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Abstract. We present an optimal control model of drug treatment of the human immunode-
ficiency virus (HIV). Our model is based upon ordinary differential equations that describe
the interaction between HIV and the specific immune response as measured by levels of
natural killer cells. We establish stability results for the model. We approach the treatment
problem by posing it as an optimal control problem in which we maximise the benefit based
on levels of healthy CD4+ T cells and immune response cells, less the systemic cost of
chemotherapy. We completely characterise the optimal control and compute a numerical
solution of the optimality system via analytic continuation.

1. Introduction

The role of the immune response to human immunodeficiency virus (HIV) infection
has received much attention in recent years. It is clear that some patients progress
to AIDS much more rapidly than others, and the specific immune response to HIV
has been shown to be an important determinant of the rate of disease progression
(or non-progression).

When HIV invades the body, it targets the CD4+ T cells, often referred to as
“helper” T cells. These cells can be considered “messengers”, or the command
centres of the immune system – they signal other immune cells that an invader is
to be fought. The immune response cells, or cytotoxic lymphocytes (CTLs), are
the cells that respond to this message and set out to eliminate infection by killing
infected cells.
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If the immune system is functioning normally, these components work together
in an efficient manner and an infection is eliminated in short order, causing only
temporary discomfort to the host. However, over time HIV is able to deplete the
population of CD4+ T cells. The exact mechanism by which this occurs remains
unknown, but several models have been suggested. For a variety of different hypoth-
eses of how this occurs, we refer the reader to papers by Weber and Weiss [27],
Nowak and May [21], Haseltine and Wong-Staal [11], and Kirschner, Webb, and
Cloyd [17].

The impact of the depletion of CD4+ T cells on the host is that although the
natural killer cells may be fit to perform their function of eliminating infection, they
are never deployed. This then culminates in a clinical problem wherein the patient
becomes vulnerable to infections that a healthy immune system would normally
handle.

Although HIV does not target the CTLs directly, it has been noted clinically for
some time (see Carr et al. [4], Cocchi et al. [5], Gray et al. [10], Arnaout, Nowak,
and Wodarz [1], Musey et al. [20], Ogg et al. [22], Walker et al. [26], Weine et al.
[28], Wodarz et al. [29], and references cited therein) that individuals who maintain
a high level of CTLs remain healthy longer. The ideal clinical situation would be
one in which the patient retains high levels of both CD4+ T cells and low viral
load. We do wish to maintain a positive population of CTLs so as to ensure that if
viral load does rebound, the immune system will be able to handle it. The best drug
treatments should establish this result, while keeping adverse effects to a minimum.
Virtually all anti-HIV drugs have many common adverse effects (see Lippincott’s
Nursing Drug Guide [18], for example, for an extensive listing of such adverse
effects). Because of this and the fact that these drugs are so costly, it would be best
to administer the lowest amount of drug necessary to keep the CD4+ T levels high.

New drug treatments and combinations of drugs are under constant develop-
ment. The optimal treatment scheme for HIV-positive patients remains the subject
of intense debate. The role of the immune response renders the problem particularly
challenging. When models do not consider the immune response, we are in essence
assuming that there is no significant natural anti-HIV response in the absence of
treatment. In other words, the only anti-HIV (or pro-CD4+ T cell level) benefit is
assumed to come from the drug or drugs administered. In reality, individuals do
have a natural anti-HIV response that varies from patient to patient depending on
a number of factors (one of which is severity of illness). Presumably, the stronger
this natural killer response, the less drug is needed to control infection.

To date, many mathematical models of drug treatment of HIV have been devel-
oped. Some models in the mid-1990s focused on modelling AZT treatment (see, for
example, Kirschner and Webb [15], or Kirschner and Perelson [13]). Some authors
have proposed mathematical models of HIV treatment using control theory. Kirsch-
ner, Lenhart, and Serbin [14] established optimal treatment schemes for a scenario
in which the drug reduces the rate of viral production. Optimal treatments were, in
general, monotonically decreasing over the time interval of treatment. In the case
where treatment was initiated 800 days after infection, there was a small peak in
the drug level very shortly after initiation, after which the control was monotoni-
cally decreasing. In both other scenarios (1000 and 1200 days after infection), the
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optimal control was monotonically decreasing. Balancing effects to CD4+ T cell
counts with drug cost, the earliest treatment was always the best no matter the
length of treatment interval.

Fister, Lenhart, and McNally [8] established results for a system similar to that
analysed in [14]. Their control was represented by a drug that reduced the infec-
tivity rate. Their results indicated that strength of treatment should balance with
duration (that is, the longer the treatment length, the smaller the dose should be).
As well, optimal treatment schemes are monotonically decreasing.

In 1998, Wein, Zenios, and Nowak [28] constructed a model which allowed
for viral mutation and the ability for the clinician to change treatment at any
time during treatment (hence their use of the term “dynamic”). Their model as-
sumed treatment that corresponds to different combinations of reverse transcrip-
tase inhibitors. The authors used what they refer to as a “perturbation technique”
to conclude that such dynamic treatment protocols are far preferable to static
protocols.

However, none of these papers has included immune response as a specific com-
ponent. In 1999, Wodarz and Nowak [30] published a four-dimensional ordinary
differential equation (ODE) model of the interactions between CD4+ T cells, viral
load, and immune response (both precursor or “memory” cells and effector immune
response cells). They assumed that treatment negatively affects the population of
immune response cells and modelled treatment numerically by running simula-
tions of their ODE model with a parameter that reduced viral infectivity to represent
treatment. Their conclusions were that interruption of therapy (to allow the immune
response to rebuild after being suppressed by chemotherapy) or antigenic boosts
to the immune system would be beneficial to the long-term clinical outcome of the
patient.

This paper establishes an optimal control model of HIV treatment, using a single
drug that reduces the cellular infection rate and explicitly incorporating the spe-
cific anti-HIV immune response as represented by levels of effector and memory
CTLs.

In Section 2 we present an untreated model that is based upon that presented by
Wodarz and Nowak [30]. We find three equilibria and completely analyse their local
stability properties. In Section 3 we present the optimal control problem in which
the coefficient of the cellular infection rate is the control. We seek to maximise
the performance index, which is the benefit based on CD4+ T cell and CTL levels
less the systemic cost of chemotherapy. We characterise the optimal control using
Pontryagin’s Maximum Principle. In Section 4 we solve the resulting optimality
system numerically. In Section 5 we discuss the clinical implications of the results
established in this paper.

2. Presentation of an untreated model

Here we introduce the ODE modelling of the immune dynamics of an HIV-infected
immune system. We note that these equations model an untreated individual; treat-
ment will be introduced in the next section via an optimal control.
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The system is defined as follows:

dx

dt
= λ − δx − βxy (2.1)

dy

dt
= β ′xy − ay − ρyz (2.2)

dz

dt
= cxyz − hz. (2.3)

Variables are defined as follows: x(t) and y(t) are populations of uninfected and
infected CD4+ T cells at time t , respectively. We consider viral load as proportional
to levels of infected cells, since according toArnaout et al. [1], “free virus is thought
to be short lived relative to infected cells”. z(t) is the population of immune response
cells at time t . In this model, we consider a single pool of immune response cells.
The stability analysis we perform in the following section indicates that our system
behaves qualitatively very much the same as that in [30].

Our parameters are interpreted as follows: λ is the source term for healthy CD4+
T cells, δ is their death rate, and β is the rate at which they are infected by virus. In
this case, we consider the viral source to be directly from infected cells. The ratio of
β ′ : β is the proportion of infected cells that survive the incubation period (the time
between the new infection of a CD4+ T cell and the time it becomes infectious).
Henceforth in this paper, we assume that this ratio is 1 : 1, or, in other words, that
all infected cells survive incubation; but we note that this may not always be the
case in reality. a is the death rate of infected cells by means other than elimination
by CTLs, and ρ is the rate at which they are killed by CTLs. c is a generation
constant for the CTL pool. Since it is an immune response specific to HIV, it is
proportional to y(t), the term representing infection level. It is also dependent upon
healthy CD4+ T cell help, and levels of CTLs themselves, hence the trilinear term.
Finally, h is the death rate for CTLs. Parameter ranges used in simulations, as well
as their references, are in Table 1 at the end of this section. Following the analysis
in [1] and clinically cited viral load ranges for HIV-positive individuals, we assume
that viral load is approximately (106 − 109) × y(t).

2.1. Stability analysis

We find that this system has three equilibria. They are

E0 =
(

λ

δ
, 0, 0

)

E1 =
(

a

β ′ ,
λβ ′

aβ
− δ

β
, 0

)

E =
(

λc − βh

cδ
,

hδ

λc − βh
,
β ′(λc − βh)

ρcδ
− a

ρ

)
.

The first is an uninfected equilibrium corresponding to maximal levels of healthy
CD4+ T cells and no infected cells or immune response. While at first glance the
lack of immune response may seem alarming, we note that the immune response
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we are modelling here is that which is specific to HIV; therefore, in the absence of
infection, we should expect no specific immune response.

The second equilibrium E1 corresponds to positive levels of both healthy and
infected cells, but no immune response. Clearly this is not desirable.

The interior equilibrium E corresponds to positive levels of all three compo-
nents – healthy and infected CD4+ T cells, and immune response.

Since the system is three-dimensional, we use the Routh-Hurwitz criteria to
establish negativity of the real parts of the roots of the characteristic equation, and
therefore stability of the equilibrium under consideration. The general Routh-Hur-
witz criteria for an n-dimensional system can be found, for example, in Appendix
2 of Murray [19]. For a three-dimensional system, with a characteristic equation of
the form:

v3 + a1v
2 + a2v + a3 = 0,

the Routh-Hurwitz criteria state that all roots of the characteristic equation have
negative real parts (and thus the equilibrium is stable) if and only if

a1 > 0, a3 > 0, a1a2 > a3.

Analysis of the characteristic equation evaluated at E0, the healthy equilibrium,
reveals that it is stable if β ′ < aδ

λ
; i.e., the infection rate and/or the fraction of cells

surviving incubation is quite low.
The interior equilibrium E is stable exactly when the equilibrium E1 is unstable,

and vice-versa. In other words, a transcritical bifurcation occurs whereby the sta-
bility of the two equilibria switch. Specifically, E is stable so long as the following
condition holds:

β ′ >
acδ

λc − βh
.

Note that this is also the feasibility condition for the interior equilibrium; i.e., the
necessary and sufficient condition for the equilibrium to exist. When this inequality
is reversed, E is unstable and E1 is stable. However, under most realistic parameter
ranges we find E to be the stable equilibrium; see Table 1 at the end of this section
for a complete listing of the relevant parameter ranges used as well as their sources.
Also, E is in fact a spiral point, as the Jacobian evaluated at E has one real and two
complex conjugate eigenvalues.

We summarise the above in the following proposition.

Proposition 2.1. The uninfected equilibrium E0 of the system (2.1)–(2.3) is stable
for β ′ < aδ

λ
. When this inequality is reversed, either E1 or E is stable, depending

upon the parameter values. Specifically, for β ′ < acδ
λc−βh

, E1 is stable and E is

not feasible. When this inequality is reversed, E1 loses stability and E becomes a
locally asymptotically stable spiral point.

We ran numerical simulations using the XPP package [7] for phase-plane anal-
ysis of systems of ordinary differential equations, and the results are displayed
below. In Figure 1, we observe a plot of the solution (x(t), y(t), z(t)) versus time
and see that it quickly settles toward a steady-state.
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Table 1. Variables and Parameters

Parameters and Variables Values

Dependent Variables
x(t) uninfected CD4+ T cell population size
y(t) infected CD4+ T cell population size/viral load
z(t) immune response cell population size

Parameters and Constants
λ source rate of CD4+ T cells 1–10 cells/day
δ decay rate of healthy cells 0.007–0.1 cells/day
β rate CD4+ T cells become infected 0.00025–0.5 cells/day
β ′ : β proportion of infected cells surviving incubation ≈ 1
a death rate infected CD4+ T cells, not by CTL killing 0.2–0.3 cells/day
ρ rate at which infected cells are killed by CTLs 1/day
c immune response activation rate 0.1–1/day
h death rate of CTLs 0.1–0.15/day

2.2. Variables and parameter ranges used

Parameter ranges used for numerical simulations of (2.1)–(2.3) are given in Table 1.
The parameter ranges for λ, δ, β, a were obtained from references [1], [28], [30],
[23], [25], [16]. The ranges for the immune response parameters ρ, c, h, were
found in [1] and [30]. A wide range of possible parameter values has been sug-
gested for HIV modelling. Part of the reason for this is that it is difficult to assign
one set of parameters to individuals showing dramatically different clinical out-
comes.

Parameters specific to HIV are generally given in units of cells mm−3 day−1.
Realistic levels of CD4+ T cells can be found using parameters within the ranges
given in Table 1. Note that we also obtain a CD4+ T cell:CTL ratio of about 2 : 1.
In an individual with a healthy immune system, the ration of CD4+ T cells to CTLs
is usually about 2 : 1 as we see here. However, this ratio switches to 1 : 2 in
advanced HIV infection. Our steady state values do indeed show an increase of
CTLs, and a decrease of CD4+ T cells, from their equilibrium values, although the
ratio at equilibrium is not 1 : 2. This may be partly due to our implicit assump-
tion that the pool of CTLs represented by z(t) is specific to HIV and does not
include any other components of the host immune response. Assuming viral load
to be proportional to infected cells and that it is approximately (106 − 109) × y(t),
we obtain a viral load in the 1,000–100,000 range. This is not unreasonable, con-
sidering the nature of the viral load test – “viral load” is an approximation based
upon the polymerase chain reaction (as opposed to “viral burden”, the actual num-
ber of viral particles per millilitre of plasma, a quantity which is much harder to
measure).

In the simulations reproduced here and in Sections 4 and 5, we use parameters
from [30] to display the qualitative behaviour of the systems in parameter space.
We note that the stability properties of the models are retained using most values
from the ranges given in Table 1.
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As a final note, we point out that the main goals of this study are mathematical
and qualitative in nature. Much larger and more quantitatively sophisticated mod-
els are needed to determine precise treatment regimes in terms of days on therapy,
exact drug quantities, and so forth. Such models are however a logical extension of
the model presented here.

3. The optimal control problem

We would like to maximise levels of healthy CD4+ T cells, as well as levels of
CTLs (immune response cells). Also, we want to keep cost – as measured in terms
of chemotherapy strength, a combination of duration and intensity – as low as pos-
sible. Our control is a function u(t) with values normalised to be between 0 and 1,
where u(t) = 1 represents totally effective chemotherapy and u(t) = 0 represents
no treatment. We choose as our control class:

U := {u(t) : u is Lebesgue-measurable with values between 0 and 1}.
Mathematically, the optimal control problem is formulated as:

max J [u] =
∫ T

0

(
x + z − Bu2

2

)
dt (3.1)

subject to the state system

dx

dt
= λ − δx − (1 − u)βxy (3.2)

dy

dt
= (1 − u)β ′xy − ay − ρyz (3.3)

dz

dt
= cxyz − hz. (3.4)

Since the control reduces the viral replication rate, we multiply our infectivity term
βxy by (1 − u). In this case, both our cellular infection rate and our viral (infec-
tion) production rate are represented by the same term, β, so the drug may represent
either a protease or a reverse transcriptase inhibitor drug (see Perelson and Nelson
[24] for a detailed description of how to mathematically model different types of
anti-HIV drugs).

3.1. Characterisation of an optimal control

We invoke Pontryagin’s Maximum Principle [9] to determine the precise formula-
tion of our optimal control u∗(t). To do this, we note that our Hamiltonian is given by

H = x + z − Bu2

2
+ λw1 − δxw1 − (1 − u)βxyw1 + (1 − u)β ′xyw2

−ayw2 − ρyzw2 + cxyzw3 − hzw3 + v1u + v2(1 − u).

Here v1(t) and v2(t) are penalty multipliers ensuring that u(t) remains bounded
between 0 and 1. We also have that v1(t)u(t) = 0 and v2(t)(1 − u(t)) = 0 at the
optimal u∗(t).
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The wj(t), j = 1, 2, 3, are our adjoint variables; they determine the adjoint
system which, together with our state system, determines our optimality system.

We shall consider all possible values for the control, including those on the
boundary (u = 0 and u = 1).

(i) Consider the set {t : 0 < u(t) < 1}.
Pontryagin’s Maximum Principle states that the unconstrained optimal control
u∗(t) satisfies

∂H

∂u∗ = 0.

So we find ∂H
∂u

and solve for u∗ by setting our partial derivative of H equal
to zero. Thus,

∂H

∂u∗ = −Bu∗ + xy(βw1 − β ′w2) + v1 − v2 = 0

⇒ Bu∗ = xy(βw1 − β ′w2) + v1 − v2

⇒ u∗(t) = xy(βw1 − β ′w2) + v1 − v2

B
.

So we find that in this case, where v1(t) = v2(t) = 0, our optimal control is
characterised as:

u∗(t) = xy(βw1 − β ′w2)

B
.

To completely characteriseu∗(t), we must consider the boundary casesu∗ = 0
and u∗ = 1 as well as the non-boundary cases.

(ii) Consider the set {t : u(t) = 0}. In this case, v2 = 0. Thus, from the definition
of the optimal control above, we have

0 = xy(βw1 − β ′w2) + v1

B
.

Since (by definition) v1 ≥ 0, we see that the above implies that

xy(βw1 − β ′w2) ≤ 0,

so to ensure that u∗ is not negative, we use the following notation:

s+ = max{s, 0}.

Therefore, on this set,

u∗(t) = xy
(
βw1 − β ′w2

)
B

+
.
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(iii) Now consider the set {t : u(t) = 1}. In this case, v1 = 0. Thus,

1 = xy(βw1 − β ′w2) − v2

B
.

This tells us that 0 ≤ v2(t) = xy(βw1 − β ′w2) − B, or, more precisely,

xy(βw1 − β ′w2)

B
≥ 1 = u∗.

So, on this set, we must choose

u∗(t) = min

{
xy

(
βw1 − β ′w2

)
B

, 1

}
.

To conclude, we take all three cases together and we find that we can com-
pletely characterise u∗(t) as follows:

u∗(t) = min

{
1,

xy
(
βw1 − β ′w2

)
B

+}
.

We summarise the above results in the following proposition.

Proposition 3.1. The optimal control for the optimal control problem (3.1)–(3.4)
is completely characterised by

u∗(t) = min

{
1,

xy
(
βw1 − β ′w2

)
B

+}
.

So we can see that the control is described in terms of levels of circulating
healthy and infected cells as well as their related adjoint variables.

3.2. Derivation of the optimality system

The optimality system is an important part of this problem. It describes mathemat-
ically how the system behaves under application of the control. Therefore, we may
find how the different populations of cells grow or decay when the individual is
treated with optimal therapy as characterised in Section 3.

The optimality system is defined as the state system together with the adjoint
system and the optimal control u∗. The adjoint system is given by

dw1

dt
= −∂H

∂x
dw2

dt
= −∂H

∂y

dw3

dt
= −∂H

∂z
.

The final component in the optimality system is the set of transversality conditions,
which in this case reduce to end conditions on the adjoint variables. They are a con-
sequence of the following result, which can also be found in Fleming and Rishel [9].
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Given the maximisation problem max J [u] = F(x(T )) + ∫ T

0 f0(x, u) dt , sub-
ject to the state system dx/dt = f (t, x, u) and such that x(T ) belongs to some
target set g(x(T )), we have the following transversality conditions on the adjoint
variables

wi(T ) = ∇F(x(T )) +
k∑

i=1

cigi(x(T )). (3.5)

The function F is known as the terminal cost.
In our problem, there is no terminal cost, so F(x(T )) = 0. We also do not have

a target set for our state variables – we have a desired end result, of course, but the
final state is in fact free, so the summation term is also zero.

Therefore, the transversality conditions for the adjoint variables are

wi(T ) = 0, i = 1, 2, 3. (3.6)

Therefore, taking the state system together with the adjoint system, the optimal con-
trol, and the transversality conditions, we have the following optimality system:

dx

dt
= λ − δx − (1 − u)βxy (3.7)

dy

dt
= (1 − u)β ′xy − ay − ρyz (3.8)

dz

dt
= cxyz − hz (3.9)

dw1

dt
= −1 + δw1 + (1 − u)y(βw1 − β ′w2) − cyzw3 (3.10)

dw2

dt
= (1 − u)x(βw1 − β ′w2) + aw2 + ρzw2 − cxzw3 (3.11)

dw3

dt
= −1 + ρyw2 − cxyw3 + hw3 (3.12)

u∗(t) = min

{
1,

xy(βw1 − β ′w2)

B

+}
(3.13)

wi(T ) = 0, i = 1, 2, 3. (3.14)

4. Numerical results

In this section, we discuss the method for numerically solving the optimality system
(3.7)–(3.14) and present the results. We note that this is a two-point boundary-value
problem, with separated boundary conditions at times t = 0 and t = T . It is our
aim to solve this problem for the value T = 100. This value was chosen to represent
the time (in days) at which treatment is stopped.

It turns out that the problem is quite challenging to solve numerically because
our uncontrolled optimality system is (very) unstable in the adjoint variables1. We

1 Most notably the variations of the adjoint variable w2(t) even in the controlled case
are very large, indicating a high degree of sensitivity of the performance index J [u] to the
changes in y(t); see Figure 4.2 below.
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use a finite-difference approach to solve the optimality system (3.7)–(3.14). In
particular we employed the software package COLDAE [3], which solves bounda-
ry-value differential and differential-algebraic equations (DAEs) by collocation at
Gaussian points. These methods are equivalent to sophisticated high-order one-step
finite difference schemes.Although ultimately we did not use the DAE capability of
the solver, the potential for added flexibility in the problem formulation was useful.

A further complication worth noting is that the optimality system (3.7)–(3.14) is
a nonlinear problem; hence we need an initial guess from which to begin a Newton
iteration.As is well-known, the convergence of Newton’s method depends critically
on the initial guess being sufficiently close to the desired solution. In the case of the
optimality system (3.7)–(3.14), we were not able to simply divine an initial guess
that allowed the Newton iteration to converge. Hence we appealed to the method of
analytic continuation [12,2] to solve the problem. This is a standard and powerful
technique used to solve nonlinear boundary-value problems. We now describe our
methodology.

The idea behind analytic continuation is to imbed the given problem in a fam-
ily of related problems that depend on a parameter. We illustrate how we did this
for the optimality system (3.7)–(3.14). In this case, we use the parameter T . For
T = 100, the parameterized problem of course reduces to the original problem.
However, we note that the problem is easily solvable for another parameter value;
namely, T = 1. The solution to the problem for T = 1 can then be used as an
initial guess to the solution to a nearby problem; e.g., for T = 1 + �T for �T

sufficiently small. With the proper choice of neighbouring problems, this process
can be continued until the desired problem is solved. The successive values of the
parameter chosen are referred to as a homotopy path.

We solved the optimality system (3.7)–(3.14) by making the change of variable
τ = t/T and hence transforming it to the interval [0, 1], leading to the system:

dx

dτ
= T (λ − δx − (1 − u)βxy)

dy

dτ
= T ((1 − u)β ′xy − ay − ρyz)

dz

dτ
= T (cxyz − hz)

dw1

dτ
= T (−1 + δw1 + (1 − u)y(βw1 − β ′w2) − cyzw3)

dw2

dτ
= T ((1 − u)x(βw1 − β ′w2) + aw2 + ρzw2 − cxzw3)

dw3

dτ
= T (−1 + ρyw2 − cxyw3 + hw3)

u∗(τ ) = min

{
1,

xy(βw1 − β ′w2)

B

+}

wi(1) = 0, i = 1, 2, 3.

Using T as our continuation parameter, we were able to converge to the solution
of the problem for T = 1 with a zero initial guess. We then chose �T = 0.1 and



Optimal HIV treatment by maximising immune response 557

0 0.2 0.4 0.6 0.8 1
5

6

7

8

9

10

 t/100

 x
(t)

 Healthy cells for HIV model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 t/100

 y
(t)

 Infection level for HIV model

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

 t/100

 n
(t)

 CTL level for HIV model

Fig. 4.1. The states x(τ), y(τ), and z(τ ) of the optimality system

incremented T in this way until we reached our desired final value of T = 100. The
solutions are displayed below in Figures 4.1–4.3. We note that this is not necessar-
ily the only or most efficient homotopy path possible; however, it was sufficient to
produce an accurate answer in an acceptable amount of time.
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Fig. 4.2. The adjoint variables w1(τ ), w2(τ ), and w3(τ ) of the optimality system

5. Discussion

We sought to determine optimal treatment strategies that would maximise not only
healthy cells but immune response cells as well. We considered first an untreated,
three-dimensional ODE model of the interaction between healthy and infected
CD4+ T cells and the natural anti-HIV immune response. We found that, depend-
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Fig. 4.3. The optimal control u∗(τ )

ing on the parameter space in which we work, the system either tends to elim-
inate infection, tends toward an equilibrium with high infection and no specific
immune response, or tends toward a balance between infection, healthy cells, and
the immune response.

We formulated the optimal control problem to keep both healthy CD4+ T cell
and CTL levels high whilst minimising drug cost. The control itself is described in
terms of both healthy and infected CD4+ T cells and their corresponding adjoint
variables. We note that the existence and continuity of the optimal control are proven
in [6].

We then solved the optimality system numerically via analytic continuation in
the parameter T , the length of the treatment interval. Referring again to [6], we note
that existence of an optimal control is proven using the concept of a maximising
sequence – that is, a sequence of solutions (x(r), u(r)) to the control problem that
converge to the optimal solution (x∗, u∗) as t (r) → T (see [9] for a much more
detailed discussion of existence properties of optimal controls). Referring back to
Section 4, we note that continuation in T exactly corresponds to this theoretical
concept.

We found that the control starts out at its boundary value of u = 1, correspond-
ing to treatment at full strength. After an initial decrease, the optimal treatment
grows high again and drops sharply to zero at the final time. The resolution of
this sharp drop contributes significantly to the difficulty in obtaining a numerical
solution of (3.7)–(3.14).

We can see that the optimal drug treatment protocol has a very desirable effect
upon the population of healthy cells. They increase to near their maximal level for
almost the entire length of treatment. The sharp drop off at the end is presumably
because the cessation of drug enables the infection to rebound and destroy CD4+
T cells.

Infection level decreases to very low levels, but is never eradicated. However,
at the end of the treatment schedule, when the drug is no longer given, the infection
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level begins to rise again. When the infection is low, so too is the specific immune
response.

We note that the specific immune response is always maintained at a positive
level – it is never eliminated. We also note that an increase in infection is followed
by a corresponding increase in the immune response, which then serves to sup-
press infection (by killing off infected cells). Once the infection is low, the immune
response is not needed at such high levels and this is why it too drops off. We note
the initial decrease in the control with interest. This occurs at roughly the same
time as the immune response is high, indicating that during periods of effective
immune responsiveness, less medication is needed to control infection. We suggest
that this may indicate that high/low or on/off drug treatment schemes may work
well to keep infection under control, provided a sufficient immune response can be
maintained. Note that on/off treatment was first modelled mathematically in [15].
As well, implementing treatments that enhance a patient’s natural immune response
may be beneficial as an alternative to quite such high levels of drug therapy. Boost-
ing host immune response via immunotherapy has been dealt with in [16], although
this is the only work done on this topic to date. We believe that this area deserve
further exploration.

Comparing our results with those established in [14] and [8], we find that our
control does behave somewhat differently from drugs used to control systems not
explicitly modelling immune response. In [14], the control either was monotone
decreasing from its maximum value, or peaked slightly just after near the initiation
of treatment and then dropped off. However, we observe that our control actually
decreases soon after initiation of treatment, only to rise again, remain close to
constant, and drop rapidly near the end. We believe that this initial drop is directly
dependent upon the action of the immune response, which occurs shortly after treat-
ment initiation in response to the high infection level. That is, our optimal treatment
is actually reduced for a period of time while the immune response of the host takes
over. This indicates that stimulation of the immune response by some means other
than continual administration of anti-HIV drugs should be considered seriously
in a clinical setting. Treatment strategies such as interruption of drug therapy to
allow the immune response to rebuild should also be considered. This can be tested
clinically via drug trials, but also mathematically using a periodic control.
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