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a b s t r a c t

With the recent resurgence of vector-borne diseases due to urbanization and development there is an

urgent need to understand the dynamics of vector-borne diseases in rapidly changing urban

environments. For example, many empirical studies have produced the disturbing finding that diseases

continue to persist in modern city centers with zero or low rates of transmission. We develop spatial

models of vector-borne disease dynamics on a network of patches to examine how the movement of

humans in heterogeneous environments affects transmission. We show that the movement of humans

between patches is sufficient to maintain disease persistence in patches with zero transmission. We

construct two classes of models using different approaches: (i) Lagrangian models that mimic human

commuting behavior and (ii) Eulerian models that mimic human migration. We determine the basic

reproduction number R0 for both modeling approaches. We show that for both approaches that if the

disease-free equilibrium is stable ðR0o1Þ then it is globally stable and if the disease-free equilibrium is

unstable ðR041Þ then there exists a unique positive (endemic) equilibrium that is globally stable among

positive solutions. Finally, we prove in general that Lagrangian and Eulerian modeling approaches are

not equivalent. The modeling approaches presented provide a framework to explore spatial vector-

borne disease dynamics and control in heterogeneous environments. As an example, we consider two

patches in which the disease dies out in both patches when there is no movement between them.

Numerical simulations demonstrate that the disease becomes endemic in both patches when humans

move between the two patches.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Vector-borne diseases are a major public health problem
(Gratz, 1999). They include long-established scourges, such as
malaria and dengue fever, as well as emerging and re-emerging
diseases such as West Nile virus. The maintenance and resurgence
of vector-borne diseases is related to ecological changes that
favor increased vector densities or vector–host interactions,
among other factors. There have been profound increases in the
magnitude of vector-borne disease problems as the result of
urbanization, deforestation, globalization, economic development,
among other factors. Experts recognize urbanization as one of the
most important drivers of global change, and predict that rapid

increases in urban populations throughout the world will have
major implications for human health in general and vector-borne
diseases specifically (Sutherst, 2004).

Travel and transport have also contributed to the spread of
vector-borne diseases. There are reasons to believe that the spatial
movement of humans may be important for the epidemiology of
vector-borne diseases. One of the factors contributing to the
reemergence of malaria is human migration (Martens and Hall,
2000). Malaria remains surprisingly prevalent among residents of
some urban areas where there are very few mosquitoes; however,
many of those residents visit rural or periurban areas where the
disease is much more prevalent, so those visits might make the
persistence of malaria in the urban setting more likely. Empirical
studies supporting the idea that travel outside urban areas is an
important factor in maintaining malaria in urban areas where
transmission is low are described by Osorio et al. (2004), Domarle
et al. (2006), and Ronald et al. (2006). Ronald et al. (2006) also
noted that lower socioeconomic status was correlated with
increased risk of infection. The use of personal protection such
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as bednets may vary between locations or socio-economic classes;
such an effect was explored using simple models by Kileen et al.
(2003).

We use spatial models to examine how the movements of
humans in heterogeneous environments affect the transmission of
vector-borne diseases. Specifically, we study how diseases can be
maintained in regions of low transmission by the movement of
humans between regions of high and low transmission or the
immigration of humans into regions of low transmission from
regions of high transmission. Our study of this phenomenon is
motivated by the specific case of malaria but may be relevant to
other vector-borne diseases. Our analysis is based on spatial
versions of the classical Ross–Macdonald model. A review of the
derivation of Ross–Macdonald models is given by Smith and
McKenzie (2004).

Although our goal is to understand spatial effects, our
modeling approach could also be used to treat movement
between different socio-economic classes or lifestyles. Because
we want to consider the movement of humans we use the
populations of infected humans and mosquitoes as state variables
rather than the proportions of the human and mosquito popula-
tions that are infected. This is also how mosquito populations are
treated by Smith et al. (2004), where mosquitoes are assumed to
move but humans are not.

We model space as a network of patches and use two different
sorts of descriptions of movement. One description identifies
humans as resident in a given patch or belonging to a certain
social group and assumes that they remain in that patch or group
most of the time, but may visit other patches or groups often
enough for pathogen transmission to occur there. In that case the
infection rate for humans in a given class or location depends on
the numbers of infectious vectors in other patches and the
fraction of their time that individual humans spend in those
patches but is not directly tied to an explicit description of human
movement between classes or patches. This type of formulation
has been used by Dye and Hasibeder (1986), Hasibeder and Dye
(1988), Rodriguez and Torres-Sorando (2001), and Ruan et al.
(2006). This approach is related to the Lagrangian approach in
fluid dynamics because it in effect labels individuals (by patch or
class) and tracks what happens to them. A type of movement we
envision this modeling approach as describing is where people
and/or vectors are commuting between locations (or changing
their activities) on a regularly scheduled basis, so that there is a
well defined fraction of time that any given individual spends in
any given location or state of activity.

Another description assumes that pathogen transmission to
humans in a given class or patch occurs only within that class or
patch but there is mobility between classes or patches that can be
explicitly described via something like discrete diffusion. This
type of approach has been used by Allen et al. (2007), Arino and
van den Driessche (2003), Arino et al. (2005), Dhirasakdanon et al.
(2007), Gaff and Gross (2007), Hsieh et al. (2007), Liu et al. (2006),
Salmani and van den Driessche (2006), Smith et al. (2004), Wang
and Mulone (2003), and Wang and Zhao (2004). It is related to the
Eulerian approach in fluid mechanics because it labels locations
(or classes) and tracks what happens in them but does not
distinguish individuals by residence, only by current location.
We envision this modeling approach as describing migration
from one location to another. Here discrete diffusion explicitly
describes such movement and can result in changes in the total
number of individuals in a given patch, at least until a population
equilibrium is attained.

Sattenspiel and Dietz (1995) use a combined approach but do
not consider vector-borne diseases. The models of Dye and
Hasibeder (1986), Hasibeder and Dye (1988), Rodriguez and
Torres-Sorando (2001), Smith et al. (2004), and Liu et al. (2006)

describe various aspects of the transmission of vector-borne
diseases in networks of patches or classes but are used to address
specific questions that are different from those we consider here.

We would like to mention that the idea of using metapopula-
tion models to describe spatial heterogeneities in disease
transmission has been employed widely, see, for example, Bartlett
(1956), Lajmanovich and Yorke (1976), Hethcote (1978), Hethcote
and Thieme (1985), Rvachev and Longini (1985), Travis and
Lenhart (1987), Dushoff and Levin (1995), Sattenspiel and Dietz
(1995), Lloyd and May (1996), and Arino and van den Driessche
(2003). For more details and references on modeling infectious
diseases in metapopulations, we refer to the survey articles of
Wang (2007) and Arino (2009).

Another remark we would like to make is that, after the initial
submission of our paper, the article of Auger et al. (2008) came to
our attention. Auger et al. (2008) generalize the Ross–Macdonald
malaria model to n patches and incorporated the fact that some
patches can be vector free. They assume that the hosts can
migrate between patches, but not the vectors. The susceptible and
infectious individuals have the same dispersal rate. They compute
the basic reproduction ratio and proved that if the basic
reproduction ratio is less than or equal to the unity, then the
disease-free equilibrium is globally asymptotically stable. When
the basic reproduction ratio is greater than the unity, they
prove that there exists a unique endemic equilibrium, which is
globally asymptotically stable on the biological domain minus the
disease-free equilibrium. Their model is similar to our second
model, namely the patch model with migration using the Euler
approach. While they assume that only hosts can migrate between
patches, we consider both cases: (a) both hosts and vectors can
migrate between patches, and (b) only hosts can migrate between
patches.

2. Modeling framework

2.1. A single-patch model

Within a single patch, we base our description of disease
dynamics on the Ross–Macdonald type model of Smith and
McKenzie (2004). Our notation is slightly different from theirs
but our model is equivalent to theirs. The model assumes that
human and mosquito populations are fixed but there is turnover
in the mosquito population because of adult mortality. The state
variables in the model are the proportions xðtÞ and yðtÞ of the
human and mosquito populations, respectively, consisting of
infectious individuals. The parameters in the model are as follows:

a the human feeding rate of mosquitoes (number of bites
on humans, per mosquito, per unit time),

b the transmission efficiency from infected mosquitoes to
humans,

c the transmission efficiency from infected humans to
mosquitoes,

m the mortality rate of mosquitoes,
r the recovery rate of humans,
t the incubation period from the time a mosquito

becomes infected until it becomes infectious,
M the ratio of mosquitoes to humans.

In our notation the basic model is

dx

dt
¼ Mabyð1� xÞ � rx,

dy

dt
¼ acxðe�mt � yÞ � my. (2.1)
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A detailed derivation of the model and a discussion of how
the parameters can be related to data and various indices
such as the human blood index (HBI) and entomological
inoculation rate (EIR) is given by Smith and McKenzie
(2004). The term e�mt in the equation for the proportion of
infectious mosquitoes arises because the rate of mosquito turn-
over due to adult mortality is typically high enough that a
significant fraction of infected mosquitoes can be expected to die
before they become infectious. Note that it is assumed that
infected individuals become susceptible after they recovered from
infection.

We need to rewrite (2.1) in terms of populations rather than
fractions of populations for our derivation of spatial models. In
parts of the derivation we want to consider the human and
mosquito populations in each patch that can change due to the
movement of humans or mosquitoes. Furthermore, we find it
convenient to use the number of infected mosquitoes rather than
the number of infectious mosquitoes as a state variable. To that
end we introduce the following variables:

H the total human population,
X the number of infected humans,
V the total mosquito population,
Y the number of infected mosquitoes.

In a situation where H and V can vary, M will no longer
be a constant parameter, but in any case M ¼ V=H. In general,
X ¼ xH and e�mtY ¼ yV . Using those relations we can rewrite
(2.1) as

dX

dt
¼

abe�mt

H
YðH � XÞ � rX,

dY

dt
¼

ac

H
XðV � YÞ � mY . (2.2)

We use the formulation in (2.2) to build our spatial models. In
those models we write parameters analogous to those appearing
in (2.2) in condensed form, indexed by patch.

2.2. The spatial models

In our models we treat space as a network of connected
patches. The patches (or nodes) typically represent different
geographical locales such as rural areas, villages, or city districts,
but the same modeling approach could be used to describe
networks of different groups within a population (school children,
factory workers, night watchmen, etc.). We examine models based
on two different ways of describing the movement of humans
and/or mosquitoes among the patches.

In the first type of model we label individuals as residents of a
particular patch and describe their interactions with individuals
from their own or other patches in terms of the rate of exposure to
infection from residents of those patches. We assume that
individuals do not move permanently from their patch of
residence to another patch, but may visit other patches. The rate
at which individuals become infected then depends upon the
fraction of their time that they spend in each patch together with
the transmission rates in those patches. We sometimes refer to
this approach as Lagrangian in that it labels and in some sense
tracks individual humans or mosquitoes. The Lagrangian approach
has been used by Dye and Hasibeder (1986), Hasibeder and Dye
(1988), Rodriguez and Torres-Sorando (2001), and Ruan et al.
(2006).

In the second type of model we assume that humans and
mosquitoes can migrate between patches and thus do not have a
specified patch of residence. The rate at which individuals become

infected depends only on the patch where they are located. We
refer to this approach as Eulerian because we track what happens
in a given location (patch) rather than what happens to labeled
individuals. The Eulerian approach has been used by Allen et al.
(2007), Arino and van den Driessche (2003), Arino et al. (2005),
Dhirasakdanon et al. (2007), Hsieh et al. (2007), Liu et al. (2006),
Salmani and van den Driessche (2006), Smith et al. (2004), Wang
and Mulone (2003), and Wang and Zhao (2004). Models using a
combination of these approaches have been used in Sattenspiel
and Dietz (1995). Throughout our discussion we use the following
notation:

N the total number of patches in the network.

In reality it is plausible that humans may move longer
distances than mosquitoes, so the patch networks for humans
and mosquitoes might have different spatial scales. However, our
models will incorporate coefficients describing the rate of move-
ment between patches or the fraction of time an individual spends
in patches other than his or her home patch. Those could be
adjusted differently for humans and for mosquitoes. The coeffi-
cients of movement between distant patches could be taken to be
small or zero for mosquitoes but large for humans. We will
assume something of this sort in an important special case of the
models that we will treat in Section 3.2. Furthermore, since we are
mainly interested in the effects of human movement, for our
purpose the fine scale spatial structure of a mosquito metapopu-
lation within a region that represents a single patch at the human
scale can be aggregated over that patch. Hence, using the same
patch networks for humans and mosquitoes is reasonable in the
present context, although it might not be in others. It is worth
noting that Smith et al. (2004) use models where mosquitoes
move between patches but humans do not to study how spatial
heterogeneity in mosquito populations can affect malaria trans-
mission. We also assume that infection does not affect human
movement greatly.

2.2.1. Lagrangian approach: patch models with commuting

To formulate spatial models using the Lagrangian approach, we
need to define transmission rates by averaging the rates across
patches weighted by the fractions of their time that individuals
spend in each patch. We denote those as follows:

pij the fraction of time a human resident in patch i spends
visiting patch j,

qij the fraction of time a mosquito resident in patch i spends
visiting patch j.

Note that

XN

j¼1

pij ¼
XN

j¼1

qij ¼ 1.

Let ai; bi; ci;mi; ri; ti;Hi;Vi denote the values of the parameters
appearing in (2.2) in the case of the ith patch. Define

Aij ¼
ajbjpije

�mjtj

Hj
; Bij ¼

ajcjqij

Hj
. (2.3)

Our Lagrangian model then has the form

dXi

dt
¼

XN

j¼1

AijYj

0
@

1
AðHi � XiÞ � riXi,

dYi

dt
¼

XN

j¼1

BijXj

0
@

1
AðVi � YiÞ � miYi; i ¼ 1; . . . ;N. (2.4)
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It is clear that the set fðX1; . . . ;XN ;Y1; . . . ;YNÞ : 0pXipHi;0pYi

pVi; i ¼ 1; . . . ;Ng is invariant for (2.4). We always assume that
0pXið0ÞpHi and 0pYið0ÞpVi for all i.

In some cases we may want to assume that the total vector
populations in one or more of the patches are zero, so that the
numbers of infected vectors in those patches are also zero (so
there is no equation for the number of infected vectors in that
patch) and thus some of the transmission terms in (2.4) are zero
since some of the variables Yi are always zero. Such models can be
cast in the form

dXi

dt
¼

XN1

j¼1

AijYj

0
@

1
AðHi � XiÞ � riXi for i ¼ 1; . . . ;N,

dYi

dt
¼

XN

j¼1

BijXj

0
@

1
AðVi � YiÞ � miYi for i ¼ 1; . . . ;N1, (2.4A)

where N1oN.

2.2.2. Eulerian approach: patch models with migration

In deriving our Eulerian model we must address the issue
that the total human and/or vector populations in a given
patch might change sufficiently over time to affect the model.
We start by formulating a model where those populations
are viewed as dynamic variables, but then we make the
assumption that those populations have come to the equilibrium
predicted by the migration rates, at least relative to the time
scale on which we want to study the system. That allows us to
examine how vector-borne diseases might be propagated through
populations that are distributed in space in situations where a
migration pattern is relatively stable over time. It would be of
interest to study transient effects, and even systems where
migration rates can vary over time, but we do not do that in the
present article.

To derive the Eulerian model we initially use Hi and Vi to
denote human and vector populations on the ith patch, but we
consider them as dynamic variables. We use Cij to denote the
migration rate of humans from patches j to i and Dij to denote the
corresponding rate for vectors:

Cij the rate of human migration from patches j to i,
Dij the rate of vector migration from patches j to i:

The movement model for migration then takes the form of a
discrete diffusion:

dHi

dt
¼
XN

jai
j¼1

CijHj �
XN

jai
j¼1

Cji

0
BB@

1
CCAHi,

dVi

dt
¼
XN

jai
j¼1

DijVj �
XN

jai
j¼1

Dji

0
BB@

1
CCAVi; i ¼ 1; . . . ;N. (2.5)

Define

Cii ¼ �
XN

jai
j¼1

Cji; Dii ¼ �
XN

jai
j¼1

Dji; i ¼ 1; . . . ;N, (2.6)

and

H ¼
XN

i¼1

Hi; V ¼
XN

i¼1

Vi.

By summing up the equations for Hi in (2.5) we can see that
dH=dt ¼ 0, and similarly dV=dt ¼ 0. Thus, HðtÞ ¼ Hð0Þ and
VðtÞ ¼ Vð0Þ. Also, ð1; . . . ;1ÞððCijÞÞ ¼ 0, so zero is an eigenvalue of
ððCijÞÞ, and similarly for ððDijÞÞ. Under an additional assumption of
irreducibility, zero can be seen to be principal eigenvalue of ððCijÞÞ

and ððDijÞÞ by the Perron–Frobenius theorem (because it has a
positive left eigenvector), so it is simple and any other eigenvalue
has real part less than zero (see for example, Berman and
Plemmons, 1979; Graham, 1987). Thus we have:

Lemma 1. Suppose that the matrix with off-diagonal entries Cij and

diagonal entries equal to 0 is irreducible. If ðH1ðtÞ; . . . ;HNðtÞÞ is a

solution to the first system of equations in (2.5) with Hið0ÞX0 for

i ¼ 1; . . . ;N and Hið0Þ40 for some i, then HiðtÞ ! H�i as t!1 for

i ¼ 1; . . . ;N, where ðH�1; . . . ;H
�
NÞ is the solution to

XN

j¼1

CijH
�
j ¼ 0;

XN

j¼1

H�j ¼ Hð0Þ. (2.7)

(In other words, ðH�1; . . . ;H
�
NÞ

T is the right eigenvector of ððCijÞÞ

corresponding to the eigenvalue 0 normalized so that its components

sum to H(0).) Similarly, suppose that the matrix with off-diagonal

entries Dij and diagonal entries equal to 0 is irreducible. If

ðV1ðtÞ; . . . ;VNðtÞÞ is a solution to the second system of equations in

(2.5) with Við0ÞX0 for i ¼ 1; . . . ;N and Við0Þ40 for some i, then

ViðtÞ ! V�i as t!1 for i ¼ 1; . . . ;N, where ðV�1; . . . ;V
�
NÞ is the

solution to

XN

j¼1

DijV
�
j ¼ 0;

XN

j¼1

V�j ¼ Vð0Þ. (2.8)

Proof. See Appendix.

In formulating our Eulerian model we assume that the
migration process has reached a steady state, so that there may
be exchange of individuals between patches but there is no net
change in the total human or vector population in each patch.
Thus, we assume that HiðtÞ ¼ H�i and ViðtÞ ¼ V�i with H�i and V�i are
as in Lemma 1 for i ¼ 1; . . . ;N. We assume that disease transmis-
sion occurs only between individuals that are in the same patch at
the same time. Let

Ai ¼
aibie

�miti

H�i
; Bi ¼

aici

H�i
. (2.9)

Our Eulerian model with infected individuals present would take
the form

dXi

dt
¼ AiYiðH

�
i � XiÞ � riXi þ

XN

jai
j¼1

CijXj �
XN

jai
j¼1

Cji

0
BB@

1
CCAXi,

dYi

dt
¼ BiXiðV

�
i � YiÞ � miYi þ

XN

jai
j¼1

DijYj �
XN

jai
j¼1

Dji

0
BB@

1
CCAYi; i ¼ 1; . . . ;N.

(2.10)

It is clear from (2.7) and (2.8) that the set fðX1; . . . ;XN ;Y1;

. . . ;YNÞ : 0pXipH�i ;0pYipV�i ; i ¼ 1; . . . ;Ng is invariant for (2.10).
We always assume that 0pXið0ÞpH�i and 0pYið0ÞpV�i for
all i.

To address the issue of how diseases can be maintained in
regions of low transmission by the movement of humans between
regions of high and low transmission, we again want to consider
cases where there are no vectors and thus no transmission in
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certain patches. Then (2.10) becomes

dXi

dt
¼ AiYiðH

�
i � XiÞ � riXi þ

XN

jai
j¼1

CijXj �
XN

jai
j¼1

Cji

0
BB@

1
CCAXi

for i ¼ 0; . . . ;N1,

dXi

dt
¼ �riXi þ

XN

jai
j¼1

CijXj �
XN

jai
j¼1

Cji

0
BB@

1
CCAXi for i ¼ N1 þ 1; . . . ;N,

dYi

dt
¼ BiXiðV

�
i � YiÞ � miYi þ

XN1

jai
j¼1

DijYj �
XN1

jai
j¼1

Dji

0
BB@

1
CCAYi

for i ¼ 0; . . . ;N1, (2.10A)

where again as in (2.4A) we have N1oN.

2.2.3. Relationship between Langrangian and Eulerian models

It is natural to ask whether it is possible to translate models
between the forms (2.4) and (2.10). Suppose we denote the
number of infected human residents of patch i in (2.4) as Xi, that
is, let the variables Xi correspond to the state variables for humans
in (2.4). Denote the number of infected humans currently located
in patch i as X̂i, that is, let the variables X̂i correspond to the state
variables for humans in (2.10). Similarly, denote the number of
infected vector residents of patch i as Yi and the number of
infected vectors currently located in patch i as Ŷ i. Since the
infected humans currently in patch i could be from any patch, but
human residents of patch j spend a fraction pji of their time in
patch i, and similarly for vectors with pji replaced by qji, we should
have

X̂i ¼
XN

j¼1

pjiXj and Ŷ i ¼
XN

j¼1

qjiYj.

Clearly we generally cannot solve this system unless the
matrices ððpjiÞÞ and ððqijÞÞ are invertible, but that need not be
the case under the assumptions of our models. In cases where the
matrices are invertible, the system resulting from translating
the model (2.4) into a model with state variables Xi;Yi into a
system in terms of X̂i; Ŷ i is generally not of the form (2.10).
Except in special cases where the amount of time individuals
spend in patches other than their patch of residence is small,
it is not even approximately of the form (2.10). Thus, the two
modeling formulations are not equivalent, although in some
cases they might both be reasonable as approximate descriptions
of a given system. Hence, we want to analyze both types of
models.

3. Analysis and application of the models

3.1. General properties

The models (2.4) and (2.10) are cooperative systems on
the invariant sets fðX1; . . . ;XN ;Y1; . . . ;YNÞ : 0pXipHi;0pYipVi;

i ¼ 1; . . . ;Ng and fðX1; . . . ;XN ;Y1; . . . ;YNÞ : 0pXipH�i ;0pYipV�i ;

i ¼ 1; . . . ;Ng, respectively, so they generate flows that are order
preserving on those sets; see for example Smith (1995). Since
the models are epidemiological in character it is sensible to
describe the stability or instability of the disease-free equilibrium
Xi ¼ Yi ¼ 0; i ¼ 1; . . . ;N in terms of a basic reproduction
number R0. That number can be computed by the methods of
van den Driessche and Watmough (2002). (Since the models
describe vector-borne diseases that require the two-step

process of a human transmitting the disease to a vector and the
vector transmitting the disease to another human to achieve
transmission from one human to another, some authors
would consider the basic reproduction number for such models
to be R2

0 if R0 were the value computed as in van den Driessche
and Watmough, 2002). We use that convention here. In the
case of (2.4), a formula for R0 and a description of the dynamics
of the model were already obtained by Hasibeder and Dye
(1988), partly on the basis of results of Lajmanovich and Yorke
(1976). We consider that case first. Throughout our discussion we
use rðMÞ to denote the spectral radius of the matrix M. In some
cases, for example if M is primitive,rðMÞ is the principal
eigenvalue of M.

Theorem 1 (Hasibeder and Dye, 1988). Let A ¼ ððAijHi=mjÞÞ,
B ¼ ððBijVi=rjÞÞ, where the entries in A and B are taken from

(2.4). Assume that the matrices A;B are irreducible. Then for (2.4)
we may take R2

0 ¼ rðABÞ. If R0o1 then the disease-free equilibrium

in (2.4) is stable while if R041 it is unstable. If the disease-free

equilibrium in (2.4) is stable then there is no positive equilibrium

and the disease-free equilibrium is globally stable among non-

negative solutions. If the disease-free equilibrium is unstable there is

a unique positive equilibrium which is globally stable among positive

solutions.

It follows from the theory of monotone dynamical systems that
in the case of Theorem 1 where the disease-free equilibrium is
unstable there is a monotone trajectory connecting the disease-
free equilibrium to the positive equilibrium; see Smith (1995).
Furthermore, ðH1; . . . ;HN ;V1; . . . ;VNÞ is a super-solution to the
equilibrium problem for (2.4) so a solution of (2.4) with that
initial data will decrease toward an equilibrium. Thus, when it
exists, the positive equilibrium is globally stable in the set
fðX1; . . . ;XN ;Y1; . . . ;YNÞ : 0pXipHi;0pYipVi; i ¼ 1; . . . ;Ng. It fol-
lows from the structure of A and Bthat if one of the parameters
Aij;Bij;Hi; or Vi is increased then R0 will increase but if ri or mi is
increased then R0 will decrease. This is sensible biologically since
increasing transmission rates or the initial number of susceptible
individuals typically increase R0 while increasing recovery or
mortality rates typically decrease it.

Theorem 2. Consider the system (2.10) restricted to the invariant

region fðX1; . . . ;XN ;Y1; . . . ;YNÞ : 0pXipH�i ;0pYipV�i ; i ¼ 1; . . . ;Ng:
Let C ¼ ððCijÞÞ and D ¼ ððDijÞÞ. Let A� ¼ ððAiH

�
i dijÞÞ;B

�
¼ ððBiM

�
i dijÞÞ;

C� ¼ ððCij � ridijÞÞ, and D� ¼ ððDij � midijÞÞ, where dij is the Kronecker

delta. Assume that the matrices C and D are irreducible. Then for

(2.10) we may take R2
0 ¼ rðA�D��1B�C��1

Þ. If R0o1 then the

disease-free equilibrium in (2.10) is stable while if R041 it is

unstable. If the disease-free equilibrium in (2.10) is stable then there

is no positive equilibrium and the disease-free equilibrium is globally

stable among non-negative solutions. If the disease-free equilibrium

is unstable there is a unique positive equilibrium which is globally

stable among positive solutions.

Proof. See Appendix.

The proof for Theorem 2 could be adapted to give an alternate
proof of Theorem 1. A related result giving a similar formula for R0

in a discrete-diffusion type model for a disease with direct
transmission in a patchy environment was obtained by Dhirasak-
danon et al. (2007). The proof of Theorem 2 shows that the matrix
A�D��1B�C��1 is non-negative. Increasing the transmission rates
and populations Ai;Bi;H

�
i or V�i will increase some of its entries

and thus R0 will be monotone increasing in those parameters. In
the proof of Theorem 2 it is also shown that the matrices �C� ¼
�C þ ððridijÞÞ and �D� ¼ �Dþ ððmidijÞÞ are non-singular M-ma-
trices. It follows that they are invertible with non-negative
inverses (see Berman and Plemmons, 1979). To see how their
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entries depend on ri and mi, suppose that Ri40 for i ¼ 1; . . . ;N and
observe that

½�C þ ððRidijÞÞ�
�1 � ½�C þ ððridijÞÞ�

�1

¼ ½�C þ ððRidijÞÞ�
�1ðð½ri � Ri�dijÞÞ½�C þ ððridijÞÞ�

�1.

Hence, if riXRi for all i then ½�C þ ððRidijÞÞ�
�1 � ½�C þ ððridijÞÞ�

�1 is
non-negative. Thus, the entries in A�D��1B�C��1

¼

A�ð�D��1
ÞB�ð�C��1

Þ are monotone decreasing with respect
to the recovery rates ri. Similarly, they are also monotone
decreasing with respect to the mortality rates mi. It follows that
rðA�D��1B�C��1

Þ and hence R0 are monotone decreasing in
those parameters. The dependence on the movement rates Cij;Dij

is more subtle in general but sometimes can be determined in
particular cases. We will return to that point later.

The analysis used to prove Theorems 1 and 2 also applies to
models such as (2.4A) and (2.10A) where vectors are present
only in some patches and the equations for the infected vectors in
the patches where vectors are absent are dropped from the model.
In such cases the dimensions of the matrices A or A� are
different from those of B or B� so the short formulations for R0

given in those theorems cannot be used; however, we can still
compute R0 as the spectral radius of an appropriate matrix by
using the methods of van den Driessche and Watmough (2002), or
perhaps directly, and the arguments for the existence and
uniqueness, or non-existence, of a positive equilibrium are
unchanged. In particular, for (2.4A) we can define the matrices
A and B as in Theorem 1, except that A is N � N1 and B is
N1 � N; then the results of van den Driessche and Watmough
(2002) imply that

R0 ¼ r
0 A

B 0

� �
. (3.1)

For (2.10A) we can define the entries in A�, B�, C�, and D� as
before, but with A�, B�, and D� now being N1 � N1 matrices.
Define the N � N matrix Â� by

Â� ¼
0 A�

0 0

 !
. (3.2)

We can then compute R0 by the methods of van den Driessche
and Watmough (2002) as

R0 ¼ r 0 Â
�

B� 0

 !
�C� 0

0 �D�

 !�1
2
4

3
5. (3.3)

3.2. Two-patch models with no transmission in one patch

It is known (Carter et al., 2000) that malaria transmission
is strongly associated with location in two main features. First,
the disease is focused around specific mosquito breeding sites
and can normally be transmitted only within certain dis-
tances from them: in Africa these are typically between a few
hundred meters and a kilometer and rarely exceed 2–3 km.
Second, there is a marked clustering of persons with malaria
parasites and clinical symptoms at particular sites, usually
households. To understand how movement between patches
might sustain infection in patches with no transmission we
study models with two patches but with transmission only in
one patch. We denote the patch with no transmission as patch
number 2. We assume that there is no movement of vectors
between patches, so that there are no infected vectors in patch
number 2, that is, Y2 ¼ 0. Since Y2 ¼ 0 we omit the equation for
Y2 from the models.

3.2.1. The Langrangian model

The first such model we consider has the form (2.4A) with
N ¼ 2 and N1 ¼ 1, that is

dX1

dt
¼ A11Y1ðH1 � X1Þ � r1X1,

dX2

dt
¼ A21Y1ðH2 � X2Þ � r2X2,

dY1

dt
¼ ðB11X1 þ B12X2ÞðV1 � Y1Þ � m1Y1. (3.4)

Computing R0 by the method of van den Driessche and
Watmough (2002) as described in the previous subsection yields

R2
0 ¼

A11B11H1V1

r1m1

þ
A21B12H2V1

r2m1

. (3.5)

The first term on the right in (3.5) is the value of R2
0 that would

result if patch number 1 were isolated. Note that it is possible to
have that value less than 1, so that the disease would not persist in
patch number 1 in the absence of patch number 2, but still have
R2

041 in (3.5). If R041 in (3.5) then (3.4) has a unique positive
equilibrium ðX�1;X

�
2;Y
�
1Þ that is globally stable among positive

solutions.
Suppose that R041 in (3.5). The components X�1 and X�2 satisfy

X�1 ¼
A11H1Y�1

A11Y�1 þ r1
; X�2 ¼

A21H2Y�1
A21Y�1 þ r2

. (3.6)

The component Y�1 satisfies

A11B11H1V1

A11Y�1 þ r1
þ

A21B12H2V1

A21Y�1 þ r2
¼

m1

V1 � Y�1
. (3.7)

It is possible to compute Y�1 explicitly by solving (3.7), but that
yields a quadratic equation with coefficients depending on the
parameters of the model in a complicated way, so the result is not
very illuminating. For our purposes we can obtain reasonably
satisfactory results by making some simple observations and
estimates.

If A11B11H1V1=r1m141 so that the disease could persist in
patch 1 if that patch were isolated, then it follows from the form
of (3.7) that Y�1XY��1 where Y��1 is the equilibrium that would
result if patch number 1 were isolated (equivalently if the second
term on the left were dropped from (3.7)). We would then have

Y�1XY��1 ¼
A11B11H1V1 � r1m1

A11ðB11H1 þ m1Þ
, (3.8)

which yields a lower bound on X�2 in (3.6). However, our primary
interest is in comparing X�1 and X�2.

Suppose that p11=p21Xr1=r2. (Recall that pij denotes the
fraction of his or her time that a human resident of patch i

spends in patch j, so if r1 ¼ r2 this assumption would mean that
residents of patch 1 spend a larger fraction of their time in patch 1
than do residents of patch 2, which is reasonable.) By (2.3) we
then have A11Y�1=r1XA21Y�1=r2. In that case it follows from (2.3)
and (3.6) that

X�2
X�1
¼

A21H2

A21Y� þ r2
�

A11Y�1 þ r1

A11H1
X

A21H2r1

A11H1r2
¼

p21H2r1

p11H1r2
. (3.9)

If the human populations and recovery rates are equal in the
two patches then the last expression in (3.7) reduces to the ratio
of the fractions of time spent in patch 1 by residents of patches 2
and 1, respectively. In any case, the model predicts that disease
can indeed be maintained in patch 2 without transmission there,
at a level that is proportional to the fraction of their time that
residents of patch 2 spend in patch 1 relative to residents of
patch 1.
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3.2.2. The Eulerian model

Next we consider the case of models of the form (2.10A), again
with transmission only in patch 1, and no movement of
mosquitoes between patches, so that we do not include an
equation for infected vectors in patch 2. This leads to models of
the form

dX1

dt
¼ A1Y1ðH

�
1 � X1Þ � r1X1 þ C12X2 � C21X1,

dX2

dt
¼ C21X1 � C12X2 � r2X2,

dY1

dt
¼ B1X1ðV

�
1 � Y1Þ � m1Y1. (3.10)

In this case R0 is given by

R2
0 ¼

A1B1H�1V�1
m1

�
C12 þ r2

C12r1 þ C21r2 þ r1r2
(3.11)

with coefficients as in (2.7)–(2.9). Note that H�1pHð0Þ where Hð0Þ
is the total initial human population in the two patches, so that if

C21 is sufficiently large we have R0o1 in (3.11). Recall that the
parameter C21 represents the rate of migration from the patch
with transmission to the patch without transmission. Thus, a
sufficiently high rate of migration from the patch with transmis-
sion into the patch without it can cause the disease to be
eliminated. A similar observation was made by Hsieh et al. (2007)
for diseases that are directly transmitted between humans.

For R041 in (3.11) the equilibrium ðX�1;X
�
2;Y
�
1Þ of (3.10) satisfies

X�2 ¼
C21X�1

C12 þ r2
,

Y�1 ¼
B1V�1X�1

B1X�1 þ m1

,

X�1 ¼
A1B1V�1H�1 � Qm1

B1ðA1V�1 þ Q Þ
¼
ðR2

0 � 1ÞQm1

B1ðA1V�1 þ Q Þ
, (3.12)

where

Q ¼
C12r1 þ C21r2 þ r1r2

C12 þ r2
.
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Fig. 1. When there is no movement between the two patches, the disease dies out in both patches (top: patch 1; bottom: patch 2). Here a12 ¼ a21 ¼ 0.
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It is clear from the first equation in (3.12) that if the rates of migra-
tion as reflected by the size of the coefficients C12 and C21 are com-
parable to the recovery rate in patch 2 then disease can be sustained in
patch 2 even though there is no transmission in that patch.

4. Numerical simulations

To carry out numerical simulations, we consider the Langran-
gian model with two patches such as two villages. For simplicity,
we use xiðtÞ and yiðtÞ to denote the fractions of infectious host and
vector populations in patch i ði ¼ 1;2Þ: Assume that there is no
vector movement between these two patches (i.e. b12 ¼ b21 ¼ 0),
only humans can move between these two patches:

dx1

dt
¼ ða11y1 þ a12y2Þð1� x1Þ � r1x1,

dy1

dt
¼ b11x1ð1� y1Þ � m1y1,

dx2

dt
¼ ða21y1 þ a22y2Þð1� x2Þ � r2x2,

dy2

dt
¼ b22x2ð1� y2Þ � m2y2.

First, consider the case when there is no human movement
between these two patches; that is, these two patches are iso-
lated ða12 ¼ a21 ¼ 0Þ. Choose parameters as follows: a11 ¼ 0:12;
r1 ¼ 0:07; b11 ¼ 0:05;m1 ¼ 0:09; a22 ¼ 0:1; r2 ¼ 0:09; b22 ¼ 0:12;
m2 ¼ 0:15: We can see the basic reproduction numbers in patches
1 and 2 are R1;0 ¼ 0:9524o1 and R2;0 ¼ 0:8888o1; respectively. So
the disease dies out in both patches (see Fig. 1).

Now we want to see how the disease becomes endemic in both
patches when humans move between these two patches. Notice
that aij relates to the fraction of time a human resident in patch i

spends visiting patch j; during that time he can be infected in
patch j and becomes infectious once he returns to patch i: We can
see that the disease becomes endemic in both patches (see Fig. 2)
when humans move back and forth between these two patches.
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Fig. 2. When humans move between the two patches, the disease becomes endemic in both patches (top: patch 1; bottom: patch 2). Here a12 ¼ 0:1; a21 ¼ 0:05.
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5. Conclusions

The models in (2.4), (2.4A), (2.10), (2.10A) describe vector-
borne disease systems on networks of patches. Those patches may
reflect physical locations, socio-economic-behavioral classes, or
other features that distinguish subpopulations of people or
vectors. The models include terms describing the movement of
humans and vectors between patches. The models can be
parameterized in terms of coefficients that have clear biological
interpretations and which in principle could be measured.
The mathematical analysis shows that the models are coopera-
tive systems with simple dynamics. They predict that either the
disease will disappear or that it will become established
at a unique stable equilibrium, depending on the parameters.
Which of these two possibilities will actually occur will
depend on the basic reproduction number R0, which is
well defined for the models. The value of R0 for any of the
models can be characterized as the spectral radius of an
associated matrix and can be explicitly calculated in simple cases.
Finally, since the modeling framework presented here is based
on systems of coupled ordinary differential equations it may be
easily expanded to explore optimal disease control in spatial
environment using well established additional mathematically
techniques.

Analysis of models with two patches but with pathogen
transmission only in one patch shows that if there is sufficient
movement of humans between patches the disease can be
sustained in the patch with no transmission. This suggests that
a possible explanation for observations that vector-borne diseases
persist in some patches where mosquito densities and hence
disease transmission rates are very low is that there is either
immigration of humans from patches with higher transmission or
that humans residing in patches with low transmission commute
to patches with high transmission. The strength of those effects
depends on the rate of migration or the fraction of time spent by
commuters in patches with high transmission rates.
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Appendix A

Proof of Lemma 1. Choose c04maxf�Cii : i ¼ 1; . . . ;Ng. The
matrix ððCijÞÞ þ c0I is irreducible with positive diagonal elements,
so it is primitive (see Graham, 1987, pp. 137–138) and hence the
Perron–Frobenius theorem applies to it. It follows that ððCijÞÞ þ c0I

has a principal eigenvalue characterized by having a positive
eigenvector, and all other eigenvalues have real parts smaller than
that principal eigenvalue. By the definition of the entries Cii, the
vector ð1; . . . ;1Þ is a left eigenvector of ððCijÞÞ þ c0I corresponding
to the eigenvalue c0, so c0 must be the principal eigenvalue of
ððCijÞÞ þ c0I. Since every eigenvalue of ððCijÞÞ is equal to l� c0,
where l is an eigenvalue of ððCijÞÞ þ c0I, it follows that 0 is an
eigenvalue of ððCijÞÞ with positive left and right eigenvectors and
that all other eigenvalues of ððCijÞÞ must have real parts less than
zero. Any non-negative non-trivial initial data ðH1ð0Þ; . . . ;HNð0ÞÞ
has a positive component in the direction of the right eigenvector
ðH�1; . . . ;H

�
NÞ corresponding to the eigenvalue 0 of ððCijÞÞ. Since all

other eigenvalues of ððCijÞÞ have negative real parts and
HðtÞ ¼

PN
i¼1 HiðtÞ ¼ Hð0Þ, the conclusion of the lemma follows for

ðH1; . . . ;HNÞ. The proof for ðV1; . . . ;VNÞ is the same. &

Proof of Theorem 2. The proof will make use of results and ideas
from van den Driessche and Watmough (2002) as well as some
other results on matrices and monotone dynamical systems. We
will briefly review the key ideas from van den Driessche and
Watmough (2002) as they apply in this context. The models
treated by van den Driessche and Watmough (2002) are
formulated as

dxi

dt
¼ f iðxiÞ ¼FiðxÞ �ViðxÞ, (A.1)

where x ¼ ðx1; . . . ; xnÞ, Fi is the rate at which new infections occur
in compartment i and �Vi is the rate of movement of individuals
into or out of that compartment by other means. The rate Vi is
broken down further as Vi ¼Vþi �V�i where Vþi ;V

�

i are rates
of individuals entering and leaving compartment i, respectively.
The linearizations of F and V at the disease-free equilibrium are
denoted by F and V , respectively. In our situation, n ¼ 2N and each
compartment describes the number of infected humans or vectors
on one of the N patches. All compartments contain only infected
individuals. We have x ¼ ðX1; . . . ;XN ;Y1; . . . ;YNÞ. Then FiðxÞ ¼

AiYiðH
�
i � XiÞ for i ¼ 1; . . . ;N and FiðxÞ ¼ Bi�NXi�NðV

�
i�N � Yi�NÞ for

i ¼ N þ 1; . . . ;2N; Vþi ¼
PN

jai
j¼1 CijXj for i ¼ 1; . . . ;N and Vþi ¼PN

jai�N
j¼1 Dði�NÞjYj for i ¼ N þ 1; . . . ;2N; and V�i ¼ ðri þ ð

PN

jai
j¼1 CjiÞÞXi

for i ¼ 1; . . . ;N and V�i ¼ ðmi�N þ ð
PN

jai�N
j¼1 Djði�NÞÞÞYi�N for

i ¼ N þ 1; . . . ;2N.

The disease-free equilibrium in our models is ð0; . . . ;0Þ. The

hypotheses A1–A4 of van den Driessche and Watmough (2002)

can be readily verified, at least for ðX;YÞ in the invariant region

fðX1; . . . ;XN ;Y1; . . . ;YNÞ : 0pXipH�i ;0pYipV�i ; i ¼ 1; . . . ;Ng, from

the forms of F and V. The key hypothesis (A5) of van den

Driessche and Watmough (2002) is that if F is set to zero then all

the eigenvalues of the Jacobian of what remains in f ðxÞ evaluated

at the disease-free equilibrium have negative real parts. In our

case the eigenvalues in question are those of �V . The matrix V

consists of two N � N blocks on the diagonal and zeroes

elsewhere. The blocks are ððCij � ridijÞÞ and ððDij � midijÞÞ where dij

is the Kronecker delta. Let C ¼ ððCijÞÞ. It follows as in the proof of

Lemma 1 that C � ððridijÞÞ has an eigenvalue s0 that is real,

characterized by having a positive eigenvector ~f, and is larger

than the real part of any other eigenvalue of C � ððridijÞÞ. Let

r0 ¼ minfri : i ¼ 1; . . . ;Ng. We have ð½C � ððridijÞ�
~fÞi ¼ s0fi so

that ðC~fÞi ¼ ðri þ s0Þ
~f, so componentwise C~fXðr0 þ s0Þ

~f. It

follows from Lemma 2 of Cantrell et al. (2007) that C has a real

eigenvalue greater than or equal to r0 þ s0 with non-

negative non-zero eigenvector. If r0 þ s040 that would contradict

the fact that 0 is the eigenvalue of C with largest real part, as

established in the proof of Lemma 1. It follows that we must have

s0p� r0o0 so the eigenvalues of C � ððridijÞÞ must all have

negative real parts, as required. (It then follows from Berman and

Plemmons (1979, p. 135, G20) that �C þ ððridijÞÞ is a non-singular

M-matrix.)

A similar analysis yields the corresponding conclusion for

�Dþ ððmidijÞÞ. Thus, Lemma 1 and Theorem 2 of van den Driessche

and Watmough (2002) apply to our model (2.10). In particular, V is

a non-singular M-matrix, and the basic reproduction number is

the spectral radius of FV�1, that is, R0 ¼ rðFV�1
Þ. Using

A� ¼ ððAiH
�
i dijÞÞ;B

�
¼ ððBiM

�
i dijÞÞ;C

�
¼ ððCij � ridijÞÞ, and

D� ¼ ððDij � midijÞÞ, we have that

F ¼
0 A�

B� 0

 !
(A.2)
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and

V ¼
�C� 0

0 �D�

 !
. (A.3)

It follows that

FV�1
¼

0 �A�D��1

�B�C��1 0

 !
. (A.4)

To obtain a formulation analogous to that given by Hasibeder and

Dye (1988) and quoted in Theorem 1, observe that

ðFV�1
Þ
2
¼

A�D��1B�C��1 0

0 B�C��1A�D��1

 !
, (A.5)

so that R2
0 ¼ rðA�D��1B�C��1

Þ.

If R041 then the disease-free equilibrium is unstable. The

Jacobian of linearization of the model (2.10) around the disease-

free equilibrium is J ¼ F � V . Again, the proof of Lemma 1 implies

that F � V has a principal eigenvalue s0 that is real, larger than the

real part of any other eigenvalue, and which has a positive

eigenvector. In the case where (0,y,0) is unstable, we have s040.

It is easy to see in that case that if ~c is a positive eigenvector for s0

then for the model (2.10) written in the notation of (A.1) we have

f ið�~cÞ40 for all i as long as �40 is sufficiently small. It then

follows by the order preserving property of (2.10) that a solution

to (2.10) with initial data �~c will increase componentwise toward

an equilibrium ðX�;Y�Þ ¼ ðX�1; . . . ;X
�
N ;Y

�
1; . . . ;Y

�
NÞ of (2.10) that is

the minimal positive equilibrium of (2.10) in the invariant set

fðX1; . . . ;XN ;Y1; . . . ;YNÞ : 0pXipH�i ;0pYipV�i ; i ¼ 1; . . . ;Ng. (See

Cantrell and Cosner, 2003, Section 3.6 for further discussion and

references.) Similarly, if we let~x ¼ ðH�1; . . . ;H
�
N ;V

�
1; . . . ;V

�
NÞwe have

f ið
~xÞo0 for all i, so that the solution to (2.10) with initial data ~x

will decrease componentwise toward an equilibrium ðX��;Y��Þ

that is the maximal equilibrium of (2.10) in the invariant set

fðX1; . . . ;XN ;Y1; . . . ;YNÞ : 0pXipH�i ;0pYipV�i ; i ¼ 1; . . . ;Ng.

The equilibrium ðX�;Y�Þ (and any other positive equilibrium)

must satisfy

C� ððAiðH
�
i � X�i ÞdijÞÞ

ððBiðV
�
i � Y�i ÞdijÞÞ D�

 !
X�

Y�

� �
¼

0

0

� �
. (A.6)

In the invariant region for (2.10) the off-diagonal terms in the

matrix in (A.6) are non-negative, and the matrices C�;D� are

irreducible, so again as in the Proof of Lemma 1 the matrix in (A.6)

has a principal eigenvalue that is characterized by having a

positive eigenvector. In this case ðX�;Y�ÞT is the eigenvector and

the eigenvalue is 0. For any other positive equilibrium ðX���;Y���Þ

the relation analogous to (A.6) with ðX�;Y�Þ replaced by ðX���;Y���Þ

would necessarily hold, implying that the matrix

C� ððAiðH
�
i � X���i ÞdijÞÞ

ððBiðV
�
i � Y���i ÞdijÞÞ D�

 !
(A.7)

would also have principal eigenvalue 0. However, unless ðX�;Y�Þ ¼

ðX���;Y���Þ that is impossible because the principal eigenvalue is

increasing relative to the entries of the matrix. Hence the minimal

equilibrium ðX�;Y�Þmust be the unique equilibrium. (This proof is

entirely analogous to that of the corresponding result in

continuous space as in Cantrell and Cosner, 2003, Proposition

3.3.) In particular, the minimal and maximal equilibria must be

the same, so that the unique positive equilibrium is globally stable

for solutions of (2.10) with positive initial data in the invariant set

fðX1; . . . ;XN ;Y1; . . . ;YNÞ : 0pXipH�i ;0pYipV�i ; i ¼ 1; . . . ;Ng.

If R0o1 then the disease-free equilibrium is stable and the

principal eigenvalue s0 of the Jacobian of linearization of the

model (2.10) around the disease-free equilibrium is negative. It

follows that since the entries of the matrix in (A.7) at any positive

equilibrium ðX���;Y���Þ are less than or equal to those of the

linearization around the disease-free equilibrium ð0; . . . ;0Þ, the

matrix in (A.7) also must have a principal eigenvalue that is

negative. On the other hand, any positive equilibrium ðX���;Y���Þ

must satisfy (A.6) with ðX�;Y�Þ replaced by ðX���;Y���Þ, so if such

an equilibrium exists then the principal eigenvalue of the matrix

in (A.7) must be zero, which is a contradiction. Thus, there can be

no positive equilibrium, so the solution to (2.10) with initial data~x
will decrease toward the disease-free equilibrium. It then follows

from the order preserving property of the system that the disease-

free equilibrium is globally stable in the invariant set

fðX1; . . . ;XN ;Y1; . . . ;YNÞ : 0pXipH�i ;0pYipV�i ; i ¼ 1; . . . ;Ng. &
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