
A delay-di�erential equation model of HIV infection of CD4�

T-cells q

Rebecca V. Culshaw a, Shigui Ruan a,b,*

a Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5
b School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

Received 29 January 1998; received in revised form 9 February 2000; accepted 9 February 2000

Abstract

A.S. Perelson, D.E. Kirschner and R. De Boer (Math. Biosci. 114 (1993) 81) proposed an ODE model of
cell-free viral spread of human immunode®ciency virus (HIV) in a well-mixed compartment such as the
bloodstream. Their model consists of four components: uninfected healthy CD4� T-cells, latently infected
CD4� T-cells, actively infected CD4� T-cells, and free virus. This model has been important in the ®eld of
mathematical modeling of HIV infection and many other models have been proposed which take the model
of Perelson, Kirschner and De Boer as their inspiration, so to speak (see a recent survey paper by A.S.
Perelson and P.W. Nelson (SIAM Rev. 41 (1999) 3±44)). We ®rst simplify their model into one consisting of
only three components: the healthy CD4� T-cells, infected CD4� T-cells, and free virus and discuss the
existence and stability of the infected steady state. Then, we introduce a discrete time delay to the model to
describe the time between infection of a CD4� T-cell and the emission of viral particles on a cellular level
(see A.V.M. Herz, S. Bonhoe�er, R.M. Anderson, R.M. May, M.A. Nowak [Proc. Nat. Acad. Sci. USA 93
(1996) 7247]). We study the e�ect of the time delay on the stability of the endemically infected equilibrium,
criteria are given to ensure that the infected equilibrium is asymptotically stable for all delay. Numerical
simulations are presented to illustrate the results. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

In the last decade, many mathematical models have been developed to describe the immuno-
logical response to infection with human immunode®ciency virus (HIV) (for example, [1±21] and
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so on). These models have been used to explain di�erent phenomena. For more references and
some detailed mathematical analysis on such models, we refer to the survey papers by Kirschner
[22] and Perelson and Nelson [23].

HIV targets, among others, the CD4� T lymphocytes, which are the most abundant white
blood cells of the immune system (referred to as helper T-cells or CD4� T-cells, which is the term
we will use in this paper). It is thought that HIV, although attacking many di�erent cells, wreaks
the most havoc on the CD4� T-cells by causing their destruction and decline, and decreasing the
body's ability to ®ght infection.

We assume that peripheral blood CD4 counts (generally 1000=mm3) are a good indicator for
CD4 densities in the body. When HIV enters the body, it targets all the cells with CD4� receptors,
including the CD4� T-cells. The gp120 protein on the viral particle binds to the CD4� receptors
on the CD4� T-cell and injects its core. After an intracellular delay associated with reverse
transcription, integration, and the production of capsid proteins, the infected cell releases hun-
dreds of virions that can infect other CD4� T-cells.

In 1989, Perelson [16] developed a simple model for the interaction between the human im-
mune system and HIV. Perelson et al. [17] extended Perelson's model and proved mathemati-
cally some of the model's behavior. They observed that the model exhibits many of the
symptoms of AIDS seen clinically: the long latency period, low levels of free virus in the body,
and the depletion of CD4� T-cells. They de®ned the model by considering four compartments:
cells that are uninfected, cells that are latently infected, cells that are actively infected and free
virus. They described the dynamics of these populations by a system of four ordinary di�erential
equations.

Time delays of one type or another have been incorporated into biological models by many
authors (for example, [24±29] and the references cited therein). In general, delay-di�erential
equations exhibit much more complicated dynamics than ordinary di�erential equations since a
time delay could cause a stable equilibrium to become unstable and cause the populations to
¯uctuate. Recently, in studying the viral clearance rates Perelson et al. [18] assumed that there are
two types of delays that occur between the administration of drug and the observed decline in
viral load: a pharmacological delay that occurs between the ingestion of drug and its appearance
within cells and an intracellular delay that is between initial infection of a cell by HIV and the
release of new virions. Herz et al. [30] used a discrete delay to model the intracellular delay in a
HIV model and showed that the incorporation of a delay would substantially shorten the estimate
for the half-life of free virus. Mittler et al. [31] argued that a c-distribution delay would be more
realistic to model the intracellular delay phenomenon and introduced such a delay into the model
of Perelson et al. [18]. They derived an analytic expression for the rate of decline of virus following
drug treatment by assuming the drug to be completely e�cacious. See also Mittler et al. [32] and
Tam [33] for related work.

In this paper, we ®rst simplify the ODE model proposed by Perelson et al. [17] by considering
only three components: the uninfected CD4� T-cells, infected CD4� T-cells, and free virus. The
existence and stability of the infected steady state are considered. We then incorporate a discrete
delay to the model to describe the time between infection of a CD4� T-cell and the emission of
viral particles on a cellular level as proposed by Herz et al. [30]. The resulting model is a system of
three delay-di�erential equations. To determine the dynamics of the delay model, we study the
transcendental characteristic equation of the linearized system at the positive infected steady state
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and obtain analytic conditions on the parameters under which the infected steady state is as-
ymptotically stable for all delay. Numerical simulations are carried out to illustrate the obtained
results.

2. The ODE model

We ®rst reduce the dimension of Perelson et al.'s system by assuming that all the infected cells
are capable of producing virus. Similar reduction has been done in [10,23], etc. The reduced ODE
model is

dT
dt
� sÿ lTT � rT 1

�
ÿ T � I

Tmax

�
ÿ k1VT ;

dI
dt
� k01VT ÿ lII; �2:1�

dV
dt
� NlbI ÿ k1VT ÿ lVV ;

where T �t� represents the concentration of healthy CD4� T-cells at time t, I�t� represents the
concentration of infected CD4� T-cells, and V �t� the concentration of free HIV at time t.

To explain the parameters, we note that s is the source of CD4� T-cells from precursors, lT is
the natural death rate of CD4� T-cells, r is their growth rate (thus, r > lT in general), and Tmax is
their carrying capacity. The parameter k1 represents the rate of infection of T-cells with free virus
and so is given as a loss term for both healthy cells and virus, since they are both lost by binding to
one another, and is the source term for infected cells. k01 is the rate at which infected cells become
actively infected (the ratio k01=k1 is the proportion of T-cells, which ever become actively infected).
lI is a blanket death term for infected cells, to re¯ect the assumption that we do not initially know
whether the cells die naturally or by bursting. In addition, lb is the lytic death rate for infected
cells. Since N viral particles are released by each lysing cell, this term is multiplied by the pa-
rameter N to represent the source for free virus (assuming a one-time initial infection). Finally, lV

is the loss rate of virus.
In the absence of virus, the T-cells population has a steady state value

T0 �
r ÿ lT � �r ÿ lT�2 � 4rsTÿ1

max

h i1=2

2rTÿ1
max

: �2:2�

Thus reasonable initial conditions for infection by free virus only are

T �0� � T0; I�0� � 0; V �0� � V0: �2:3�

System (2.1) has two steady states: the uninfected steady state E0 � �T0; 0; 0� and the (positive)
infected steady state E � �T ; I; V �; where
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T � lVlI

k01Nlb ÿ k1lI

;

I � k01T V
lI

; �2:4�

V �
lI �s� �r ÿ lT�T �Tmax ÿ rT

2
h i

T k01rT � k1lITmax

� � :

Following the analysis in [17], we can see that N is a bifurcation parameter. When

N < Ncrit � lI�lV � k1T0�
k01lbT0

; �2:5�
the uninfected steady state E0 is stable and the infected steady state E does not exist (unphysical).
When N � Ncrit; the uninfected and infected steady states collide and there is a transcritical bi-
furcation. When N > Ncrit;E0 becomes unstable and E exists.

To discuss the local stability of the positive infected steady states E for N > Ncrit, we consider
the linearized system of (2.1) at E. The Jacobian matrix at E is given by

A �
ÿ lT � r�2T�I�

Tmax
� k1V ÿ r

� �
ÿ rT

Tmax
ÿ k1T

k01V ÿ lI k01T
ÿk1V Nlb ÿ �k1T � lV�

0B@
1CA:

Denote

M � lT �
r�2T � I�

Tmax

� k1V ÿ r: �2:6�

Then the characteristic equation of the linearized system is

k3 � a1k
2 � �a2 � a4�k� �a3 � a5� � 0; �2:7�

where

a1 � lI � lV � k1T �M ;

a2 � M k1T
ÿ � lI � lV

�� lI lV

ÿ � k1T
�ÿ k2

1T V ;

a3 � k01T k1NlbV
�

� rlVV
Tmax

ÿ MNlb

�
; �2:8�

a4 � k01T
rV

Tmax

�
ÿ Nlb

�
;

a5 � MlI lV

ÿ � k1T
�ÿ lIk

2
1T V :

We should point out that writing the coe�cients in Eq. (2.7) as a2 � a4 and a3 � a5 is for the sake
of convenience and comparison, since the characteristic equation (3.3) of the corresponding delay
equation in Section 3 has all ®ve ais as coe�cients.

By the Routh±Hurwitz criterion, it follows that all eigenvalues of Eq. (2.7) have negative real
parts if and only if

a1 > 0; a3 � a5 > 0; a1�a2 � a4� ÿ �a3 � a5� > 0: �2:9�
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Proposition 1. The infected steady state E is asymptotically stable if the inequalities in (2.9) are
satisfied.

For the parameter values given in Table 1, Ncrit � 131:3: The number of infectious viruses re-
leased, N ; varies in the literature. It has been suggested to be hundreds (see [37,38]) and even
thousands (see [39]). We ®rst take N � 500; then

a1 � 2:71; a2 � 0:7418; a3 � ÿ0:0003; a4 � ÿ0:6238; a5 � 0:0273 �2:10�

and

a3 � a5 � 0:027 > 0; a1�a2 � a4� ÿ �a3 � a5� � 0:2928 > 0: �2:11�

Thus, all the conditions in (2.9) are satis®ed and the infected steady state E � �260:7; 42:5; 1768:2�
is asymptotically stable. Numerical simulations show that trajectories of system (2.1) approach to
the steady state (Fig. 1(A1)±(A3)). Increasing the N value will decrease the numbers of uninfected
CD4� T-cells and virus and increases the number of infected cells substantially, but does not
change the stability of the steady state. With N � 1000, the steady state becomes
E � �130:2; 34:9; 3480:1�; which is asymptotically stable (see Fig. 1(B1)±(B3)).

We should point out that though the dynamics of system (2.1) are very similar to that of
Perelson et al.'s model, the actual steady state values in our model (2.1) are di�erent. Our bi-
furcation value Ncrit is lower, the equilibrium level of healthy CD4� T-cells is lower, and the
equilibrium level of free virus is higher, than that in Perelson et al.'s model.

Table 1

Variables and parameters for viral spread

Parameters and variables Values

Dependent variables

T Uninfected CD4� T-cell population size 1000 mmÿ3

I Infected CD4� T-cell density 0

V Initial density of HIV RNA 10ÿ3 mmÿ3

Parameters and Constants

lT Natural death rate of CD4� T-cells 0:02 dayÿ1

lI Blanket death rate of infected CD4� T-cells 0:26 dayÿ1

lb Lytic death rate for infected cells 0:24 dayÿ1

lV Death rate of free virus 2:4 dayÿ1

k1 Rate CD4� T-cells become infected with virus 2:4� 10ÿ5 mm3 dayÿ1

k01 Rate infected cells becomes active 2� 10ÿ5 mm3 dayÿ1

r Growth rate of CD4� T-cell population 0:03 dayÿ1

N Number of virions produced by infected CD4� T-cells Varies

Tmax Maximal population level of CD4� T-cells 1500 mmÿ3

s Source term for uninfected CD4� T-cells 10 �day�ÿ1�mmÿ3�
Derived quantities

T0 CD4� T-cell population for HIV-negative persons 1000 mmÿ3
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3. The delay model

In this section, we introduce a time delay into system (2.1) to represent the viral eclipse phase.
The model is given as follows:

dT �t�
dt
� sÿ lTT �t� � rT �t� 1

�
ÿ T �t� � I�t�

Tmax

�
ÿ k1T �t�V �t�;

dI�t�
dt
� k01T �t ÿ s�V �t ÿ s� ÿ lII�t�; �3:1�

dV �t�
dt
� NlbI�t� ÿ k1T �t�V �t� ÿ lVV �t�

Fig. 1. The ODE model: in (A1)±(A3) N � 500 and in (B1)±(B3) N � 1000. All other parameters are given in Table 1.
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under the initial values

T �h� � T0; I�0� � 0; V �h� � V0; h 2 �ÿs; 0�:
All parameters are the same as in system (2.1) except that the positive constant s represents the
length of the delay in days.

We ®nd, again, an uninfected steady state E0 � �T0; 0; 0� and an infected steady state
E � �T ; I ; V �; where T ; I and V are the same as in Section 2, given by (2.4). Since the uninfected
steady state E0 is unstable when s � 0 and N > Ncrit; incorporation of a delay will not change the
instability. Thus, E0 is unstable if N > Ncrit, which is also the feasibility condition for the infected
steady state E:

To study the stability of the steady states E, let us de®ne

x�t� � T �t� ÿ T ; y�t� � I�t� ÿ I ; z�t� � V �t� ÿ V :

Then the linearized system of (3.1) at E is given by

dx�t�
dt
� ÿ lT

�
� 2rT � rI

Tmax

� k1V ÿ r
�

x�t� ÿ rT
Tmax

y�t� ÿ k1T z�t�;
dy�t�

dt
� k01V x�t ÿ s� ÿ lIy�t� � k1T z�t ÿ s�; �3:2�

dz�t�
dt
� ÿk1V x�t� � Nlby�t� ÿ �k1T � lV�z�t�:

We then express system (3.2) in matrix form as follows:

d

dt

x�t�
y�t�
z�t�

0@ 1A � A1

x�t�
y�t�
x�t�

0@ 1A� A2

x�t ÿ s�
y�t ÿ s�
z�t ÿ s�

0@ 1A;
where A1 and A2 are 3� 3 matrices given by

A1 �
ÿM ÿ rT

Tmax
ÿ k1T

0 ÿ lI 0
ÿk1V Nlb ÿ �k1T � lV�

0@ 1A; A2 �
0 0 0

k01V 0 k01T
0 0 0

0@ 1A;
where M is de®ned by (2.6). The characteristic equation of system (3.2) is given by

D�k� � kI
�� ÿ A1 ÿ eÿksA2

�� � 0;

that is,

k3 � a1k
2 � a2k� a3eÿks � a4keÿks � a5 � 0; �3:3�

where ai �i � 1; . . . ; 5� are de®ned in (2.8).
It is known that E is asymptotically stable if all roots of the corresponding characteristic

equation (3.3) have negative real parts (see [34]). However, compared with the polynomial
characteristic equation (2.7) for the ODE model, Eq. (3.3) is much more di�cult to deal with.
First, it is a transcendental equation and has in®nitely many eigenvalues. Second, since it is
transcendental the classical Routh±Hurwitz criterion cannot be used to discuss Eq. (3.3) anymore.
Third, though there are some general tests (see [29], for example) that can be used to determine
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when all eigenvalues of the transcendental equations have negative real parts, applying such a
general test to speci®c transcendental equations is very complicated and far from trivial ([35]).

We shall study the distribution of the roots of the transcendental Eq. (3.3) analytically. Recall
that for the ODE model (2.1), the infected steady state E is stable for the parameter values given in
Table 1. Our starting point is to assume that the steady state of the ODE model (2.1) is stable,
then we shall derive conditions on the parameters to ensure that the steady state of the delay
model is still stable.

To proceed, we consider Eq. (3.3) with s � 0; that is Eq. (2.7), and assume that all the roots of
Eq. (2.7) have negative real parts. This is equivalent to the assumption (2.9). By Rouch�e's The-
orem [36, Theorem 9.17.4] and the continuity in s, the transcendental equation (3.3) has roots with
positive real parts if and only if it has purely imaginary roots. We shall determine if (3.3) has
purely imaginary roots, from which we then shall be able to ®nd conditions for all eigenvalues to
have negative real parts.

Denote k � g�s� � ix�s� �x > 0�, the eigenvalue of the characteristic equation (3.3), where g�s�
and x�s� depend on the delay s. Since the equilibrium E of the ODE model is stable, it follows
that g�0� < 0 when s � 0. By continuity, if s > 0 is su�ciently small we still have g�s� < 0 and E is
still stable. If g�s0� � 0 for certain value s0 > 0 (so that k � ix�s0� is a purely imaginary root of
(3.3), then the steady state E loses its stability and eventually becomes unstable when g�s� becomes
positive. In other words, if such an x�s0� does not exist, that is, if the characteristic equation (3.3)
does not have purely imaginary roots for all delay, then the steady state E is always stable. We
shall show that this indeed is true for the characteristic equation (3.3).

Clearly, ix �x > 0� is a root of Eq. (3.3) if and only if

ÿix3 ÿ a1x
2 � ia2x� a3�cos xsÿ i sin xs� � a4x�sin xs� i cos xs� � a5 � 0: �3:4�

Separating the real and imaginary parts, we have

a1x
2 ÿ a5 � a3 cos xs� a4x sin xs; �3:5�

x3 ÿ a2x � ÿa3 sin xs� a4x cos xs: �3:6�
Adding up the squares of both the equations, we obtain

x6 � �a2
1 ÿ 2a2�x4 � �a2

2 ÿ 2a1a5 ÿ a2
4�x2 � �a2

5 ÿ a2
3� � 0: �3:7�

Let

z � x2; a � a2
1 ÿ 2a2; b � a2

2 ÿ 2a1a5 ÿ a2
4; c � a2

5 ÿ a2
3:

Then Eq. (3.7) becomes

h�z� � z3 � az2 � bz� c � 0: �3:8�
Since c � a2

5 ÿ a2
3 > 0 for the parameter values given in Table 1, we assume that c P 0 and have

the following claim.

Claim 1. If

c P 0 �3:9�
and
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b > 0; �3:10�
then Eq. (3.8) has no positive real roots.

In fact, notice that

dh�z�
dz
� 3z2 � 2az� b:

Set

3z2 � 2az� b � 0: �3:11�
Then the roots of Eq. (3.11) can be expressed as

z1;2 � ÿa�
����������������
a2 ÿ 3b

p
3

: �3:12�
If b > 0; then a2 ÿ 3b < a2; that is,

����������������
a2 ÿ 3b

p
< a: Hence, neither z1 nor z2 is positive. Thus, Eq.

(3.11) does not have positive roots. Since h�0� � c P 0, it follows that the Eq. (3.8) has no positive
roots.

Claim 1 thus implies that there is no x such that ix is an eigenvalue of the characteristic
equation (3.3). Therefore, the real parts of all the eigenvalues of (3.3) are negative for all delay
s P 0. Summarizing the above analysis, we have the following proposition.

Proposition 2. Suppose that
(i) a1 > 0; a3 � a5 > 0; a1�a2 � a4� ÿ �a3 � a5� > 0;
(ii) cP 0 and b > 0:

Then the infected steady state E of the delay model (3.1) is absolutely stable; that is, E is asymp-
totically stable for all s P 0:

Notice that for the given parameter values in Table 1 all the conditions in Proposition 2 are
satis®ed. Thus, the infected steady state E is asymptotically stable for all s P 0. Take
N � 500; s � 1, and other parameter values given in Table 1, numerical simulations show that the
infected steady state E � �260:7; 42:5; 1768:2� is asymptotically stable (Fig. 2(A4)±(A6)). Com-
pared with Fig. 1(A1)±(A3), we can see that though the delay causes transient oscillations in the
components, the steady state E is still stable. Moreover, when N is larger �N � 1000�, the e�ect of
the delay is not as strong as for small N (Fig. 2(B4)±(B6)).

Remark. Proposition 2 indicates that if the parameters satisfy the conditions (i) and (ii), then the
steady state of the delay model (3.1) is asymptotically stable for all delay values; that is, inde-
pendent of the delay. However, we should point out that if the conditions (condition (ii)) in
Proposition 2 are not satis®ed, then the stability of the steady state depends on the delay value and
the delay could even induce oscillations.

For example, if (a) c < 0, then from Eq. (3.8) we have h�0� < 0 and limz!1 h�z� � 1: Thus, Eq.
(3.8) has at least one positive root, say z0. Consequently, Eq. (3.7) has at least one positive root,
denoted by x0. If (b) b < 0, then

����������������
a2 ÿ 3b

p
> a: By (3.12), z1 � 1

3
�ÿa�

����������������
a2 ÿ 3b

p
� > 0. It follows
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that Eq. (3.8), hence Eq. (3.7), has a positive root x0. This implies that the characteristic equation
(3.3) has a pair of purely imaginary roots �ix0.

Let k�s� � g�s� � ix�s� be the eigenvalue of Eq. (3.3) such that g�s0� � 0; x�s0� � x0. From
(3.5) and (3.6) we have

sj � 1

x0

arccos
a4x4

0 � �a1a3 ÿ a2a4�x2
0 ÿ a3a5

a2
3 � a2

4x
2
0

� �
� 2jp

x0

; j � 0; 1; 2; . . .

Also, we can verify that the following transversality condition:

d

ds
Rek�s�ks�s0

� d

ds
g�s�js�s0

> 0

Fig. 2. The delay model with s � 1: in (A4)±(A6) N � 500 and in (B4)±(B6) N � 1000. All other parameter values are

given in Table 1.
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holds. By continuity, the real part of k�s� becomes positive when s > s0 and the steady state
becomes unstable. Moreover, a Hopf bifurcation occurs when s passes through the critical value
s0 (see [40]).

The above analysis can be summarized into the following proposition.

Proposition 3. Suppose that
(i) a1 > 0; a3 � a5 > 0; a1�a2 � a4� ÿ �a3 � a5� > 0:

If either
(ii) c < 0

or
(iii) c P 0 and b < 0

is satisfied, then the infected steady state E of the delay model (3.1) is asymptotically stable when s <
s0 and unstable when s > s0; where

s0 � 1

x0

arccos
a4x4

0 � �a1a3 ÿ a2a4�x2
0 ÿ a3a5

a2
3 � a2

4x
2
0

� �
:

When s � s0, a Hopf bifurcation occurs; that is, a family of periodic solutions bifurcates from E as s
passes through the critical value s0.

Proposition 3 indicates that the delay model could exhibit Hopf bifurcation at certain value of
the delay if the parameters satisfy the conditions in (ii) and (iii). However, for the parameter
values given in Table 1, neither (ii) nor (iii) holds.

4. Discussion

Incorporating a time delay into HIV infection models has been done by some researchers (see
[30±33,35]).It is still an interesting exercise to determine how the intercellular delay a�ects overall
disease progression and, mathematically, how the delay e�ects the dynamics of systems.

We ®rst modi®ed the ODE model proposed by Perelson et al. [17] into a system of three
equations. Similar to the analysis in [17], we obtained a restriction on the number of viral particles
released per infectious cell in order for infection to be sustained. Under this restriction, the system
has a positive equilibrium ± the infected steady state. By using stability analysis we obtained
su�cient conditions on the parameters for the stability of the infected steady state. For parameter
values reported by others (see Table 1), our stability conditions are all satis®ed and numerical
simulations con®rmed the analysis. Though our value of the number of viral particles released per
infectious cell is smaller than that observed by Perelson et al. [17], it does not a�ect the existence
and stability of the infected steady state.

We then introduced a time delay into the model which describes the time between infection of a
CD4� T-cell and the emission of viral particles on a cellular level. The same restriction on the
number of viral particles released per infectious cell is required. By analyzing the transcendental
characteristic equation, we analytically derived stability conditions for the infected steady state in
terms of the parameters and independent of the delay. Using the parameter values in Table 1, we
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found that all the conditions are satis®ed. Thus, the infected steady state is stable, independent of
the size of the delay, though the time delay does cause transient oscillations in all components.
Computer simulations con®rmed our analysis. Biologically, it implies that the intercellular delay
can cause the cell and virus populations to ¯uctuate in the early stage of infection, in a longer term
they will converge to the infected steady state values.

Though the parameter values in Table 1 gave us a stable steady state independent of the delay,
the delay model (3.1) itself could exhibit rich dynamics. Under another set of assumptions on the
parameters, the stability of the steady state depends on the delay and even delay-induced oscil-
lations could occur via instability.
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