
Mathematical Biosciences 266 (2015) 52–64

Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

Stability and backward bifurcation in a malaria transmission model with

applications to the control of malaria in China�

Xiaomei Feng a, Shigui Ruan b, Zhidong Teng c,∗, Kai Wang d

a Department of Mathematics, Yuncheng University, Yuncheng 044000, People’s Republic of China
b Department of Mathematics, University of Miami Coral Gables, FL 33124-4250, USA
c College of Mathematics and System Sciences, Xinjiang University Urumqi 830046, People’s Republic of China
d Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, People’s Republic of China

a r t i c l e i n f o

Article history:

Received 4 September 2014

Revised 14 April 2015

Accepted 12 May 2015

Available online 23 May 2015

Keywords:

Malaria

Backward bifurcation

Lozinskiı̆ measure

Geometric approach

Global stability

a b s t r a c t

In this paper, we consider a deterministic malaria transmission model with standard incidence rate and treat-

ment. Human population is divided into susceptible, infectious and recovered subclasses, and mosquito pop-

ulation is split into susceptible and infectious classes. It is assumed that, among individuals with malaria who

are treated or recovered spontaneously, a proportion moves to the recovered class with temporary immunity

and the other proportion returns to the susceptible class. Firstly, it is shown that two endemic equilibria may

exist when the basic reproduction number R0 < 1 and a unique endemic equilibrium exists if R0 > 1. The

presence of a backward bifurcation implies that it is possible for malaria to persist even if R0 < 1. Secondly,

using geometric method, some sufficient conditions for global stability of the unique endemic equilibrium

are obtained when R0 > 1. To deal with this problem, the estimate of the Lozinskiı̆ measure of a 6 × 6 matrix

is discussed. Finally, numerical simulations are provided to support our theoretical results. The model is also

used to simulate the human malaria data reported by the Chinese Ministry of Health from 2002 to 2013. It

is estimated that the basic reproduction number R0 ≈ 0.0161 for the malaria transmission in China and it is

found that the plan of eliminating malaria in China is practical under the current control strategies.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Malaria, one of the most common infectious diseases, is a major

cause of mortality in the Africa region (see [1]) with a large nega-

tive impact on local economies (see [2]). Increased prevention and

control measures have led to a reduction in malaria mortality rates

by more than 25% globally and by 33% in the World Health Orga-

nization (WHO) African region since 2000 (see [3]). However, ac-

cording to the World Malaria Report 2012, after a rapid expansion

between 2004 and 2009, global funding for malaria prevention and

control leveled off between 2010 and 2012, and progress in the de-

livery of some life-saving commodities have slowed. This means that

many households will be unable to replace existing bed nets when

required, exposing more people to the potentially deadly disease (see

[4]). In 2010, there were about 219 million malaria cases and an es-

timated 660 000 malaria deaths. 90% of all malaria deaths occurred

in the WHO African Region, mostly among children under five years
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f age. In March 2013, WHO Fact Sheet reported that about 3.3 billion

eople – half of the world’s population - are at risk of malaria. The

emocratic Republic of Congo and Nigeria are the most affected

ountries in sub-Saharan Africa, while India is the most affected

ountry in Southeast Asia. In 2011, it was reported that 99 countries

nd territories had ongoing malaria transmission (see [5]).

Malaria has been endemic in China for hundreds of years. It was

aid that Kangxi Emperor of the Qing Dynasty was infected with

alaria in 1692 (see [7]). Before the establishment of the People’s Re-

ublic of China in 1949, there were at least 30 million malaria cases

very year. There were three large malaria outbreaks in 1954, 1960

nd 1970, after the establishment of the People’s Republic of China

see [8]). In the next thirty years, great progresses and outstanding

chievements have been made in controlling and preventing malaria,

nd the number of cases declined rapidly from 24 million in the early

970s to 24,088 in 2000. However, since 2000, there was a resurgence

f malaria in some areas of China. Nearly 77.4% of the total malaria

ases in China were reported in Anhui, Yunnan, Henan, Hubei, and

iangsu provinces (see [9]). In 2006, the Ministry of Health of China

eveloped the “2006–2015 National Malaria Control Program”. In

007, malaria was integrated into the major communicable diseases

rogram subject to free treatment. It was reported that there were

4,098 malaria cases in 2009 which was down 46.6 percent compared
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Table 1

Reported malaria cases in China, 2002–2013 (NHFPC [6]).

Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Confirmed cases 35298 40681 38972 42319 64178 50148 26873 14491 7855 4498 2718 4128

Indigenous cases 31605 37290 32678 32726 55335 44069 22934 11119 4262 1308 182 85

Imported cases 3693 3391 6294 9593 8843 6079 3939 3372 3593 3190 2536 4043

Deaths cases 49 57 32 45 34 14 22 10 14 30 15 20
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ith 2008. This strongly demonstrates that the malaria control ef-

orts are successful. On May 19, 2010, the Ministry of Health of China

urther published the “Action Plans for the Elimination of Malaria

2010 - 2020)”. Table 1 presents the data on malaria cases reported to

isease prevention and control bureau of National Health and Family

lanning Commission (NHFPC [6]) from 2002 to 2013, which indicate

hat the number of malaria infections decreased year after year from

006 to 2012. However, in 2013, the number of cases increased again.

n recent years, along with frequent international exchanges, more

nd more Chinese have traveled to Africa and Southeast Asian areas,

n which malaria is hyperendemic, for business, tourism and work.

s a result, the proportion of imported malaria cases increased every

ear in China. In fact, among the reported 2,451 malaria cases in 2012,

he proportion of imported malaria cases reached 91.1% (see [10]). It

s believed that this phenomenon may lead to the reemergence of

alaria in China.

Malaria is caused by protozoal parasites of the genus Plasmodium.

ive species of Plasmodium that cause disease in humans are Plas-

odium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium

alariae and Plasmodium knowlesi. Female anopheline mosquitoes

ransmit malaria during a blood feed by inoculating microscopic

otile sporozoites, which seek out and invade hepatocytes and then

ultiply (liver stage). After about 7–9 days, the liver schizonts rup-

ure to release merozoites into the blood and clinical symptoms such

s fever, pain, chills and sweats may develop [11]. These merozoites

nvade red blood cells and begin the asexual cycle. Illness starts when

otal asexual parasite numbers in the circulation reach roughly 100

illion. Some parasites develop into sexual forms (blood stage). Ga-

etocytes are taken up by a feeding anopheline mosquito and re-

roduce sexually, forming an ookinete and then an oocyst in the

osquito gut. The oocyst bursts and liberates sporozoites, which mi-

rate to the salivary glands to await inoculation at the next blood feed

mosquito Stage)[12]. The three stages complete the lifecycle of Plas-

odium in the human body and the anopheline mosquito.

There has been a great deal of work about using mathemati-

al models to study malaria transmission (see [15–33] ) since the

eminal papers of Ross [13] and Macdonald [14]. Earlier models

ainly followed the structure of the Ross–Macdonald model involv-

ng infected hosts (humans) and vectors (mosquitoes) (see Macdon-

ld [15], Bailey [16], Aron and May [17], Koella [18], etc). Recently,

gwa and Shu [19] and Ngwa [20] proposed a deterministic com-

artmental model for malaria transmission involving variable human

nd mosquito populations. In their model, human population has a

usceptible-exposed-infectious-recovered-susceptible (SEIRS) struc-

ure, and mosquito population has a SEI structure. Their results sug-

est that a threshold parameter R0 exists and the disease could persist

f and only if R0 > 1. The disease-free equilibrium always exists and

s globally stable when R0 ≤ 1. Chitnis et al. [21] extended the Ngwa

odel when human immigration is considered. When the basic re-

roduction number R0 > 1, the existence of at least one endemic equi-

ibrium point was proved. In the absence of disease-induced death,

hey proved that the transcritical bifurcation at R0 = 1 is supercriti-

al (forward). Numerical simulations showed that for larger values of

he disease-induced death rate, a subcritical (backward) bifurcation

s possible at R0 = 1. Tumwiine et al. [23] studied a malaria trans-

ission model in which some infected humans that recover from

nfection and immune humans after loss of immunity join the sus-
eptible class again. It was shown that the disease-free equilibrium

xists and is globally asymptotically stable if R0 ≤ 1 and disease-free

quilibrium becomes unstable and the endemic equilibrium is glob-

lly asymptotically stable if R0 > 1. Wan and Cui [22] proved mathe-

atically that if the disease-induced death rate is large enough, there

ay be an endemic equilibrium when R0 < 1 and the model under-

oes a backward bifurcation and a saddle-node bifurcation, and the

xistence of a unique endemic equilibrium was proved when R0 > 1.

or other related studies, we refer to Tumwiine et al. [24], Chamchod

nd Britton [25], Vargas-De-León [26], Wang et al. [27], Agusto et al.

28], Okosun et al. [29], Buonomo and Vargas-De-León [30], Ngong-

ala et al. [31], and references cited therein.

Motivated by the above studies, we take a standard infection rate

n modelling malaria transmission. It is generally known that among

he recovered individuals due to the treatment or natural immu-

ity, a portion of them return to the recovered class with tempo-

ary immunity and the other proportion move to the susceptible

lass (see Okosun et al. [29]). Therefore, we divide the total human

opulation, denoted by Nh, into the following subclasses: individ-

als who are susceptible to infection with malaria (Sh), individuals

ith malaria symptoms (Ih), and recovered individuals (Rh). So that

h = Sh + Ih + Rh. The total mosquito population, denoted by Nv, is

ivided into susceptible mosquitoes (Sv) and infectious mosquitoes

Iv). That is, Nv = Sv + Iv.

Susceptible humans are recruited at a rate Ah. They move to the

nfected class by acquiring malaria through contact with infectious

osquitoes at a rate βIv/Nh, where β is the transmission rate per bite

er unit time. The natural death rate of humans is μ. Infectious indi-

iduals are assumed to recover at a rate m + bu2, where m is the rate

f spontaneous recovery, u2 is the control on treatment of infected

ndividuals and b ∈ [0, 1] is the efficacy of treatment. Among the re-

overed naturally, ρ1 portion of them progress to a temporarily im-

une state and the remaining portion immediately become suscep-

ible to re-infection. Similarly, among the recovered due to the treat-

ent control, ρ2 portion of them progress to a temporarily immune

tate and the remaining portion immediately become susceptible to

e-infection. Untreated infected individuals die at a rate γ . Recovered

ndividuals lose immunity at a rate δ and become susceptible again.

Susceptible mosquitoes are generated at a rate Av. They move

o the infected class by acquiring malaria through contact with in-

ected humans at a rate κ Ih/Nh, where κ is the transmission rate for

mosquito to get infected by an infectious human. The death rate of

osquitoes is η. Fig. 1 illustrates the five compartments and model

ariables.

Combining the above described parameters and the flowchart

Fig. 1), we have

dSh(t)

dt
= Ah − βSh(t)Iv(t)

Nh

− μSh(t) + m(1 − ρ1)Ih(t)

+ bu2(1 − ρ2)Ih(t) + δRh(t), (1a)

dIh(t)

dt
= βSh(t)Iv(t)

Nh

−μIh(t) − γ Ih(t) − (m + bu2)Ih(t), (1b)

dRh(t) = (mρ1 + bu2ρ2)Ih(t) − (μ + δ)Rh(t), (1c)

dt
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Human

Sh

Ih

Rh

μSh

Ah

μRh

γIh

δRh

(mρ1 + b u2ρ2)Ihβ ShIv
Nh

m(1 − ρ1)Ih + b u2(1 − ρ2)Ih

μIh

Mosquito

Sv Iv
Av

ηSv ηIv

κSvIh
Nh

Fig. 1. Flowchart of the malaria transmission between mosquitoes and humans.
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dSv(t)

dt
= Av − κSv(t)Ih(t)

Nh

− ηSv(t), (1d)

dIv(t)

dt
= κSv(t)Ih(t)

Nh

− ηIv(t). (1e)

The organization of this paper is as follows. In Section 2, the basic

properties on the positivity and boundedness of solutions, the ba-

sic reproduction number and the existence of an endemic equilib-

rium for the system are discussed. In Section 3, the occurrence of

a backward bifurcation is considered. In Section 4, the stability of

the disease-free equilibrium and endemic equilibrium is studied. In

Section 5, some examples and simulations are given to illustrate the-

oretical results. In Section 6, the system is applied to simulate the

malaria data in China. A brief discussion is given in Section 7.

2. Basic properties

For the malaria transmission system (1) to be epidemiologically

meaningful, it is important to prove that all solutions with non-

negative initial data will remain non-negative for all time.

Theorem 2.1. If initial values Sh(0), Ih(0), Rh(0), Sv(0), Iv(0) are non-

negative, then the solution (Sh(t), Ih(t), Rh(t), Sv(t), Iv(t)) of system (1) is

non-negative for all t ≥ 0. Moreover,

lim sup
t→∞

Nh(t) ≤ Ah

μ
and lim sup

t→∞
Nv(t) ≤ Av

η
.

Furthermore, if Nh(0) ≤ Ah
μ , then Nh(t) ≤ Ah

μ , and if Nv(0) ≤ Av
η , then

Nv(t) ≤ Av
η . In particular, the region

� =
{

(Sh, Ih, Rh, Sv, Iv)

∣∣∣ ∈ R
5
+ : Sh + Ih + Rh ≤ Ah

μ
, Sv + Iv ≤ Av

η

}
is positively invariant.

The proof is omitted for simplicity.

System (1) always has a disease-free equilibrium E0 =
(

Ah
μ , 0, 0, Av

η , 0). Applying the next generation matrix method in

[34,35], we can calculate the basic reproduction number R0 of

system (1) as follows

λ∗
h = β

Avλ∗
v

η(λ∗
v + η)

μ(μ +
Ah
0 = ρ(FV −1) =
√

κβμAv

η2Ah(μ + γ + m + bu2)
,

here

=
(

0 β

κ Avμ
ηAh

0

)
, V =

(
μ + γ + m + bu2 0

0 η

)
.

emark 2.1. In order to interpret the biological meaning of R0, we

ewrite it in the following form

0 =
√

β · κ · Av/η

Ah/μ
· 1

μ + γ + m + bu2

· 1

η
.

t can be seen that a primary case in the human population makes

nfectious contacts with mosquitoes at a rate β · Av/η
Ah/μ for an expected

ime 1
μ+γ +m+bu2

and a primary case in the mosquito population

akes infectious contacts with humans at a rate κ for an expected

ime 1
η .

emark 2.2. Observe that R0 is independent of the parameters ρ1,

2 and δ. It is easy to see that R0 is increasing in β , κ and Av while it

s decreasing with respect to η, γ and Ah.

From Theorem 2 given in [35], we have the following result re-

arding the stability of E0.

heorem 2.2. The disease-free equilibrium E0 of system (1) is locally

symptotically stable if R0 < 1 and unstable if R0 > 1.

Let E∗ = (S∗
h
, I∗

h
, R∗

h
, S∗

v, I∗v ) represent an endemic equilibrium of

ystem (1). Using the approach in [36],

∗
h = βI∗v

N∗
h

and λ∗
v = κ I∗

h

N∗
h

, (2)

here N∗
h

= S∗
h

+ I∗
h

+ R∗
h
, then S∗

h
, I∗

h
, R∗

h
, S∗

v and I∗v satisfy the following

quations

Ah − λ∗
h
S∗

h
− μS∗

h
+ (m(1 − ρ1) + bu2(1 − ρ2))I∗

h
+ δR∗

h
= 0, (3a)

∗
hS∗

h − (μ + γ + m + bu2)I∗h = 0, (3b)

(mρ1 + bu2ρ2)I∗h − (μ + δ)R∗
h = 0, (3c)

v − λ∗
vS∗

v − ηS∗
v = 0, (3d)

∗
vS∗

v − ηI∗v = 0. (3e)

olving (3b)–(3e) we obtain:

I∗h = λ∗
h
S∗

h

μ + γ + m + bu2

, R∗
h = (mρ1 + bu2ρ2)I∗

h

μ + δ
,

S∗
v = Av

λ∗
v + η

, I∗v = Avλ∗
v

η(λ∗
v + η)

.

ubstituting them into (3a), we get

∗
h = Ah(μ + δ)(μ + γ + m + bu2)

μ(μ + δ)(μ + γ + m + bu2) + λ∗
h
[(μ + δ)(μ + γ ) + μ(mρ1 + bu2ρ2)]

.

Moreover, by (2), we have

+ γ + m + bu2) + λ∗
h
[(μ + δ)(μ + γ ) + μ(mρ1 + bu2ρ2)]

δ)(μ + γ + m + bu2) + λ∗
h
Ah(μ + δ + mρ1 + bu2ρ2)

(4)

nd

∗
v = κλ∗

h
(μ + δ)

(μ + δ)(μ + γ + m + bu2) + λ∗
h
(μ + δ + mρ1 + bu2ρ2)

.

ubstituting λ∗
v into (4), λ∗

h
satisfies the following equation

1λ
∗2 + a2λ

∗ + a3 = 0, (5)
h h
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here

1 = η(μ + δ + mρ1 + bu2ρ2)

× [η(μ + δ + mρ1 + bu2ρ2) + κ(μ + δ)],

2 = η2(μ + δ)(μ + γ + m + bu2)

× (μ + δ)(μ + γ ) + μ(mρ1 + bu2ρ2)

μ
(G − R2

0),

3 = η2(μ + δ)2(μ + γ + m + bu2)
2(1 − R2

0),

nd

= 2μη(μ + δ + mρ1 + bu2ρ2) + μκ(μ + δ)

η[(μ + δ)(μ + γ ) + μ(mρ1 + bu2ρ2)]
.

Note that R0 < 1 ⇔ a3 > 0 and R0 <
√

G ⇔ a2 > 0. Moveover,

= 1 is equivalent to

= μ + μκ

η
+ μ(mρ1 + bu2ρ2)

μ + δ
:= γ ∗,

nd G is decreasing with respect to γ .

Let 
(R0) = a2
2

− 4a1a3, we have 
(
√

G) = −4a1a3 and 
(1) =
2
2
. Therefore, when R0 < 1, there is a unique R∗ ∈ (

√
G, 1) such that

(R∗) = 0. Thus, we have the following results on the existence of

quilibria of model (1).

heorem 2.3.

(1). System (1) always has a disease-free equilibrium E0.

(2). When 0 ≤ γ ≤ γ ∗, we have

(i) if R0 > 1, then system (1) has a unique endemic equilibrium

E∗(S∗
h
, I∗

h
, R∗

h
, S∗

v, I∗v );

(ii) if R0 ≤ 1, then system (1) has no endemic equilibrium.

(3). When γ > γ ∗, we have

(i) if R0 ≥ 1, then system (1) has a unique endemic equilibrium

E∗;

(ii) if R0 <
√

G < 1, then system (1) has no endemic equilibrium;

(iii) if
√

G ≤ R0 < 1, then we further have

(iii1) when R0 = R∗, system (1) also has a unique endemic equilib-

rium E∗;
(iii2) when R∗ < R0 < 1, system (1) has two distinct en-

demic equilibria E1(S1
h
, I1

h
, R1

h
, S1

v , I1
v ) and E2(S2

h
, I2

h
, R2

h
, S2

v , I2
v );

where

Ii
h = λi

h
Ah(μ+ δ)

μ(μ+ δ)(μ+γ + m + bu2)+λi
h
[(μ+ δ)(μ+γ )+μ(mρ1 + bu2ρ2)]

,

i = 1, 2 and

λ1
h = −a2 −

√



2a1

, λ2
h = −a2 +

√



2a1

;
(iii3) when

√
G ≤ R0 < R∗, system (1) has no endemic equilib-

rium.

roof. Conclusions (1), (2) and (3)(i) can be easily proved, we hence

mit them. In the following, we give a brief proof for conclusions

3)(ii) and (3)(iii).

When γ > γ ∗, we have
√

G < 1. If
√

G > R0 and R0 < 1, then a2

0 and a3 > 0. Hence, Eq. (4) does not have any positive root. Con-

lusion (3)(ii) is proved.

If
√

G < R0 < 1, then there exists a
√

G < R∗ < 1 such that

(R∗) = 0, and 
(R0) < 0 when
√

G < R0 < R∗ and 
(R0) > 0

hen R∗ < R0 < 1. It follows that conclusion (3)(iii) holds. �

emark 2.3. From the expression of G, we know that when γ = 0

= 2μη(μ + δ + mρ1 + bu2ρ2) + μκ(μ + δ)

μη(μ + δ + mρ1 + bu2ρ2)
> 1.

herefore, Theorem 2.3 shows that a forward (transcritical) bifurca-

ion exhibits in system (1) when γ = 0.

The epidemiological implication of Remark 2.3 is that, if the

isease-induced death rate γ is equal to zero, when R0 is less than

nity, a small influx of infected mosquitoes into the population will
ot generate a large outbreak, and the disease will die out. Further-

ore, the disease will persist when R0 is larger than unity. However,

f γ > 0, we will show in the next section that the disease may still

ersist even if R0 < 1.

. The backward bifurcation

Conclusion (3)(iii) of Theorem 2.3 indicates that a backward bi-

urcation may occur for values of R0 when R∗ < R0 < 1. Consider

0 = 1. Let β∗ be given by

∗ := η2Ah(μ + γ + m + bu2)

κμAv
. (6)

Let Nv(t) = Sv(t) + Iv(t), then we have Ṅv(t) = Av − ηNv(t).

herefore, Nv(t) → Av
η as t → ∞. Thus, in model (1) we can represent

v(t) by Av
η − Iv(t), and system (1) can be reduced to the following

orm with four equations:

dSh(t)

dt
= Ah − βSh(t)Iv(t)

Nh

− μSh(t) + m(1 − ρ1)Ih(t)

+ bu2(1 − ρ2)Ih(t) + δRh(t), (7a)

dIh(t)

dt
= βSh(t)Iv(t)

Nh

− μIh(t) − γ Ih(t) − (m + bu2)Ih(t), (7b)

dRh(t)

dt
= (mρ1 + bu2ρ2)Ih(t) − (μ + δ)Rh(t), (7c)

dIv(t)

dt
= κ

(
Av

η
− Iv(t)

)
Ih(t)

Nh

− ηIv(t). (7d)

heorem 3.1. System (7) exhibits a backward bifurcation at R0 = 1

henever γ > γ ∗.

roof. Let

dSh(t)

dt
= Ah − βSh(t)Iv(t)

Sh(t) + Ih(t) + Rh(t)
− μSh(t) + m(1 − ρ1)Ih(t)

+ bu2(1 − ρ2)Ih(t) + δRh(t) := f1,

dIh(t)

dt
= βSh(t)Iv(t)

Sh(t) + Ih(t) + Rh(t)
− μIh(t)

−γ Ih(t) − (m + bu2)Ih(t) := f2,

dRh(t)

dt
= (mρ1 + bu2ρ2)Ih(t) − (μ + δ)Rh(t) := f3,

dIv(t)

dt
=

κ
(

Av
η − Iv(t)

)
Ih(t)

Sh(t) + Ih(t) + Rh(t)
− ηIv(t) := f4.

hoosing β as a bifurcation parameter. Solving R0 = 1 gives (6). The

acobian matrix at the disease-free equilibrium E0 with β = β∗ is

(E0) =

⎛⎜⎝−μ m(1 − ρ1) + bu2(1 − ρ2) δ −β∗

0 −(μ + γ + m + bu2) 0 β∗

0 mρ1 + bu2ρ2 −(μ + δ) 0

0 k Avμ
Ahη

0 −η

⎞⎟⎠.

ence, its characteristic roots are λ1 = −μ,λ2 = −μ − δ, λ3 = 0 and

4 = −μ − γ − m − bu2 − η.

Now, we denote by w = (w1, w2, w3, w4)T a right eigenvector cor-

esponding to the zero eigenvalue. Then,

=
((

− mρ1 + bu2ρ2

μ + δ
− μ + γ

μ

)
w2, w2,

× mρ1 + bu2ρ2

μ + δ
w2, κ

Avμ

Ahη2
w2

)
T .

urthermore, the left eigenvector v = (v1, v2, v3, v4) satisfying

· w = 1 is given by
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
−μv1 = 0,

−(μ + γ + m + bu2)v2 + κ Avμ
Ahη

v4 = 0,

−(μ + δ)v3 = 0,

β∗v2 − η v4 = 0.

Therefore,

v =
(

0,
κAvμ

Ahη(μ + γ + m + bu2)
v4, 0, v4

)
.

Using β∗ given by (6), we obtain

w2 = Ahη

κAvμ
,

v4 = η(μ + γ + m + bu2)

μ + γ + m + bu2 + η
.

By computing the second-order partial derivatives of fi (i = 1, 2, 3, 4)

at the disease-free equilibrium E0, we obtain

∂2 f2

∂ Ih∂ Iv
= −β

μ

Ah

,
∂2 f2

∂Rh∂ Iv
= −β

μ

Ah

,

∂2 f4

∂Sh∂ Ih
= −κ

Avμ2

ηAh
2

,

∂2 f4

∂ Ih∂Rh

= −κ
Avμ2

ηAh
2

,
∂2 f4

∂ Ih∂ Iv
= −κ

μ

Ah

,

and their cross derivatives are coincide. Moreover,

∂2 f4

∂ I2
h

= −2k
Avμ2

ηAh
2

,
∂2 f2

∂ Iv∂β
= 1,

and the other second-order partial derivatives of fi (i = 1, 2, 3, 4) at

the disease-free equilibrium E0 are equal to zero.

According to coefficients a and b defined in Theorem 4.1 of

Castillo-Chavez and Song [37], it follows that

a = v2

(
2w2w4

∂2 f2

∂ Ih∂ Iv
(E0, β∗) + 2w3w4

∂2 f2

∂Rh∂ Iv
(E0, β∗)

)
+ v4

(
2w1w2

∂2 f4

∂Sh∂ Ih
(E0, β∗) + w2

2

∂2 f4

∂ I2
h

(E0, β∗)

+ 2w2w3
∂2 f4

∂ Ih∂Rh

(E0, β∗) + 2w2w4
∂2 f4

∂ Ih∂ Iv
(E0, β∗)

)
and

b = v2w4
∂2 f2

∂ Iv∂b
(E0, β∗).

Substituting the eigenvectors and the above partial derivatives into a

and b, we obtain

a = 2η2(μ + γ + m + bu2)

κAv(μ + γ + m + bu2 + η)

(
γ

μ
− 1 − κ

η
− mρ1 + bu2ρ2

μ + δ

)
and

b = κAvμ

Ahη(μ + γ + m + bu2 + η)
.

Obviously, the coefficient b is positive. When γ > γ ∗, a is positive.

It follows that model (7) undergoes a backward bifurcation when

γ > γ ∗. �

Remark 3.1. It is interesting to point out that γ is a threshold value

not only for the existence of equilibria (Theorem 2.3) but also for the

existence of the backward bifurcation (Theorem 3.1). To the best of

our knowledge, this phenomenon has not been observed in any liter-

ature.
emark 3.2. The backward bifurcation also provides some informa-

ion on the local stability of the endemic equilibria. For example,

e may obtain that the endemic equilibrium E2 is locally asymptot-

cally stable and the endemic equilibrium E1 is unstable. In fact, in

ection 5, numerical simulations (see Fig. 6) show that E1 is unstable

nd E2 is locally asymptotically stable.

emark 3.3. The existence of a backward bifurcation shows that

ven if R0 < 1 by some control measures, malaria may still persist.

he control of malaria becomes more difficult when γ > γ ∗.

It is worth stating that the sign of a is negative when 0 ≤ γ ≤ γ ∗.

herefore, we have the following result.

heorem 3.2. When 0 ≤ γ ≤ γ ∗, if R0 < 1, then the disease-free equi-

ibrium E0 of system (7) is locally asymptotically stable, and if R0 > 1,

hen the unique endemic equilibrium E∗ is locally asymptotically stable

nd the disease-free equilibrium E0 is unstable.

emark 3.4. If the disease-induced death rate satisfies 0 ≤ γ ≤ γ ∗,

hen the disease can be eradicated as long as the basic reproduction

umber R0 is less than unity by some control strategies.

. Stability of equilibria

Firstly, on the global stability of the disease-free equilibrium, we

ave the following result.

heorem 4.1. If R2
0

< �, then the disease-free equilibrium E0 of system

7) is globally asymptotically stable, where

= 1 − κβγ Av

η2Ah(μ + γ + m + bu2)
.

roof. By Theorem 2.2, E0 is locally stable when R0 < 1. Let

1 =
κβ Av

η

η Ah

μ+γ (μ + γ + m + bu2)
.

e notice that R1 = R2
0

+ 1 − �, thus R1 < 1 is equivalent to R2
0

<

. If R1 < 1, then there is a sufficiently small constant ε > 0 such

hat

κβ
(

Av
η + ε

)
η
(

Ah

μ+γ − ε
)
(μ + γ + m + bu2)

< 1.

Let (Sh(t), Ih(t), Rh(t), Iv(t)) be any positive solution of system (7),

hen there is a T1 such that

v(t) ≤ Av

η
+ ε for all t ≥ T1.

ince

˙
h(t) = Ah − μNh(t) − γ Ih(t),

≥ Ah − (μ + γ )Nh(t),

e conclude that there is a T2 > T1 such that

h(t) ≥ Ah

μ + γ
− ε for all t ≥ T2.

onsider the following Lyapunov function

(Ih, Iv) = Iv + η

β
Ih.

omputing the derivative of V(Ih, Iv) along the solutions of system (7),

e have

˙ (Ih, Iv) = İv + η

β
İh,

= κ
SvIh
N

− ηIv + η
ShIv

N
− η

β
(μ + γ + m + bu2)Ih,
h h
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=
(
κ

Sv

Nh

− η

β
(μ + γ + m + bu2)

)
Ih − η

(
1 − Sh

Nh

)
Iv,

≤
(

κ
Av/η + ε

Ah/μ + γ − ε
− η

β
(μ + γ + m + bu2)

)
Ih (8)

or all t ≥ T2. Obviously, we have V̇ (Ih, Iv) ≤ 0 for all Ih ≥ 0 and Iv ≥ 0.

et M = {(Sh, Ih, Rh, Iv) : V̇ (Ih, Iv) = 0}, then M ⊂ {(Sh, Ih, Rh, Iv) : Ih =
}. Let N⊂M be the largest invariant set with respect to system (7)

nd let (Sh(t), Ih(t), Rh(t), Iv(t)) be any solution of system (7) in N, then

Sh(t), Ih(t), Rh(t), Iv(t)) is defined and bounded on t ∈ R = (−∞, +∞).

Since N ⊂ {(Sh, Ih, Rh, Iv) : Ih = 0}, we have Ih(t) ≡ 0. From (7d), we

btain

dRh(t)

dt
= −(μ + δ)Rh(t),

dIv(t)

dt
= −ηIv(t).

y solving these two equations, it is obvious that Rh(t) ≡ 0 and Iv(t) ≡
. Furthermore, from (7a), we have

dSh(t)

dt
= Ah − μSh(t).

ence, Sh(t) ≡ Ah
μ . Thus, we obtain (Sh(t), Ih(t), Rh(t), Iv(t)) ≡ E0. This

hows that N ≡ {E0}. By LaSalle
′
s invariance principle, E0 is glob-

lly attractive. Therefore, the disease-free equilibrium E0 is globally

symptotically stable when R2
0 < �. �

In the case of the occurrence of a backward bifurcation in model

1), the above result shows that in order to eliminate malaria, basic

eproduction number R0 must be lower than a threshold value �,

nd � is strictly less than 1.

In Theorem 4.1, when γ = 0, then � = 1. Therefore, we have the

ollowing corollary.

orollary 4.1. When γ = 0 in system (1), if R0 < 1, then the disease-

ree equilibrium E0 of system (1) is globally asymptotically stable.

Now we discuss the global stability of the endemic equilibrium.

or system (7),

˜ =
{

(Sh, Ih, Rh, Iv)

∣∣∣ ∈ R
4
+ : Sh + Ih + Rh ≤ Ah

μ
, Iv ≤ Av

η

}
s a positively invariant set. By Theorem 2.3, there is a unique en-

emic equilibrium in the interior of �̃ when R0 > 1. We use the ge-

metric approach to discuss its global stability. However, up to now,

his method is usually applied to three-dimensional systems. In the

ollowing, we expand its application to four-dimensional systems.

heorem 4.2. If R0 > 1, then the endemic equilibrium of system (7) is

lobally asymptotically stable provided that

μ > max

{
mρ1 + bu2ρ2 + max{η, γ + m + bu2}

− δ,
(3η + δ)ηAh + 2βAvγ

ηAh − 2βAv

}
. (9)

roof. Firstly, �̃ is simply connected in R4 and system (7)

as a unique endemic equilibrium in the interior of �̃ when

0 > 1. Moreover, the instability of the disease-free equilibrium

Theorem 2.2) implies the uniform persistence of system (7) (see

39]), i.e. there exists a constant c > 0 such that any solution x(t, x0) =
(Sh(t), Ih(t), Rh(t), Iv(t)) with x0 = (Sh(0), Ih(0), Rh(0), Iv(0)) in the

nterior of �̃ satisfies

in{lim inf
t→∞

Sh(t), lim inf
t→∞

Ih(t), lim inf
t→∞

Rh(t), lim inf
t→∞

Iv(t)} > c.

he uniform persistence together with boundedness of �̃ is equiva-

ent to the existence of a compact absorbing set � in the interior of
˜ (see [40]). Therefore, it remains to find conditions for which the

endixson’s criterion can be verified.

The Jacobian matrix J of system (7) is given by:

−μ−βIv
Ih + Rh

Nh
2 m(1−ρ1)+bu2(1−ρ2)+βIv

Sh

Nh
2 δ +βIv

Sh

Nh
2 −β Sh

Nh

βIv
Ih + Rh

Nh
2 − (μ+γ + m + bu2)−βIv

Sh

Nh
2 −βIv

Sh

Nh
2 β Sh

Nh

0 mρ1 + bu2ρ2 − (μ+ δ) 0

−κ
(

Av
η − Iv

)
Ih

Nh
2 κ

(
Av
η − Iv

)
Sh + Rh

Nh
2 −κ

(
Av
η − Iv

)
Ih

Nh
2 −κ Ih

Nh
−η

⎞⎟⎟⎠.

or a general 4 × 4 matrix

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞⎟⎠
he second additive compound matrix is given by

a11 + a22 a23 a24 −a13 −a14 0
a32 a11 + a33 a34 a12 0 −a14

a42 a43 a11 + a44 0 a12 a13

−a31 a21 0 a22 + a33 a34 −a24

−a41 0 a21 a43 a22 + a44 a23

0 −a41 a31 −a42 a32 a33 + a44

⎞⎟⎟⎟⎟⎠.

ence, the second additive compound matrix J[2] of J is given by

M11 −βIv
Sh

Nh
2 β Sh

Nh
−δ − βIv

Sh

Nh
2 β Sh

Nh
0

mρ1 + bu2ρ2 M22 0 q1 0 β Sh

Nh

q2 −q3 M33 0 q1 δ + βIv
Sh

Nh
2

0 βIv
Ih+Rh

Nh
2 0 M44 0 −β Sh

Nh

q3 0 βIv
Ih+Rh

Nh
2 −q3 M55 −βIv

Sh

Nh
2

0 q3 0 −q2 mρ1 + bu2ρ2 M66

⎞⎟⎟⎟⎟⎟⎟⎠.

here

M11 = −μ − βIv
Ih + Rh

Nh
2

− (μ + γ + m + bu2) − βIv
Sh

Nh
2
,

22 = −μ − βIv
Ih + Rh

Nh
2

− (μ + δ),

M33 = −μ − βIv
Ih + Rh

Nh
2

− κ
Ih
Nh

− η,

44 = −(μ + γ + m + bu2) − βIv
Sh

Nh
2

− (μ + δ),

55 = −(μ + γ + m + bu2) − βIv
Sh

Nh
2

− κ
Ih
Nh

− η,

66 = −(μ + δ) − κ
Ih
Nh

− η,

q1 = m(1 − ρ1) + bu2(1 − ρ2) + βIv
Sh

Nh
2
,

q2 = κ

(
Av

η
− Iv

)
Sh + Rh

Nh
2

,

q3 = κ

(
Av

η
− Iv

)
Ih

Nh
2
.

et

= P(Sh, Ih, Rh, Iv) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a1

Ih
0 0 0 0 0

0 a1

Ih
0 0 0 0

0 0 0 a1

Ih
0 0

0 0 a2

Iv
0 0 0

0 0 0 0 a2

Iv
0

0 0 0 0 0 a2

Iv

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (10)
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where a1 and a2 are two undetermined positive constants, then

Pf P−1 = diag

(
− İh

Ih
,− İh

Ih
, − İh

Ih
,− İv

Iv
,− İv

Iv
,− İv

Iv

)
.

Let

Q(Sh, Ih, Rh, Iv) = Pf P−1 + PJ[2]P−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M11 − İh
Ih

−βIv
Sh

Nh
2 −δ − βIv

Sh

Nh
2

a1

a2
β ShIv

NhIh

a1

a2
β ShIv

NhIh
0

mρ1 + bu2ρ2 M22 − İh
Ih

q1 0 0 a1

a2
β ShIv

NhIh

0 βIv
Ih+Rh

Nh
2 M44 − İh

Ih
0 0 a1

a2
β ShIv

NhIh

q2
a2 Ih
a1 Iv

−q3
a2 Ih
a1 Iv

0 M33 − İv
Iv

q1 δ + βIv
Sh

Nh
2

q3
a2 Ih
a1 Iv

0 −q3
a2 Ih
a1 Iv

βIv
Ih+Rh

Nh
2 M55 − İv

Iv
−βIv

Sh

Nh
2

0 q3
a2 Ih
a1 Iv

−q2
a2 Ih
a1 Iv

0 mρ1 + bu2ρ2 M66 − İv
Iv

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix Q(Sh, Ih, Rh, Iv) can be written in block form:

Q(Sh, Ih, Rh, Iv) =

⎛⎜⎝Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44

⎞⎟⎠, (11)

where

Q11 = M11 − İh
Ih

, Q12 =
(

−βIv
Sh

Nh
2
,−δ − βIv

Sh

Nh
2

)
,

Q13 =
(

a1

a2

β
ShIv

NhIh
,

a1

a2

β
ShIv

NhIh

)
, Q14 = 0,

Q21 = (mρ1 + bu2ρ2, 0)T , Q24 =
(

a1

a2

β
ShIv

NhIh
,

a1

a2

β
ShIv

NhIh

)T

,

Q22 =
(

M22 − İh
Ih

q1

βIv
Ih+Rh

Nh
2 M44 − İh

Ih

)
, Q23 =

(
0 0
0 0

)
,

Q31 =
(

q2
a2Ih
a1Iv

, q3
a2Ih
a1Iv

)T

, Q34 =
(

δ + βIv
Sh

Nh
2
,−βIv

Sh

Nh
2

)T

,

Q32 =
(

−q3
a2Ih
a1Iv

0

0 −q3
a2Ih
a1Iv

)
, Q33 =

(
M33 − İv

Iv
q1

βIv
Ih+Rh

Nh
2 M55 − İv

Iv

)
,

Q41 = 0, Q42 =
(

q3
a2Ih
a1Iv

,−q2
a2Ih
a1Iv

)
,

Q43 = (0, mρ1 + bu2ρ2), Q44 = M66 − İv

Iv
.

Let z = (z1, z2, z3, z4, z5, z6) denote a vector in R6 ∼= R(4
2), we select

a norm in R6 as

|(z1, z2, z3, z4, z5, z6)| = max{|z1|, |z2| + |z3|, |z4| + |z5|, |z6|} (12)

and let σ (Q) be the Lozinskiı̆ measure of Q with respect to the induced

matrix norm | · | in R6, defined by

σ (Q ) = lim
h→0+

|I + hQ| − 1

h
.

Using a similar argument as in [41], we have the following estimate

σ (Q(Sh, Ih, Rh, Iv)) ≤ sup{g1, g2, g3, g4},
where

g1 = σ1(Q11) + |Q12| + |Q13| + |Q14|,
g2 = σ1(Q22) + |Q21| + |Q23| + |Q24|,
g3 = σ1(Q33) + |Q31| + |Q32| + |Q34|,
g4 = σ1(Q44) + |Q41| + |Q42| + |Q43|,
|Qi j| (i �= j, i, j = 1, 2, 3, 4) are matrix norms with respect to the l1
vector norm, and σ denotes the Lozinskiı̆ measure with respect to
1
he l1 norm (see [38]). To calculate the values of gi, we firstly obtain

hat

σ1(Q11) = −μ − β
Iv

Nh

− (μ + γ + m + bu2) − İh
Ih

,

σ1(Q22) = −2μ − δ − İh
Ih

,

σ1(Q33) = −μ − η − κ
Ih
Nh

− İv

Iv
,

1(Q44) = −(μ + δ) − κ
Ih
Nh

− η − İv

Iv
,

nd

|Q12| = δ + βIv
Sh

Nh
2
, |Q13| = β

a1

a2

ShIv

NhIh
,

|Q14| = 0, |Q21| = mρ1 + bu2ρ2,

|Q23| = 0, |Q24| = 2β
a1

a2

ShIv

NhIh
,

|Q31| = κ
a2

a1

(
Av

η
− Iv

)
Ih

NhIv
, |Q32| < κ

a2

a1

(
Av

η
− Iv

)
Ih

NhIv
,

|Q34| = δ + 2βIv
Sh

Nh
2
, |Q41| = 0,

|Q42| < κ
a2

a1

(
Av

η
− Iv

)
Ih

NhIv
, |Q43| = mρ1 + bu2ρ2.

oreover, from (7b) and (7d), we have

İh
Ih

= β
ShIv

NhIh
− (μ + γ + m + bu2),

nd

İv

Iv
= κ

(
Av

η
− Iv

)
Ih

NhIv
− η.

hoosing
a1
a2

= 1
2 , then we further have

g1 < −μ + δ,

g2 = −(μ + δ) + γ + m(1 + ρ1) + bu2(1 + ρ2),

g3 < 3
İv

Iv
+ 3η + δ + 2β

Av(μ + γ )

ηAh

− μ − κ
Ih
Nh

,

g4 <
İv

Iv
+ η + mρ1 + bu2ρ2 − (μ + δ) − κ

Ih
Nh

.

et

¯ = min

{
μ − δ, μ + δ − γ − m(1 + ρ1) − bu2(1 + ρ2),

μ − 3η − δ − 2β
Av(μ + γ )

ηAh

, μ + δ − η − mρ1 − bu2ρ2

}
,

rom condition (9), we have b̄ > 0 and

1 ≤ −b̄, g2 ≤ −b̄, g3 < 3
İv

Iv
− b̄, g4 <

İv

Iv
− b̄.

long each solution (Sh(t), Ih(t), Rh(t), Iv(t)) of system (7) with initial

alue (Sh(0), Ih(0), Rh(0), Iv(0)) ∈ �, when t > T we have

1

t

∫ t

0

g1ds ≤ −b̄,

1

t

∫ t

0

g2ds ≤ −b̄,

1

t

∫ t

0

g3ds <
1

t

∫ T

0

g3ds + 3

t
ln

Iv(t)

Iv(T )
− b̄

t − T

t
,

1

t

∫ t

g4ds <
1

t

∫ T

g4ds + 1

t
ln

Iv(t)

Iv(T )
− b̄

t − T

t
.

0 0
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Fig. 2. (a) The forward bifurcation diagram from Ih versus β for system (1), when δ = 0.002. (b) The backward bifurcation diagram from Ih versus β for system (1), when δ = 2.7902.

Other parameters are Ah = 1000,μ = 0.014, m = 0.05, ρ1 = 0.78, b = 0.2, u2 = 40, ρ2 = 0.93, γ = 5.8, η = 0.03, Av = 2000, κ = 0.4935.
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urthermore, we have

1

t

∫ t

0

σ (Q(Sh, Ih, Rh, Iv))ds

≤ sup

{
− b̄,−b̄,

1

t

∫ T

0

g3ds + 3

t
ln

Iv(t)

Iv(T )

− b̄
t − T

t
,

1

t

∫ T

0

g4ds + 1

t
ln

Iv(t)

Iv(T )
− b̄

t − T

t

}
.

herefore,

= lim sup
t→∞

sup
x0∈�

1

t

∫ t

0

σ (Q(x(s, x0)))ds ≤ −b̄ < 0.

�
In the above analysis, we split Q into a 4 × 4 block matrix. Now,

e can split Q into a 2 × 2 block matrix, then the following theorem

s obtained.

heorem 4.3. If R0 > 1, then the endemic equilibrium of system (7) is

lobally asymptotically stable provided that

μ > max

{
mρ1 + bu2ρ2,

ηAh(γ + m + bu2 − δ) + βAvγ

ηAh − βAv
,

3η2Ah + 2βAvγ

ηAh − 2βAv
,
ηAh[m(1 − ρ1) + bu2(1 − ρ2)] + βAvγ

ηAh − βAv

}
. (13)

roof. Let us split Q = Q(Sh, Ih, Rh, Iv) into blocks with the following

artition

=
(

Q11 Q12

Q21 Q22

)
, (14)

here Qi j(i, j = 1.2) are 3 × 3 matrices. We select a norm in R6 as

|(z1, z2, z3, z4, z5, z6)| = max{|z1| + |z2| + |z3|, |z4| + |z5| + |z6|}.
(15)

ccording to the discussion given in [41], we have

(Q ) ≤ sup{g1, g2},
here

1 = σ1(Q11) + |Q12|, g2 = σ1(Q22) + |Q21|.
n a similar way as in the proof of Theorem 4.2, we can prove that if

nequalities (12) hold, then

= lim sup
t→∞

sup
x0∈�

≤ 1

t

∫ t

0

σ (Q(x(s, x0)))ds < 0.

herefore, the endemic equilibrium of system (7) is globally asymp-

otically stable. �
The following two examples show that inequalities (9) and (13)

iven in Theorems 4.2 and 4.3, respectively, are different from each

ther.

xample 4.1. Take Ah = 1000, β = 0.59,μ = 3.7, m = 0.05, ρ1 =
.78, b = 0.2, u2 = 0.6, ρ2 = 0.93, δ = 0.4, γ = 2.8, Av = 20, κ =
.4935 and η = 0.05. By numerical calculations, we obtain the basic

eproduction number R0 ≈ 1.1367 > 1, and inequalities in (9) hold.

owever, inequalities in (13) do not hold. Since β Av(μ+γ )
ηAh

+ γ + m

bu2 = 4.504 and μ + δ = 4.1.

xample 4.2. In Example 4.1, we keep some parameters unchanged,

nd only adjust the value of the recovery rate. Let δ = 0.9, by numer-

cal calculations, the basic reproduction number R0 ≈ 1.1367 > 1,

nd inequalities in (13) hold. However, inequalities in (9) do not hold.

ince 3η + δ + 2β Av(μ+γ )
ηAh

= 4.118 and μ = 3.7.

emark 4.1. From Theorems 4.2 and 4.3, and Examples 4.1 and 4.2,

e can see that by choosing different matrix functions P(x) as in (10),

ifferent matrix divisions as in (11) and (14), and different norms as in

12) and (15), we can establish different sufficient conditions on the

lobal stability of the endemic equilibrium of system (7). This shows

hat the global stability of system (7) may be very complex.

. Numerical simulations

In this section, we implement numerical simulations to confirm

he above theoretical analysis and explore more patterns of dynami-

al behaviors of model (1).

If we increase the value of parameter δ and keep the other param-

ters unchanged, by comparing Fig. 2(a) and (b), it is found that some

ore complicated dynamical behaviors of system (1) occur. Fixing

= 0.002, it has a forward bifurcation as shown in Fig. 2(a). How-

ver, fixing δ = 2.7902, it has a backward bifurcation as in Fig. 2(b).

heir qualitative difference indicates that the recurrence of the dis-

ase can lead to a backward bifurcation. In addition, with the help

f the MatCont package [42,43], we found a saddle-node bifurcation

oint (LP) at β = 0.086673 and a branch point (BP) at β = 0.902996.

he dashed curve indicates the unstable equilibrium and the solid

urve represents the stable equilibrium in all bifurcation diagrams.

The equilibria of system (1) are entirely determined by these

oefficientes a1, a2, a3 in (5). Therefore, Ah = 1000,μ = 0.014, m =
.05, ρ1 = 0.78, b = 0.2, β = 0.6, ρ2 = 0.93, γ = 5.8, η = 0.03, Av =
000, κ = 0.4935, three curves a2 = 0,
 = 0 and a3 = 0 divide the

rst quadrant of the u2 − δ plane into four regions. There are a stable

ndemic equilibrium and an unstable disease-free equilibrium in the

rea below the line a3 = 0. Other three regions are shown in Fig. 3.

In the following, the number and stability of equilibria are shown

n Fig. 4 when the parameter u or δ changes, respectively. Fig. 4(a)
2
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Table 2

Three typical patterns of dynamical behaviors of system (1).

Pattern Range of u2 Steady states of system (1)

(range of R0)

1 u2 > 205.709772 A gloablly stable disease-free equilibrium

(R0 < 0.44269) (see Fig. 5)

2 16.74 < u2 < 205.709772 A locally stable disease-free equilibrium, an unstable

(0.44269 < R0 < 1) endemic equilibrium and a locally stable endemic

equilibrium (see Fig. 6)

3 0 < u2 < 16.74 An unstable disease-free equilibrium and a

(R0 > 1) globally stable endemic equilibrium (see Fig. 7)

δ

u
2 Δ=0

a
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Fig. 3. For system (1), there is a stable disease-free equilibrium in regions A and B;

there are an unstable endemical equilibrium, a stable endemical equilibrium and an

unstable disease-free equilibrium in region C.
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displays the dynamics of system (1) when u2 changes, in turn, from

region C, region B to region A; Fig. 4(b) shows that when δ changes, in

turn, from region A, region B to region C.

Fig. 4 (a) reflects the role of the treatment in controlling the dis-

ease. The increase of the treatment rate has an influence in eliminat-

ing the disease. However, Fig. 4 also shows that a backward bifurca-

tion occurs in the process of increasing the treatment rate. In Table 2,

three typical patterns of dynamical behavior of system (1) are listed.

As an example, we take a value of the treatment u2 corresponding to

each pattern to illustrate the three types of dynamical behaviors of

system (1). The values of all parameters are the same as in Fig. 4.

Firstly, if u2 > 205.709772, i.e.,0 < R0 < 0.44269, that is, the

treatment rate is relatively large (or equivalently, the basic repro-

duction number is relatively small), then the disease-free equilib-

rium is the unique steady state and is globally asymptotically sta-

ble. Fig. 5 illustrates this pattern where the treatment rate is chosen

as u2 = 300(R0 = 0.37398). In Figs. 5–7, blue and red colours denote

stable equilibria, black colour denotes unstable equilibria.
(a)

0 50 100 150 200 250
0

50

100

150

200

250

LP

BP

u
2

I h

Fig. 4. Bifurcation diagrams (a) the Ih component of equilibria versus the treatment rate u

parameter δ for system (1) by fixing u2 = 300. Keeping the other parameters the same as tho
Secondly, if 16.74 < u2 < 205.709772, i.e.,0.44269 < R0 < 1, the

reatment rate becomes a bit smaller, then bistability occurs, where

he stable disease-free equilibrium coexists with a stable endemic

quilibrium. For this pattern, we choose u2 = 150(R0 = 0.50681) to

btain Fig. 6 in which the numerical solutions of system (1) tend to

ither the disease-free equilibrium or an endemic equilibrium.

Thirdly, if 0 < u2 < 16.74, i.e., R0 > 1, the treatment rate is small

nough, then the unstable disease-free equilibrium coexists with a

table endemic equilibrium. For this pattern, the treatment rate is

hosen as u2 = 10(R0 = 1.08232). As depicted in Fig. 7, all solutions

end to the endemic equilibrium in this case.

From Figs. 5–7, the numerical simulations show that for larger

alues of δ, a subcritical transcritical bifurcation occurs at R0 = 1

n Fig. 4 (or Fig. 2(b)). Next, the following numerical simulations

Figs. 8 and 9) will show that for smaller values of δ, there is a sup-

ritical transcritical bifurcation at R0 = 1 in Fig. 2(a). That is, the in-

rease of the loss rate of immunity for humans induces a backward

ifurcation.

. Applications to malaria in China

In this section, we first use system (1) to simulate the malaria data

rom National Health and Family Planning Commission of the Peo-

le’s Republic of China (NHFPC, Table 1). Then we examine the cur-

ent control strategies on the elimination of malaria in China.

The definition of malaria elimination is that there is no local trans-

ission for at least three years [49]. Therefore, parameters were es-

imated using two sets of data (indigenous data and death data) in

able 1 by the least squares method (LSM). This consists of minimiz-

ng the residual sum of squares (RSS)

SS =
n∑

i=1

(Yi − f (Yi, θ ))2, (16)

here Yi are observed data and θ is the parameter to be estimated.

et observed variables be G(t) and D(t). G(t) serves to keep track of the
(b)

0 5 10 15
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180

LP

δ
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2 for system (1) by fixing δ = 2.7902; (b) the Ih component of equilibria versus the

se in Fig. 3.
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Fig. 5. System (1) has a globally stable disease-free equilibrium E0 = (7.1429, 0, 0, 6.6667, 0), when δ = 2.7902 and u2 = 300(R0 = 0.37398)..
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Fig. 6. Choose δ = 2.7902 and u2 = 150(R0 = 0.50681), system (1) has two stable equilibria: a disease-free equilibrium E0 and an endemic equilibrium E2 =
(739.62, 166.22, 1656.18, 32248.12, 34418.55). The other endemic equilibrium E1 = (12578.59, 138.39, 1378.81, 57396.91, 9269.75) is unstable.
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Fig. 7. System (1) has a globally stable endemic equilibrium E∗ = (11.17, 171.69, 116.27, 6384.54, 60282.13) and an unstable disease-free equilibrium E0, where δ = 2.7902 and

u2 = 10(R0 = 1.0823).
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umulative number of human malaria cases and D(t) is the cumula-

ive data of human malaria deaths. Furthermore, refer to system (1),

t is clear that dG/dt = βSh(t)Iv(t)/Nh and dD/dt = γ Ih(t).

First step: In the absence of concrete estimates, the host recruit-

ent rate Ah is estimated by using China’s demographic data from

ear 2002 to 2013. Assume the demographic equation dNh/dt = Ah −
Nh. Fixed μ = 0.00708 year−1 by 2008 China Statistical Yearbook

CSY), the estimated value of Ah is 1.6349 × 107humans × year−1 us-

ng LSM by DEDiscover software [50]. It is realistic that the range of

irth population per year from 2002 to 2013 by CSY is [1.584 × 107,

.647 × 107]. A reasonable match is shown in Fig. 10.

Second step: For the purpose of simulating system (1), we re-

uire knowledge of the initial conditions. The initial values of human
re chosen as follows: Sh(0) = 1.2845 × 109, Ih(0) = 35475 and re-

er to [47], Rh(0) = 0. We assume 0.53 to at most 2 mosquitoes per

eople [46], therefore, the size of the mosquito population is [6.8 ×
08, 2.569 × 109]. The initial conditions of Sv(0) and Iv(0) are esti-

ated as parameters.

Third step: Values or ranges for several of the system parameters

sed in system (1) can be obtained from existing studies on malaria.

he duration of the infectious period for humans without treatment

s from 12 to 24 months; however, with treatment, it reduces to 9.5

onths [46]. Therefore, the range of m is [1, 2] year−1 and u2 is 24
19

ear−1. According to the decline rate of malaria parasites in clinical

reatment, we estimate that the efficacy of treatment is b = 0.935

45] and ρ2 = 0.9 [12]. We also assume that the range can vary from
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Fig. 8. System (1) has a globally stable disease-free equilibrium E0 = (7.1429, 0, 0, 6.6667, 0), where δ = 0.002 and β = 0.8(R0 = 0.9412).
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Fig. 9. System (1) has a globally stable endemic equilibrium E∗ = (7427, 72, 33891, 64799, 1867) and an unstable disease-free equilibrium E0, where δ = 0.002 and β = 3(R0 =
1.8227).
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Fig. 10. Comparisons of the demographic data from the China Statistical Yearbook and

the solution of the demographic equation.

Table 3

The system parameter values with 95% CI and p values.

Parameter Estimated value 95% CI p value

Av 8.2825 × 1010 8.2825 × 1010 − 8.2826 × 1010 <0.0001

β 0.0087 0.0080–0.0095 <0.0001

δ 3.9592 3.9403–3.9782 <0.0001

η 0.1271 0.1249–0.1294 <0.0001

γ 0.0029 0.0026–0.0032 <0.0001

κ 4.1960 × 10−5 5.0948 × 10−6 − 7.8826 × 10−5 0.0285

m 1.9268 1.8744–1.9792 <0.0001

ρ1 0.1427 0.1384–0.1470 <0.0001

Sv(0) 9.4712 × 108 9.4711 × 108 − 9.4712 × 108 <0.0001

Iv(0) 5.3053 × 106 5.3053 × 106 − 5.3054 × 106 <0.0001

T

c

s

s

o

2

R
t

i
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7

t

3 months to 50 years for the average duration of the immune period

[46]. Then, the range of δ is [0.02, 4] year−1. It is assumed that the

mosquito birth rate is 0.013 per day [48]. Therefore, the recruitment

rate of mosquitoes is [3.2 × 1010, 1.9 × 1011] mosquitoes × year−1.

Finally, under these assumptions, all the unknown parameters are

estimated using LSM by DEdiscover software and the optimal value

of RSS is 0.0199. Table 3 lists the estimates of these parameters and

their corresponding 95% confidence intervals (CI).
Using some rational assumptions and parameter values in

able 3, numerical simulations of the cumulative human malaria

ases and cumulative human malaria deaths using system (1) are

hown in Figs. 11 (a) and (b), respectively. The results indicate that

imulations of our system can provide a match to the cumulative data

n indigenous cases and death cases in Mainland China from 2002 to

013. Furthermore, we estimate that the basic reproduction number

0 ≈ 0.0161 for malaria transmission in China, and γ ∗ ≈ 0.0095. Our

heoretical analysis shows that malaria can be eliminated in China

n the future. This means that the current malaria elimination action

lans in China are practicable.

. Discussion

In this paper, we focused on a deterministic system of malaria

ransmission with treatment. Nowadays, there is still no licensed
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Fig. 11. (a) The comparison between the cumulative numbers of newly indigenous

cases in Mainland China from 2002 to 2013 and the simulation of our system. (b)The

comparison between the cumulative numbers of human malaria deaths in Mainland

China from 2002 to 2013 and the simulation of our system.
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accine for preventing malaria. Therefore, in our system, human pop-

lation is divided into susceptible, infectious and recovered sub-

lasses, and mosquito population is split into susceptible and in-

ectious classes. It is founded for malaria that humans who recov-

red spontaneously or treated may be still susceptible. Therefore, a

alaria system with treatment is developed. The efficacy of treat-

ent is described by the parameter b.

Firstly, we calculated the basic reproduction number R0 and in-

estigated the existence and stability of equilibria. We can see that

nder the conditions in Theorem 2.3 (3)(iii2), the disease-free equi-

ibrium E0 coexists with two endemic equilibria E1 and E2. These

esults indicate that a backward bifurcation may occur in system

1). It is important to seek conditions for the existence of the back-

ard bifurcation. This problem was discussed in Section 3. From

heorem 3.1, it is found that the disease mortality rate plays a sig-

ificant role in the occurrence of a backward bifurcation. As we all

now, the existence of a backward bifurcation means that the disease

annot be eradicated by simply reducing the value of basic reproduc-

ion number R0 below 1. In this case, the disease mortality rate

∗ = μ + μκ

η
+ μ(mρ1 + bu2ρ2)

μ + δ

s also a key threshold for eradicating malaria. From the expression

f R0, it is possible that increasing η may be effective in reducing

0 < 1. However, at the same time, we find that γ ∗ will get smaller.

hus, the condition γ > γ ∗ easily holds.

Secondly, in general, global stability of equilibria is one of the

ost difficult problems in the stability analysis of many classes of

iological models and it is essential in ruling out other scenarios

uch as periodic solutions. In Section 4, global stability of the en-

emic equilibrium E∗ when R0 > 1 is studied by utilizing a gen-

ral approach established in [38]. This method has been used mostly

or three-dimensional systems (see [23,30]). However, we need to

eal with global stability for a four-dimensional system. Sufficient
onditions for the global stability of E∗ are obtained by choosing the

atrix function P(x) and estimating the Lozinskiı̆ measure for a 6 ×
matrix. Different global stability conditions may be obtained de-

ending on different P(x) and different divisions for the 6 × 6 matrix.

owever, numerical simulations show that the same conclusion may

e still reached even if these conditions do not hold.

As an application, we used our system to simulate the reported

uman malaria cases in China from 2002 to 2013 (see Fig. 10) and ob-

ained reasonable matches. Malaria elimination in China is still con-

ronted by many difficulties and challenges, that is the increase of

mported Plasmodium falciparum cases and more deaths every year.

ore recently, the malaria deaths in 2011 were twice as that of 2010.

or imported malaria, it is typical that African migrant workers who

ame from Guangxi province collectively returned to their homes.

his made the number of imported malaria cases up sharply (see

44]). This indicates that the surveillance on moving population from

alaria endemic areas should be strengthened. In addition, it may

e a better control strategy to strengthen border crossing check-ups

echanism such as in the frontier regions of Yunnan and Guangxi

rovinces.

This work is just a preliminary exploration of global analysis in

higher dimensional system modelling the transmission dynamics

f malaria between humans and mosquitoes. The nonlinear dynam-

cs of the system deserve further consideration. Also it will be inter-

sting to study the impacts of seasonal and climate changes on the

ransmission of malaria in our system. Finally, we are also very con-

erned about the imported cases, which is affecting the transmission

f malaria now. We leave these for future investigation.
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