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Abstract. We study a model of an antibiotic resistance in a hospital
setting. The model connects two population levels - bacteria and pa-
tients. The bacteria population is divided into non-resistant and resis-
tant strains. The bacterial strains satisfy ordinary differential equations
describing the recombination and reversion processes producing the two
strains within each infected individual. The patient population is di-
vided into susceptibles, infectives infected with the non-resistant bacte-
rial strain, and infectives infected with the resistant bacterial stain. The
infective classes satisfy partial differential equations for the infection age
densities of the two classes. We establish conditions for the existence of
three possible equilibria for this model: (1) extinction of both infective
classes, (2) extinction of the resistant infectives and endemicity of the
non-resistant infectives, and (3) endemicity of both infective classes. We
investigate the asymptotic behavior of the solutions of the model with
respect to these equilibria.
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1. Introduction

The amplification in hospital settings of bacteria strains resistant to an-
tibiotics is an increasingly serious public health problem. Such nosocomial
epidemics occur when patients are exposed to resistant bacteria strains dur-
ing antibiotic therapy. In [37] we formulated a two-level population model to
quantify key elements in such epidemics. At the bacteria level both strains
are generated by patients infected with these strains. At the patient level
susceptible patients are infected by infected patients at rates proportional
to the total bacteria load of each strain present in the hospital. The main
objective of this model is to understand how the resistant strain becomes
endemic in the hospital and what measures are effective in preventing this
from happening.

In this paper we continue the analysis of the model in [37], which is for-
mulated as follows: Let S(t) be the number of susceptible patients in the
hospital at time t and let IN (t) (IR(t)) be the number of patients infected by
bacteria non-resistant (resistant) to antibiotics at time t. In order to deter-
mine the contribution of each infected patient to the total bacterial load in
the hospital, we track each one according to their infection age. For a patient
infected with only non-resistant bacteria let VF (a) represent the population
level of bacteria present at infection age a. VF (a) satisfies the logistic growth
equation

dVF (a)
da

= VF (a)
(
βF − VF (a)

κF

)
, a ≥ 0, VF (0) = VF0 , (1.1)

where VF0 is the number of bacteria inoculated at the time of acquisition
(a = 0), βF > 0 is the proliferation rate of bacteria in the individual
(log 2/βF is the doubling time of the bacteria without limitation of car-
rying capacity), and βF κF is the carrying capacity (the maximal sustainable
bacteria population in an infected patient).

For a patient infected with resistant bacteria both strains are generated
through proliferation by cell division, recombination of plasmid bearing (re-
sistant) and plasmid free (non-resistant), and reversion of plasmid bearing to
plasmid free. Let V −(a) and V +(a) denote the population levels of plasmid
free and plasmid bearing bacteria at infection age a, respectively, in an in-
dividual infected with both resistant and non-resistant bacteria. We assume
V −(a) and V +(a) satisfy⎧⎪⎪⎨⎪⎪⎩

dV −(a)

da
=

(
− τ

V +(a)

V −(a) + V +(a)
+ β− − V −(a) + V +(a)

κF

)
V −(a) + γV +(a),

dV +(a)

da
=

(
τ

V −(a)

V − (a) + V + (a)
+ β+ − V − (a) + V + (a)

κF
− γ

)
V + (a) ,

(1.2)
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where V + (0) = V +
0 > 0 and V − (0) = V −

0 > 0 are the number of bacteria in-
oculated at acquisition, β− and β+ are the proliferation rates of plasmid free
and plasmid bearing strains, respectively, τ is the reversion rate of plasmid
bearing to plasmid free, and γ is the recombination rate of plasmid free and
plasmid bearing to plasmid bearing. In [37] we analyzed system (1.2) and
showed the following: If σ = τ−γ+β+−β− < 0, then lima→∞ V −(a) = β−κF

and lima→∞ V +(a) = 0. If σ = τ − γ + β+ − β− > 0, then

lim
a→∞

V −(a) =
γκF (σβ+ + γβ−)

(γ + σ)2
, lim

a→∞
V +(a) =

σκF (σβ+ + γβ−)
(γ + σ)2

.

The solutions of equations (1.2) thus provide the total bacterial load of both
strains in terms of the infection age status of all infected patients present in
the hospital.

At the patient level let iN (t, a) (iR(t, a)) be the infection age density of
individuals infected by bacteria non-resistant (resistant) to antibiotics at
time t and infection age a. Thus,

IN (t) =
∫ +∞

0
iN (t, a)da, IR(t) =

∫ +∞

0
iR(t, a)da, t ≥ 0.

The bacteria level and patient level of the model are coupled in the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = λ − νS(t) − η [ΦF (iN (t)) + ΦV −+V +(iR(t))]S(t),

(∂t + ∂a) iN (t, a) = −(ν + νN (a))iN (t, a), a ∈ (0,+∞) ,

(∂t + ∂a) iR(t, a) = −(ν + νR(a))iR(t, a), a ∈ (0,+∞) ,

iN (t, 0) = η [ΦF (iN (t)) + ΦV −(iR(t))]S(t),
iR(t, 0) = ηΦV +(iR(t))S(t),
(S(0), iN (0, a), iR(0, a)) = (S0, ϕN (a), ϕR(a)) ,

(1.3)

where S0 ∈ [0,+∞), ϕN (a), ϕR(a) ∈ L1
+ (0,+∞) , iN (t) = iN (t, ·), iR(t) =

iR(t, ·) ∈ L1 (0,+∞) , λ > 0 corresponds to the patient admission rate, η > 0
corresponds to the exposure of patients to bacteria, ν > 0 is the exit rate
from the hospital of susceptible patients, νN , νR ∈ L∞ (0,+∞) correspond
to patient lengths of stay in the hospital, and

Φχ(ψ) =
∫ +∞

0
χ(a)ψ(a)da, ∀ψ ∈ L1 (0,+∞) , ∀χ ∈ L∞ (0,+∞) .

In [37] the equilibrium solutions for (1.3) are analyzed and conditions are
established on parameters for the existence of nontrivial equilibria for the
two classes of infected patient populations (we recall these conditions here in
Section 3.3). The goal of this work is to investigate the asymptotic behavior
of the solutions of (1.3) with respect to these equilibria, specifically the
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uniform persistence of individuals infected by resistant bacteria. Persistence
means that there exists ε > 0, such that for all initial values (S0, ϕN , ϕR) ∈
[0,+∞) × L1

+ (0,+∞) × L1
+ (0,+∞) , with ϕR �= 0,

lim inf
t→+∞

‖iR(t)‖ ≥ ε.

The first abstract results concerning persistence are due to Butler et al. [4]
and Butler and Waltman [5]. These results have been developed for discrete
and continuous time systems, see Freedman et al. [11], Freedman and So
[12], Hale and Waltman [15], Hirsch et al. [19], Hofbauer and So [20], Thieme
[30, 31], Yang and Ruan [38], Zhao [39], and others. To study this question
here we shall apply the results in Hale and Waltman [15].

In Section 2, we recall the notions and results that we shall use in this
article. In Section 3 we develop preliminary results. We first give conditions
to guarantee the existence of a global attractor. Then we compute the
equilibria and investigate the non-uniform persistence of individuals infected
by resistant bacteria. In Section 4, we consider the system⎧⎪⎪⎪⎨⎪⎪⎪⎩

dS(t)
dt = λ − νS(t) − ηΦF (iN (t))S(t),

(∂t + ∂a) iN (t, a) = −(ν + νN (a))iN (t, a), a ∈ (0,+∞) ,

iN (t, 0) = ηΦF (iN (t))S(t),
(S(0), iN (0, a)) = (S0, ϕN (a)) ∈ [0,+∞) × L1

+ (0,+∞) .

(1.4)

In order to apply the uniform persistence theorem in Hale and Waltman [15],
we need to prove the global asymptotic stability of the endemic equilibrium
of system (1.4). Although system (1.4) has been investigated by Thieme
and Castillo-Chavez [33, 34], the global asymptotic stability of the endemic
equilibrium has not been studied. Here we use the following transformation
to prove the global asymptotic stability of the endemic equilibrium. Consider
a bounded complete orbit of system (1.4). Set x(t) = ηΦF (iN (t)), ∀t ∈ R.
We derive the delay integral equation

x(t) = λ

∫ +∞

0
e−νsJβ,xt(s)ds, ∀t ∈ R, (1.5)

where Jβ,xt(s) is the solution of the ordinary differential equation{
dJβ,xt(s)

ds
= x(t − s) (β(s) − Jβ,xt(s)) , ∀s ≥ 0,

Jβ,xt(0) = 0

with

β(a) = ηVF (a) exp(−
∫ a

0
νN (s)ds),
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for all a ≥ 0 and xt ∈ C ((−∞, 0] , R), xt(−s) = x(t− s), for all s ≥ 0. When
β is constant (1.5) becomes

x(t) = λ

∫ +∞

0
e−νsβ(0)

[
1 − e−

∫ s
0 x(t−r)dr

]
ds, ∀t ∈ R,

and we obtain an integral equation similar to the one considered by Brauer
[2, 3]. In this case, we obtain a monotone dynamical system and the global
asymptotic stability of the endemic equilibrium follows. More generally, when
s → β(s) is non-decreasing, (1.5) generates a monotone dynamical system
(see Lemmas 4.7 and 4.8). We also refer to Zhou et al. [40] for a global
stability result for a population that is structured in both age and the age
of infection. The main assumption made in [40] is that

β(a) = β(0)e−γa, ∀a ≥ 0, for some γ ≥ 0. (1.6)

In this case, if we set I(t) = Φ VF
VF (0)

(iN (t)) (and assume VF ∈ W 1,∞(0,+∞,

R)), then we obtain{
dS(t)

dt = λ − νS(t) − ηVF (0)I(t)S(t),
dI(t)

dt = ηVF (0)I(t)S(t) − (ν + γ) I(t).
(1.7)

The global asymptotic stability of the endemic equilibrium of system (1.7)
is investigated by Hethcote in [16, 17] (a general survey of epidemic models
is provided by Hethcote in [18]).

In Section 4, we prove the global asymptotic stability of the endemic
equilibrium of (1.4) by assuming that

β(a) ≥ e−ν(a−s)β(s), ∀a ≥ s ≥ 0.

This condition includes a relatively large class of situations, compared with
the particular choice made in (1.6). In Section 5, we conclude the paper by
applying the result of Hale and Waltman [15] to obtain the persistence results
for the bacterial infection model. The paper ends with a brief discussion in
Section 6.

2. Attractors and Uniform Persistence

We first introduce some notation and definitions in infinite-dimensional
dynamical systems (see Hale [13, 14], Sell and You [28], and Raugel [27]).

Let (M, d) be a complete metric space with metric d. Suppose that
{U(t)}t≥0 is a continuous semigroup on M ; that is,

(i) U(0) =Id;
(ii) U(t + s) = U(t)U(s), ∀t, s ≥ 0;
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(iii) (t, x) → U(t)x is continuous from [0,+∞) × M to M.

Let A be a subset of M and B a subset of M \ A. We say that A is
ejective in B for {U(t)}t≥0 if there exists an ε > 0 such that for all x ∈ B

with d (x, A) := infy∈A d(x, y) ≤ ε, there exists a t∗ = t∗ (x, ε) > 0 such that

d (U(t∗)x, A) ≥ ε.

We say that A is ejective for {U(t)}t≥0 if A is ejective in M \A for {U(t)}t≥0 .

We say that A is positively invariant (respectively: invariant) by {U(t)}t≥0

if U(t)A ⊂ A, for all t ≥ 0 (respectively: U(t)A = A, for all t ≥ 0). We say
that A attracts a subset C ⊂ M for {U(t)}t≥0 if

δ(U(t)C, A) → 0 as t → +∞,

where δ is the semi-distance δ(B, A) = supx∈B d(x, A).
{U(t)}t≥0 is said to be point dissipative if there exists a bounded subset

M which attracts the points of M for {U(t)}t≥0 . {U(t)}t≥0 is said to be
asymptotically smooth if for each non-empty closed bounded subset B ⊂ M,
which is positively invariant by {U(t)}t≥0 , there exists a compact subset
C ⊂ M which attracts B for {U(t)}t≥0 .

Assumption 2.1. Let M0 be an open subset of M and ∂M0 = M \ M0.
Assume that

U(t)∂M0 ⊂ ∂M0 and U(t)M0 ⊂ M0, ∀t ≥ 0.

We say that {U(t)}t≥0 is uniformly persistent with respect to (M0, ∂M0)
if there exists an ε > 0 such that

lim inf
t→+∞

d (U(t)x, ∂M0) ≥ ε, ∀x ∈ M0.

Denote by γ+(x) = {U (t)x}t≥0 the positive orbit through x ∈ M. If γ+(x)
is relatively compact, denote by

ω (x) :=
⋂
t≥0

⋃
s≥t

{U (s)x}

the omega-limit set of x.
We say that γ(x) = {u (t)}t∈R

is a complete orbit through x ∈ M in A ⊂ M
if u (0) = x, u(t + s) = U(t)u(s), ∀t ≥ 0, ∀s ∈ R and u(t) ∈ A, ∀t ∈ R. If
γ(x) is a relatively compact complete orbit through x ∈ M, denote

αγ (x) =
⋂
t≤0

⋃
s≤t

{u (s)}.

A subset A ⊂ M is said to be isolated in M for {U(t)}t≥0 if it is the
maximal invariant set in some neighborhood of A in M .
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Let A and B be two subsets of ∂M0. A is said to be chained to B in
∂M0, written A →

∂M0

B, if there exists a relatively compact complete orbit

γ(x) ⊂ ∂M0 through some x /∈ A ∪ B such that ω (x) ⊂ B and αγ (x) ⊂ A.
A finite sequence {C1, ..., Ck} of invariant sets is called a chain in ∂M0 if
C1 →

∂M0

C2 →
∂M0

... →
∂M0

Ck. The chain is called a cycle if Ck = C1. A collection

{C1, C2, ..., Ck} of pairwise disjoint, compact, and invariant subsets of ∂M0

is called an acyclic covering of Ω (∂M0) =
⋃

x∈∂M0
ω (x) if Ci is isolated in

∂M0, Ω (∂M0) ⊂
⋃

i=1,...,k Ci, and no subset of Ci’s forms a cycle in ∂M0.

The following theorem is due to Hale and Waltman [15] (see Theorem
4.2).

Theorem 2.2. Let Assumption 2.1 be satisfied. Assume in addition that
(i) {U(t)}t≥0 is asymptotically smooth;
(ii) {U(t)}t≥0 is point dissipative;
(iii) Ω (∂M0) has an acyclic covering {C1, C2, ..., Ck} in ∂M0

for {U(t)}t≥0;
(iv) For each i = 1, ..., k, Ci is isolated in M for {U(t)}t≥0 .

Then {U(t)}t≥0 is uniformly persistent if and only if for each Ci ∈ {C1, C2,

..., Ck},
W s(Ci) ∩ M0 = ∅,

where W s(B) = {x ∈ M : ω(x) �= ∅, ω(x) ⊂ B} for each subset B ⊂ M.

Remark 2.3. The statement is not exactly the same as in Hale and Walt-
man [15]. Under conditions (i) and (ii) there exists a compact subset which
attracts the point of M. So we can apply the same arguments as in Hale and
Waltman [15] and the result follows.

A nonempty, compact and invariant set A ⊂ M is said to be an attractor
for {U(t)}t≥0 if A attracts one of its neighborhoods; a global attractor for
{U(t)}t≥0 if A is an attractor that attracts every point in M ; a strong global
attractor for {U(t)}t≥0 if A attracts every bounded subset of M .

The following theorem is due to Hale [13, 14] (see [25] for a proof).

Theorem 2.4. Assume that {U(t)}t≥0 is asymptotically smooth, point dissi-
pative, and for each compact subset C ⊂ M , ∪t≥0 {U(t)C} is bounded. Then
{U(t)}t≥0 has a global attractor A ⊂ M . Moreover, if for each bounded set
B ⊂ M , ∪t≥0 {U(t)B} is bounded, then A is a strong global attractor.

From now on, we denote by {U0(t)}t≥0 the restriction of {U(t)}t≥0 to M0.

The following theorem is due to Magal and Zhao [25].
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Theorem 2.5. Let Assumption 2.1 be satisfied. Assume that {U(t)}t≥0 is
asymptotically smooth and uniformly persistent with respect to (M0, ∂M0)
and has a global attractor A ⊂ M . Then {U0(t)}t≥0 has a global attractor
A0 ⊂ M0.

Remark 2.6. If A0 is a global attractor for {U0(t)}t≥0, then A0 is stable
and attracts the compact sets of M0 for {U0(t)}t≥0 .

3. Preliminary Results

Set γN = ηVF , γNR = ηV −, γR = ηV +. Consider⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= λ − νS(t) − [ΦγN (iN (t)) + ΦγNR+γR(iR(t))]S(t),
(∂t + ∂a) iN (t, a) = − (ν + νN (a)) iN (t, a), a ∈ (0,+∞) ,
(∂t + ∂a) iR(t, a) = − (ν + νR(a)) iR(t, a), a ∈ (0,+∞) ,
iN (t, 0) = [ΦγN (iN (t)) + ΦγNR(iR(t))]S(t),
iR(t, 0) = ΦγR(iR(t))S(t),
(S(0), iN (0, a), iR(0, a)) = (S0, ϕN (a), ϕR(a)) ,

(3.1)

where S0 ∈ [0,+∞), ϕN (a), ϕR(a) ∈ L1
+ (0,+∞) . Denote CB,U ([0,+∞) , R)

to be the set of bounded and uniformly continuous mappings from [0,+∞)
to R.

Assumption 3.1. Suppose that
(a) λ, ν ∈ (0,+∞) ;
(b) νN , νR ∈ L∞

+ (0,+∞) ;
(c) γN , γNR, γR ∈ CB,U ([0,+∞) , R)∩C+ ([0,+∞) , R) and for each a ≥

0, there exist two constants s, r ≥ a such that γN (s) > 0, γR(r) > 0.

At this point one may use a Volterra formulation of the problem (see Webb
[35] and Iannelli [21]) or equivalently an integrated semigroup formulation of
the problem (see Thieme [29]). For convenience, we start with the integrated
semigroup formulation. We will also consider a Volterra formulation of the
problem (see system (3.4)).

3.1. Integrated Semigroup Formulation. Set

X = R × Y 2, X+ = [0,+∞) × Y 2
+, X0 = R × Y 2

0 , X+0 = X0 ∩ X+

with

Y = R × L1 (0,+∞) , Y+ = [0,+∞)× L1
+ (0,+∞) , Y0 = {0} ×L1 (0,+∞) .

Let D(A) = R×Z2 with Z = {0R}×W 1,1 (0,+∞) . For each x = (S, 0R, iN ,
0R, iR) ∈ X0, Define A : D(A) ⊂ X0 ⊂ X → X and F : X0 → X by
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Ax =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−νS
−iN (0)

−diN (·)
da

− (ν + νN (·)) iN (·)
−iR(0)

−diR(·)
da

− (ν + νR(·)) iR(·)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
if x ∈ D(A),

and

F (x) =

⎛⎜⎜⎜⎜⎝
λ − S [ΦγN (iN ) + ΦγNR+γR(iR)]

S [ΦγN (iN ) + ΦγNR(iR)]
0L1

SΦγR(iR)
0L1

⎞⎟⎟⎟⎟⎠ .

Rewrite problem (3.1) as an abstract Cauchy problem

dux(t)
dt

= Aux(t) + F (ux(t)), t ≥ 0, ux(0) = x ∈ X0+. (3.2)

It is well known that A is a Hille-Yosida operator. More precisely, we have
(−ν,+∞) ⊂ ρ (A) and for each λ > −ν,∥∥∥(λ − A)−1

∥∥∥
L(X,X)

≤ 1
λ + ν

.

Denote {S(t)}t≥0 to be the integrated semigroup generated by A (see
Arendt, et al. [1]). Also denote by {T0(t)}t≥0 the strongly continuous semi-
group of bounded linear operators generated by A0, the part of A in X0;
that is,

A0x = Ax, ∀x ∈ D(A0) = {x ∈ D(A) : Ax ∈ X0} .

We have for all t ≥ 0, x = (S, 0R, iN , 0R, iR) ∈ X0, that

T0(t)x =

⎛⎜⎜⎜⎜⎝
e−νtS

0R

T0N (t)iN
0R

T0R(t)iR

⎞⎟⎟⎟⎟⎠ ,

where for K = N, R,

T0K(t)(ϕ)(a) =

{
exp

(
−

∫ a
a−t (ν + νK(l)) dl

)
ϕ(a − t) if a ≥ t

0 if a ≤ t.
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Denote for T > 0 and f ∈ L1 ((0, T ) , X),

(S ∗ f)(t) =
∫ t

0
S(t − s)f(s)ds, ∀t ∈ [0, T ] .

Then we know that (see Kellermann and Hieber [22]) (S∗f)(·)∈ C1([0, T ], X)
∩C0([0, T ], D(A)). Denote

(S � f)(t) =
d

dt
(S ∗ f)(t), ∀t ∈ [0, T ] .

Using the results in Webb [35] or in Magal [23], we have the following theo-
rem.

Theorem 3.2. Let Assumption 3.1 be satisfied.
(i) For each x ∈ X0+, there exists U(·)x ∈ C ([0,+∞) , X0) which is a

unique solution of the equation

U(t)x = x + A

∫ t

0
U(s)xds +

∫ t

0
F (U(s)x) ds, ∀t ≥ 0, ∀x ∈ X0+

or equivalently of the equation

U(t)x = T0(t)x + (S � F (U(.)x)) (t), ∀t ≥ 0, ∀x ∈ X0+.

(ii) U(t)x ∈ X0+, ∀t ≥ 0, and

‖U(t)x‖ ≤ e−νt ‖x‖ +
∫ t

0
e−ν(t−s)λds, ∀t ≥ 0, ∀x ∈ X0+. (3.3)

(iii) {U(t)}t≥0 defines a strongly continuous semigroup of continuous non-
linear operators from X0+ into itself. Moreover, the map (t, x) →
U(t)x is continuous from [0,+∞) × X0+ to X0+.

(iv) Denote D ((A + F )0) = {x ∈ D(A) : (A + F ) (x) ∈ X0} . Then X0+∩
D ((A + F )0) is dense in X0+ and for all x ∈ X0+ ∩ D ((A + F )0) ,
t → U(t)x is a classical solution of (3.2); that is, U(·)x ∈ C1([0,+∞),
X) ∩ C0 ([0,+∞) , D(A)) and

dU(t)x
dt

= AU(t)x + F (U(t)x), ∀t ≥ 0.

For all x = (S, 0R, iN , 0R, iR) ∈ X0, define PS : X0 → R, PN , PR : X0 →
L1 (0,+∞) by

PS (x) = S, PN (x) = iN , PR(x) = iR

Set

MR = X0+, MR0 = {x ∈ MR : PRx �= 0} , ∂MR0 = MR \ MR0,

MN = ∂MR0, MN0 = {x ∈ MN : PNx �= 0} , ∂MN0 = MN \ MN0,
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MS = ∂MN0.

Lemma 3.3. Let Assumption 3.1 be satisfied. Then we have for all t ≥ 0
that

U(t)MK0 ⊂ MK0, U(t)∂MK0 ⊂ ∂MK0, K = N, R.

Denote for each t ≥ 0,

UR(t) = U(t), UN (t) = U(t) |MN
, UN0(t) = U(t) |MN0

, US(t) = U(t) |MS
.

Lemma 3.4. Let Assumption 3.1 be satisfied. Then we have the following
(i) ‖T0(t)‖ ≤ e−νt, for all t ≥ 0.
(ii) For each bounded set B ⊂ X0+ and each T > 0,

{(S � F (U(.)x)) (t) : x ∈ B, t ∈ [0, T ]}
has a compact closure.

(iii) For each bounded set B ⊂ X0+,

α (U(t)B) ≤ e−νtα (B) , ∀t ≥ 0,

where α is the Kuratovski measure of non-compactness (see Martin
[26]).

Proof. (i) is immediate. (ii) is a consequence of the fact that γN , γNR, γR ∈
CB,U ([0,+∞) , R), and Theorem 5.7 in Magal and Thieme [24] applied with
τ∗ = 0 and X̂ = X0. (iii) is a consequence of (i) and (ii). �

Theorem 3.5. Let Assumption 3.1 be satisfied. Then for each K = R, N, S,
{UK(t)}t≥0 has a strong global attractor AK ⊂ MK .

Proof. The result is a direct consequence of the inequality (3.3), Lemma
3.4 (iii), and Theorem 3.4.2 in Hale [13]. �

3.2. Volterra Formulation. Set

lK(a) = exp
(
−

∫ a

0
(ν + νK(s)) ds

)
, ∀a ≥ 0, ∀K = N, R.

For all t, t0 ∈ [0,+∞) with t ≥ t0, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
dS(t)

dt
= λ − νS(t) − [BN (t) + BR(t)]S(t),

iK(t, a) =

⎧⎨⎩
lK(a)

lK(a − t)
ϕK(a − t) if a ≥ t,

lK(a)S(t − a)BK(t − a) if a ≤ t,
for K = N, R,

(3.4)
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where BN (t) = ΦγN (PNU(t)x)+ΦγNR(PRU(t)x) and BR(t) = ΦγR(PRU(t)x)
are solutions of the following system of Volterra equations:

BN (t) =fN (t) + fNR(t) +
∫ t

0
γN (a)lN (a)S(t − a)BN (t − a)da

+
∫ t

0
γNR(a)lR(a)S(t − a)BR(t − a)da

BR(t) =fR(t) +
∫ t

0
γR(a)lR(a)S(t − a)BR(t − a)da

with

fN (t) = ΦγN (T0N (t)ϕN ) =
∫ +∞

t
γN (a)

lN (a)
lN (a − t)

ϕN (a − t)da,

fNR(t) = ΦγNR(T0R(t)ϕR) =
∫ +∞

t
γNR(a)

lR(a)
lR(a − t)

ϕR(a − t)da,

fR(t) = ΦγR(T0R(t)ϕR) =
∫ +∞

t
γR(a)

lR(a)
lR(a − t)

ϕR(a − t)da.

Using the above Volterra formulation, we deduce

Lemma 3.6. Let Assumption 3.1 be satisfied. Then

S(t) = PSU(t)x > 0, ∀t > 0, ∀x ∈ MR.

Moreover, for K = N, R, we have:
(i) For all x ∈ MK with PKx �= 0, there exists a t1 = t1(K, PKx) ≥ 0

such that
ΦγK (PKU(t)x) > 0, ∀t ≥ t1.

(ii) There exists a t2 = t2(K) ≥ 0 such that for any x ∈ MK with
ΦγK (PKx) > 0,

ΦγK (PKU(t)x) > 0, ∀t ≥ t2.

Proof. To prove this lemma we use Assumption 3.1 (c) and the fact that
for K = N, R, t ≥ 0,

ΦγK (PKU(t)x) = ΦγK (T0K(t)ϕK) +
∫ t

0
γK(a)lK(a)S(t − a)BK(t − a)da

≥ ΦγK (T0K(t)ϕK) +
∫ t

0
γK(a)lK(a)S(t − a)ΦγK (PKU(t − a)x)da,

where ϕK = PKx. The result then follows. �
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3.3. Equilibria. Denote by

SK := (ΦγK (lK))−1, K = R, N.

We find the equilibria in MS , MNO and MRO, respectively.
(1) Equilibrium in MS : The unique equilibrium in MS is given by

xS =
(

λ

ν
, 0R, 0L1 , 0R, 0L1

)
.

(2) Equilibrium in MN0 : There exists an equilibrium xN ∈ MN0 if and
only if λ/ν > SN . Moreover, in this case we have

xN =
(
SN , 0R, (λ − νSN )lN , 0R, 0L1

)
∈ MN .

(3) Equilibrium in MR0 : There exists an equilibrium xR ∈ MR0 if and
only if either i) λ/ν > SR and SN > SR; or ii)λ/ν > SR, SN = SR,
and γRN = 0. Moreover, in this case we have

xR =
(
SR, 0R, CN lN , 0R, CRlR

)
where CN and CR are solutions of the following system

CN + CR = λ − νSR,

CN

(
SN − SR

)
= CRSNSRΦγRN (lR).

Remark 3.7. When SN = SR and γRN = 0, we obtain an infinite number of
equilibria. In particular, we find xR as close to ∂MR0 as we want. Moreover,
when SN = SR and γRN �= 0, there is no equilibrium in MR0.

3.4. Non-uniform Persistence in MR0. We now investigate extinction
properties and start with the following lemma.

Lemma 3.8. Let Assumption 3.1 be satisfied. Then we have the following:
(i) AS = {xS} ;
(ii) for all x ∈ AR, PSx ≤ λ/ν.

Denote

ΓK(a) = ΦγK (lK)−1

∫ +∞

a
e−

∫ s
a (ν+νK(l))dlγK(s)ds, ∀a ≥ 0, ∀K = N, R.

Then, we have for K = N, R that{
Γ′

K(a) = (ν + νK(a)) ΓK(a) − ΦγK (lK)−1γK(a) for a.e. a ≥ 0,
ΓK(0) = 1.

One can see that under Assumption 3.1 (c), we have ΓK(a) > 0, for all
a ≥ 0, K = N, R.
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Lemma 3.9. Let Assumption 3.1 be satisfied. Then for K = N, R and each
x ∈ MK , we have

dΦΓK
(iK(t))
dt

=
(
S(t) − SK

)
ΦγK (iK(t)), ∀t ≥ 0,

where S(t) = PSU(t)x and iR(t) = PRU(t)x, for all t ≥ 0.

Proof. The proof is straightforward. �

Proposition 3.10. Let Assumption 3.1 be satisfied. We have the following:
(i) If λ/ν ≤ SN , then AN = AS = {xS} . In particular, for each x ∈

MN ,

U(t)x → xS as t → +∞
and {xS} is stable for {UN (t)}t≥0 .

(ii) If λ/ν ≤ SR, then AR = AN . In particular, for each x ∈ MR,

PRU(t)x → 0 as t → +∞.

Proof. We only prove (ii); the proof of (i) is similar. Assume that λ
ν ΦγR(lR)

≤ 1 ⇔ λ
ν ≤ SR and AR �= AN . Then AR ∩ MR0 �= ∅. Let x ∈ AR ∩ MR0.

Then we can find γ (x) = {u(t)}t∈R
, a complete orbit through x in AR∩MR0.

Denote S(t) = PSu(t), iR(t) = PRu(t), for all t ∈ R. Then, it follows from
Lemma 3.9 that

dΦΓR
(iR(t))
dt

=
(
S(t) − SR

)
ΦγR(iR(t)), ∀t ∈ R.

By Lemma 3.8 (ii), we have S(t) ≤ λ
ν , for all t ∈ R. So t → ΦΓR

(iR(t)) is non-
increasing. Since ΓR(a) > 0, for all a ≥ 0, it follows that ΦΓR

(iR(0)) > 0.
We know that αγ (x) is a compact subset and U(t)αγ (x) = αγ (x) , for all
t ≥ 0. Moreover, there exists a C ≥ ΦΓR

(iR(0)) > 0 such that

ΦΓR
(PRy) = C, ∀y ∈ αγ (x) .

Let y ∈ αγ (x) be fixed. Denote for t ≥ 0,

Sy(t) = PSU(t)y, iRy(t) = PRU(t)y, iRy(t) = PRU(t)y.

We have for t ≥ 0 that

dSy(t)
dt

= λ − [ν + ΦγN (iNy(t)) + ΦγNR+γR(iRy(t))]Sy(t)

and
dΦΓR

(iRy(t))
dt

=
(
Sy(t) − SR

)
ΦγR(iRy(t)).



Asymptotic behavior in nosocomial epidemic models 587

Since ΦΓR
(PRy) = C > 0, it follows that PRy �= 0. Lemma 3.6 (i) implies

that there exists a t1 > 0 such that

ΦγR(iRy(t)) > 0, ∀t ≥ t1.

Since
dΦΓR

(iRy(t))

dt = 0, we deduce that Sy(t) = SR,∀t ≥ t1. Thus, for all
t ≥ t1,

0 = λ − [ν + ΦγN (iNy(t)) + ΦγNR+γR(iRy(t))]SR.

This implies that

0 < ΦγR(iRy(t))SR ≤ λ − νSR ≤ 0, ∀t ≥ t1,

which is impossible. So AR ∩ MR0 = ∅ and AR = AN . �

Proposition 3.11. Let Assumption 3.1 be satisfied. We have the following:
(i) If λ/ν > SN , then xN is locally asymptotically stable in MN for

{UN (t)}t≥0 .

(ii) If λ/ν > SR > SN , then xN is locally asymptotically stable in MR

for {UR(t)}t≥0 . In particular, there exists an ε > 0 such that for
each x ∈ MR0 with ‖x − xN‖ ≤ ε,

UR(t)x → xN as t → +∞.

Proof. We can use Theorem 4.2 of Thieme [29], Propositions 2.1, 2.2 and
2.4 in Webb [36] to reduce the problem to the study of a characteristic
equation. Then the results in Thieme and Castillo-Chavez [34] apply to the
characteristic equation and the conclusion follows. �

4. The System Restricted to MN

In this section, we investigate the global asymptotic behavior of the system
restricted to MN ; that is, we consider the system⎧⎪⎪⎪⎨⎪⎪⎪⎩

dS(t)
dt

= λ − νS(t) − ΦγN (iN (t))S(t),
(∂t + ∂a) iN = − (ν + νN (a)) iN (t, a), a ∈ (0,+∞) ,
iN (t, 0) = ΦγN (iN (t))S(t),
(S(0), iN (0, a)) = (S0, ϕN (a)) ∈ [0,+∞) × L1

+ (0,+∞) .

We first make the following assumption.

Assumption 4.1. Assume that
(a) λ, ν ∈ (0,+∞) .
(b) νN ∈ L∞

+ (0,+∞) .



588 Erika M.C. D’Agata, Pierre Magal, Shigui Ruan, and Glenn Webb

(c) γN ∈ CB,U ([0,+∞) , R) ∩ C+ ([0,+∞) , R) and for each a ≥ 0 there
exists s ≥ a such that

γN (s) > 0.

We have proved in Proposition 3.10 that xS is globally asymptotically
stable when λ/ν ≤ SN . So it remains to consider the case λ/ν > SN .

Lemma 4.2. Let Assumption 4.1 be satisfied. If λ/ν > SN then xS is
ejective in MN0 for {UN (t)}t≥0 .

Proof. Let δ > 0 and ε ∈ (0, λ/ν) satisfy (λ/ν − ε)
∫ δ
0 γN (a)lN (a)da > 1.

Let x = (S0, 0R, ϕN , 0R, 0L1) ∈ MN0 with ‖x − xS‖ ≤ ε. Assume that

‖U(t)x − xS‖ ≤ ε, ∀t ≥ 0. (4.1)

Denote S(t) = PSU(t) and iN (t) = PNU(t)x, for all t ≥ 0. From (4.1), it
follows that

S(t) ≥ λ

ν
− ε, ∀t ≥ 0.

Moreover, if we denote BN (t) = ΦγN (iN (t)), for all t ≥ 0, then

BN (t) = fn(t) +
∫ t

0
γN (a)lN (a)S(t − a)BN (t − a)da, ∀t ≥ 0

with

fn(t) =
∫ +∞

t
γN (a)

lN (a)
lN (a − t)

ϕN (a − t)da, ∀t ≥ 0.

Thus, for t ≥ δ, we have

BN (t) ≥
(

λ

ν
− ε

) ∫ δ

0
γN (a)lN (a)BN (t − a)da. (4.2)

By Lemma 3.6 (i), there exists t1 ≥ 0 such that BN (t) > 0, for all t ≥ t1.
Hence, there exists η > 0 such that BN (t) ≥ η, for all t ∈ [2t1, 2t1 + δ] . Set

t̂ = sup {t ≥ 2t1 + δ : BN (l) ≥ η, ∀l ∈ [2t1 + δ, t]} .

Assume that t̂ < +∞. Then

BN (t̂) ≥
(

λ

ν
− ε

) ∫ δ

0
γN (a)lN (a)BN (t − a)da

≥
(

λ

ν
− ε

) ∫ δ

0
γN (a)lN (a)daη.
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Thus, BN (t̂) > η. By the continuity of t → BN (t), it follows that there
exists an ε̂ > 0 such that BN (t) ≥ η, for all t ∈

[
t̂, t̂ + ε̂

]
, which con-

tradicts the definition of t̂. Therefore, BN (t) ≥ η, for all t ≥ 2t1. De-
note B∗ = lim inft→+∞ BN (t) ≥ η > 0. Using (4.2), it follows that B∗ ≥
B∗ (λ/ν − ε)

∫ δ
0 γN (a)lN (a)da, which is impossible. �

Proposition 4.3. Let Assumption 4.1 be satisfied. If λ/ν > SN , then there
exists a global attractor AN0 ⊂ MN0 for {UN0(t)}t≥0 . Moreover, there exists
an ε > 0 such that

ΦγN (PNx) ≥ ε, ∀x ∈ AN0.

Proof. Using Theorem 4.2 in [15], we know that {UN (t)}t≥0 is uniformly
persistent with respect to (MN0, ∂MN0) . So there exists a global attractor
AN0 ⊂ MN0 for {UN0(t)}t≥0 .

We claim that ΦγN (PNx) > 0, for all x ∈ AN0. Let x ∈ AN0. Since
UN0(t)AN0 = AN0, for all t ≥ 0, we can find a complete orbit {u(t)}t∈R

through x in AN0. Set S(t) = PSu(t) and iN (t) = PNu(t), for all t ∈ R.
Then S(t) > 0, for all t ∈ R and for t ≥ 0, r ∈ R, we have∫ +∞

0
iN (t + r)(a)da =

∫ +∞

t

lN (a)
lN (a − t)

iN (r)(a − t)

+
∫ t

0
lN (a)S(t − a + r)ΦγN (iN (t − a + r))da.

Setting t̂ = t + r, it follows that for t ≥ r,∫ +∞

0
iN (t)(a)da =

∫ +∞

t−r

lN (a)
lN (a − (t − r))

iN (r)(a − (t − r))

+
∫ t−r

0
lN (a)S(t − a)ΦγN (iN (t − a))da

and for t ≥ r,∣∣∣∣∫ +∞

t−r

lN (a)
lN (a − (t − r))

iN (r)(a − (t − r))
∣∣∣∣ ≤ e−ν(t−r) ‖iN (r)‖L1(0,+∞) .

Since u(t) ∈ AN0 and AN0 is compact, it follows that (as r → −∞) for
t ∈ R, ∫ +∞

0
iN (t)(a)da =

∫ +∞

0
lN (a)S(t − a)ΦγN (iN (t − a))da.

By construction, we have∫ +∞

0
iN (t)(a)da > 0, ∀t ∈ R,
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it follows that for all t ∈ R, there exists a t̂ ≤ t such that ΦγN (iN (t̂)) > 0.
Lemma 3.6 (ii) implies that there exists t2 ≥ 0 such that for all y ∈ MR

with ΦγN (PNy) > 0, we have ΦγN (PNU(t)y) > 0, for all t ≥ t2. Let t̂ ∈
[t2,+∞) be such that ΦγN (iN (−t̂)) = ΦγN (PNu(−t̂)) > 0. Then we have
ΦγN (PNu(−t̂)) > 0 and t̂ ≥ t2, so ΦγN (PNx) = ΦγN (PNU(t̂)u(−t̂)) > 0.
We conclude that ΦγN (PNx) > 0, for all x ∈ AN0. Since AN0 is compact,
it follows that there exists an ε > 0 such that ΦγN (PNx) ≥ ε, for all x ∈
AN0. �

We are now interested in the global asymptotic stability of xN in MN0.
This is equivalent to showing that AN0 = {xN} . Define

β(a) = γN (a) exp(−
∫ a

0
νN (s)ds), ∀a ≥ 0.

Under Assumption 4.1 we have β ∈ CB,U ([0,+∞) , R) ∩ C+ ([0,+∞) , R) .
We make another assumption.

Assumption 4.4. Assume that β satisfies the following:
(d) β(a) ≥ e−ν(a−s)β(s),∀a ≥ s ≥ 0.
(e) Either 1) β(0) > 0 or 2) β(0) = 0, and there exists s0 > 0 such that

β(s0) > 0 and β |[0,s0] is non-decreasing.

In order to state and prove the main theorem of this section, we need
several lemmas. Set

x := λ

∫ +∞

0
e−νsβ(s)ds−ν, x− := inf

x∈AN0

ΦγN (PNx), x+ := sup
x∈AN0

ΦγN (PNx).

By Proposition 4.3 we know that x− > 0.

Lemma 4.5. Let Assumption 4.1 be satisfied. Let x ∈ AN0 and {u(t)}t∈R

be a complete orbit through x in AN0. Denote

x(t) = ΦγN (PNu(t)), ∀t ∈ R.

If λ/ν > SN , then
0 < x− ≤ x(t) ≤ x+, ∀t ∈ R

and x satisfies the scalar neutral delay equation

x(t) = λ

∫ +∞

0
e−νsJβ,xt(s)ds, ∀t ∈ R, (4.3)

where for each t ∈ R, xt ∈ C ((−∞, 0] , R) is defined by

xt(−s) = x (t − s) , ∀s ≥ 0 (4.4)
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and Jβ,xt(s) is the unique solution of the ordinary differential equation{
dJβ,xt(s)

ds
= x (t − s) (β(s) − Jβ,xt(s)) , ∀s ≥ 0,

Jxt(0) = 0.
(4.5)

Proof. For t ∈ R, set

S(t) = PSu(t), iN (t) = PNu(t), x(t) = ΦγN (PNu(t)).

Then
dS(t)

dt
= λ − [ν + x(t)]S(t), ∀t ∈ R.

So for t ≥ r ≥ 0,

S(t) = e−
∫ t

r (ν+x(l))dlS(r) + λ

∫ t

r
e−

∫ t
s (ν+x(l))dlds.

Since t → S(t) is bounded, when r → −∞ we have

S(t) = λ

∫ t

−∞
e−

∫ t
s (ν+x(l))dlds, ∀t ∈ R.

Moreover, for all t ≥ r,∫ +∞

0
γN (a)iN (t)(a)da =

∫ +∞

t−r
γN (a)

lN (a)
lN (a − (t − r))

iN (r)(a − (t − r))

+
∫ t−r

0
γN (a)lN (a)S(t − a)ΦγN (iN (t − a))da.

Since t → iN (t) is bounded and β(a)e−νa = γN (a)lN (a), when r → −∞ we
obtain

x(t) =
∫ +∞

0
γN (a)lN (a)S(t − a)x(t − a)da, ∀t ∈ R.

Thus, for all t ∈ R,

x(t) = λ

∫ +∞

0
β(a)e−νa

∫ t−a

−∞
e−

∫ t−a
s (ν+x(l))dldsx(t − a)da

= λ

∫ t

−∞
β(t − a)e−ν(t−a)

∫ a

−∞
e−

∫ a
s (ν+x(l))dldsx(a)da

= λ

∫ t

−∞

∫ t

s
β(t − a)e−ν(t−a)e−

∫ a
s (ν+x(l))dlx(a)dads

= λ

∫ t

−∞
e−ν(t−s)

∫ t

s
β(t − a)e−

∫ a
s x(l)dlx(a)dads
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= λ

∫ +∞

0
e−νs

∫ t

t−s
β(t − a)e−

∫ a
t−s x(l)dlx(a)dads

= λ

∫ +∞

0
e−νs

∫ s

0
β(a)e−

∫ t−a
t−s x(l)dlx(t − a)dads

= λ

∫ +∞

0
e−νs

∫ s

0
β(a)e−

∫ s
a x(t−l)dlx(t − a)dads.

It follows that

x(t) = λ

∫ +∞

0
e−νsJxt(s)ds, ∀t ∈ R,

where

Jβ,xt(s) =
∫ s

0
β(a)e−

∫ s
a x(t−l)dlx(t − a)da, ∀t ∈ R.

This competes the proof of the lemma. �

For all ϕ ∈ C ((−∞, 0] , R+) and β̂ ∈ L∞ ([0,+∞) , R) , denote

J
β̂,ϕ

(s) =
∫ s

0
β̂(a)e−

∫ s
a ϕ(−l)dlϕ(−a)da, ∀s ≥ 0.

Then the mapping s → J
β̂,ϕ

(s) is differentiable almost everywhere and⎧⎨⎩
dJ

β̂,ϕ
(s)

ds
= x (t − s)

(
β̂(s) − J

β̂,ϕ
(s)

)
for a.e. s ≥ 0,

J
β̂,ϕ

(0) = 0.

Lemma 4.6. Let β1, β2 ∈ L∞ ([0,+∞) , R) and ϕ ∈ C ((−∞, 0] , R+) . Then
for all s ≥ 0,

|Jβ1,ϕ(s)| ≤ ‖β1‖L∞(0,+∞) , |Jβ1,ϕ(s) − Jβ2,ϕ(s)| ≤ ‖β1 − β2‖L∞(0,s) .

Proof. The proof is straightforward. �

Lemma 4.7. Let b > a ≥ 0, β̂ ∈ C ([a, b] , R) and ϕ ∈ C ([−b,−a] , R) .
Consider ⎧⎨⎩

dx(s)
ds

= ϕ (−s)
(
β̂(s) − x(s)

)
, ∀s ≥ a,

x(a) = xa ∈ R.

Then we have the following:

(i) If xa ≤ β̂(a) and β̂ is non-decreasing on [a, b] , then x(s) ≤ β̂(s),
∀s ∈ [a, b] .

(ii) If xa ≥ β̂(a) and β̂ is non-increasing on [a, b] , then x(s) ≥ β̂(s),
∀s ∈ [a, b] .
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Proof. The proof for the case β̂ ∈ C1 ([a, b] , R) is immediate. For the
continuous case, we approximate β̂ by βn(s) = 1

n

∫ s+1/n
s β(l)dl, where β(s) =

β̂(s) if s ∈ [a, b] , and β(s) = β̂(b) if s ≥ b. The result then follows. �
Lemma 4.8. Let b > a ≥ 0, β̂ ∈ C ([a, b] , R) and ϕ1, ϕ2 ∈ C ([−b,−a] , R) .
Consider for j = 1, 2⎧⎨⎩

dxj(s)
ds

= ϕj (−s)
(
β̂(s) − xj(s)

)
, ∀s ∈ [a, b] ,

xj(a) = xj,a ∈ R.

Then we have the following:

(i) If (x1,a − x2,a) ≥ 0 and (ϕ1 (−l) − ϕ2 (−l))
(
β̂(l) − x1(l)

)
≥ 0, ∀s ∈

[a, b] , then x1(s) ≥ x2(s),∀s ∈ [a, b] .
(ii) If (x1,a − x2,a) ≤ 0 and (ϕ1 (−l) − ϕ2 (−l))

(
β̂(l) − x1(l)

)
≤ 0, ∀s ∈

[a, b] , then x1(s) ≤ x2(s), ∀s ∈ [a, b] .

Proof. We have for all s ∈ [a, b] that
d[x1(s) − x2(s)]

ds

= (ϕ1 (−s) − ϕ2 (−s))
(
β̂(s) − x1(s)

)
− ϕ2 (−s) (x1(s) − x2(s)) .

The result follows. �
Lemma 4.9. Assume that β satisfies Assumption 4.4(e). Then we have the
following:

(i) ∃s∗ = s∗ (x+) > 0 such that ∀ϕ ∈ C ((−∞, 0] , R) with 0 ≤ ϕ (−s) ≤
x+, ∀s ≥ 0, we have β(s) ≥ Jβ,ϕ(s), ∀s ∈ [0, s∗] .

(ii) ∃δ = δ (x+, x−) > 0 such that ∀ϕ ∈ C ((−∞, 0] , R) with 0 < x− ≤
ϕ (−s) ≤ x+,∀s ≥ 0, we have

∫ s∗

0 e−νsJβ,ϕ(s)ds ≥ δ.

Proof. The proof follows from Lemmas 4.7 and 4.8. �
Lemma 4.10. Let Assumptions 4.1 and 4.4 be satisfied. Assume that λ/ν >
SN . Then

(i)
∫ +∞
0 e−νsJβ,γ(s)ds γ

ν+γ

∫ +∞
0 e−νsβ(s)ds, ∀γ ≥ 0.

(ii) For all ϕ ∈ C+ ((−∞, 0] , R) ,∣∣∣∣λ ∫ +∞

0
e−νs [Jβ,ϕ(s) − Jβ,x(s)] ds

∣∣∣∣
≤

∫ +∞
0 e−νs |β(s) − Jβ,ϕ(s)| ds∫ +∞

0 e−νsβ(s)ds
sup
s≥0

|ϕ(−s) − x| .
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Proof. Let γ ≥ 0. Then (i) follows from the fact that

λ

∫ +∞

0
e−νsJβ,γ(s)ds = λ

∫ +∞

0

∫ +∞

l
e−νse−(s−l)γγβ(l)dsdl.

To prove (ii), notice that for all s ≥ 0,

d (Jβ,ϕ − Jβ,x) (s)
ds

= (ϕ(−s) − x) (β(s) − Jβ,ϕ(s)) − x (Jβ,ϕ − Jβ,x) (s),

so

(Jβ,ϕ − Jβ,x) (s) =
∫ s

0
e−x(s−l) (ϕ(−l) − x) (β(l) − Jβ,ϕ(l)) dl.

Thus, we have

λ

∫ +∞

0
e−νs (Jβ,ϕ − Jβ,x) (s)ds

= λ

∫ +∞

0
e−νs

∫ s

0
e−x(s−l) (ϕ(−l) − x) (β(l) − Jβ,ϕ(l)) dlds

=
λ

ν + x

∫ +∞

0
e−νl (ϕ(−l) − x) (β(l) − Jβ,ϕ(l)) dl.

The conclusion (ii) then follows. �
We are now in the position to state and prove the main result of this

section.

Theorem 4.11. Let Assumptions 4.1 and 4.4 be satisfied. If λ/ν > SN ,
then AN0 = {xN} . In particular, for all x ∈ MN0,

U(t)x → xN as t → +∞
and {xN} is stable.

Proof. It is sufficient to show that x− = x+ = x since this implies that
ΦγN (PNx) = x, for all x ∈ AN0. Let x ∈ AN0. Then there exists a complete
solution orbit {u(t)}t∈R

through x in AN0. Setting S(t) = PSu(t), for all
t ∈ R, we have

dS(t)
dt

= λ − [ν + x]S(t), ∀t ∈ R.

Since t → S(t) on R, we must have S(0) = SN = λ/(ν + x) and the result
follows. So it remains to show that x− = x+ = x. Using Lemmas 4.5 and
4.10, it is sufficient to show that

sup
ϕ∈C((−∞,0],R)

x−≤ϕ≤x+

∫ +∞
0 e−νs |β(s) − Jβ,ϕ(s)| ds∫ +∞

0 e−νsβ(s)ds
< 1.
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We need to show that there existsε > 0 such that for all ϕ ∈ C+ ((−∞, 0] , R)
with x− ≤ ϕ ≤ x+,∫ +∞

0
e−νs |β(s) − Jβ,ϕ(s)| ds ≤

∫ +∞

0
e−νsβ(s)ds − ε.

By Lemma 4.9, there exist s∗ > 0 and δ > 0 such that for all ϕ ∈ C+((−∞, 0],
R) with x− ≤ ϕ ≤ x+, we have β(s) − Jβ,ϕ(s) ≥ 0, for all s ∈ [0, s∗] and∫ s(x+)

0
e−νsJϕ(s)ds ≥ δ > 0.

Taking ε = δ/2, it is sufficient to verify that for all ϕ ∈ C+ ((−∞, 0] , R)
with x− ≤ ϕ ≤ x+,∫ +∞

s∗
e−νs |β(s) − Jβ,ϕ(s)| ds ≤

∫ +∞

s∗
e−νsβ(s)ds +

δ

2
.

By Lemma 4.6, we have Jβ,ϕ(s) ≤ sups≥0 β(s). Let ŝ > s∗ be such that

sup
s≥0

β(s)
∫ +∞

ŝ
e−νsds ≤ δ

8
.

Then we need to show that for all ϕ ∈ C+ ((−∞, 0] , R) with x− ≤ ϕ ≤ x+,∫ ŝ

s∗
e−νs |β(s) − Jβ,ϕ(s)| ds ≤

∫ ŝ

s∗
e−νsβ(s)ds +

δ

4
.

For n ≥ 0 and i = 0, ..., n, set sn
i = i

n ŝ and

βn(s) =
n−1∑
i=0

β(sn
i )e−ν(s−sn

i )1[sn
i ,sn

i+1)(s), ∀s ∈ [0, ŝ] .

It follows from Assumption 4.4 (d) that βn(s) ≥ e−ν(a−s)βn(a), for all s, a ∈
[0, ŝ] with s ≥ a and

sup
s∈[0,ŝ]

|β(s) − βn(s)| → 0 as n → +∞.

If we denote

Jβn,ϕ(s) =
∫ s

0
βn(a)e−

∫ s
a ϕ(−l)dlϕ(−a)da, ∀s ∈ [0, ŝ] ,

then there exists n0 ≥ 0 such that for all n ≥ n0 and all ϕ ∈ C+ ((−∞, 0] , R)
with x− ≤ ϕ ≤ x+, we have∣∣∣ ∫ ŝ

s∗
e−νs [|β(s) − Jβ,ϕ(s)| − |βn(s) − Jβn,ϕ(s)|] ds

∣∣∣ ≤ δ

16
,
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s∗
e−νs [β(s) − βn(s)] ds

∣∣∣ ≤ δ

16
.

It is now sufficient to show that for all n ≥ n0 > 0, ϕ ∈ C+ ((−∞, 0] , R)
with x− ≤ ϕ ≤ x+, we have∫ ŝ

s∗
e−νs |βn(s) − Jβn,ϕ(s)| ds ≤

∫ ŝ

s∗
e−νsβn(s)ds +

δ

8
.

Let n ≥ n0 and ϕ ∈ C+ ((−∞, 0] , R) with x− ≤ ϕ ≤ x+ be fixed. Denote

I− = {s ∈ [s∗, ŝ] : βn(s) − Jβn,ϕ(s) < 0} .

We need to show that∫
I−

e−νs [Jβn,ϕ(s) − βn(s)] ds ≤
∫

I−
e−νsβn(s)ds +

δ

8
.

Using the special form of βn and Lemma 4.7, we deduce that there exists
{a1, ..., ak} and {b1, ..., bk} with ap < bp < ap+1, for all p = 1, .., k − 1, and
ak < bk, such that

I− = ∪p=1,...,k (ap, bp) .

Moreover, since

J ′
βn,ϕ(s) = ϕ(−s) (βn(s) − Jβn,ϕ(s)) < 0 for a.e. s ∈ (ap, bp) ,

we obtain that

Jβn,ϕ(s) ≤ Jβn,ϕ(ap) ≤ βn(ap), ∀s ∈ (ap, bp) .

Finally it needs to be shown that for all p = 1, ..., k,∫ bp

ap

e−νsβn(ap)ds ≤ 2
∫ bp

ap

e−νsβn(s)ds.

Since βn(s) ≥ e−ν(s−ap)βn(ap), for all s ∈ (ap, bp) , the inequality follows.
This completes the proof of the theorem. �

5. Uniform Persistence in MR0

To establish the persistence results, we need the following lemma which
can be proven with an argument similar to the proof of Lemma 4.2.

Lemma 5.1. Let Assumption 3.1 be satisfied. Then we have the following:
(i) If λ/ν > SR, then xS is ejective in MR0.
(ii) If λ/ν > SN > SR, then xN is ejective in MR0.

Theorem 5.2. Let Assumption 3.1 be satisfied. Assume that λ/ν ≤ SN .
Then {xS} is a global attractor for {UN (t)}t≥0 . Moreover, we have the fol-
lowing alternative:
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(i) If λ/ν ≤ SR, then limt→+∞ ‖PRU(t)x‖ = 0, for all x ∈ MR0.
(ii) If λ/ν > SR, then there exists ε > 0 such that for all x ∈ MR0,

lim inf
t→+∞

‖PRU(t)x‖ ≥ ε.

Proof. It remains to prove (ii). But (ii) is a consequence of Theorem 4.2 in
Hale and Waltman [15] applied with Ω (∂MR0) = {xS} . Using Proposition
3.10 (i) and Lemma 5.1 (i), the result follows. �

Theorem 5.3. Let Assumptions 3.1 and 4.4 be satisfied. Assume that λ/ν >
SN . Then we have the following:

(i) If λ/ν ≤ SR, then limt→+∞ ‖PRU(t)x‖ = 0, for all x ∈ MR0.
(ii) If λ/ν > SR > SN , then there exists ε > 0 such that for all x ∈ MR0

with ‖x − xN‖ ≤ ε,

U(t)x → xN as t → +∞.

In particular, limt→+∞ ‖PRU(t)x‖ = 0.
(iii) If SN > SR, then there exists ε > 0 such that for all x ∈ MR0,

lim inf
t→+∞

‖PRU(t)x‖ ≥ ε.

Proof. It remains to prove (iii). But it is a consequence of Theorem 2.2
applied with Ω (∂MR0) = {xS}∪{xN} . The result now follows from Theorem
4.11 and Lemma 5.1. This completes the proof of the theorem. �

6. Summary

For an epidemic in a hospital setting total bacteria load present in the
hospital is an important determinant of infection rates. The bacterial load
of separate antibiotic non-resistant and resistant strains is dependent on the
number of patients infected with each of these strains, their stage of in-
fection, and their use of antibiotics. A natural way to track the stage of
infection in individuals is infection age, and many researchers have inves-
tigated age structure in epidemic models (Diekmann et al. [8], Dietz and
Schenzle [9], Thieme [32], Thieme and Castillo-Chavez [33, 34], Brauer [2],
Castillo-Chavez and Huang [6], Feng et al. [10], Zhou et al. [40]). In the
model we analyze here the two population levels of bacteria and patients are
connected in a system of differential equations for the two classes of bacteria
(non-resistant and resistant) and the three classes of patients (susceptibles,
infectives infected by the non-resistant strain, and infectives infected by the
resistant strain). In another work [37] we study equilibria of this model and
provide conditions on the parameters to distinguish the mutually exclusive
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cases: (1) neither infective class has a positive equilibrium, (2) the non-
resistant infective class has a positive equilibrium, but the resistant class
does not, and (3) both infective classes have a positive equilibrium. In our
study here we have used results in Hale and Waltman [15] to investigate
the behavior of the solutions of the model with respect to these cases in
terms of the model parameters. Specifically, we proved that in case (1) both
infective classes extinguish (Proposition 3.10 and Theorem 5.2 (i)), in case
(2) the non-resistant infective class becomes endemic and the resistant in-
fective class extinguishes (Theorem 4.11 and Theorem 5.3 (i), (ii)), and in
case (3) the resistant infective class persists uniformly (Theorem 5.2 (ii) and
Theorem 5.3 (iii)).

The distinction between these three cases is determined by the model
parameters as follows: Let

TVF
=

∫ +∞

0
VF (a) exp[−

∫ a

0
(ν + νN (s))ds]da =

1
ηSN

,

TV + =
∫ +∞

0
V +(a) exp[−

∫ a

0
(ν + νR(s))ds]da =

1
ηSR

,

TV − =
∫ +∞

0
V −(a) exp[−

∫ a

0
(ν + νR(s))ds]da.

Then TF is the total non-resistant bacterial load produced by a patient
infected with only the non-resistant bacteria during their hospital stay, and
TV − (TV +) is the total non-resistant (resistant) bacterial load produced by
a patient infected with the resistant bacteria during their hospital stay. In
[37] it is shown that case (1) corresponds to TF < ν

ηλ and TV + < ν
ηλ , case

(2) corresponds to TF > ν
ηλ and TV + < TF , and case (3) corresponds to

TV + > ν
ηλ and TF < TV + .

Since these cases are distinguished by simple conditions on the parame-
ters at the bacteria level (cell doubling times, recombination rates, reversion
rates), and at the patient level (hospital admission rates, exposure of suscep-
tibles to total bacterial load, antibiotic therapy schedules, hospital lengths
of stay), it is possible to evaluate control measures which can alter the epi-
demic outcomes. The impact of control measures such as isolation of patients
infected with resistant strains, restricted use of antibiotics, and reduced or
extended hospital stays, is discussed in terms of the model parameters in [37].
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