, |za| + |25], |z6]} (12) s ® y =m(1+p1) = bua (1 + p2)

and lgta(Q) be the Lozinskil measure of Q with respect to the induced w—3n—58— zﬂAv(M + V)7 L+ —n—mp — buz,Oz},
matrix norm | - | in R, defined by nAp
o(Q) = lim -1 from condition (9), we have B > 0and
- h—0+ ’ _ I]/ _
Using a similar argument as in [41], we have the following estimate g1<-b &< b, & < 3* —b, 84 < I —b.
o (Q(Sh, In, Ry, Iv)) < sup{g, 82, 83, 84} Along each solution (Sy(t), Ij(t ), Ru(t), I(t)) of system (7) with initial
where value (S,(0), I(0), R,(0), I,(0)) € ', when t > T we have
g =01(Qu) + |Qui2| + Q| + [Qual, : tg1dsg—b,
0
=01(Q22) + Q1| + Q23] + |Qal. 1t
; gzds < —b,
g =01(Q33) + Q31| + | Q32| + | Q4 5 Lo .
v(t =t —
84 = 01(Qaa) + [Qar| + [Qaz| + Qa3 _/ 83ds < / ds+ ¢ t n L(T) b t
|Qijl (i#j.i,j=1,2,3,4) are matrix norms with respect to the [; d p 1 l L(t) Bt -T
vector norm, and o denotes the Lozinskil measure with respect to 7/ 84ds < 7/ gads+ o In LT ot
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Fig. 2. (a) The forward bifurcation diagram from I, versus g for system (1), when § = 0.002. (b) The backward bifurcation diagram from I, versus  for system (1), when § = 2.7902.
Other parameters are A, = 1000, = 0.014, m = 0.05, p; = 0.78,b = 0.2, u; = 40, p, =0.93, ¥ = 5.8, n = 0.03, A, = 2000, k¥ = 0.4935.

Furthermore, we have

-l t
! /0 o (Q(Sy. Iy, Ry. 1,))ds

t
= -1 (7 3. L(t)
§sup{—b,—b,t/0 g3ds+?lnIU(T)

-t—T 1 (T 1, L(t) -t=T

—bT,?fO gads + ¢ In {05 b=

Therefore,

_ . 1/t -

g =limsupsup — [ o(Q(x(s,%0)))ds < —b < 0.
t—oo  xpel’ tJo

O

In the above analysis, we split Q into a 4 x 4 block matrix. Now,

we can split Q into a 2 x 2 block matrix, then the following theorem

is obtained.

Theorem 4.3. If Ry > 1, then the endemic equilibrium of system (7) is
globally asymptotically stable provided that

Ay (y + m+buy — 8) + BAyy
nAn — BAy '

3n%Ap + 2BAvy  nAIm(1 — py) + buy (1 — p2)] + PAyY (13)
T]Ah — ZﬂAy ’ T]Ah — ﬂAy ’

Proof. Let us split Q = Q(S. I, Ry, I) into blocks with the following
partition

_(Qun Qp
Q_<Q21 sz)’ (14)

where Q;;(i, j = 1.2) are 3 x 3 matrices. We select a norm in RS as

U > max {mpl + buy p,,

[(21.22.23. 24,25, 26) | = max{|z1| + |z2] + |z3]. |z4| + |z5]| + |z6]}-
(15)

According to the discussion given in [41], we have
0 (Q) = sup{gi, &},
where

g1 =01(Qu) +1Qu2l, & =01(Qx) + Q.

In a similar way as in the proof of Theorem 4.2, we can prove that if
inequalities (12) hold, then

t
q = limsupsup < 1/ o (Q(x(s,xg)))ds < 0.
t—oo  xpel t Jo

Therefore, the endemic equilibrium of system (7) is globally asymp-
totically stable. O

The following two examples show that inequalities (9) and (13)
given in Theorems 4.2 and 4.3, respectively, are different from each
other.

Example 4.1. Take A, =1000,8 =0.59, 4 =3.7,m=0.05,p; =
0.78,b=0.2,u, =0.6,0, =093, =04,y =2.8,A, =20,k =
0.4935 and 1 = 0.05. By numerical calculations, we obtain the basic
reproduction number Ry ~ 1.1367 > 1, and inequalities in (9) hold.
However, inequalities in (13) do not hold. Since ﬁ%&w +y+m
+buy, =4.504and & + 6 =4.1.

Example 4.2. In Example 4.1, we keep some parameters unchanged,
and only adjust the value of the recovery rate. Let § = 0.9, by numer-
ical calculations, the basic reproduction number Rg ~ 1.1367 > 1,
and inequalities in (13) hold. However, inequalities in (9) do not hold.
Since3n+ 4§ + Zﬂ%/‘?’) =4.118and u =3.7.

Remark 4.1. From Theorems 4.2 and 4.3, and Examples 4.1 and 4.2,
we can see that by choosing different matrix functions P(x) as in (10),
different matrix divisions as in (11) and (14), and different norms as in
(12) and (15), we can establish different sufficient conditions on the
global stability of the endemic equilibrium of system (7). This shows
that the global stability of system (7) may be very complex.

5. Numerical simulations

In this section, we implement numerical simulations to confirm
the above theoretical analysis and explore more patterns of dynami-
cal behaviors of model (1).

If we increase the value of parameter § and keep the other param-
eters unchanged, by comparing Fig. 2(a) and (b), it is found that some
more complicated dynamical behaviors of system (1) occur. Fixing
8 =0.002, it has a forward bifurcation as shown in Fig. 2(a). How-
ever, fixing § = 2.7902, it has a backward bifurcation as in Fig. 2(b).
Their qualitative difference indicates that the recurrence of the dis-
ease can lead to a backward bifurcation. In addition, with the help
of the MatCont package [42,43], we found a saddle-node bifurcation
point (LP) at 8 = 0.086673 and a branch point (BP) at 8 = 0.902996.
The dashed curve indicates the unstable equilibrium and the solid
curve represents the stable equilibrium in all bifurcation diagrams.

The equilibria of system (1) are entirely determined by these
coefficientes ay, ay, as in (5). Therefore, A, = 1000, u = 0.014, m =
0.05,01 =0.78,b=0.2, =06, p, =093,y =58,7n=0.03,A, =
2000, k = 0.4935, three curves a; = 0, A =0 and a3 = 0 divide the
first quadrant of the u, — § plane into four regions. There are a stable
endemic equilibrium and an unstable disease-free equilibrium in the
area below the line a3 = 0. Other three regions are shown in Fig. 3.

In the following, the number and stability of equilibria are shown
in Fig. 4 when the parameter u, or § changes, respectively. Fig. 4(a)
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Three typical patterns of dynamical behaviors of system (1).

Pattern  Range of u, Steady states of system (1)
(range of Ry)

1 uy > 205.709772 A gloablly stable disease-free equilibrium
(Ro < 0.44269) (see Fig. 5)

2 16.74 < up < 205.709772  Alocally stable disease-free equilibrium, an unstable
(0.44269 <Ry < 1) endemic equilibrium and a locally stable endemic

equilibrium (see Fig. 6)
3 0<u; <16.74 An unstable disease-free equilibrium and a

(Ro > 1)

globally stable endemic equilibrium (see Fig. 7)

20

Fig. 3. For system (1), there is a stable disease-free equilibrium in regions A and B;
there are an unstable endemical equilibrium, a stable endemical equilibrium and an
unstable disease-free equilibrium in region C.

displays the dynamics of system (1) when u; changes, in turn, from
region C, region B to region A; Fig. 4(b) shows that when § changes, in
turn, from region A, region B to region C.

Fig. 4 (a) reflects the role of the treatment in controlling the dis-
ease. The increase of the treatment rate has an influence in eliminat-
ing the disease. However, Fig. 4 also shows that a backward bifurca-
tion occurs in the process of increasing the treatment rate. In Table 2,
three typical patterns of dynamical behavior of system (1) are listed.
As an example, we take a value of the treatment u, corresponding to
each pattern to illustrate the three types of dynamical behaviors of
system (1). The values of all parameters are the same as in Fig. 4.

Firstly, if u, > 205.709772, i.e.,0 < Ry < 0.44269, that is, the
treatment rate is relatively large (or equivalently, the basic repro-
duction number is relatively small), then the disease-free equilib-
rium is the unique steady state and is globally asymptotically sta-
ble. Fig. 5 illustrates this pattern where the treatment rate is chosen
as up = 300(Rg = 0.37398). In Figs. 5-7, blue and red colours denote
stable equilibria, black colour denotes unstable equilibria.

250 w \ ‘ :
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0 50
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U
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250

Secondly, if 16.74 < u, < 205.709772, i.e.,0.44269 < Ry < 1, the
treatment rate becomes a bit smaller, then bistability occurs, where
the stable disease-free equilibrium coexists with a stable endemic
equilibrium. For this pattern, we choose u; = 150(Ry = 0.50681) to
obtain Fig. 6 in which the numerical solutions of system (1) tend to
either the disease-free equilibrium or an endemic equilibrium.

Thirdly, if 0 < u, < 16.74, i.e., Ry > 1, the treatment rate is small
enough, then the unstable disease-free equilibrium coexists with a
stable endemic equilibrium. For this pattern, the treatment rate is
chosen as uy = 10(Rg = 1.08232). As depicted in Fig. 7, all solutions
tend to the endemic equilibrium in this case.

From Figs. 5-7, the numerical simulations show that for larger
values of &, a subcritical transcritical bifurcation occurs at Ry =1
in Fig. 4 (or Fig. 2(b)). Next, the following numerical simulations
(Figs. 8 and 9) will show that for smaller values of §, there is a sup-
critical transcritical bifurcation at Ry = 1 in Fig. 2(a). That is, the in-
crease of the loss rate of immunity for humans induces a backward
bifurcation.

6. Applications to malaria in China

In this section, we first use system (1) to simulate the malaria data
from National Health and Family Planning Commission of the Peo-
ple’s Republic of China (NHFPC, Table 1). Then we examine the cur-
rent control strategies on the elimination of malaria in China.

The definition of malaria elimination is that there is no local trans-
mission for at least three years [49]. Therefore, parameters were es-
timated using two sets of data (indigenous data and death data) in
Table 1 by the least squares method (LSM). This consists of minimiz-
ing the residual sum of squares (RSS)

n
RSS = Y (Y — f(Y,0))%, (16)
i=1
where Y; are observed data and 6 is the parameter to be estimated.
Let observed variables be G(t) and D(t). G(t) serves to keep track of the

180
1701
_.C 1 L
% LP ¢

1501

10

(b)

Fig. 4. Bifurcation diagrams (a) the I, component of equilibria versus the treatment rate u, for system (1) by fixing § = 2.7902; (b) the I, component of equilibria versus the
parameter § for system (1) by fixing u; = 300. Keeping the other parameters the same as those in Fig. 3.
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Fig. 5. System (1) has a globally stable disease-free equilibrium Ey = (7.1429, 0, 0, 6.6667, 0), when § = 2.7902 and u, = 300(Rg = 0.37398)..
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Fig. 6. Choose & =2.7902 and u, = 150(Ry = 0.50681), system (1) has two stable equilibria: a disease-free equilibrium E, and an endemic equilibrium E, =
(739.62, 166.22, 1656.18, 32248.12, 34418.55). The other endemic equilibrium E; = (12578.59, 138.39, 1378.81, 57396.91, 9269.75) is unstable.
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Fig. 7. System (1) has a globally stable endemic equilibrium E* = (11.17, 171.69, 116.27, 6384.54, 60282.13) and an unstable disease-free equilibrium Ey, where § = 2.7902 and

U, = 10(Ry = 1.0823).

cumulative number of human malaria cases and D(t) is the cumula-
tive data of human malaria deaths. Furthermore, refer to system (1),
it is clear that dG/dt = BS (t)I,(t)/N, and dD/dt = y I, (t).

First step: In the absence of concrete estimates, the host recruit-
ment rate Ay, is estimated by using China’s demographic data from
year 2002 to 2013. Assume the demographic equation dN,,/dt = A, —
Ny,. Fixed ;o = 0.00708 year—! by 2008 China Statistical Yearbook
(CSY), the estimated value of A, is 1.6349 x 10”humans x year~! us-
ing LSM by DEDiscover software [50]. It is realistic that the range of
birth population per year from 2002 to 2013 by CSY is [1.584 x 107,
1.647 x 107]. A reasonable match is shown in Fig. 10.

Second step: For the purpose of simulating system (1), we re-
quire knowledge of the initial conditions. The initial values of human

are chosen as follows: S, (0) = 1.2845 x 10°, I,,(0) = 35475 and re-
fer to [47], R,(0) = 0. We assume 0.53 to at most 2 mosquitoes per
people [46], therefore, the size of the mosquito population is [6.8 x
108, 2.569 x 10°]. The initial conditions of S,(0) and I,(0) are esti-
mated as parameters.

Third step: Values or ranges for several of the system parameters
used in system (1) can be obtained from existing studies on malaria.
The duration of the infectious period for humans without treatment
is from 12 to 24 months; however, with treatment, it reduces to 9.5
months [46]. Therefore, the range of m is [1, 2] year—! and u, is %
year—!. According to the decline rate of malaria parasites in clinical
treatment, we estimate that the efficacy of treatment is b = 0.935
[45] and p, = 0.9 [12]. We also assume that the range can vary from
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Fig. 8. System (1) has a globally stable disease-free equilibrium Ey = (7.1429, 0, 0, 6.6667, 0), where § = 0.002 and 8 = 0.8(Ry = 0.9412).
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Fig. 10. Comparisons of the demographic data from the China Statistical Yearbook and
the solution of the demographic equation.

3 months to 50 years for the average duration of the immune period
[46]. Then, the range of § is [0.02, 4] year—!. It is assumed that the
mosquito birth rate is 0.013 per day [48]. Therefore, the recruitment
rate of mosquitoes is [3.2 x 1019, 1.9 x 10"] mosquitoes x year~!.

Finally, under these assumptions, all the unknown parameters are
estimated using LSM by DEdiscover software and the optimal value
of RSS is 0.0199. Table 3 lists the estimates of these parameters and
their corresponding 95% confidence intervals (CI).
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Fig. 9. System (1) has a globally stable endemic equilibrium E* = (7427, 72, 33891, 64799, 1867) and an unstable disease-free equilibrium Eg, where § = 0.002 and 8 = 3(Rg =

Table 3

The system parameter values with 95% CI and p values.
Parameter  Estimated value  95%CI p value
Ay 8.2825 x 10'° 8.2825 x 10'° — 8.2826 x 10° <0.0001
B 0.0087 0.0080-0.0095 <0.0001
8 3.9592 3.9403-3.9782 <0.0001
n 0.1271 0.1249-0.1294 <0.0001
y 0.0029 0.0026-0.0032 <0.0001
K 4.1960 x 10> 5.0948 x 1076 — 7.8826 x 10> 0.0285
m 1.9268 1.8744-1.9792 <0.0001
£1 0.1427 0.1384-0.1470 <0.0001
Sv(0) 9.4712 x 108 9.4711 x 108 — 9.4712 x 108 <0.0001
1,(0) 5.3053 x 108 5.3053 x 106 — 5.3054 x 106 <0.0001

Using some rational assumptions and parameter values in
Table 3, numerical simulations of the cumulative human malaria
cases and cumulative human malaria deaths using system (1) are
shown in Figs. 11 (a) and (b), respectively. The results indicate that
simulations of our system can provide a match to the cumulative data
on indigenous cases and death cases in Mainland China from 2002 to
2013. Furthermore, we estimate that the basic reproduction number
Ro ~ 0.0161 for malaria transmission in China, and y* ~ 0.0095. Our
theoretical analysis shows that malaria can be eliminated in China
in the future. This means that the current malaria elimination action
plans in China are practicable.

7. Discussion

In this paper, we focused on a deterministic system of malaria
transmission with treatment. Nowadays, there is still no licensed
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Fig. 11. (a) The comparison between the cumulative numbers of newly indigenous
cases in Mainland China from 2002 to 2013 and the simulation of our system. (b)The
comparison between the cumulative numbers of human malaria deaths in Mainland
China from 2002 to 2013 and the simulation of our system.

vaccine for preventing malaria. Therefore, in our system, human pop-
ulation is divided into susceptible, infectious and recovered sub-
classes, and mosquito population is split into susceptible and in-
fectious classes. It is founded for malaria that humans who recov-
ered spontaneously or treated may be still susceptible. Therefore, a
malaria system with treatment is developed. The efficacy of treat-
ment is described by the parameter b.

Firstly, we calculated the basic reproduction number Ry and in-
vestigated the existence and stability of equilibria. We can see that
under the conditions in Theorem 2.3 (3)(iii2), the disease-free equi-
librium Ey coexists with two endemic equilibria E; and E,. These
results indicate that a backward bifurcation may occur in system
(1). It is important to seek conditions for the existence of the back-
ward bifurcation. This problem was discussed in Section 3. From
Theorem 3.1, it is found that the disease mortality rate plays a sig-
nificant role in the occurrence of a backward bifurcation. As we all
know, the existence of a backward bifurcation means that the disease
cannot be eradicated by simply reducing the value of basic reproduc-
tion number R below 1. In this case, the disease mortality rate

pk . pu(mps + buapa)

n u+8
is also a key threshold for eradicating malaria. From the expression
of Ry, it is possible that increasing n may be effective in reducing
Ry < 1. However, at the same time, we find that y* will get smaller.
Thus, the condition y > y* easily holds.

Secondly, in general, global stability of equilibria is one of the
most difficult problems in the stability analysis of many classes of
biological models and it is essential in ruling out other scenarios
such as periodic solutions. In Section 4, global stability of the en-
demic equilibrium E* when Ry > 1 is studied by utilizing a gen-
eral approach established in [38]. This method has been used mostly
for three-dimensional systems (see [23,30]). However, we need to
deal with global stability for a four-dimensional system. Sufficient

yi=u+

conditions for the global stability of E* are obtained by choosing the
matrix function P(x) and estimating the Lozinskil measure for a 6 x
6 matrix. Different global stability conditions may be obtained de-
pending on different P(x) and different divisions for the 6 x 6 matrix.
However, numerical simulations show that the same conclusion may
be still reached even if these conditions do not hold.

As an application, we used our system to simulate the reported
human malaria cases in China from 2002 to 2013 (see Fig. 10) and ob-
tained reasonable matches. Malaria elimination in China is still con-
fronted by many difficulties and challenges, that is the increase of
imported Plasmodium falciparum cases and more deaths every year.
More recently, the malaria deaths in 2011 were twice as that of 2010.
For imported malaria, it is typical that African migrant workers who
came from Guangxi province collectively returned to their homes.
This made the number of imported malaria cases up sharply (see
[44]). This indicates that the surveillance on moving population from
malaria endemic areas should be strengthened. In addition, it may
be a better control strategy to strengthen border crossing check-ups
mechanism such as in the frontier regions of Yunnan and Guangxi
provinces.

This work is just a preliminary exploration of global analysis in
a higher dimensional system modelling the transmission dynamics
of malaria between humans and mosquitoes. The nonlinear dynam-
ics of the system deserve further consideration. Also it will be inter-
esting to study the impacts of seasonal and climate changes on the
transmission of malaria in our system. Finally, we are also very con-
cerned about the imported cases, which is affecting the transmission
of malaria now. We leave these for future investigation.
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