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We consider a Lotka-Volterra system with both local and nonlocal intraspecific 
and interspecific competitions, where nonlocal competitions depend on both spatial 
and temporal effects in a general form. Firstly, global stability of two constant 
semi-trivial equilibria and global convergence of the coexistence equilibrium are 
derived by using the functional and energy method, which implies that strengths of 
nonlocal intraspecific competitions have great effects on these global dynamics but 
the nonlocal interspecific competitions not and extends global results of Gourley 
and Ruan (2003) [11]. Secondly, global attracting region of each constant semi-
trivial equilibrium is limited by its environment capacity regardless of the distinction 
of local and nonlocal intraspecific competitions. Thirdly, in the weak competition 
case, the coexistence equilibrium becomes Turing unstable when the kernels are 
chosen as generally distributed delay functions in temporal and the nonlocal 
intraspecific competitions are suitably strong. Additionally, spatially homogeneous 
and inhomogeneous periodic solutions are found numerically.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In modeling population dynamics and interactions of biological species, it is important to consider the 
biological processes and interactions happened in the past (time delay) and at different locations (nonlocal-
ity). In fact, biological models with temporal and spatial delays have been proposed and studied extensively 
in the literature, see for example [1,2,4,10–12,14–16,18,19,24,28]. Britton firstly proposed a single population 
model with spatio-temporal weighted kernel [2] as follows

∂u

∂t
= Δu + u(1 + αu− (1 + α)g ∗ ∗u), (1.1)
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where (g ∗ ∗u)(x, t) =
∫ t

−∞
∫
Rn g(x − y, t − s)u(y, s)dyds with x ∈ Rn and t > 0. Britton showed that 

the nonlocal term g ∗ ∗u could bring different and interesting dynamics by using linear stability analysis 
and bifurcation theory. Subsequently, for the finite domain case, Gourley and So [13] analyzed a single 
species model with nonlocal spatial effects induced by the time delay, which expressed another reason for 
incorporating nonlocality into the time delay. This model takes the following form

∂u

∂t
= D

∂2u

∂x2 + u( 1 − au− bK ∗ u
1 + au + bcK ∗ u ) (1.2)

for x ∈ [0, π] and K ∗ u being defined by

(K ∗ u)(x, t) =
t∫

−∞

π∫
0

G(x, y, t− s)f(t− s)u(y, s)dyds, (1.3)

where f(t) ≥ 0 is a delay kernel with 
∫∞
0 f(s)ds = 1 and G(x, y, t) = 1

π + 2
π

∑∞
n=1 e

−dn2t cosnx cosny or 
G(x, y, t) = 2

π

∑∞
n=1 e

−dn2t cosnx cosny is the solution of

{
∂G
∂t = d∂2G

∂y2 , y ∈ (0, π), t > 0,
G(x, y, 0) = δ(x− y), y ∈ [0, π]

(1.4)

subject to homogeneous Neumann boundary condition

∂G

∂y
= 0, at y = 0, π (1.5)

or homogeneous Dirichlet condition

G(x, y, 0) = 0, at y = 0, π, (1.6)

where δ(·) is the Dirac delta function with δ(0) = 1, depending on the boundary condition of (1.2). The 
descriptions on the kernel G above carry over to the case of n-dimensional spatial domains. Moreover, the 
global convergence and bifurcations are derived for model (1.2). For more results about biological models 
with this kernel, we refer to [11,12,14].

Gourley and Ruan [11] incorporated the above kernel K for the interspecific competition in a two-species 
Lotka-Volterra competition system as follows

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u1
∂t = d1Δu1 + u1(r1 − a11u1 − b12K12 ∗ u2), x ∈ Ω, t > 0,
∂u2
∂t = d2Δu2 + u2(r2 − a22u2 − b21K21 ∗ u1), x ∈ Ω, t > 0,
∂u1
∂ν = ∂u2

∂ν = 0, x ∈ ∂Ω, t > 0,
u1(x, t) = φ1(x, t) ≥ (�≡)0, u2(x, t) = φ2(x, t) ≥ (�≡)0, (x, t) ∈ Ω × (−∞, 0],

(1.7)

where Ω ⊆ Rn(n ≤ 3) is a bounded domain with sufficient smooth boundary and

(Kij ∗ u)(x, t) =
t∫

−∞

∫
Ω

G(x, y, t− s)kij(t− s)uj(y, s)dyds (1.8)

with G(x, y, t) satisfying (1.4) and (1.5) for the n-dimensional case and nonnegative functions kij(t) satisfying 
(2.2), i, j = 1, 2, i �= j. The global convergence of constant semi-trivial and coexistence equilibria was derived 
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by employing the energy function method, which shows similar conditions for the global stability of two 
constant semi-trivial equilibria and the coexistence equilibrium compared with the classical Lotka-Volterra 
competition model although the local interspecific competitions were replaced by the nonlocal ones.

The two-species Lotka-Volterra competition systems have also been investigated by many researchers 
from different perspectives, including the effect of spatial heterogeneity [5,17,20], the effect of boundary 
conditions [21], the effect of nonlocal terms with spatially heterogeneous kernels [23], the effect of nonlocal 
terms with spatially heterogeneous kernels and discrete time delay under Dirichlet boundary condition [16]
and so on.

In reality, although considering populations competes for resources at the same location and in the 
entire spatial domain is reasonable [7,8,23,26] since they are moving by diffusion, the regeneration time 
of resources [10] or delay-induced spatial averaging [13,14] cannot be neglected. Thus intraspecific and 
interspecific competitions not only simply depend on the local and nonlocal positions but also on previous 
times.

Shukla [25] studied global stability in a two-species Lotka-Voltera competition model with instantaneous 
and delayed interactions (that is, local intraspecific and interspecific competitions). Ni et al. [23] investigated 
global stability and pattern formation in a diffusive Lotka-Volterra model with both local and nonlocal 
intraspecific and interspecific competitions. Following the modeling setting in [23,25], in this paper we 
consider a general two-species Lotka-Volterra competition model with both local and nonlocal (double 
convolutions in space and time) intraspecific and interspecific competitions, which takes the following form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u1
∂t = d1Δu1 + u1(r1 − a11u1 − a12u2 − b11K11 ∗ u1 − b12K12 ∗ u2), x ∈ Ω, t > 0,
∂u2
∂t = d2Δu2 + u2(r2 − a21u1 − a22u2 − b21K21 ∗ u1 − b22K22 ∗ u2), x ∈ Ω, t > 0,
∂u1
∂ν = ∂u2

∂ν = 0, x ∈ ∂Ω, t > 0,
u1(x, θ) = φ1(x, θ) ≥ 0(�≡ 0), u2(x, θ) = φ2(x, θ) ≥ 0(�≡ 0), (x, θ) ∈ Ω × (−∞, 0],

(1.9)

where

Kij(x, y, t) = Gij(x, y, t)kij(t),

(Kij ∗ uj)(x, t) =
∫
Ω

t∫
−∞

Gij(x, y, t− s)kij(t− s)uj(y, s)dsdy, i, j = 1, 2.
(1.10)

Here we emphasize that Gij(x, y, t) need not to satisfy (1.4) and (1.5) and are given in next section. And 
the assumption is weaker than the one in [11] and will be presented in next section. Evidently, model (1.9)
is more general since the kernel function can be chosen in a more general way and the local and nonlocal 
intraspecific and interspecific competitions are considered.

Under this weak assumption for the kernel Kij , i, j = 1, 2, the estimates in [11, Lemma 2.1] cannot be 
applied, and not only more complex dynamics but also global stability or convergence of constant equilibria 
will occur. Therefore, we give some estimates for the term Kij ∗uj and then apply the functional and energy 
function method (see [11,29]) to prove the global asymptotic stability of constant semi-trivial equilibria 
and global convergence of the coexistence equilibrium, which shows that the property of global stability 
and convergence is independent of the strength of local interspecific competition and will not change if the 
strength of nonlocal intraspecific competition is weak compared with results in [11] and cannot be affected 
by the strength of nonlocal interspecific competitions compared with the result of classical two-species 
competition system. Moreover, the global attracting region of each semi-trivial equilibrium point limited by 
its environmental capacity is obtained when we do not distinguish local and nonlocal competitions.

Furthermore, many researches have introduced spatio-temporal kernels and discrete time delays into 
biological models [3,16]. To investigate the complex patterns induced by kernels defined in (1.10), we take 
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a spatially uniform kernel Gij(x, y, t) = 1
π which is simple but important in biological problems [8]. We 

prove that Turing instability would occur as the strength of nonlocal intraspecific competitions are suitably 
strong from linear stability analysis near the coexistence equilibrium under the weak competition case, 
which presents a new phenomenon in this model. Additionally, numerical results show that there exist more 
complex patterns, like the existence of spatially homogeneous and inhomogeneous periodic solutions when 
Kij(x, y, t) = 1

π δ(t − τ), i, j = 1, 2.
In section 2, we will discuss the global stability of constant equilibria. In section 3, Turing instability will 

be studied for system (1.9) with the kernel Kij(x, y, t) = 1
πkij(t), i, j = 1, 2, and the numerical results for 

specific kernel functions will be presented. Finally, conclusions and discussions will be given in section 4.
Throughout the paper, N denotes the set of all positive integers and N0 = N ∪ {0}. ‖ · ‖2 denotes the 

usual norm in the Banach space L2(Ω), which can also be defined by the standard inner product 〈·, ·〉. 
Cσ((−∞, 0]; C(Ω̄, R)) with σ ∈ (0, 1) denotes the space endowed with the norm satisfying

sup
t≤0

‖φ(t)‖C(Ω̄,R) + sup
t,s≤0,t �=s

‖φ(t) − φ(s)‖C(Ω̄,R)

| t− s |σ < +∞.

Moreover, � · �2 denotes the norm in L2((0, T ); L2(Ω, R))(or L2((0, T ); W 1,2(Ω, R))) with �u�2 =
(
∫ T

0 ‖u(s)‖2
2ds)1/2(or � u�2

2 = (
∫ T

0 ‖u(s)‖2
W 1,2(Ω,R)ds)1/2), where W 1,2(Ω, R) and ‖ · ‖W 1,2(Ω,R) are defined 

in the usual sense.

2. Global stability

For model (1.9), φi ∈ Cσ((−∞, 0]; C(Ω̄, R)) with φi(0) ∈ H2(Ω) and ∂φi(0)
∂ν = 0. Ω ⊆ R is a bounded 

domain with sufficiently smooth boundary; ∂ν denote the outward normal derivative on ∂Ω; ui(x, t) is the 
population density of species ui, and di > 0, ri > 0 are the diffusion coefficient and the intrinsic growth rate 
of the species ui respectively, i = 1, 2. bij ≥ 0 and aij ≥ 0(aijbij �= 0, aii �= 0) represent the nonlocal and 
local competition strength of the species uj to the species ui respectively, i, j = 1, 2.

We make the assumption for the kernels Kij(x, y, t) defined by (1.10) as follows
(H): Gij(x, y, t), kij(t), x, y ∈ Ω, t ≥ 0, are nonnegative functions satisfying

∫
Ω

Gij(x, y, t)kij(t)dx =
∫
Ω

Gij(x, y, t)kij(t)dy = kij(t), (2.1)

and

∞∫
0

kij(t)dt = 1,
∞∫
0

tkij(t)dt < ∞, (2.2)

where i, j = 1, 2.
For convenience, denote mij = aij + bij , which describes the combining strength of local and nonlocal 

competition of the species uj to the species ui and is positive since aijbij �= 0. Also, we define ri
mii

the value 
of environment capacity for species ui. Following to the definition in [23], m11m22 > m12m21(m11m22 <

m12m21) is the weak competition case (strong competition case). Here, i, j = 1, 2.
The local existence of solution (u1(x, t), u2(x, t)) to system (1.9) follows from [29]. And from the com-

parison theorem for parabolic equations, (u1(x, t), u2(x, t)) exists globally and satisfies

0 ≤ ui(x, t) ≤ max{ ri
a

, sup ‖φi(·, θ)‖C(Ω̄;R)}. (2.3)

ii θ≤0
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Moreover, ui(x, t) > 0 for x ∈ Ω̄, t > 0 if φi(x, θ) �≡ 0 by the strong maximum principle, i = 1, 2.
Clearly, system (1.9) has a trivial equilibrium E0 = (0, 0), two semitrivial constant equilibria E1 =

( r1
m11

, 0), E2 = (0, r2
m22

), and a coexistence constant equilibrium E3 = ( r1m22−r2m12
m11m22−m12m21

, r2m11−r1m21
m11m22−m12m21

) if 
m12
m22

< r1
r2

< m11
m21

or m11
m21

< r1
r2

< m12
m22

. Moreover, by the method of linearization, we can derive the following 
local results for two semi-trivial equilibria E1 and E2.

Theorem 2.1. Assume that assumption (H) holds. Then
(1) E1 is locally asymptotically stable if r1r2 > m11

m21
.

(2) E2 is locally asymptotically stable if r1r2 < m12
m22

.

Proof. We only perform the proof of (1) since (2) can be derived similarly. By linearizing system (1.9) at 
E1 and assumption (H), we have

{
∂u1
∂t = d1Δu1 + r1

m11
(−a11u1 − a12u2 − b11K11 ∗ u1 − b12K12 ∗ u2),

∂u2
∂t = d2Δu2 + (r2 − m21

m11
r1)u2.

(2.4)

Clearly, the second equation in (2.4) is uncoupled with the first one. Thus we obtain the following charac-
teristic equations of the second equation in (2.4)

λ = −d2ci + r2 −
m21

m11
r1, i ∈ N0, (2.5)

where 0 = c0 < c1 ≤ c2 ≤ c3 ≤ · · · are sequence of eigenvalues for elliptic operator −Δ subject to the 
Neumann boundary condition on Ω. All λ satisfied (2.5) must be less than zero if r1r2 > m11

m21
. And the set of 

eigenvalues of the characteristic equations for system (2.4) must be a subset of the set of λ which is satisfied 
(2.5). This completes the proof. �

For the global stability analysis, we firstly give some useful estimates in the following lemma.

Lemma 2.2. Assume that assumption (H) holds. Then

‖(Kij ∗ v)(x, t)‖2 ≤
t∫

−∞

kij(t− s)‖v(s)‖2ds, t > 0 (2.6)

and for any T > 0,

|
T∫

0

〈(Kij ∗ v)(x, t), w(t)〉dt |≤ C sup
s≤0

‖v(s)‖2 sup
s∈[0,T ]

‖w(s)‖2 + �v �2 �w�2, i, j = 1, 2, (2.7)

where v, w ∈ C((−∞, T ]; L2(Ω)) and C is a constant independent of T .

Proof. By (1.4) of (H), we obtain that

‖(Kij ∗ v)(x, t)‖2 = ‖
∫
Ω

t∫
−∞

Kij(x, y, t− s)v(y, s)dsdy‖2

= ‖
t∫ ∫

Kij(x, y, t− s)v(y, s)dyds‖2
−∞ Ω
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≤
t∫

−∞

‖
∫
Ω

Kij(x, y, t− s)v(y, s)dy‖2ds

≤
t∫

−∞

‖
∫
Ω

√
Kij(x, y, t− s)

√
Kij(x, y, t− s) | v(y, s) | dy‖2ds

≤
t∫

−∞

‖(
∫
Ω

Kij(x, y, t− s)dy)1/2(
∫
Ω

Kij(x, y, t− s) | v(y, s) |2 dy)1/2‖2ds

≤
t∫

−∞

kij(t− s)(
∫
Ω

| v(y, s) |2 dy)1/2ds.

Then inequality (2.6) holds. Moreover, we have

t∫
−∞

kij(t− s)(
∫
Ω

| v(y, s) |2 dy)1/2ds ≤ sup
s≤0

‖v(s)‖2

∞∫
t

kij(s)ds +
t∫

0

kij(t− s)‖v(s)‖2ds. (2.8)

Next, we prove inequality (2.7). For any T > 0, we know that v, w ∈ L2((0, T ); L2(Ω)), and

|
T∫

0

〈(Kij ∗ v)(x, t), w(t)〉dt | ≤
T∫

0

‖(Kij ∗ v)(x, t)‖2‖w(t)‖2dt

≤ sup
s≤0

‖v(s)‖2 sup
t∈[0,T ]

‖w(t)‖2

T∫
0

∞∫
t

kij(s)dsdt

+
T∫

0

‖w(t)‖2

t∫
0

kij(t− s)‖v(s)‖2dsdt

≤ sup
s≤0

‖v(s)‖2 sup
t∈[0,T ]

‖w(t)‖2

∞∫
0

∞∫
t

kij(s)dsdt

+
T∫

0

‖w(t)‖2

t∫
0

kij(t− s)‖v(s)‖2dsdt

≤ sup
s≤0

‖v(s)‖2 sup
t∈[0,T ]

‖w(t)‖2

∞∫
0

skij(s)ds

+
T∫

0

‖w(t)‖2

t∫
0

kij(t− s)‖v(s)‖2dsdt.

For the second term in the above inequality we have

T∫
‖w(t)‖2

t∫
kij(t− s)‖v(s)‖2dsdt ≤ �w �2 (

T∫
(

t∫
kij(t− s)‖v(s)‖2ds)2dt)1/2
0 0 0 0
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= �w �2 (
T∫

0

(
t∫

0

√
kij(t− s)

√
kij(t− s)‖v(s)‖2ds)2dt)1/2

≤ �w �2 (
T∫

0

(
t∫

0

kij(t− s)ds)(
t∫

0

kij(t− s)‖v(s)‖2
2ds)dt)1/2

≤ �w �2 (
T∫

0

t∫
0

kij(t− s)‖v(s)‖2
2dsdt)1/2

= �w �2 (
T∫

0

T∫
s

kij(t− s)‖v(s)‖2
2dtds)1/2

≤ �w �2 (
T∫

0

‖v(s)‖2
2ds)1/2.

Clearly, inequality (2.7) holds if we combine the above two estimates. This completes the proof. �
Remark 2.3. If ‖v(t)‖2, ‖w(t)‖2 (t ≤ T ) are bounded independent of t and T , then it is clear that the first 
term on the right side of inequality (2.7) is bounded by a positive constant, which will be useful to prove 
the following global results.

Then we give the following theorem on the global stability of E1, E2 and E3.

Theorem 2.4. Assume that assumption (H) holds. Let (u1(x, t), u2(x, t)) satisfy (1.9) with φi(x, θ) �≡ 0, i =
1, 2.

(1) If a11−b11
m21

> m12
a22

and r1r2 > m11
m21

, then

lim
t→∞

(u1(x, t), u2(x, t)) = ( r1
m11

, 0)

uniformly for x ∈ Ω̄.
(2) If 0 < m12

a22−b22
< a11

m21
and r1r2 < m12

m22
, then

lim
t→∞

(u1(x, t), u2(x, t)) = (0, r2
m22

)

uniformly for x ∈ Ω̄.
(3) If a11−b11

m21
> m12

a22−b22
> 0 and m12

m22
< r1

r2
< m11

m21
, then

lim
t→∞

(u1(x, t), u2(x, t)) = ( r1m22 − r2m12

m11m22 −m12m21
,

r2m11 − r1m21

m11m22 −m12m21
)

uniformly for x ∈ Ω̄.

Proof. We only prove (1) since the proofs of (2) and (3) are similar. Define the nonnegative functionals as 
follows

V (ui) =
∫

(ui −
ri
mii

− ri
mii

log ui

ri/mii
)dx, W (ui) =

∫
uidx, i = 1, 2. (2.9)
Ω Ω
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To investigate the stability of equilibrium E1, let α > 0 be determined later. Then

d
dt [αV (u1) + W (u2)]

=α

∫
Ω

∂u1

∂t
(1 − r1/m11

u1
)dx +

∫
Ω

∂u2

∂t
dx

= − αd1
r1
m11

∫
Ω

| ∇u1 |2
u2

1
dx− αa11

∫
Ω

(u1 −
r1
m11

)2dx− αa12

∫
Ω

(u1 −
r1
m11

)u2dx

− αb11

∫
Ω

(K11 ∗ (u1 −
r1
m11

))(x, t)(u1 −
r1
m11

)dx− αb12

∫
Ω

(K12 ∗ u2)(x, t)(u1 −
r1
m11

)dx− a22

∫
Ω

u2
2dx

− a21

∫
Ω

(u1 −
r2
m21

)u2dx− b21

∫
Ω

(K21 ∗ (u1 −
r1
m11

))(x, t)u2dx− b22

∫
Ω

(K22 ∗ u2)(x, t)u2dx.

Since r1
m11

> r2
m21

, we derive that

d
dt [αV (u1) + W (u2)]

=α

∫
Ω

∂u1

∂t
(1 − r1/m11

u1
)dx +

∫
Ω

∂u2

∂t
dx

≤− αd1
r1
m11

∫
Ω

| ∇u1 |2
u2

1
dx− αa11

∫
Ω

(u1 −
r1
m11

)2dx− αa12

∫
Ω

(u1 −
r1
m11

)u2dx

− αb11

∫
Ω

(K11 ∗ (u1 −
r1
m11

))(x, t)(u1 −
r1
m11

)dx− αb12

∫
Ω

(K12 ∗ u2)(x, t)(u1 −
r1
m11

)dx− a22

∫
Ω

u2
2dx

− a21

∫
Ω

(u1 −
r1
m11

)u2dx− b21

∫
Ω

(K21 ∗ (u1 −
r1
m11

))(x, t)u2dx− b22

∫
Ω

(K22 ∗ u2)(x, t)u2dx.

(2.10)

For any T > 0, by using Hölder inequality twice, we have

|
T∫

0

∫
Ω

(u1 −
r1
m11

)u2dxdt |≤ �u1 −
r1
m11

�2 �u2 �2 . (2.11)

Then by (2.11) and (2.3), and integrating (2.10) over [0, T ], we obtain that

αd1
r1
m11

�
∇u1

u1
�2

2 +αa11 � u1 −
r1
m11

�2
2 +a22 � u2�

2
2

≤ (αa12 + a21) � u1 −
r1
m11

�2 �u2 �2 +αb11 |
T∫

0

〈K11 ∗ (u1 −
r1
m11

))(x, t), (u1 −
r1
m11

)〉dt |

+ αb12 |
T∫

0

〈(K12 ∗ u2)(x, t), u1 −
r1
m11

〉dt | +b21 |
T∫

0

〈(K21 ∗ (u1 −
r1
m11

))(x, t), u2〉dt | .

Thus, by Lemma 2.2 and (2.3), we derive that
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αd1
r1
m11

�
∇u1

u1
�2

2 +α(a11 − b11) � u1 −
r1
m11

�2
2 +a22 � u2�

2
2

≤ C + (αa12 + a21 + αb12 + b21) � u1 −
r1
m11

�2 �u2�2

= C + (αm12 + m21) � u1 −
r1
m11

�2 �u2�2,

where C is a positive constant independent of T .
From Young’s inequality, it follows that

αd1
r1
m11

�
∇u1

u1
�2

2+α(a11−b11)�u1−
r1
m11

�2
2+a22�u2�

2
2 ≤ C+(αm12+m21)(

ε

2 �u1−
r1
m11

�2
2+ 1

2ε�u2�
2
2),

(2.12)
where ε > 0. Without loss of generality, we choose ε = αm12+m21

2a22
. Therefore, (2.12) becomes

αd1
r1
m11

�
∇u1

u1
�2

2 +α(a11 − b11) � u1 −
r1
m11

�2
2 ≤ C + (αm12 + m21)2

4a22
� u1 −

r1
m11

�2
2 . (2.13)

It can be easily shown that there must exist α > 0 such that (αm12+m21)2
4a22

< α(a11 − b11) if a11−b11
m21

> m12
a22

. 
Then we can conclude that

�∇u1�2 ≤ C, �u1 −
r1
m11

�2 ≤ C (2.14)

for some constant C independent of T . This indicates that u1 − r1
m11

∈ L2((0, ∞); W 1,2(Ω; R)) and

lim
t→∞

‖u1(t) −
r1
m11

‖W 1,2(Ω;R) = 0. (2.15)

Thus,

lim
t→∞

‖u1(t) −
r1
m11

‖C(Ω̄;R) = 0, (2.16)

since W 1,2(Ω; R) can be continuously embedded into C(Ω̄, R) from [6]. Similarly, we can derive

�u2�2 ≤ C. (2.17)

Then it suffices to show �∇u2�2 ≤ C by the energy function method, where C is a constant independent 
of T . Multiplying the second equation of (1.9) by u2 and integrating over Ω we get

1
2
d

dt
‖u2(t)‖2

2 + d2‖∇u2(t)‖2
2

= 〈u2(t)(r2 − a21u1(t) − a22u2(t) − b21(K21 ∗ u1)(x, t) − b22(K22 ∗ u2)(x, t)), u2(t)〉
≤ r2‖u2‖2

2 + sup
0≤t≤T

u2(t)〈a21u1(t) + a22u2(t) + b21(K21 ∗ u1)(x, t) + b22(K22 ∗ u2)(x, t), u2(t)〉.

(2.18)

Therefore, integrating (2.18) over [0, T ] yields that

�∇u2�2 ≤ C (2.19)

by Lemma 2.2, where C is a constant independent of T . And we can get
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lim
t→∞

‖u2(t)‖C(Ω̄;R) = 0 (2.20)

in a similar way. This completes the proof. �
Remark 2.5. If a12 = a21 = b11 = b22 = 0, then Theorem 2.4 reduces to the global results for system ((1.7) 
in [11]). Furthermore, when we only take b11 = b22 = 0, in the weak competition case, Theorem 2.4 indicates 
that nonlocal interspecific competitions have no effect on the global convergence of E1, E2 and E3 compared 
with the classical two-species competition Lotka-Volterra system.

Remark 2.6. From assumption (H), one can see that the kernel Gij(x, y, t) can be chosen in various forms 
including the spatially average kernel 1

|Ω| or δ(x − y) independent of time t, the spatio-temporal kernel 
satisfying (1.4) and (1.5) and so on.

From the proof of Theorem 2.4, we find that the convergence of the equilibrium E1 (or E2) still holds 
if the initial data of species u1 is smaller than r1

m11
(or u2 ≤ r2

m22
) even though the strength of nonlocal 

intraspecific competitions may be strong.

Corollary 2.7. Assume that assumption (H) holds. Let (u1(x, t), u2(x, t)) satisfy (1.9) with φi(x, θ) �≡ 0, i =
1, 2.

(1) If r1r2 > m11
m21

> m12
m22

and sup
θ≤0

‖φ1(·, θ)‖C(Ω̄;R) ≤ r1
m11

, then

lim
t→∞

(u1(x, t), u2(x, t)) = ( r1
m11

, 0)

uniformly for x ∈ Ω̄.
(2) If r1r2 < m12

m22
< m11

m21
and sup

θ≤0
‖φ2(·, θ)‖C(Ω̄;R) ≤ r2

m22
, then

lim
t→∞

(u1(x, t), u2(x, t)) = (0, r2
m22

)

uniformly for x ∈ Ω̄.

Remark 2.8. Corollary 2.7 implies that the convergence of E1(E2) may be related to the initial data of 
species u1(u2), but we cannot remove the restrictions on the initial data by the above analysis.

Corollary 2.9. Assume that assumption (H) holds and b11 = b22 = 0. Let (u1(x, t), u2(x, t)) satisfy (1.9)
with φi(x, θ) �≡ 0, i = 1, 2.

(1) If r1r2 > m11
m21

> m12
m22

, then

lim
t→∞

(u1(x, t), u2(x, t)) = ( r1
m11

, 0)

uniformly for x ∈ Ω̄.
(2) If r1r2 < m12

m22
< m11

m21
, then

lim
t→∞

(u1(x, t), u2(x, t)) = (0, r2
m22

)

uniformly for x ∈ Ω̄.
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(3) If m12
m22

< r1
r2

< m11
m21

, then

lim
t→∞

(u1(x, t), u2(x, t)) = ( r1m22 − r2m12

m11m22 −m12m21
,

r2m11 − r1m21

m11m22 −m12m21
)

uniformly for x ∈ Ω̄.

Remark 2.10. From Corollary 2.9, it can be easily seen that the strength of local interspecific competitions 
does not have any effect on the global stability of E1, E2 and E3 compared with the results in [11] or the 
classical results of two-species Lotka-Volterra competition systems if the strength of nonlocal intraspecific 
competition equals to zero. Moreover, from Theorem 2.4 and Corollary 2.9, the global stability of E1, E2
and E3 does not change if the strength of nonlocal intraspecific competitions is weak enough.

Remark 2.11. By the local results in Theorem 2.1, the global convergence of E1 and E2 in Theorem 2.4 and 
Corollary 2.9 also implies that they are globally asymptotically stable.

Based on the above results, we think that the global convergence of the coexistence equilibrium E3 will 
change if the strength of nonlocal intraspecific competitions is suitably strong. Thus, we will show that the 
strength of nonlocal intraspecific competitions is the key factor for the stability of E3 by linear stability 
analysis in next section.

3. Effects of nonlocal intraspecific competitions

To investigate the effects of the strength of nonlocal intraspecific competition on the stability of E3, we 
make the following assumption

(H1): m12
m22

< r1
r2

< m11
m21

.
Clearly, assumption (H1) is reasonable since it preserves the existence of E3.

3.1. Local stability analysis

Let Gij(x, y, t) = 1
|Ω| be the spatially uniform average kernel, i, j = 1, 2. Here, we have to emphasize that 

the following methods are applicable for other kernels Gij(x, y, t) if assumption (H) holds. Without loss 
generality and for notational simplicity, let Ω = (0, π) and E3 = (u∗

1, u
∗
2). We linearize the system at E3 and 

get the following linearized system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u1
∂t = d1Δu1 + u∗

1(−a11u1 − a12u2 − b11K11 ∗ u1 − b12K12 ∗ u2), x ∈ (0, π), t > 0,
∂u2
∂t = d2Δu2 + u∗

2(−a21u1 − a22u2 − b21K21 ∗ u1 − b22K22 ∗ u2), x ∈ (0, π), t > 0,
∂u1
∂ν = ∂u2

∂ν = 0, x = 0, π, t > 0,
u1(x, θ) = φ1(x, θ) ≥ 0, u2(x, θ) = φ2(x, θ) ≥ 0, (x, θ) ∈ (0, π) × (−∞, 0],

(3.1)

where

(Kij ∗ uj)(x, t) = 1
π

π∫
0

t∫
−∞

kij(t− s)uj(y, s)dsdy, i, j = 1, 2. (3.2)

When b11 = b22 = 0, similarly to the classical Lotka-Volterra system, we can obtain that E3 is locally 
asymptotically stable if (H1) is satisfied, and it is also globally asymptotically stable following Corollary 2.9. 
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Choosing suitably trial solution as (u1(x, t), u2(x, t)) = (c1, c2)eλt cosnx(n ∈ N0), and then the nonlocal 
terms become

(Kij ∗ uj)(x, t) =
{
k̂ij(λ), n = 0,
0, n ∈ N,

(3.3)

where k̂ij(λ) is the Laplace transform of kij(t) defined by k̂(λ) =
∫∞
0 kij(s)e−λsds, i, j = 1, 2.

Therefore, by substituting the trial solution to system (3.1), we can derive the eigenvalue problem

P (λ, n2) = 0, n ∈ N0, (3.4)

in which

P (λ, n2) =
{
λ2 + [u∗

1s11(λ) + u∗
2s22(λ)]λ + u∗

1u
∗
2[s11(λ)s22(λ) − s12(λ)s21(λ)], n = 0,

λ2 + [(d1 + d2)n2 + a11u
∗
1 + a22u

∗
2]λ + f(n2), n ∈ N,

(3.5)

where sij(λ) = aij + bij k̂ij(λ) and f(n2) = d1d2n
4 + (d1a22u

∗
2 + d2a11u

∗
1)n2 + u∗

1u
∗
2(a11a22 − a12a21).

Thus, we know that E3 is linearly stable if all roots λ of (3.4) are strictly on the left half side of the 
complex plane, and linearly unstable if there exists a root λ of (3.4) on the right half side of the complex 
plane. Now we give the linear stability analysis of E3.

Firstly, we investigate the distribution of roots for P (λ, n2) = 0 when n = 0. For notational simplicity, 
denote P (λ) = P (λ, 0). Since P (λ) = 0 is a transcendental equation, we apply the argument principle in 
complex analysis to discuss it. It can be easily seen that P (λ) is analytical in the right half side of the 
complex plane since the Laplace transform of kij(t) converges. By the argument principle, the number of 
roots of P (λ) = 0 is equal to the following integral

lim
R→∞

1
2πi

∫
γ(R)

P ′(λ)
P (λ) dλ, (3.6)

where R > 0 and γ(R) is composed of γ1(R) := {Reiθ : θ ∈ [−π
2 , 

π
2 ]} and γ2(R) := {iy : y ∈ [R, −R]}, and 

the prime denotes the derivation with respect to λ. From the results in [9], we know that

lim
R→∞

1
2πi

∫
γ(R)

P ′(λ)
P (λ) dλ = lim

R→∞
(1 − 1

π
argP (iR)). (3.7)

To calculate the formula (3.7), we need to know the graph of �(P (iR)) against �(P (iR)) as R goes from 
zero to infinity. Note that

�(sij(iR)) = aij + bij

∞∫
0

kij(s) cosRsds,

�(sij(iR)) = −bij

∞∫
0

kij(s) sinRsds.

(3.8)

Since | sinRs |≤ Rs for s > 0, we have
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|
∞∫
0

kij(s) cosRsds | ≤ 1,

|
∞∫
0

kij(s) sinRsds | ≤ RTij ,

(3.9)

where Tij :=
∫∞
0 skij(s)ds describes the mean delay, see details in [22], i, j = 1, 2. From the assumption 

(H) we know Tij is bounded.
By direct calculations, we can get

�(P (iR)) = −R2 −R[u∗
1�(s11(iR)) + u∗

2�(s22(iR))] + u∗
1u

∗
2[�(s11(iR))�(s22(iR))

−�(s11(iR))�(s22(iR)) −�(s12(iR))�(s21(iR)) + �(s12(iR))�(s21(iR))],

�(P (iR)) =R[u∗
1�(s11(iR)) + u∗

2�(s22(iR))] + u∗
1u

∗
2[�(s11(iR))�(s22(iR)) + �(s11(iR))�(s22(iR))

−�(s12(iR))�(s21(iR)) −�(s12(iR))�(s21(iR))].

(3.10)

By (3.8), (3.9) and (3.10), we derive that

�(P (iR)) ∼ −R2 (R large),

�(P (iR)) ∼ const.R (R large),
(3.11)

and

P (0) = u∗
1u

∗
2(m11m22 −m12m21) > 0 (3.12)

if assumption (H1) is satisfied.
Therefore, from (3.11) and (3.12), P (iR) starts with the positive real part at R = 0 and ends up in the 

second quadrant as R tends to ∞, and lim
R→∞

argP (iR) must be the values of π, −π, −3π and etc. More 

precisely, the value of lim
R→∞

argP (iR) depends on the total change of P (iR). Certainly, all roots of P (λ) = 0
have negative real parts only when lim

R→∞
argP (iR) = π by formula (3.7).

We have the following result on the distribution of roots of P (λ) = 0.

Lemma 3.1. Assume that assumptions (H) and (H1) hold. Then there exist Tij sufficiently small such that 
all roots of P (λ) = 0 are strictly on the left half side of the complex plane if aii−bii > 0 and other parameters 
are fixed, i, j = 1, 2.

Proof. By formulas (3.8), (3.9) and (3.10), we can get the following inequality

�(P (iR)) ≥ [u∗
1(a11 − b11) + u∗

2(a22 − b22)]R

− u∗
1u

∗
2(m11b22T22 + m22b11T11 + m12b21T21 + m21b12T12)R.

Thus, it can be easily derived that �(P (iR)) > 0 for all R > 0 if aii − bii > 0 and Tij are sufficiently small. 
Note that P (0) > 0, we can derive that P (λ) = 0 has no zero root on the boundary of γ(R). By (3.7), 
lim

R→∞
argP (iR) must be equal to π, and the proof is completed. �

To investigate the effect of nonlocal intraspecific competitions, denote

S = {n ∈ N : n2 <
u∗

2(a12a21 − a11a22)}. (3.13)

d2a11
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Next, we study the distribution of the roots of P (λ, n2) = 0, n ∈ N.

Lemma 3.2. Assume that (H1) holds. Then E3 is linearly unstable if

a12a21 − a11a22 >
d1d2 + d1u

∗
2a22 + d2u

∗
1a11

u∗
1u

∗
2

. (3.14)

Proof. It can be easily verified that f(12) < 0 if a12a21 − a11a22 >
d1d2+d1u

∗
2a22+d2u

∗
1a11

u∗
1u

∗
2

. And P (λ, 1) = 0
must have a root λ with positive real part. This completes the proof. �
Remark 3.3. The assumption (H1) implies that (a11 + b11)(a22 + b22) > (a12 + b12)(a21 + b21), and it can 
be easily checked that a11a22 > (a12 + b12)(a21 + b21) ≥ a12a21 if b11 and b22 are sufficiently small, i.e. 
the strength of nonlocal intraspecific competition is weak, which is consistent with the global analysis in 
section 2 and indicates that inequality (3.14) fails. Otherwise, inequality (3.14) may hold if b11 and b22
are sufficiently large, that is, strong nonlocal intraspecific competition will result in the instability of E3
possibly.

For the case that b11 and b22 are suitably large, the set S is probably nonempty. We give the following 
lemma.

Lemma 3.4. Assume that (H1) holds and S is not empty. Then P (λ, n2) = 0 has a simple zero root and a 
negative root if d1 = d1(n2) for each n ∈ S. Moreover, when other system parameters except d1 are fixed, 
then d1(i2) �= d1(j2) for i, j ∈ S and i �= j. Here,

d1(n2) = u∗
1u

∗
2(a12a21 − a11a22) − d2u

∗
1a11n

2

d2n4 + u∗
2a22n2 , n ∈ S.

Proof. Note that f(n2) = 0 if and only if d1 = d1(n2) by the definition of d1(n2). The first part of the 
lemma can be easily derived. And the monotonicity of f(n2) with respect to n2 and d1 implies that the rest 
follows. �
Remark 3.5. Under assumptions of Lemma 3.4, there must exist an unique n∗ such that d1(n∗2) =
max
j∈S

{d1(j2)} since S is a finite set, and it can be easily verified that all roots of P (λ, n2) = 0(n �= n∗) 

have negative real parts if d1 = d1(n∗2).

Therefore, when other system parameters except d1 are fixed, we combine the above results into the 
following theorem, illustrating that Turing instability (Turing bifurcation) will occur when b11 and b22 are 
suitably large, in which d1(n2) and n∗ are defined in the above.

Theorem 3.6. Assume that (H) and (H1) hold. If aii − bii > 0 and S is not empty, then there must exist 
Tij sufficiently small such that the original system (1.9) with the kernels defined by (3.2) undergoes Turing 
bifurcation at d1 = d1(n2), i, j = 1, 2 and n ∈ S. Moreover, if d1 = d1(n∗2) and Tij sufficiently small, then 
all roots of P (λ, n2) = 0(n ∈ N0) have strictly negative real parts except a simple zero root.

Proof. The results are obvious by Lemmas 3.1, 3.4 and Remark 3.5, and we omit the proof here. �
Remark 3.7. In Theorem 3.6, the condition that the set S is nonempty is possible when b11 and b22 are 
suitably large. Although the original system is under the weak competition case (m11m22 > m12m21), we 
find that the spatially inhomogeneous solution will bifurcate from the coexistence equilibrium E3, which 
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Table 1
Values of system parameters.

Parameters d1 d2 r1 r2 a11 a12 a21 a22 b11 b12 b21 b22 τ

Values 1.45 1 10 10 4 7 6 5 3 1 0.5 4 0.1
1.45 1 10 10 4 7 6 5 3 1 0.5 4 0.675
1.45 1 10 10 4 7 6 5 3 1 0.5 4 1

is a new phenomenon compared with the two species competitive Lotka-Volterra system without nonlocal 
intraspecific competition.

Moreover, we believe that Hopf bifurcation and Turing-Hopf bifurcation will also occur in this system 
since P (λ) = 0 may have purely imaginary roots if the mean delays are large enough, which will be shown in 
simulations for specific temporal kernel kij(t) in next subsection. Because of the unspecific temporal kernel 
kij(t), we do not know whether P (λ) = 0 will have purely imaginary roots.

3.2. Spatial, temporal and spatio-temporal patterns

For convenient to perform simulations, we choose the kernels Gij(x, y, t) = 1
π and kij(t) = δ(t − τ) where 

τ > 0, i, j = 1, 2. Then system (1.9) becomes

{
∂u1
∂t = d1Δu1 + u1(r1 − a11u1 − a12u2 − b11

π

∫ π

0 u1(y, t− τ)dy − b12
π

∫ π

0 u2(y, t− τ)dy),
∂u2
∂t = d2Δu2 + u2(r2 − a21u1 − a22u2 − b21

π

∫ π

0 u1(y, t− τ)dy − b22
π

∫ π

0 u2(y, t− τ)dy)
(3.15)

with x ∈ (0, π), t > 0.
The mean delays introduced in subsection 3.1 are all equal to the fixed time delay τ by direct calculations.

Firstly, we apply the results of Theorem 3.6 and know that the coexistence equilibrium E3 of system 
(3.15) becomes Turing unstable by choosing the parameters b11, b22 suitably large, the time delay τ small 
enough and by fixing other parameters properly. The set S = {1} can be easily verified if we take the 
parameter values as Table 1 shows. Thus, when taking the values of parameters as the first row of Table 1, 
we obtain a pair of spatially inhomogeneous solutions, see Fig. 1.

It is well known that the time delay incorporated in ODE or PDE may result in the occurrence of 
oscillations when the delay is large enough. Inspired by that, let the value of time delay vary and other 
parameters fixed, which is shown as the parameter values in second and third rows of Table 1. Therefore, by 
further simulations, we find spatially inhomogeneous and homogeneous periodic solutions when changing 
values of the delay τ , see Figs. 2 and 3.

From the numerical results, we know that more complex pattern formations, like the existence of spatially 
inhomogeneous periodic solutions occur in this two-species Lotka-Volterra competition systems under the 
weak competition case compared with [23,27] in which spatial or temporal patterns can be formed. We 
believe that such properties could be theoretically studied by center manifold theory, bifurcation theory and 
normal form reduction method.

4. Conclusions and discussions

In this paper we studied the global dynamics and complex pattern formations in two-species Lotka-
Volterra systems with local as well as nonlocal intraspecific and interspecific competitions by using both 
mathematical and numerical methods. Our results imply that the strength of nonlocal intraspecific com-
petitions induces complex dynamics of the competitive system as it becomes suitably strong and that the 
strength of nonlocal interspecific ones has no effect on the global dynamics.
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Fig. 1. τ = 0.1, (a), (b) with initial values φ1(x, θ) = 0.9 + 0.08 cos x, φ2(x, θ) = 0.45 + 0.08 cosx and (c), (d) with φ1(x, θ) =
0.9 − 0.08 cosx, φ2(x, θ) = 0.45 − 0.08 cosx.

Fig. 2. τ = 0.675, (a), (b) with initial values φ1(x, θ) = 0.9 + 0.08 cosx, φ2(x, θ) = 0.45 + 0.08 cosx and (c), (d) with φ1(x, θ) =
0.9 − 0.08 cosx, φ2(x, θ) = 0.45 − 0.08 cosx.
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Fig. 3. τ = 1, and the initial values are φ1(x, θ) = 0.9 + 0.08 cos x, φ2(x, θ) = 0.45 + 0.08 cos x.

Firstly, the nonlocal intraspecific competitions have a great effect on the stability of the coexistence 
equilibria and whether it will affect global stability of two semi-trivial equilibrium is not clear since only 
the case with initial values below the corresponding environment capacity value has been proved in the 
Corollary 2.7. Moreover, the strength of local interspecific competitions will not change global stability 
of the equilibria compared with the results in [11]. Secondly, the complex pattern formations, like Turing 
instability, spatially homogeneous and inhomogeneous oscillations will occur when the nonlocal intraspecific 
competitions are suitably strong, which is new for this model in the literature. Lastly, the method of 
analyzing global stability or attracting region and the method of the linear stability analysis can be applied 
to other population dynamical models.

However, the effects of nonlocal intraspecific competitions on global stability of two semi-trivial equilibria 
under the weak or strong competition case, local stability of the coexistence equilibrium for a general kernel 
and theoretical proof for the complex pattern formations are not completely clear. These problems will be 
studied in the future work.
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