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BIFURCATIONS OF INVARIANT TORI IN PREDATOR-PREY
MODELS WITH SEASONAL PREY HARVESTING∗

JING CHEN† , JICAI HUANG‡ , SHIGUI RUAN†, AND JIHUA WANG§

Abstract. In this paper we study bifurcations in predator-prey systems with seasonal prey
harvesting. First, when the seasonal harvesting reduces to constant yield, it is shown that various
kinds of bifurcations, including saddle-node bifurcation, degenerate Hopf bifurcation, and Bogdanov–
Takens bifurcation (i.e., cusp bifurcation of codimension 2), occur in the model as parameters vary.
The existence of two limit cycles and a homoclinic loop is established. Bifurcation diagrams and
phase portraits of the model are also given by numerical simulations, which reveal far richer dynam-
ics compared to the case without harvesting. Second, when harvesting is seasonal (described by a
periodic function), sufficient conditions for the existence of an asymptotically stable periodic solution
and bifurcation of a stable periodic orbit into a stable invariant torus of the model are given. Numer-
ical simulations, including bifurcation diagrams, phase portraits, and attractors of Poincaré maps,
are carried out to demonstrate the existence of bifurcation of a stable periodic orbit into an invariant
torus and bifurcation of a stable homoclinic loop into an invariant homoclinic torus, respectively, as
the amplitude of seasonal harvesting increases. Our study indicates that to have persistence of the
interacting species with seasonal harvesting in the form of asymptotically stable periodic solutions
or stable quasi-periodic solutions, initial species densities should be located in the attraction basin of
the hyperbolic stable equilibrium, stable limit cycle, or stable homoclinic loop, respectively, for the
model with no harvesting or with constant-yield harvesting. Our study also demonstrates that the
dynamical behaviors of the model are very sensitive to the constant-yield or seasonal prey harvesting,
and careful management of resources and harvesting policies is required in the applied conservation
and renewable resource contexts.

Key words. predator-prey model, seasonal harvesting, Bogdanov–Takens bifurcation, degener-
ate Hopf bifurcation, periodic orbit, invariant torus, homoclinic torus
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1. Introduction. Understanding the nonlinear dynamics of predator-prey sys-
tems with harvesting is very important and useful in studying the management of re-
newable resources, since predation is one of the most fundamental interactions within
a biological system and harvesting is commonly practiced in fishery, forestry, and
wildlife management (Clark [12], Chrstensen [11], Hill et al. [18]). In the last three
decades, great attention has been paid to investigating the effect of harvesting on the
dynamics of predator-prey systems and the role of harvesting in the management of
renewable resources; see Beddington and Cooke [1], Beddington and May [2], Brauer
and Soudack [7, 8, 9], Dai and Tang [14], Etoua and Rousseau [15], Hogarth et al.
[20], Huang, Gong, and Ruan [22], Leard, Lewis, and Rebaza [26], May et al. [27],
Myerscough et al. [28], and Xiao and Ruan [38]. Mathematically, it is very important
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PREDATOR-PREY MODELS WITH SEASONAL HARVESTING 1877

to study various possible bifurcations in a predator-prey system when it is perturbed
by the harvesting effort. Ecologically and economically, it is crucial to exploit biolog-
ical resources with maximum sustainable yield (MSY) while maintaining the survival
of all interacting populations. If the harvesting of a population exceeds its MSY (i.e.,
the population is overexploited), then this population will become extinct.

Two types of harvesting regimes, constant-effort harvesting, described by a con-
stant multiplication of the size of the population under harvest, and constant-yield
harvesting, described by a constant independent of the size of the population un-
der harvest, have been proposed to qualitatively describe the effect of harvest (May
et al. [27]). However, harvesting does not always occur with constant yield or constant
effort. For example, many species of fish are harvested at a higher rate in warmer sea-
sons than in colder months (Hirsch, Smale, and Devaney [19]). Temporal periodically
harvested area closures have been employed across the Indo-Pacific for centuries and
are a common measure within contemporary community-based and comanagement
frameworks (Cohen and Foale [13]). Polovina, Abecassis, and Howell [30] examined
trends in the deep-set fishery using daily logbook data submitted to the National Ma-
rine Fisheries Service (NMFS) by longline vessel captains and plotted the number of
hooks deployed in the deep-set sector of the Hawaii longline fishery during 1996–2006,
showing seasonal patterns in fishing effort (see Figure 1.1). So it is more reasonable to
assume that the population is harvested at a periodic rate, corresponding to seasonal
harvesting such as seasonal open hunting or fishing seasons (Brauer and Sánchez [6]),
which has received little attention. In [19], Hirsch, Smale, and Devaney considered a
single species with logistic growth and periodic harvesting and discussed the existence
and the number of periodic orbits by calculating the Poincaré map. In [6], Brauer and
Sánchez considered autonomous single population models under periodic harvesting
and sought conditions under which there is an asymptotically stable periodic solution.
However, little is known about periodic harvesting of interacting populations, and this
is a topic with many interesting questions to be explored [6].

Group defense is a phenomenon in population dynamics in which predation by
predators decreases when the density of the prey population is sufficiently large, which
is also related to the nutrient uptake inhibition phenomenon in chemical kinetics.
Nonlinear dynamics of predator-prey systems with group defense have been investi-

Fig. 1.1. Monthly data on the number of hooks deployed in the deep-set sector of the Hawaii
longline fishery during 1996–2006 (from Polovina, Abecassis, and Howell [30], courtesy of the Na-
tional Oceanic and Atmospheric Administration (NOAA) and the Department of Commerce).
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1878 J. CHEN, J. HUANG, S. RUAN, AND J. WANG

gated extensively; see Freedman and Wolkowicz [17], Wolkowicz [37], Ruan and Xiao
[33], and Zhu, Campbell, and Wolkowicz [42]. A nonmonotone functional response
function

p1(x) =
mx

a+ x2

(based on the Holling type II function mx
a+x) has been used to describe group de-

fense, where m > 0 denotes the maximal growth rate of the species and a > 0 is the
half-saturation constant. Very interesting bifurcations, including saddle-node bifur-
cation, Hopf bifurcation, homoclinic bifurcation, and Bogdanov–Takens bifurcation,
have been observed (see Ruan and Xiao [33]). Based on the Ivlev functional response
function α(1 − e−βx), another nonmonotone functional response function

p2(x) = αxe−βx

was also introduced (Ruan and Freedman [32], Freedman and Ruan [16]), where α > 0
is the grazing rate of predators and β > 0 is the reciprocal of the density of the prey
at which predation reaches its maximum and starts to decrease (see Figure 2.1). Note
that the study of a predator-prey model with functional response function p2(x) is
more challenging than that with p1(x) since the interior equilibria cannot be expressed
explicitly. Nevertheless, Xiao and Ruan [39] studied such a model, that is, system
(1.1) with h0 = 0 and γ0 = 0, and showed that similar bifurcations occur in the model.

Roughly speaking, the bifurcations in predator-prey models with group defense
(i.e., with nonmonotone functional response) demonstrate that predators are more
likely to be driven into extinction when the density of the prey population is suffi-
ciently large. One approach to maintaining the persistence of the system is to in-
troduce a top predator that will predate both species (Ruan and Freedman [32]). In
this paper we explore the possibility of having coexistence of both species by har-
vesting the abundant prey population. For this purpose, we consider the following
predator-prey system with group defense and seasonal prey harvesting:

(1.1)
ẋ = rx(1 − x

K )− αxye−βx − (h0 + γ0 sin(2πt)),

ẏ = y(μαxe−βx −D),

where x and y are functions of time representing population densities of the prey
and predators, respectively, r > 0 represents the intrinsic growth rate of the prey in
absence of predators, K > 0 denotes the carrying capacity of the prey population,
D > 0 is the death rate of predators, μ > 0 is the maximal conversion rate of the prey
into the growth of predators, and h0 + γ0 sin(2πt) describes the seasonal harvesting
effort on the prey population, in which h0 > 0 is the constant-yield harvesting rate
and γ0 ≥ 0 is the amplitude of the seasonal harvesting effort.

For simplicity, we first nondimensionalize system (1.1) with the following scaling:

t̄ = rt, x̄ =
x

K
, ȳ =

αy

r
.

Dropping the bars, model (1.1) becomes

(1.2)
ẋ = x(1 − x)− xye−bx − (h+ γ sin(2πr t)),

ẏ = y(uxe−bx − d),

where b = Kβ, u = μαK
r , d = D

r , h = h0

Kr , γ = γ1

Kr , and h ≥ γ.
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PREDATOR-PREY MODELS WITH SEASONAL HARVESTING 1879

Now we describe the approaches that we use to study system (1.2). First, we
consider system (1.2) with only constant-yield prey harvesting (that is, γ = 0) and
show that several kinds of bifurcation phenomena, including saddle-node bifurcation,
degenerate Hopf bifurcation, and Bogdanov–Takens bifurcation (i.e., cusp bifurcation
of codimension 2), occur as the model parameters vary. The existence of two limit
cycles and a homoclinic loop is also given, which reveals far richer dynamics compared
to the case with no harvesting.

Next, from the dynamical systems point of view, we study the possible bifurcations
in system (1.2) under the periodic perturbation γ sin( 2π

r t). In studying the nature of
turbulence in fluid mechanics, Landau [24] and Hopf [21] noticed that when a stable
periodic solution becomes unstable, it is transferred into a stable quasi-periodic flow
with two fundamental periods which can be represented on a two-dimensional torus.
Mathematical studies of bifurcations of periodic solutions into invariant tori in finite
dimensional dynamical systems have been given by Ruelle and Takens [34] (see also
Lanford [25]) and Sell [35]. Bifurcations of homoclinic loops have been studied in
Chow and Hale [10].

In studying the nonlinear dynamics of system (1.2) with seasonal prey harvesting,
we will give sufficient conditions on the existence of an asymptotically stable periodic
solution and the bifurcation of a stable periodic orbit into an invariant torus. The
existence of bifurcation of a stable homoclinic loop into an invariant homoclinic torus
is shown numerically. It is also shown that the initial species densities are very
important for the persistence of the interacting species in terms of quasi-periodic
solutions when the prey species is subjected to periodic harvesting. Our results show
that the conclusions of Brauer and Sánchez [6], that in autonomous single population
models the behaviors of the model with periodic harvesting are analogous to those
of the model with no harvesting (but with an asymptotically stable periodic solution
instead of an asymptotically stable equilibrium), still hold for the interacting species
models as long as the initial species densities are chosen suitably. Moreover, our
numerical simulations show that a stable limit cycle or a stable homoclinic loop in
the model will be transformed into an invariant torus or an invariant homoclinic
torus, respectively, by seasonal prey harvesting. To the best of our knowledge, such
bifurcations have not been observed in predator-prey systems in any literature.

The paper is organized as follows. In section 2, we study the existence of various
types of equilibria in model (1.2) with constant-yield harvesting. We also describe the
phase portraits and the biological ramifications of our results. In section 3, we discuss
possible bifurcations of the model (1.2) with constant-yield harvesting depending on
all parameters and show that the model exhibits saddle-node bifurcation, degenerate
Hopf bifurcation, and Bogdanov–Takens bifurcation in terms of the original model
parameters. In section 4, the existence of an asymptotically stable periodic solution
in system (1.2) and bifurcation of a stable periodic orbit into an invariant torus are
established, and numerical simulations on the bifurcations of an invariant torus and
an invariant homoclinic torus are also given. The paper ends with a brief discussion
in section 5.

2. Constant-yield harvesting: Stability. First of all, we carry out a qualita-
tive analysis of model (1.2) with constant-yield harvesting, that is, γ = 0. To do that
we rewrite (1.2) as

(2.1)
ẋ = x(1 − x)− xye−bx − h � f1(x, y),

ẏ = y(uxe−bx − d) � f2(x, y),
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1880 J. CHEN, J. HUANG, S. RUAN, AND J. WANG

where b, h, d, and u are positive parameters. From the biological point of view, we
study the dynamics of system (2.1) in the closed first quadrant R2

+. Thus, we consider
only the biologically meaningful initial conditions

x(0) ≥ 0, y(0) ≥ 0.

We can show that the solution of (2.1) with nonnegative initial conditions exists and
is unique. Notice that the x-axis is invariant under the flow. However, the y-axis is
not. Any solution touching the y-axis crosses out of the first quadrant. Thus, the
first quadrant is not positively invariant under the flow generated by system (2.1).

2.1. Equilibria. We can see that system (2.1) has six possible equilibria:

A = (x1, 0), B = (x2, 0), C = (x3, y3),

D = (x4, y4), E =

(
1

2
, 0

)
, F =

(
1

b
, e− hbe− e

b

)
,

where

x1 =
1−√

1− 4h

2
, x2 =

1 +
√
1− 4h

2
,

ux3e
−bx3 − d = 0, ux4e

−bx4 − d = 0,

y3 =
(x3 − x23 − h)(ebx3)

x3
, y4 =

(x4 − x24 − h)(ebx4)

x4
,

h1 = x3 − x23, h2 = x4 − x24.

Theorem 2.1. The existence of equilibria of system (2.1), according to the values
of parameters, is summarized in Table 1.

Table 1

Equilibria of system (2.1).

Cases Equilibria

h > 1
4

none

h = 1
4

E

0 < h < 1
4
and u < bed A and B

b−1
b2

≤ h < 1
4
and u = ebd A and B

max{h1, h2} < h < 1
4
and u > bed A and B

0 < h < b−1
b2

and u = bed A, B and F

h2 < h < h1 and u > bed A, B and C
h1 < h < h2 and u > bed A, B and D
0 < h < min{h1, h2} and u > bed A, B, C and D

Proof. Consider an equilibrium of system (2.1) with coordinates (x0, y0), where
x0, y0 are nonnegative solutions of the algebraic equations

(2.2)
x(1 − x)− xye−bx − h = 0,
y(uxe−bx − d) = 0.

By the second equation of (2.2), we have y = 0 or uxe−bx − d = 0.
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PREDATOR-PREY MODELS WITH SEASONAL HARVESTING 1881

(1) If y = 0, the first equation of (2.2) yields

(2.3) x2 − x+ h = 0,

whose discriminant is Δ := 1 − 4h. It follows that (i) when h > 1
4 , (2.3) has no

real roots; (ii) when h = 1
4 , (2.3) has only one positive real root 1

2 ; and (iii) when
0 < h < 1

4 , (2.3) has two positive real roots x1 and x2, which correspond to the
boundary equilibria A,B of system (2.1).

(2) If

(2.4) uxe−bx − d = 0,

we let p(x) = uxe−bx; then p(x) attains its maximum u
be at 1

b (see Figure 2.1), and
(i) when u < bed, (2.4) does not have any real root; (ii) when u = bed, the only positive
real root of (2.4) is x = 1

b , which corresponds to the equilibrium F = (1b , e− hbe− e
b )

of (2.2). Note that e − hbe − e
b < 0 if b−1

b2 < h < 1
4 ; e − hbe − e

b = 0 if h = b−1
b2 and

F becomes A or B; e − hbe − e
b > 0 if 0 < h < b−1

b2 and F lies in the interior of R2
+;

and (iii) when u > bed, (2.4) has two positive real roots x3 and x4 which correspond
to the equilibria C = (x3, y3) and D = (x4, y4) of (2.2). Thus system (2.1) has three
equilibria A,B,C if h2 < h < h1; three equilibria A,B,D if h1 < h < h2; and four
equilibria A,B,C,D if 0 < h < max{h1, h2}.

Theorem 2.1 implies that when h > 1
4 , system (2.1) has no equilibria, and dx

dt < 0
in R2

+. The dynamics of system (2.1) are trivial in R2
+; every trajectory in R2

+ will
cross the y-axis and go out of R2

+ in finite time (see also Figure 2.2(a)). This indicates
that the prey species becomes extinct, which in turn drives predators to extinction.
That is, overharvesting occurs. When 0 < h ≤ 1

4 , there exist some initial values
such that the prey population in system (2.1) persists. Thus, hMSY = 1

4 for system
(2.1) from Theorem 2.1. Hence, the constant-yield harvesting rate h must satisfy
0 < h < 1

4 . In the following, we will study the nonlinear dynamics of system (2.1)
when 0 < h < 1

4 .

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

p(x)

Fig. 2.1. The graph of p(x) = uxe−bx.

2.2. Types and stability of equilibria. Now we determine the types and
stability of the equilibria obtained in the last subsection. The Jacobian matrix takes
the form
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1882 J. CHEN, J. HUANG, S. RUAN, AND J. WANG

(2.5) Df(x, y) =

(
1− 2x− e−bxy + bxye−bx −xe−bx

yue−bx − ubxye−bx −d+ uxe−bx

)
,

where f = (f1, f2)
T , and x and y are coordinates of these equilibria.

We first consider equilibria A,B,C, and D and will consider E,F later.
Theorem 2.2. The types of equilibria A,B,C, and D, according to the values of

parameters, are given in Table 2. Without loss of generality, we assume that x3 < x4.
The phase portraits of system (2.1) without any equilibrium or with two boundary
equilibria are shown in Figure 2.2.

Table 2

Types of equilibria of system (2.1).

Cases Equilibria Type

max{0, b−1
b2

} < h < 1
4
and u ≤ bed A and B A is a hyperbolic saddle,

B is a hyperbolic stable node

h = b−1
b2

, b > 2, and u = bed A and B A is a nonhyperbolic saddle,

B is a hyperbolic stable node

h = b−1
b2

, 0 < b < 2, and u = bed A and B A is a hyperbolic saddle,

B is a nonhyperbolic stable node
max{h1, h2} < h < 1

4
, u > bed, A and B A is a hyperbolic unstable node,

and x3 < 1
2
< x4 B is a hyperbolic saddle

max{h1, h2} < h < 1
4
, u > bed, A and B A is a hyperbolic saddle,

and x3 > 1
2
(or x4 < 1

2
) B is a hyperbolic stable node

h2 < h < h1 and u > bed A, B, and C A and B are hyperbolic saddles,
C is an antisaddle

h1 < h < h2 and u > bed A, B, and D A is a hyperbolic unstable node,
B is a hyperbolic stable node,
D is a hyperbolic saddle

0 < h < min{h1, h2} and u > bed A, B, C, and D A and D are hyperbolic saddles,
B is a hyperbolic stable node,
C is an antisaddle

(a) (b) (c)
h = 0.3
d = 0.1

b = 0.1
u = 0.3
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0.05
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x

y

A B

Fig. 2.2. The phase portraits of system (2.1) without any equilibrium or with two boundary
equilibria. (a) No equilibrium. (b)–(c) Two boundary equilibria.

Proof. We first consider A = (x1, 0) and B = (x2, 0), where x1 = 1−√
1−4h
2 , x2 =

1+
√
1−4h
2 , 0 < h < 1

4 . By (2.5), we have

Df(A) =

(
1− 2x1 −x1e−bx1

0 −d+ ux1e
−bx1

)
, Df(B) =

(
1− 2x2 −x2e−bx2

0 −d+ ux2e
−bx2

)
.
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It follows that 1− 2xi and −d+ uxie
−bxi(i = 1, 2) are the eigenvalues of Df(A) and

Df(B). Moreover, we can see that 1− 2x1 =
√
1− 4h > 0, 1− 2x2 = −√

1− 4h < 0,
and have the following results:

Case 1. uxie
−bxi − d < 0 if u < bed.

Case 2. uxie
−bxi − d < 0 and xi �= 1

b if u = bed and max{0, b−1
b2 } < h < 1

4 .

Case 3. ux1e
−bx1 − d = 0, ux2e

−bx2 − d < 0 if u = bed, h = b−1
b2 , and b > 2.

Case 4. ux1e
−bx1 − d < 0, ux2e

−bx2 − d = 0 if u = bed, h = b−1
b2 , and 0 < b < 2.

Case 5. uxie
−bxi − d > 0 if u > bed, max{h1, h2} < h < 1

4 , and x3 <
1
2 < x4.

Case 6. uxie
−bxi − d < 0 if u > bed, max{h1, h2} < h < 1

4 , and x3 > 1
2 (or

x4 <
1
2 ).

Case 7. ux1e
−bx1 − d < 0 and ux2e

−bx2 − d > 0 if u > bed and h2 < h < h1.
Case 8. ux1e

−bx1 − d > 0 and ux2e
−bx2 − d < 0 if u > bed and h1 < h < h2.

Case 9. uxie
−bxi − d < 0 if u > bed and 0 < h < min{h1, h2}.

The types of A and B are obvious except in Cases 3 and 4, in which A = (1b , 0)(b >
2) and B = (1b , 0)(0 < b < 2) are nonhyperbolic. Now we consider A and B when
they are nonhyperbolic.

Translate A = (1b , 0) into the origin and expand system (2.1) in a power series
around the origin. Let X = x− 1

b , Y = y. Then system (2.1) can be rewritten as

(2.6)
Ẋ = (1− 2

b )X − 1
beY −X2 + b

2eX
2Y + P1(X,Y ),

Ẏ = −ub
2eX

2Y +Q1(X,Y ),

where P1(X,Y ) and Q1(X,Y ) are C∞ functions of order at least four in (X,Y ).
Make an affine transformation,

X = − 1

be
x+ y, Y =

(
2

b
− 1

)
x;

system (2.6) becomes

(2.7)
ẋ = − u

2be3 x
3 − bu

2exy
2 + u

e2 x
2y + P2(x, y),

ẏ = ( b−2
b )y − 1

b2e2 x
2 + 2

bexy − y2 +Q2(x, y),

where P2(x, y) and Q2(x, y) are C
∞ functions of order at least four and three in (x, y),

respectively.
Let τ = ( b−2

b )t; then system (2.7) can be rewritten as

(2.8)
ẋ = − u

2e3(b−2)x
3 − b2u

2e(b−2)xy
2 + bu

(b−2)e2 x
2y + P3(x, y),

ẏ = y − 1
e2b(b−2)x

2 + 2
e(b−2)xy − b

b−2y
2 +Q3(x, y),

where P3(x, y) and Q3(x, y) are C
∞ functions of order at least four and three in (x, y),

respectively. Since the coefficient of x3 in the first equation of (2.8) is − u
e3(b−2) �= 0

(< 0 if b > 2; > 0 if 0 < b < 2), by Theorem 7.1 in Zhang et al. [41] and τ = ( b−2
b )t, we

know that A = (1b , 0) is a nonhyperbolic saddle if b > 2; B = (1b , 0) is a nonhyperbolic
stable node as t : 0 �→ +∞ if 0 < b < 2.

We then consider C = (x3, y3) and D = (x4, y4). By (2.5), we have

Det(Df(C)) = ue−bx3(1−bx3)(−x23+x3−h), Det(Df(D)) = ue−bx4(1−bx4)(−x24+x4−h).
Since x3 < 1

b < x4 and xi − x2i − h > 0 (i = 3, 4), it follows that Det(Df(C))
> 0 and Det(Df(D)) < 0. So, D is a hyperbolic saddle and C is an
antisaddle.

Theorem 2.3. When h = 1
4 , system (2.1) has a unique singular point E = (12 , 0).
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(i) It is a saddle-node if u �= 2de
b
2 , and it is attracting (repelling) if u < 2de

b
2 (u >

2de
b
2 ).

(ii) It is a degenerate saddle if u = 2de
b
2 and 0 < b < 2.

(iii) It is a saddle-node if u = 2de
b
2 and b = 2 (that is, u = 2ed).

(iv) It is a degenerate singular point, and Sδ((
1
2 , 0)) consists of one hyperbolic sec-

tor and one elliptic sector if u = 2de
b
2 and b > 2, where Sδ((

1
2 , 0)) is the

neighborhood of (12 , 0) with sufficient small radius δ.
The phase portraits are shown in Figure 2.3.

(a) (b)
h = 0.25
d = 0.3

b = 1.2
u = 1
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Fig. 2.3. The phase portraits of system (2.1) with only one boundary equilibrium when h = 1
4
.

(a) u �= 2de
b
2 ; (b) u = 2de

b
2 and 0 < b < 2; (c) u = 2de

b
2 and b = 2; (d) u = 2de

b
2 and b > 2.

Proof. By (2.5), we have

Df(E) =

(
0 − 1

2e
− b

2

0 u
2 e

− b
2 − d

)
.

The eigenvalues of Df(E) are λ1 = 0 and λ2 = u
2 e

− b
2 − d.

The transformation (X,Y ) = (x− 1
2 , y) translates the equilibrium E to the origin.

In a neighborhood of the origin, system (2.1) becomes

(2.9)
Ẋ = − 1

2e
− b

2 Y −X2 − (1− b
2 )e

− b
2XY − b( b4 − 1)e−

b
2X2Y + P1(X,Y ),

Ẏ = (u2 e
− b

2 − d)Y + u(1− b
2 )e

− b
2XY + ub( b4 − 1)e−

b
2X2Y +Q1(X,Y ),
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where P1(X,Y ) and Q1(X,Y ) are C∞ functions of order at least four in (X,Y ).

If λ2 �= 0, let X = x− 1
2e

− b
2 y, Y = (u2 e

− b
2 − d)y; then system (2.9) becomes

(2.10)
ẋ = −x2 + α1xy + α2y

2 + P2(x, y),

ẏ = β1y + β2xy + β3y
2 +Q2(x, y),

where P2(x, y) and Q2(x, y) are C
∞ functions in (x, y) of order at least three in (x, y),

and

α1 =
1

2
e−

b
2 (2 − d(b− 2)), α2 =

1

4
e−b(−1 + d(b− 2)),

β1 =
u

2
e−

b
2 − d, β2 = u

(
1− b

2

)
e−

b
2 , β3 = −1

2
u

(
1− b

2

)
e−b.

Introducing a new time variable τ by τ = β1t and still denoting τ with t, we obtain

(2.11)
ẋ = − 1

β1
x2 + α1

β1
xy + α1

β1
y2 + P3(x, y),

ẏ = y + β2

β1
xy + β3

β1
y2 +Q3(x, y).

Since the coefficient of x2 in the first equation of system (2.11) is −1
β1

= −1
λ2

�= 0,

Theorem 7.1 in Zhang et al. [41] implies that the equilibrium E = (12 , 0) is a saddle-

node, which is attracting (repelling) if u < 2de
b
2 (u > 2de

b
2 ).

If λ2 = 0, let τ = − 1
2e

− b
2 t; then (2.9) becomes

(2.12)
Ẋ = Y + P4(X,Y ),

Ẏ = Q4(X,Y ),

where P4(X,Y ) and Q4(X,Y ) are C∞ functions of order at least two in (X,Y ). Let
Y + P4(X,Y ) = 0; we obtain an implicit function

Y = φ(X) = −2e
b
2X2 + 2(2− b)e

b
2X3 + I4(X),

where I4(X) is a C∞ function of order at least four. Replacing Y with φ(X), we have

ψ(X) � Q4(X,φ(X)) = 2u(2− b)e
b
2X3 − (b2 − 4b+ 8)ue

b
2X4 + I5(X),

δ(X) � ∂P4

∂X
(X,φ(X)) +

∂Q4

∂Y
(X,φ(X)) = (u(b− 2) + 4e

b
2 )X + I2(X),

where I5(X) and I2(X) are C∞ functions of order at least five and two, respectively.
Denote

a1 � 2u(2− b)e
b
2 , a2 � −(b2 − 4b+ 8)ue

b
2 , b1 � u(b− 2) + 4e

b
2 .

By Theorems 7.2 and 7.3 in Zhang et al. [41], if 0 < b < 2, then a1 > 0 and (12 , 0) is a
saddle; if b = 2, then a1 = 0, a2 < 0, b1 �= 0, and (12 , 0) is a saddle-node; if b > 2, then
a1 < 0, b1 �= 0, b21 + 8a1 ≥ 0, and Sδ((

1
2 , 0)) consists of one hyperbolic sector and one

elliptic sector.
Theorem 2.4. If 0 < h < b−1

b2 , u = bed, and b > 1, then system (2.1) has three
equilibria, A,B, and F , and no closed orbits in R2

+. Moreover,
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(a) (b) (c)
h = 0.2
d = 0.3

b = 2.5
u = 0.75 exp(1)
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Fig. 2.4. The phase portraits of system (2.1) when 0 < h < b−1
b2

, u = bed, and b > 1. (a) b > 2;
(b) b < 2; (c) b = 2.

(i) if b �= 2, then A,B, and F are a hyperbolic saddle, a hyperbolic stable node, and a
saddle-node, respectively, and F is attracting (repelling) if 1 < b < 2 (b > 2);

(ii) if b = 2, then A,B, and F are a hyperbolic saddle, a hyperbolic stable node, and
a cusp of codimension 2, respectively.

The phase portraits are shown in Figure 2.4.
Proof. (1) The types of A and B can be obtained from Theorem 2.2 straightfor-

wardly.
(2) If b = 2, F is a cusp of codimension 2. First, we translate F (12 ,

e
2 −2eh) to the

origin and expand system (2.1) in a power series around the origin. Let X = x − 1
2 ,

Y = y − e
2 + 2eh; then system (2.1) can be rewritten as

(2.13)
Ẋ = − 1

2eY − (12 + 2h)X2 + P1(X,Y ),

Ẏ = (2uh− u
2 )X

2 +Q1(X,Y ),

where P1(X,Y ) and Q1(X,Y ) are C∞ functions of order at least three in (X,Y ).
Next, we make a time translation τ = − 1

2e t; then (2.13) can be rewritten as

(2.14)
Ẋ = Y + (e+ 4eh)X2 + P2(X,Y ),

Ẏ = (eu− 4ehu)X2 +Q2(X,Y ),

where P2(X,Y ) and Q2(X,Y ) are C∞ functions of order at least three in (X,Y ). We
take x = X, y = Y + (e+ 4eh)X2 + P2(X,Y ); then (2.14) becomes

(2.15)
ẋ = y,
ẏ = eu(1− 4h)x2 + 2e(1 + 4h)xy +R(x, y),

where R(x, y) is a C∞ function of order at least three in (x, y). Since eu(1− 4h) > 0
and 2e(1 + 4h) > 0 (because 0 < h < 1

4 ), it follows that F (12 ,
e
2 − 2eh) is a cusp of

codimension 2.
(3) If b �= 2, F is a saddle-node. The transformation (X,Y ) = (x− 1

b , y−e+heb+ e
b )

translates the equilibrium E to the origin. In a neighborhood of the origin, system
(2.1) becomes

(2.16)
Ẋ = a10X + a01Y + a20X

2 + P1(X,Y ),

Ẏ = b20X
2 +Q1(X,Y ),
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where P1(X,Y ) and Q1(X,Y ) are C∞ functions of order at least three in (X,Y ), and

a10 = 1− 2

b
, a01 =

−1

eb
, a20 =

−3 + b− hb2

2
, b20 =

u(hb2 − b+ 1)

2
.

Let X = a01x+ y, Y = −a10x; then (2.16) becomes

(2.17)

ẋ = − b20a
2
01

a10
x2 − 2b20a01

a10
xy − b20

a10
y2 + P2(x, y),

ẏ = a10y + (a20 − a01b20
a10

)a201x
2 + 2(a20 − a01b20

a10
)a01xy + (a20 − a01b20

a10
)y2 +Q2(x, y),

where P2(x, y) and Q2(x, y) are C
∞ functions of order at least three in (x, y).

Defining a new time variable τ by τ = a10t, and still denoting τ with t; we obtain

ẋ = − b20a
2
01

a2
10

x2 − 2b20a01

a2
10

xy − b20
a2
10
y2 + P3(x, y),

ẏ = y + (a20

a10
− a01b20

a2
10

)a201x
2 + 2(a20

a10
− a01b20

a2
10

)a01xy + (a20

a10
− a01b20

a2
10

)y2 +Q3(x, y),

(2.18)

where P3(x, y) and Q3(x, y) are C∞ functions at least of order three in (x, y). The

coefficient of x2 in the first equation of system (2.18) is − b20a
2
01

a2
10

> 0 since 0 < h < b−1
b2 ;

then the equilibrium F is a saddle-node, which is attracting (repelling) if 1 < b < 2
(b > 2). Since the closed orbit must include the equilibria in its interior whose indices
sum to one, system (2.1) does not have a closed orbit in R2

+ under the conditions of
Theorem 2.4.

Theorem 2.5. If u > bed and 0 < h < h1, then C = (x3, y3) is a positive

equilibrium of system (2.1). Let h3 =
bx3

3−bx2
3+x2

3

1−bx3
; then C is

(i) a hyperbolic stable focus (or node) if h < h3;
(ii) a weak focus or center if h = h3;
(iii) a hyperbolic unstable focus (or node) if h > h3.

Proof. From Theorem 2.2 we have Det(Df(C)) > 0. On the other hand,

Tr(Df(C)) = 1− 2x3 − e−bx3y3 + bx3y3e
−bx3 =

1− bx3
x3

[
h− bx33 − bx23 + x23

1− bx3

]

=
1− bx3
x3

(h− h3).

Since we have assumed x3 < x4, it follows that 0 < x3 <
1
b . Hence Tr(Df(C)) < 0 if

0 < h < min{h3, h1}; Tr(Df(C)) = 0 if 0 < h = h3 < h1; Tr(Df(C)) > 0 if
0 < h3 < h < h1.

3. Constant-yield harvesting: Bifurcations. In this section, we investigate
various possible bifurcations in system (2.1) with constant-yield harvesting.

3.1. Saddle-node bifurcations. From Theorems 2.1–2.3, we know that

SN1 =

{
(h, u, b, d) : h =

1

4
,
u

2
e−

b
2 − d �= 0, u, b, d > 0

}

is a saddle-node bifurcation surface. When the parameters pass from one side of the
surface to the other side, the number of equilibria of system (2.1) changes from zero
to two, and the two equilibria are boundary equilibria; one is a hyperbolic saddle and
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the other is a node. This is the first saddle-node bifurcation surface of the model. The
biological interpretation for the first saddle-node bifurcation is that when hMSY = 1

4 ,
the prey species is driven to extinction, and the system collapses when h > 1

4 , but the
prey species does not become extinct for some initial data when 0 < h < 1

4 . On the
other hand, Theorems 2.1, 2.2, and 2.4 imply

SN2 =

{
(h, u, b, d) : u = bed, 0 < h <

b− 1

b2
, b �= 2, a, d, u > 0

}

is also a saddle-node bifurcation surface. The second saddle-node bifurcation yields
two positive equilibria. This implies that there exists a critical constant-yield har-
vesting h0 = b−1

b2 such that the predator species either becomes extinct or goes out of
R2

+ in finite time when h > h0, and both predators and prey coexist in the form of a
positive equilibrium for certain choices of initial values when u = bed and 0 < h < h0.

3.2. Degenerate Hopf bifurcation. To study the order of the Hopf bifurcation
of system (2.1), we transform it into a generalized Liénard system with a weak focus at
the origin. The following lemma is Theorem 5.1 in Lamontagne, Coutu, and Rousseau
[23]l; we also refer the reader to Etoua and Rousseau [15] and Xiao and Zhu [40] for
similar results.

Lemma 3.1. For a generalized Liénard system,

(3.1)
ẋ = −y,
ẏ = g(x) + yf(x),

where

g(x) =
+∞∑
i=1

Aix
i, f(x) =

+∞∑
j=1

Bjx
j .

When A1 > 0, the first two Lyapunov coefficients take the form

L1 =
B2A1 −A2B1

8A
3
2
1

, L2 =
1

16A
5
2
1

(
5

3
A2A3B1 − 5

3
A1A2B3 + B4A

2
1 −A1A4B1

)
.

Theorem 2.5 indicates that the positive equilibrium C = (x3, y3) of system (2.1)
is a center-type nonhyperbolic equilibrium when u > bed and 0 < h = h3 < h1. Thus,
system (2.1) may exhibit a Hopf bifurcation. Notice that

(3.2) h = h3 =
bx3

3−bx2
3+x2

3

1−bx3
< h1 = x3 − x23 =⇒ x3 <

1
2 ,

(3.3) 0 < h = h3 =⇒ x3 >
b−1
b ,

(3.4) u > bed =⇒ x3 <
1
b .

Theorem 3.2. If u > bed and 0 < h = h3 < h1, then the equilibrium C = (x3, y3)
is
(i) a stable weak focus of multiplicity 1 if L11 < 0;
(ii) an unstable weak focus of multiplicity 1 if L11 > 0;
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(iii) an unstable weak focus of multiplicity 2 if L11 = 0, where

L11 = 2 + 6b2x3 + 4b3(−1 + x3)x
2
3 − 2b(1 + x3) + b4(x33 − 2x43).

Proof. Rescale the time by dividing system (2.1) by xe−bx. Since xe−bx > 0 for
all x > 0, the orientation of trajectories and the number of periodic solutions will
not change. Next translate C to the origin by letting (X,Y ) = (x− x3, y − y3); then
system (2.1) becomes

(3.5)
Ẋ = P (X)− Y,

Ẏ = (Y + y3)(u− deb(X+x3)

X+x3
),

where

P (X) = (1−X − x3)e
b(X+x3) − heb(X+x3)

X + x3
− y3.

The generalized Liénard system can be obtained by letting (x, y) = (X,Y − P (X)):

(3.6)
ẋ = −y,
ẏ = g(x) + yf(x),

where

g(x) = (P (x) + y3)

(
u− deb(x+x3)

x+ x3

)
, f(x) = P ′(x) + u− deb(x+x3)

x+ x3
,

and P ′(x) is the derivative of P (x) with respect to x.

Following Lemma 3.1 and setting d = ux3e
−bx3 , h = h3 =

bx3
3−bx2

3+x2
3

1−bx3
, we obtain

A1 = −uebx3 (−1+2x3)
x3

, A2 = −uebx3 (−1+2x3)(2−2bx3+b2x2
3)

2x2
3(−1+bx3)

,

A3 =
uebx3 (−3+9x3−6bx2

3+3b2x2
3−3b2x3

3−b3x3
3+2b3x4

3)

3x3
3(−1+bx3)

,

A4 =
uebx3 (24−96x3+24bx3+72bx2

3−72b2x2
3+36b2x3

3+52b3x3
3−68b3x4

3−13b4x4
3+26b4x5

3)

24x4
3(−1+bx3)

,

B1 =
−u(−1+bx3)

2+ebx3 (2+2b(−1+x3)+b2(x3−2x2
3))

x3(−1+bx3)
,

B2 = − ebx3 (−6+6b+6b2(−1+x3)x3+2b3(1−2x3)x
2
3)+u(2−4bx3+3b2x2

3−b3x3
3)

2x2
3(−1+bx3)

,

B3 = −u(6−12bx3+9b2x2
3−4b3x3

3+b4x4
3)+3ebx3 (−8+8b+4b2(−2+x3)x3−4b3(−1+x3)x

2
3+b4x3

3(−1+2x3))

6x3
3(−1+bx3)

,

B4 =
u(24−48bx3+36b2x2

3−16b3x3
3+5b4x4

3−b5x5
3)

24x4
3(−1+bx3)

− 4ebx3 (30−30b−15b2(−2+x3)x3−5b4(−1+x3)x
3
3+5b3x2

3(−3+2x3)+b5x4
3(−1+2x3))

24x4
3(−1+bx3)

.
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1890 J. CHEN, J. HUANG, S. RUAN, AND J. WANG

By the formula of the first Lyapunov coefficient in Lemma 3.1, we have

L1 =
ebx3(2 + 6b2x3 + 4b3(−1 + x3)x

2
3 − 2b(1 + 3x3) + b4(x33 − 2x43))

16x23

√
−ebx3u(−1+2x3)(−1+bx3)4

x3

.

Conditions (3.2) and (3.4) imply that L1 is well defined and the sign of L1 is the same
as

(3.7) L11(x3, b) = 2 + 6b2x3 + 4b3(−1 + x3)x
2
3 − 2b(1 + 3x3) + b4(x33 − 2x43).

Therefore, when u > bed, h = h3, and L11 < 0, C = (x3, y3) is a stable weak focus
of multiplicity 1; when u > bed, h = h3, and L11 > 0, C is an unstable weak focus of
multiplicity 1; when u > bed, h = h3, and L11 = 0, C is a weak focus of multiplicity
at least 2.

Now, we show that the order of the weak focus (x3, y3) is 2 if L11 = 0 and h = h3.
Using the formulas of the second Lyapunov coefficients in Lemma 3.1 and using the
condition L11 = 0, we have

L2 =
2ue2bx3

1152x53

(√
uebx3 (1−2x3)

x3

)3
(−1 + bx3)3(1 − 2x3)2

L22,

where

(3.8)
L22(x3, b) = −4(−5 + 25x3 − 42x23 + 32x33) + b2x3(36− 175x3 + 316x23 − 324x33 + 16x43)

+ 4b(−5 + 13x3 + 16x23 − 64x33 + 80x43)
+ b3x23(11− 102x3 + 302x23 − 336x33 + 168x43).

So the sign of L2 is determined by L22 when L11 = 0 and h = h3. From conditions
(3.2)–(3.4) it follows that

(3.9) 0 < x3 <
1
2 , 0 < b < 2,

and L2 > 0 if L22 < 0.
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PREDATOR-PREY MODELS WITH SEASONAL HARVESTING 1891

Next we prove that L22(x3, b) and L11(x3, b) have no common roots when (3.9)
is satisfied.

First, we consider the resultant R(x3) between L11(x3, b) and L22(x3, b) with
respect to b, and we obtain

R(x3) = −4x73(2412580x
6
3 − 8210392x53 + 11651965x43 − 9156240x33

+4053360x23 − 931296x3 + 85944)(2x3 − 1)11.

By applying Sturm’s theorem, we know that R(x3) has only one real root in (0, 12 ).
Moreover, through isolating the real roots of R(x3) by using the function realroot
with accuracy 1

1000 in Maple, we can prove that the root is in the closed subinterval
[ 423
1024 ,

53
128 ] contained in (0, 12 ).

On the other hand, we obtain the resultant R(b) between L11(x3, b) and L22(x3, b)
with respect to x3 as follows:

R(b) = −256b12(b− 1)(3581b6 − 110968b5 + 1104930b4 − 3650076b3 + 8598853b2

− 11151636b+ 2412580)(b2 − 4b+ 2)3(b− 2)5.

By applying Sturm’s theorem once more, we know that R(b) has three distinct real
roots in (0, 2). By using the function realroot with accuracy 1

1000 in Maple to R(b),
we claim that in (0, 2) the first root is 1, the second root is simple and is in the closed
subinterval [ 271

1024 ,
17
64 ], and the third root, which is of multiplicity three, is in the closed

interval [ 599
1024 ,

75
128 ], respectively.

By direct computation, we have

L11(x3, 1) = −x23(4 − 5x3 + 2x23),

which has no real roots as 0 < x3 <
1
2 . Therefore, if the polynomials L11(x3, b) and

L22(x3, b) have one common root (x̄3, b̄) ∈ (0, 12 )× (0, 1), the point (x̄3, b̄) must be in
the following two domains:

D1 :=
{
(x3, b)

∣∣∣ 423

1024
≤ x3 ≤ 53

128
,
271

1024
≤ b ≤ 17

64

}
and

D2 :=
{
(x, b)

∣∣∣ 423

1024
≤ x3 ≤ 53

128
,
599

1024
≤ b ≤ 75

128

}
.

We claim that there exists no (x̄3, b̄) in Di, i = 1, 2, for Lii(x3, b) = 0. As a matter of
fact, we could prove that for all (x3, b) ∈ Di, for i = 1, 2, there holds Lii(x3, b) > 0.

By calculating the first order partial derivatives of L11(x3, b) with respect to x3
and b, respectively, we have

∂L11(x3, b)

∂x3
= 6b2 − 8b3x3 + 12b3x23 − 6b+ 3b4x23 − 8b4x33,

∂L11(x3, b)

∂b
= 12bx3 − 12b2x23 + 12b2x33 − 2− 6x3 + 4b3x33 − 8b3x43.

Eliminating the variable b by computing the resultant RL(x3) between
∂L11(x3,b)

∂x3
and

∂L11(x3,b)
∂b , we obtain that

RL(x3) = −16x63(1 + 3x3)(683x
3
3 − 489x23 + 121x3 − 11),
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1892 J. CHEN, J. HUANG, S. RUAN, AND J. WANG

which has no real roots in ( 423
1024 ,

53
128 ) by Sturm’s theorem. It implies that the poly-

nomial L11(x3, b) has no critical points in the interior of Di, i = 1, 2, such that
∂L11(x3,b)

∂x3
= ∂L11(x3,b)

∂b = 0. Hence, the extremal value of the polynomial L11(x3, b)
can only be achieved at the boundary of Di for i = 1, 2.

By direct computation, we obtain the values of the function L11(x3, b) at four
vertices of the rectangular domain D1 as follows:

L11

( 423

1024
,
271

1024

)
=

592974930883382763998559

604462909807314587353088
,

L11

( 423

1024
,
17

64

)
=

9018825847810201823

9223372036854775808
,

L11

( 53

128
,
271

1024

)
=

144597600389350315855

147573952589676412928
,

L11

( 53

128
,
17

64

)
=

2199235675593423

2251799813685248
.

On one pair of opposite sides of D1, we obtain

L11

( 423

1024
, b
)
= 2 +

1269

512
b2 − 107536329

268435456
b3 − 2293

512
b+

6736140063

549755813888
b4,

L11

( 53

128
, b
)
= 2 +

159

64
b2 − 210675

524288
b3 − 287

64
b+

1637647

134217728
b4.

By applying Sturm’s theorem, it can be checked that none vanish for 271
1024 ≤ b ≤ 17

64 .
With the same techniques, we can assert that on the other pair of opposite sides of
D1,

L11

(
x3,

271

1024

)
�= 0, L11

(
x3,

17

64

)
�= 0,

as 423
1024 ≤ x3 ≤ 53

128 . Hence the above arguments imply that L11(x3, b) is identically
positive on the closed rectangle D1. Similarly, we could assert that L11(x3, b) > 0 for
all (x3, b) ∈ D2 .

Summarizing the above results, based on the eliminating theory by resultant and
the algorithm of real root isolation, it follows that the polynomials L11(x3, b) and
L22(x3, b) have no common roots in the domain [0, 12 ]× [0, 2].

Finally, it remains to show that L2 is strictly positive when h = h3 and L11 = 0.
Since L11 and L22 do not vanish simultaneously, L2 does not change sign when L11 = 0
(by the intermediate value theorem). Let b = 0.661481, x3 = 418

1000 , d = 1
5 , and

u = debx3

x3
; then L11 = 0, and L2

.
= 0.244321 > 0. Hence, we complete the proof.

By the theory of Hopf bifurcation [41], we obtain the following results.
Theorem 3.3. Suppose that u > bed and 0 < h = h3 < h1.

(i) If L11 < 0, then there is one stable limit cycle in (2.1) as h increases from h3.
(ii) If L11 > 0, then there is one unstable limit cycle in (2.1) as h decreases from h3.
(iii) If L11 = 0, then there are two limit cycles in (2.1) as h increases from h3 and

L11 decreases from 0, the inner is stable, and the outer is unstable.
In Figure 3.1, by incorporating the above analysis and using numerical simula-

tions, we present the supercritical and subcritical Hopf bifurcations of codimension 1.
In Figure 3.2, we show the degenerate Hopf bifurcation and the existence of two

limit cycles, where the stable one is in the interior of the unstable one.
These results and numerical simulations demonstrate that for some initial values,

both species coexist in the form of a positive equilibrium, and for some other initial
values, both species coexist in the form of unstable or stable oscillatory solutions.
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(a) (b)

h = 0.03
d = 0.4

b = 0.4
u = 2
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h = 0.085
d = 0.4

b = 0.8
u = 1.5
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x
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Fig. 3.1. (a) An unstable limit cycle created by the subcritical Hopf bifurcation. (b) A stable
limit cycle created by the supercritical Hopf bifurcation.

h = 0.148527
d = 1/5

b = 0.66149
u = 0.630866

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

y

A B

Fig. 3.2. The existence of two limit cycles, where the inner is stable and the outer is unstable.

3.3. Bogdanov–Takens bifurcation. Theorem 2.4 indicates that system (2.1)
has a Bogdanov–Takens singularity F = (12 ,

1
2e − 2eh) when b = 2, u = bed, and

0 < h < b−1
b2 . Let b0 = 2, u0 = eb0d0 = 2ed0, and 0 < h0 <

b0−1
b20

= 1
4 ; we now show

that system (2.1) undergoes Bogdanov–Takens bifurcation in a small neighborhood
of (1

2 ,
1
2e− 2eh0).

Theorem 3.4. If b = 2, u = 2ed, and 0 < h < 1
4 , system (2.1) has a cusp

F = (12 ,
1
2e−2eh) of codimension 2 (i.e., Bogdanov–Takens singularity). If we choose

b and d as bifurcation parameters, then system (2.1) undergoes Bogdanov–Takens
bifurcation in a small neighborhood of F as (b, d) varies near (2, μ

2e ). Hence, there
exist some parameter values such that system (2.1) has a stable limit cycle, and there
exist some other parameter values such that system (2.1) has a stable homoclinic loop.
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1894 J. CHEN, J. HUANG, S. RUAN, AND J. WANG

Proof. Consider

(3.10)
ẋ = x(1 − x)− xye−(2+λ1)x − h0,
ẏ = y(2ed0xe

−(2+λ1)x − (d0 + λ2)),

where 0 < h0 <
1
4 and λ = (λ1, λ2) is a parameter vector in a small neighborhood of

(0,0).
First, we translate the interior equilibrium F to the origin and expand system

(3.10) in a power series around the origin. Let X = x − 1
2 and Y = y − 1

2e + 2eh0.
Then system (3.10) can be rewritten as

(3.11)
Ẋ = a1 + a2X + a3Y + a4X

2 + a5XY + a6X
3 + a7X

2Y + P1(X,Y, λ1),

Ẏ = b1 + b2X + b3Y + b4X
2 + b5XY +Q1(X,Y, λ1),

where P1(X,Y, λ1) and Q1(X,Y, λ1) are C
∞ functions of at least the fourth order and

third order with respect to (X,Y ), respectively, and

a1 =

(
1

4
− h0

)
(1 − e−λ1/2), a2 =

(
1

4
− h0

)
λ1e

−λ1/2, a3 = −1

2
e−1−λ1

2 ,

a4 = −1−
(
1

8
− h0

2

)
(−2 + λ1)(2 + λ1)e

−λ1
2 , a5 =

1

2
λ1e

−1−λ1
2 ,

a6 =

(
1

24
− h0

6

)
(−4 + λ1)(2 + λ1)

2e−λ1/2, a7 = −1− 1

4
(−2 + λ1)(2 + λ1)e

−1−λ1
2 ,

b1 = e(−d0 + d0e
−λ1/2 − λ2)

(
1

2
− 2h0

)
, b2 = −d0λ1

(
1

2
− 2h0

)
e1−

λ1
2 ,

b3 = −d0 − λ2 + d0e
−λ1/2, b4 =

(
1

4
− h0

)
d0(−4 + λ21)e

1−λ1
2 , b5 = −d0λ1e−λ1/2.

Setting

x = X,
y = a1 + a2X + a3Y + a4X

2 + a5XY + a6X
3 + a7X

2Y + P1(X,Y, λ1),

we have

(3.12)
ẋ = y,
ẏ = c1 + c2x+ c3y + c4x

2 + c5xy + c6y
2 +R1(x, y, λ1, λ2),

where R1(x, y, λ1, λ2) is a C∞ function of at least the third order with respect to
(x, y), and
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PREDATOR-PREY MODELS WITH SEASONAL HARVESTING 1895

c1 = a3b1 − a1b3, c2 = −−a21a25 + 2a21a3a7 − a23a5b1 − a33b2 + a2a
2
3b3 + a1a

2
3b5

a23
,

c3 = −−a2a3 + a1a5 − a3b3
a3

,

c4 = −a1a3a4a5 − a1a2a
2
5 − 3a1a

2
3a6 + 2a1a2a3a7 − a2

3a7b1 − a2
3a5b2 + a2

3a4b3 − a3
3b4 + a2a

2
3b5

a2
3

,

c5 = −−2a23a4 + a2a3a5 + a1a
2
5 + a1a

2
5 − 2a1a3a7 − a23b5

a23
, c6 =

a5
a3
.

Once again introducing a new time variable τ by dt = (1− c6x)dτ and rewriting
τ as t, we obtain

(3.13)
ẋ = y(1− c6x),
ẏ = (1− c6x)(c1 + c2x+ c3y + c4x

2 + c5xy + c6y
2 +R1(x, y, λ1, λ2)).

Let X = x, Y = y(1− c6x); we have

(3.14)
Ẋ = Y,

Ẏ = d1 + d2X + d3Y + d4X
2 + d5XY +R2(X,Y, λ1, λ2),

where R2(X,Y, λ1, λ2) is a C∞ function of at least the third order with respect to
(X,Y ), and

d1 = c1, d2 = c2 − 2c1c6, d3 = c3, d4 = c4 − 2c2c6 + c1c
2
6, d5 = c5 − c3c6.

Hence d4 > 0 and d5 < 0 when λi are small. Making the change of variables

x = X, y =
Y√
d4
, τ =

√
d4t

and still denoting τ by t, we obtain

(3.15)
ẋ = y,
ẏ = e1 + e2x+ e3y + x2 + e4xy +R3(x, y, λ1, λ2),

where

e1 =
d1
d4
, e2 =

d2
d4
, e3 =

d3√
d4
, e4 =

d5√
d4
.

Letting X = x+ e2
2 , Y = y, we rewrite (3.15) as

(3.16)
Ẋ = Y,

Ẏ = γ1 + γ2Y +X2 + γ3XY +R4(X,Y, λ1, λ2),

where R4(X,Y, λ1, λ2) is a C∞ function of at least the third order with respect to
(X,Y ), and

γ1 = e1 − e22
4
, γ2 = e3 − e2e4

2
, γ3 = e4.
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1896 J. CHEN, J. HUANG, S. RUAN, AND J. WANG

Since γ3 < 0 when λi are small, setting

x = γ23X, y = −γ33Y, τ = − t

γ3
,

and still denoting τ by t, we finally have

(3.17)
ẋ = y,
ẏ = ξ1 + ξ2y + x2 − xy +R5(x, y, λ1, λ2),

where R5(x, y, λ1, λ2) is a C∞ function of at least the third order with respect to
(x, y), and

ξ1 = γ1γ
4
3 , ξ2 = −γ2γ3.

Notice that we can express ξ1 and ξ2 in terms of λ1 and λ2 as

(3.18)
ξ1 = s1λ1 + s2λ2 + s3λ

2
1 + s4λ1λ2 + s5λ

2
2 + o(|λ1, λ2|2),

ξ2 = t1λ1 + t2λ2 + t3λ
2
1 + t4λ1λ2 + t5λ

2
2 + o(|λ1, λ2|2),

where

s1 =
(1 + 4h0)4

d2
0
(4h0 − 1)2

, s2 =
2(1 + 4h0)4

d3
0
(4h0 − 1)2

, s5 = −
6(4h0 + 1)4(2 − e + 4eh0)

d4
0
(4h0 − 1)3

,

s3 =
(1 + 4h0)3(8d20(4h0 − 1) − 3(4h0 − 1)2(4h0 + 1) + d0(−19 + 40h0 − 48h2

0 + e(7 − 32h0 + 16h2
0)))

2d3
0
(4h0 − 1)3

,

s4 = −
(1 + 4h0)3(8d20(1 − 4h0) + 3(4h0 − 1)2(4h0 + 1) + 2d0(13 − 8 + 16h2

0 + e(−5 + 16h0 + 16h2
0)))

d40(4h0 − 1)3
,

t1 =
(d0 − 1)(4h0 + 1)

d0(4h0 − 1)
, t2 =

2(4h0 + 1)

d0(4h0 − 1)
, t5 = −

2(1 + 4h0)(2 − e + 4eh0)

d2
0
(4h0 − 1)2

,

t3 =
1

8d20(4h0 − 1)2
(8d

3
0(4h0 − 1) − (4h0 − 1)

2
(4h0 + 1)(−7 + e − 12h0 + 4eh0) − 2d

2
0(5 + 48h

2
0 + 4e(4h0 − 1))

+2d0(17 + 12h0 − 16h
2
0 − 192h

3
0 + 2e(−3 + 8h0 + 16h

2
0))),

t4 =
4d20(4h0 − 1) − 2d0(8 + e(−3 + 8h0 + 16h2

0)) + (4h0 + 1)(6 + 24h0 − 64h2
0 + e(−3 + 8h0 + 16h2

0))

2d2
0
(4h0 − 1)2

.

Since ∣∣∣∣ ∂(ξ1, ξ2)∂(λ1, λ2)

∣∣∣∣
λ=0

=
2(1 + 4h0)

5

d40(4h0 − 1)3
< 0

for 0 < h0 <
1
4 , the parameter transformation (3.18) is a homeomorphism in a small

neighborhood of the origin, and ξ1 and ξ2 are independent parameters.
The results in Bogdanov [3, 4] and Takens [36] or Perko [29] now imply that sys-

tem (3.17) undergoes Bogdanov–Takens bifurcation when λ is in a small neighborhood
of the origin. The local representations of the bifurcation curves up to second-order
approximations are defined as follows.

(1) The saddle-node bifurcation curve SN = {(ξ1, ξ2) : ξ1 = 0, ξ2 �= 0}; i.e.,

SN =

⎧
⎨
⎩(λ1, λ2) :

(1 + 4h0)4

d20(4h0 − 1)2
λ1 +

2(1 + 4h0)4

d30(4h0 − 1)2
λ2 −

6(4h0 + 1)4(2 − e + 4eh0)

d40(4h0 − 1)3
λ
2
2

−
(1 + 4h0)3(8d20(1 − 4h0) + 3(4h0 − 1)2(4h0 + 1) + 2d0(13 − 8 + 16h2

0 + e(−5 + 16h0 + 16h2
0)))

d4
0
(4h0 − 1)3

λ1λ2

+
(1 + 4h0)3(8d20(4h0 − 1) − 3(4h0 − 1)2(4h0 + 1) + d0(−19 + 40h0 − 48h2

0 + e(7 − 32h0 + 16h2
0)))

2d30(4h0 − 1)3
λ
2
1 = 0

⎫⎬
⎭ .
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PREDATOR-PREY MODELS WITH SEASONAL HARVESTING 1897

(2) The Hopf bifurcation curve H = {(ξ1, ξ2) : ξ2 = −√−ξ1, ξ1 < 0}; i.e.,

H =

⎧⎨
⎩(λ1, λ2) :

(4h0 + 1)4

d20(4h0 − 1)2
λ1 +

2(4h0 + 1)4

d30(4h0 − 1)2
λ2 +

(4h0 + 1)2(4d20(4h0 − 1) + 6(4h0 + 1)2(2 − e + 4eh0))

d40(4h0 − 1)3
λ
2
2

−
(4h0 + 1)2

d4
0
(4h0 − 1)3

(4d
3
0(1 − 4h0) + d

2
0(4 + 16h0 − 128h

2
0) + 3(1 − 16h

2
0)

2
+ 2d0(4h0 + 1)(13 − 8h0 + 16h

2
0

+e(−5 + 16h0 + 16h
2
0)))λ1λ2 −

(4h0 + 1)2

2d3
0
(4h0 − 1)3

(2d
3
0(1 − 4h0) + d

2
0(4 + 16h0 − 128h

2
0) + 3(16h

2
0 − 1)

2

+ d0(21 + 28h0 − 112h
2
0 + 192h

3
0 + e(−7 + 4h0 + 112h

2
0 − 64h

3
0)))λ

2
1 = 0, ξ1 < 0, ξ2 < 0

⎫⎬
⎭ .

(3) The homoclinic bifurcation curve HL = {(ξ1, ξ2) : ξ2 = − 5
7

√−ξ1, ξ1 < 0}; i.e.,

HL =

⎧⎨
⎩(λ1, λ2) :

25(4h0 + 1)4

49d2
0
(4h0 − 1)2

λ1 +
50(4h0 + 1)4

49d3
0
(4h0 − 1)2

λ2 +
196d20(4h0 + 1)2(4h0 − 1) − 150(4h0 + 1)4(2 + e(4h0 − 1))

49d4
0
(4h0 − 1)3

λ
2
2

−
(4h0 + 1)2

49d40(4h0 − 1)3
(−196d

3
0(4h0 − 1) + d

2
0(4 + 784h0 − 3200h

2
0) + 75(1 − 16h

2
0)

2
+ 50d0(4h0 + 1)(13 − 8h0 + 16h

2
0

+e(−5 + 16h0 + 16h
2
0)))λ1λ2 −

(4h0 + 1)2

98d30(4h0 − 1)3
(98d

3
0(1 − 4h0) + d

2
0(4 + 784h0 − 3200h

2
0) + 75(1 − 16h

2
0)

2

+ d0(573 + 508h0 − 2800h
2
0 + 4800h

3
0 − 25e(7 − 4h0 − 112h

2
0 + 64h

3
0)))λ

2
1 = 0, ξ1 < 0, ξ2 < 0

⎫⎬
⎭ .

Fig. 3.3. The bifurcation diagram of system (3.10) with h0 = 1
8
, d0 = 2.

The bifurcation diagram and phase portraits of system (3.10) with h0 = 1
8 and

d0 = 2 are given in Figures 3.3 and 3.4, respectively. These bifurcation curves H,HL,
and SN divide the small neighborhood of the origin in the (λ1, λ2) parameter plane
into four regions (see Figure 3.3).

(a) When (λ1, λ2) = (0, 0), the unique positive equilibrium is a cusp of codimen-
sion 2 (see Figure 3.4(a)).

(b) There are no positive equilibria when the parameters lie in region I (see Figure
3.4(b)). There exists one separatrix which converges to the boundary equilibrium
A. The prey species goes extinct as the initial value density lies on the left of the
separatrix, and the predators die out as the initial value density lies on the right of
the separatrix.

(c) When the parameters lie on curve SN , there is a positive saddle-node equi-
librium.
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(a) (b) (c)
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Fig. 3.4. Phase portraits of system (3.10) with h0 = 1
8
, d0 = 2. (a) A cusp of codimension 2

when (λ1, λ2) = (0, 0). (b) No positive equilibria when (λ1, λ2) = (−0.04, 0.05) lies in region I. (c) A
stable focus when (λ1, λ2) = (−0.049, 0.05) lies in region II. (d) A stable limit cycle when (λ1, λ2) =
(−0.05, 0.05) lies in region III. (e) A stable homoclinic cycle when (λ1, λ2) = (−0.05116, 0.05) lies
on curve HL. (f) An unstable focus when (λ1, λ2) = (−0.052, 0.05) lies in region IV.

(d) Two positive equilibria, a stable focus and a saddle, appear through the
saddle-node bifurcation when parameters cross SN into region II (see Figure 3.4(c)).

(e) A stable limit cycle appears through the supercritical Hopf bifurcation when
the parameters crossH into region III (see Figure 3.4(d)), where the focus is unstable.
The focus is a stable multiple one with multiplicity one when parameters lie on the
curve H .

(f) A stable homoclinic cycle is generated through the homoclinic bifurcation
when parameters pass region III and lie on curve HL (see Figure 3.4(e)).

(g) The relative locations of one stable manifold and one unstable manifold of
the saddle D(x2, y2) are reversed when parameters cross III into region IV (compare
Figures 3.4(d) and 3.4(f)).

4. Seasonal harvesting: Periodic solutions and invariant tori. In this
section we consider model (1.2) and assume that the prey population is harvested at
a periodic rate. The harvesting reaches a maximum rate h+γ at time t = r

4+n, where
n is an integer (representing the year), and a minimum value h− γ when t = 3r

4 + n,
exactly half a year later [19].

We study the existence of an asymptotically stable periodic solution and the
bifurcation of a stable periodic orbit into an invariant torus by theoretical analysis,
and the bifurcation of a stable homoclinic loop into an invariant homoclinic torus by
numerical simulations in system (1.2), respectively.
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Rewrite system (1.2) as

(4.1) Ẏ = f(Y ) + εg(t, Y ),

where Y = (x, y)T , f(Y ) = (x(1 − x) − xe−bxy − h, y(uxe−bx − d))T , g(t, Y ) =
(− sin( 2πr t), 0)

T , and ε = γ.

4.1. Existence of asymptotically stable periodic solutions. We need the
following lemma which is Theorem 2 in Brauer [5].

Lemma 4.1. Let f(Y ) and g(t, Y ) be continuously differentiable with respect to
the components of Y , and let g(t, Y ) be periodic in t with period w for each Y . Let
Y∞ be an equilibrium of system (4.1) when ε = 0, which is asymptotically stable in the
strong sense that the eigenvalues of the matrix fY [Y∞] all have negative real parts.
Then the perturbed system (4.1) has an asymptotically stable periodic solution p(t, ε)
of the same period w for all sufficiently small ε with limε−→0 p(t, ε) = Y∞.

Applying Theorem 2.5 with the Lemma 4.1, we have the following theorem about
the existence of an asymptotically stable periodic solution in system (1.2).

Theorem 4.2. If u > bed and 0 < h < min{h1, h3}, then system (4.1) (i.e.,
system (1.2)) has an asymptotically stable periodic solution p(t, γ) of period r for all
sufficiently small γ with limγ−→0 p(t, γ) = (x3, y3).

(a) (b) (c)

0.214 0.215 0.216 0.217 0.218 0.219 0.22 0.221 0.222 0.223
0.7024

0.7026
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0.7032

0.7034

0.7036

0.7038

x

y

Phase portrait

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

x

y

Poincare map

b=0.4, h=0.03, u=2,
d=0.4, γ=0.02,
(x

0
,y

0
)=(0.3,0.4)

5000 5005 5010 5015 5020
0.214

0.215

0.216

0.217

0.218

0.219

0.22

0.221

0.222

0.223

t

x

Fig. 4.1. (a) The phase portrait of system (1.2) with r = 1, b = 0.4, h = 0.03, u = 2, d = 0.4, γ =
0.02, and initial value (x0, y0) = (0.3, 0.4). (b) An attractor of the Poincaré map corresponding to
(a). (c) The time series of the prey corresponding to (a).

Figure 3.1(a) presents a hyperbolic stable focus C. The phase portrait and the
corresponding attractor of the Poincaré map of system (1.2) in the (x, y)-plane are
given in Figures 4.1(a) and 4.1(b), respectively, where γ = 0.02, r = 1, and the
other parameter values are the same as those in Figure 3.1(a), that is, b = 0.4, h =
0.03, u = 2, and d = 0.4. We choose the initial density as (x0, y0) = (0.3, 0.4), which
is located in the attraction basin of the stable focus C of Figure 3.1(a). The attractor
of the Poincaré map is a fixed point (see Figure 4.1(b)), which corresponds to a
stable periodic orbit of system (1.2) (see Figure 4.1(a)). The time series of the prey
population x(t) corresponding to Figure 4.1(a) is given in Figure 4.1(c).

4.2. Bifurcation of stable periodic solutions into invariant tori. From
Theorem 3.2 it follows that the interior equilibrium C = (x3, y3) of system (2.1) is a
stable weak focus of multiplicity one when u > bed, 0 < h = h3 < h1, and L11 < 0,
where the eigenvalues of Df(x3, y3) are purely imaginary: ±ωi, ω =

√
d(1− 2x3),

and 0 < x3 <
1
2 .
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Combining Theorems 2.5 and 3.2 with the Theorem 6.3 in Chow and Hale [10], we
have the following theorem about the existence of an asymptotically stable invariant
torus in system (1.2).

Theorem 4.3. If u > bed, 0 < h− h3 � 1, and L11 < 0, then system (2.1) has
a stable limit cycle enclosing C = (x3, y3) by the supercritical Hopf bifurcation. If the
nonresonant conditions

r �= 2kπ, k ∈ N+,(4.2)

m+ n
2π

r
�= 0, 0 <| m | + | n |≤ 4, m, n ∈ N,(4.3)

are also satisfied, then system (1.2) has an asymptotically stable invariant torus.
Proof. We need to check the following three conditions in Theorem 6.3 in section

12 of Chow and Hale [10]:

β0 �= 0,

det(eBT − I) �= 0,

m+ n
2π

T
�= 0, 0 <| m | + | n |≤ 4, m, n ∈ N,

where β0 is the first Lyapunov constant for the center-type equilibrium C = (x3, y3),
and it is equivalent to L11 in system (2.1); T is the period of periodic perturbation,
and T = r in system (1.2); B =

(
0 1−1 0

)
; and I is an identical matrix. Thus, these

three conditions are satisfied under the nonresonant conditions (4.2) and (4.3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

γ

x

Bifurcation diagram

b=0.8, h=0.085,
u=1.5, d=0.4,
(x

0
,y

0
)=(0.4,0.2)

Fig. 4.2. Bifurcation diagram of system (1.2) in terms of γ with b = 0.8, h = 0.085, u = 1.5, d =
0.4, r = 1, and initial value (x0, y0) = (0.4, 0.2).

In Figure 3.1(b), there exist an unstable focus C and a stable limit cycle enclos-
ing C. The bifurcation diagram of system (1.2) with r = 1 in the (γ, x)-plane is
given in Figure 4.2, where the other parameter values are the same as those in Figure
3.1(b), that is, b = 0.8, h = 0.085, u = 1.5, and d = 0.4. We choose the initial density
as (x0, y0) = (0.4, 0.2), which is located in the attraction basin of the stable limit
cycle of Figure 3.1(b). The phase portrait, the attractor of the Poincaré map, and
the time series for γ = 0.08 in Figure 4.2 are shown in Figures 4.3(a), (b), and (c),
respectively, which show that the stable limit cycle in Figure 3.1(b) is bifurcated into
an attracting invariant torus in Figure 4.2. This demonstrates that the solutions are
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(a) (b) (c)
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Fig. 4.3. (a) Phase portrait for γ = 0.08 in Figure 4.2. (b) An attractor of the Poincaré map
corresponding to (a). (c) The time series of the prey corresponding to (a).
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Fig. 4.4. (a) Phase portrait for γ = 1.5 in Figure 4.2. (b) An attractor of the Poincaré map
corresponding to (a). (c) The time series of the prey corresponding to (a).

Fig. 4.5. Bifurcation diagram of system (1.2) in terms of γ with b = 1.94884, h = 0.125, u =
4e, d = 2.05, r = 1, and initial value (x0, y0) = (0.49, 0.67).

always attracted into the invariant torus whenever the initial densities are located in
the attraction basin of the stable limit cycle of Figure 3.1(b) and the amplitude of
the periodic harvesting γ < 0.6. The invariant torus is turned into a periodic orbit
when γ > 0.6 (see Figures 4.4(a), (b), and (c)).
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Fig. 4.6. (a) Phase portrait for γ = 0.03 in Figure 4.5. (b) An attractor of the Poincaré map
corresponding to (a). (c) The time series of the prey corresponding to (a).

4.3. Bifurcation of stable homoclinic loops into invariant homoclinic
tori. In Figure 3.4(e), there exists a stable homoclinic loop. Now we plot the bi-
furcation diagram of system (1.2) with r = 1 in the (γ, x)-plane in Figure 4.5,
where the other parameter values are the same as those in Figure 3.4(e), that is,
b = 1.94884, h = 0.125, u = 4e, and d = 2.05. We choose the initial density as
(x0, y0) = (0.49, 0.67), which is located in the attraction basin of the stable homo-
clinic cycle of Figure 3.4(e). The phase portrait, the attractor of the Poincaré map,
and the time series for γ = 0.03 in Figure 4.5 are shown in Figures 4.6(a), (b), and (c),
respectively, from which we can see that the stable homoclinic cycle in Figure 3.4(e)
is bifurcated into an attracting invariant homoclinic torus in Figure 4.6.

5. Discussion. We first showed that numerous kinds of bifurcation phenomena
occur in model (1.2) with only constant-yield prey harvesting, including saddle-node
bifurcation, degenerate Hopf bifurcation, and Bogdanov–Takens bifurcation (i.e., cusp
bifurcation of codimension 2), as the model parameters vary. These results reveal far
richer dynamics compared to the model with no harvesting. We then considered sys-
tem (1.2) with seasonal prey harvesting. Sufficient conditions on the existence of an
asymptotically stable periodic solution and bifurcation of a stable periodic orbit into
an invariant torus were given. Numerical simulations of the model (1.2) with seasonal
prey harvesting, including bifurcation diagrams, phase portraits, and Poincaré maps,
were carried out. It was shown that the model undergoes bifurcations from a hyper-
bolic stable equilibrium to a stable limit cycle, from a stable periodic solution to an
invariant torus, and from a stable homoclinic loop to an invariant homoclinic torus,
respectively, as the amplitude of seasonal harvesting increases.

In [6], Brauer and Sánchez have shown that in autonomous single population
models, the behaviors of the model with periodic harvesting are analogous to those
of the model with no harvesting, but with an asymptotically stable periodic solu-
tion instead of an asymptotically stable equilibrium. However, little is known about
periodic harvesting of interacting populations [6]. Here, we have shown that simi-
lar conclusions hold for predator-prey models as long as the initial species densities
are chosen suitably, but with an attracting invariant torus instead of a stable limit
cycle.

The analytical and numerical results in this paper demonstrate that the initial
species densities are very important for the persistence of the interacting species when
the prey species is subjected to periodic harvesting. In order to have the long term
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Fig. 5.1. Temporally and spatially adjusted monthly catch per 1000 hooks and linear trend
lines from the generalized additive models for those species exhibiting quasi-periodic patterns in the
Hawaii deep-set longline fishery, 1996-2006: (A) Mahimahi (Coryphaena hippurus), and (B) sickle
pomfret (Taractichthys steindachneri) (from Polovina et al. [31], courtesy of the National Oceanic
and Atmospheric Administration (NOAA) and the Department of Commerce).

survival of the interacting species with seasonal harvesting in the form of a stable
periodic solution or stable quasi-periodic solutions, the initial species densities must
locate in the attraction basin of the stable attractor (hyperbolic stable equilibrium,
stable limit cycle, or stable homoclinic loop) in the model with no harvesting or with
constant-yield harvesting. These results also indicate that the dynamical behaviors
of the model are very sensitive to the constant-yield or seasonal prey harvesting and
careful management of resource and harvesting policies is required in the applied
conservation and renewable resource contexts. Notice that the unharvested model
describes the group defense phenomenon in predator-prey interactions; that is, when
the density of the prey population is sufficiently large, the predation by predators
is reduced, and their survival becomes difficult (Xiao and Ruan [39]). The results of
this study show that appropriate seasonal harvest on the prey population can stabilize
the system such that both the prey and predators coexist in the form of periodic or
quasi-periodic solutions.

As seen in Figure 1.1, average monthly fishing effort in the deep-set fishery showed
seasonal patterns from 1996 to 2006. Polovina et al. [31] used a generalized additive
model to fit both the linear trend and seasonal components of monthly catch-per-
unit-effort (CPUE), measured as the number of fish caught per 1000 hooks, exhibiting
quasi-periodic trends for many of the top 10 species over the 1996–2006 period (see
Figure 5.1 for data on two species). It would be interesting to modify our model
and apply the obtained results to simulate such fishery data. We also would like to
mention that we numerically showed only the bifurcation from a stable homoclinic
orbit to an invariant homoclinic torus in model (1.2). The theoretical analysis of such
a bifurcation remains open.

Acknowledgments. We would like to thank Professors Chris Cosner, Hüseyin
Koçak, and Kening Lu for helpful discussions. We also thank the two anonymous
referees for their valuable comments and suggestions.
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