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Abstract. In this paper we first consider a two consumer-one resource model
with one of the consumer species exhibits intraspecific feeding interference
but there is no interspecific competition between the two consumer species.
We assume that one consumer species exhibits Holling II functional response
while the other consumer species exhibits Beddington-DeAngelis functional
response. Using dynamical systems theory, it is shown that the two consumer
species can coexist upon the single limiting resource in the sense of uniform
persistence. Moreover, by constructing a Liapunov function it is shown that
the system has a globally stable positive equilibrium. Second, we consider a
model with an arbitrary number of consumers and one single limiting resource.
By employing practical persistence techniques, it is shown that multiple con-
sumer species can coexist upon a single resource as long as all consumers ex-
hibit sufficiently strong conspecific interference, that is, each of them exhibits
Beddington-DeAngelis functional response.

1. Introduction. The principle of competitive exclusion is one of the best known
results in theoretical ecology. In its most basic form (which dates back to the work
of Volterra [40] in the 1920’s), it asserts that two or more consumer species cannot
coexist indefinitely on a single limiting resource. Volterra’s theoretical observations
were supported by experiments on Paramecium cultures by Gause [20] in the early
1930’s (see also Kareiva [28]) and, by the 1960’s, had become part of the orthodoxy
of theoretical ecology. Indeed, the principle had been extended to assert that n
consumer species require at least n limiting resources if they are to coexist in the
long term (MacArthur and Levins [32]). It was recognized at that time that this
theoretical observation was somehow at odds with the reality of natural systems
(see, for example, the famous paper “The paradox of the plankton” by Hutchinson
[25]) but was thought to hold in laboratory settings until 1969 when Ayala [2]
demonstrated experimentally that two species of Drosophila could coexist upon a
single limiting resource.

Ayala’s experiments led to large body of work, which continues to this day, on
factors that serve to mediate the coexistence of multiple consumers upon a single
resource (for an overview of some of these factors and a number of references,
see Cantrell and Cosner [10]). One key factor was identified rather early on in
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the discussion by Schoener [35] in 1976. Namely, intraspecific interference among
consumers may lead to coexistence of multiple consumer species upon a single
resource. The purpose of this paper is to employ the theory of dynamical systems,
particularly persistence theory, which did not exist in 1976, to examine more closely
the implications of feeding interference among conspecific consumers on consumer-
resource dynamics.

In order to put our efforts in this paper into context, we need to revisit very
briefly the modeling regime behind the principle of competitive exclusion and also
one of the many modifications of such models that appeared following Ayala’s
experiments with Drosophila. To this end, recall that the mathematical models
which underlie the principle of competitive exclusion are based upon the principle
of mass action. So in such a model the increase in the growth rate of a consumer
species (or the decrease in the growth rate of a resource species) that is attributed to
resource consumption is taken proportional to the encounters between the species.
In the case of two consumers sharing a single limiting resource, one may consider

du

dt
= ru

(
1− u

K

)
− auv −Auw,

dv

dt
= v(−d + eu), (1.1)

dw

dt
= w(−D + Eu),

where v and w are the densities of the two consumer species and u is the density of
the resource. Ecologists frequently assume that the dynamics of a resource species
occur on a considerably shorter time scale than those of consumer species. In the
case of (1.1), such an assumption allows one to conclude that effectively the density
of the resource species can be “tracked” in terms of the densities of consumer
species, thus reducing (1.1) to the two-species competition model

dv

dt
= v

(
eK − d− aeK

r
v − AeK

r
w

)
,

dw

dt
= w

(
EK −D − aEK

r
v − AEK

r
w

)
.

(1.2)

Generically, the isoclines for the system (1.2) are parallel lines. As a consequence,
in all but some very exceptional cases, the model (1.2) predicts either that species
v always out competes species w for the resource and thus eliminates species w
over time or that species w always out competes species v for the resource and thus
eliminates species v over time.

Among the many modifications of (1.1) that appeared in the aftermath of Ayala’s
experiments, the one most relevant to our present discussion is due to Armstrong
and McGehee [1], who considered the model

du

dt
= ru

(
1− u

K

)
− auv − Auw

1 + Bu
,

dv

dt
= v(−d + eu), (1.3)

dw

dt
= w

(
−D +

Eu

1 + Bu

)
,
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where again v and w are the densities of the consumers and u is the density of
the resource. The model (1.3) differs from (1.1) in two ways. First of all, the con-
tributions of the interaction between consumer species w and the resource species
u to the growth rates of those species are no longer accounted for by the prin-
ciple of mass action. The term uw has been replaced with Holling II functional
and numerical response terms. Secondly and somewhat more subtly, one no longer
assumes that the resource dynamics occur on a much shorter time scale that do con-
sumer dynamics, so (1.3) does not reduce to a two component system as with (1.1)
and (1.2). However, in both (1.1) and (1.3), consumption of a common limiting
resource is the only interaction between species v and w that is represented. Arm-
strong and McGehee [1] found that for appropriate parameter values and suitable
initial population densities (u(0), v(0), w(0)), (1.3) does predict coexistence of the
two consumers via a locally attracting periodic orbit. Hsu, Hubbell and Waltman
[21, 22] generalized this type of coexistence to the case when both consumer species
exhibit Holling II functional response (see also Butler and Waltman [5], Cushing
[14], Farkas [16], Muratori and Rinaldi [34], Smith [37], etc.); i.e., to a system of
the form

du

dt
= ru

(
1− u

K

)
− auv

1 + bu
− Auw

1 + Bu
,

dv

dt
= v

(
− d +

eu

1 + bu

)
, (1.4)

dw

dt
= w

(
−D +

Eu

1 + Bu

)
.

Recently, Hsu, Hwang and Kuang [23] also studied the case when the two consumer
species exhibit ratio-dependent functional responses. However, in most cases, such
systems do not have a componentwise positive equilibrium.

The mathematical analysis employed by Armstrong and McGehee [33, 1] to
support their conclusions is very much in the spirit of persistence theory, although
their work predates much of the development of persistence theory. The principal
notion of persistence theory is uniform persistence or permanence. Consider an
ODE model for n interacting biological species

dui

dt
= uifi(u1, u2, . . . , un), i = 1, 2, . . . , n, (1.5)

where ui(t) denotes the density of the ith species. Let (u1(t), u2(t), . . . , un(t))
denote the solution of (1.5) with componentwise positive initial values. The system
(1.5) is said to be weakly persistent if

lim sup
t→∞

ui(t) > 0, i = 1, 2, . . . , n, (1.6)

persistent if
lim inf
t→∞

ui(t) > 0, i = 1, 2, . . . , n (1.7)

and uniformly persistent if there is an ε0 > 0 such that

lim inf
t→∞

ui(t) ≥ ε0, i = 1, 2, . . . , n. (1.8)

The system (1.5) is said to be permanent if for each i = 1, 2, . . . , n there are con-
stants εi and Mi such that

0 < εi ≤ lim inf
t→∞

ui(t) ≤ lim sup
t→∞

ui(t) ≤ Mi. (1.9)
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Clearly, a permanent system is uniformly persistent which in turn is persistent,
and persistence implies weak persistence; a dissipative uniformly persistent system
is permanent. For further discussion about various definitions of persistence and
permanence and their connections, we refer to Freedman and Moson [17], Hutson
and Schmitt [24], and Thieme [39].

Generally speaking, the term persistence is given to systems in which strictly pos-
itive solutions do not approach the boundary of the nonnegative cone in Rn. Weak
persistence applies when it is required that positive solutions do not asymptotically
approach the boundary as t →∞. Persistence means that each strictly positive so-
lution is eventually at some distance from the boundary. Uniform persistence means
that each strictly positive solution is eventually uniformly bounded away from the
boundary, while permanence implies the existence of a closed, bounded set, say A,
of componentwise positive n-tuples (representing potential configurations of species
densities) so that A is bounded away from the collection of n-tuples with at least
one vanishing component (representing potential configurations of species densities
with at least one species absent) and such that any trajectory of the model with
componentwise positive initial densities converges to A as time tends to ∞. When
long term coexistence of the consumer species does occur in (1.3) or (1.4), it usually
depends on having suitable initial population densities. In some exceptional cases,
weak persistence is possible in (1.3) and (1.4) but they cannot be persistent. The
weaker form of coexistence has also been called conditional persistence in Cantrell
and Cosner [9, 10]. (As an aside, it is also well-known (see Butler, Freedman
and Waltman [4] and Hutson and Schmitt [24], for example) that permanent ODE
models for interacting biological species exhibit componentwise positive equilibria.
Consequently, the fact that (1.3) and (1.4) do not exhibit such equilibria is another
“tip-off” that they cannot be permanent.)

In [10], Cantrell and Cosner extended (1.4) further so as to incorporate conspe-
cific feeding interference for each consumer species. The resulting model is

du

dt
= ru

(
1− u

K

)
− auv

1 + bu + cv
− Auw

1 + Bu + Cw
,

dv

dt
= v

(
− d +

eu

1 + bu + cv

)
, (1.10)

dw

dt
= w

(
−D +

Eu

1 + Bu + Cw

)
.

Notice that as with (1.1), (1.3) and (1.4), the only interaction in (1.10) between
consumer species v and w is consumption of a common limiting resource. The
functional and numerical responses for both consumers and the resource are now
taken to have Beddington-DeAngelis [3, 15] form

uv

1 + bu + cv
,

uw

1 + Bu + Cw
. (1.11)

In (1.11), cv and Cw may be viewed as accounting for mutual feeding interference
among members of consumer species. Note that if c = C = 0, a Beddington-
DeAngelis form reduces to a Holling II form. For further discussion about the
Beddington-DeAngelis functional response, we refer to Cosner et al. [13] and Skalski
and Gilliam [36]. In [10], Cantrell and Cosner show that if conspecific interference
is strong enough in (1.10) (i.e. c and C are sufficiently large), one may obtain
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quantitatively explicit positive asymptotic upper and lower bounds on the compo-
nents of solution trajectories, where the bounds are independent of initial densities
so long as all initial densities are positive. Such results are referred to as practical
persistence results, and they imply the permanence of (1.10) when c and C are large
enough. Consequently, two consumer species may coexist in a very strong way upon
single limiting resource so long as each exhibits strong enough self-interference in
feeding.

In this article, we expand upon the preceding observation from [10] in two sig-
nificant ways. First, in Section 2, we demonstrate that two consumers can in fact
coexist upon a single limiting resource in the sense of uniform persistence when
only one of the consumer species exhibits intraspecific feeding interference. To this
end, we consider a modification of (1.10) wherein the functional and numerical re-
sponse are relaxed to be of Holling II form, while those associated with the other
species remain of Beddington-DeAngelis form. Our analysis sheds additional light
upon the stabilizing effect of the mechanism of intraspecific feeding interference.
In particular, we are able to show that permanence in the model corresponds to a
globally attracting componentwise positive equilibrium.

The second way in which we expand upon the permanence results for (1.10) in
[10] is to show that in fact an arbitrary number of consumers can coexist upon a
single limiting resource provided all of them exhibit sufficiently strong conspecific
feeding interference. In Section 3, we consider an extension of (1.10) to an arbi-
trary number of consumer species, in which the functional and numerical response
terms associated with each consumer have Beddington-DeAngelis form, and employ
practical persistence techniques to obtain a prediction of permanence in the model.

2. One Resource and Two Consumers. Let u(t) represent the density of the
limiting resource at time t. Assume that there are two consumer species, denoted
by v(t) and w(t) respectively, competing for the common resource. We further
assume that the first consumer feeds upon the resource according to the Holling
II functional response while the second consumer feeds on the resource following
the Beddington-DeAngelis functional response. The model is a system of three
differential equations of the form

du

dt
= ru

(
1− u

K

)
− auv

1 + bu
− Auw

1 + Bu + Cw
,

dv

dt
= v

(
− d +

eu

1 + bu

)
, (2.1)

dw

dt
= w

(
−D +

Eu

1 + Bu + Cw

)

under the initial value conditions

u(0) = u0 ≥ 0, v(0) = v0 ≥ 0, w(0) = w0 ≥ 0. (2.2)

2.1. Dissipativity. First of all, we can see that the solutions to the initial value
problem (2.1) - (2.2) are nonnegative. We also have the following results on the
boundedness of solutions of system (2.1).

Proposition 2.1. System (2.1) is dissipative.
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Proof. From the first equation in system (2.1) we have

du

dt
≤ ru

(
1− u

K

)
,

so that the comparison principle implies that

lim sup
t→∞

u(t) ≤ K.

Thus, for ε > 0 small, we have u(t) ≤ K + ε when t is sufficiently large. Denote
d0 = min{d,D}. From the three equations in (2.1) we have

du

dt
+

a

e

dv

dt
+

A

E

dw

dt
= ru

(
1− u

K

)− ad

e
v − AD

E
w

≤ ru− d0

(a

e
v +

A

E
w

)
,

which implies that

d

dt

(
u +

a

e
v +

A

E
w

) ≤ (r + d0)(K + ε)− d0

(
u +

a

e
v +

A

E
w

)
.

Using the comparison principle a second time, we have

lim sup
t→∞

(
u +

a

e
v +

A

E
w

) ≤ (r + d0)(K + ε)
d0

,

which implies that system (2.1) is dissipative.

2.2. Subsystems. Each consumer can survive by feeding on the resource in the
absence of the other consumer. Correspondingly, there are two two-species sub-
systems to be considered. In the following, we review some known results on the
dynamics of the two subsystems, both of which are predator-prey systems.

2.2.1. Subsystem I – Holling II. We first consider the predator-prey system with
Holling II functional response:

du

dt
= ru

(
1− u

K

)
− auv

1 + bu
,

dv

dt
= v

(
− d +

eu

1 + bu

)
.

(2.3)

The subsystem (2.3) has an interior equilibrium Ē = (ū, v̄) if

d <
e

b
, (2.4)

where

ū =
d

e− bd
, v̄ =

re

ad
ū(1− ū

K
). (2.5)

The subsystem (2.3) has been studied by many researchers (e.g. Kuang and
Freedman [29], Liou and Cheng [30], and various references cited therein) and its
dynamics are very well understood. Here we summarize these results as follows:

Proposition 2.2. Assume condition (2.4) holds.
(i) If d

e−bd < K < e+bd
b(e−bd) , then Ē is locally stable (and also globally stable).

(ii) If K > e+bd
b(e−bd) , then Ē is unstable and there is a unique stable limit cycle

surrounding Ē.
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2.2.2. Subsystem II – Beddington-DeAngelis. Now we consider the predator-prey
system with Beddington-DeAngelis functional response:

du

dt
= ru

(
1− u

K

)
− Auw

1 + Bu + Cw
,

dw

dt
= w

(
−D +

Eu

1 + Bu + Cw

)
.

(2.6)

There is an interior equilibrium Ẽ = (ũ, ṽ) if

D <
E

B
, (2.7)

where

ũ =
rKCE −AK(E −BD) +

√
[AK(E −BD)− rKCE]2 + 4rACDE

2rCE
,

w̄ =
rE

AD
ũ(1− ũ

D
).

(2.8)
The Jacobian matrix of system (2.6) at Ẽ is given by

J̃ =


 − rũ

K + ABDw̃
E(1+Bũ+Cw̃) − AD(1+Bũ)

E(1+Bũ+Cw̃)

Ew̃(1+Cw̃)
(1+Bũ+Cw̃)2

CDw̃
1+Bũ+Cw̃


 .

We can verify that detJ̃ > 0. So the stability of Ẽ is determined by trJ̃ . The
stability of Ẽ and the existence of limit cycles in the subsystem (2.6) were studied
in Cantrell and Cosner [8]. The global stability of Ẽ and the uniqueness of a limit
cycle were recently investigated by Hwang [26, 27]. Their results can be summarized
as follows:

Proposition 2.3. Assume condition (2.4) holds. Denote

trJ̃ =
rũ

K
+

(CE −AB)Dw̃

E(1 + Bũ + Cw̃)
.

(i) If trJ̃ < 0, then Ẽ is not only locally stable but also globally stable.
(ii) If trJ̃ > 0, then Ẽ is unstable and there exists a unique stable limit cycle

surrounding Ẽ.

2.3. Uniform Persistence. In this subsection we are concerned about persistence
of the general system (2.1). We need to know the dynamics on the boundaries in
the positive octant.

Let f(u, v, w), g(u, v), and h(u, w) represent the functions on the right-hand side
of system (2.1), respectively. Then the Jacobian matrix of system (2.1) takes the
form

J(u, v, w) =




fu fv fw

gu gv 0
hu 0 hw


 , (2.9)
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where

fu = r
(
1− u

K

)− av

1 + bu
− Aw

1 + Bu + Cw
+ u

[− r

K
+

abv

(1 + bu)2
+

ABw

(1 + Bu + Cw)2
]
,

fv = − au

1 + bu
, fw = − Au(1 + Bu)

(1 + Bu + Cw)2
,

gu =
ev

(1 + bu)2
, gv = −d +

eu

1 + bu
,

hu =
Ew(1 + Cw)

(1 + Bu + Cw)2
, hw = −D +

Eu

1 + Bu + Cw
− CEuw

(1 + Bu + Cw)2
.

We now consider the equilibria and periodic solutions on the boundaries.
(a) E0 = (0, 0, 0). The trivial equilibrium E0 always exists and is a saddle, where

the (v, w)-plane is the stable subspace and the u-axis is the unstable subspace.
(b) EK = (K, 0, 0). The semi-trivial equilibrium EK is also a saddle if

(i) d <
eK

1 + bK
and (ii) D <

EK

1 + BK
. (2.10)

The u-axis is the stable subspace while the (v, w)-plane is the unstable subspace.
(c) Euv = (ū, v̄, 0). Euv is a boundary equilibrium on the (u, v)-plane, where ū

and v̄ are given by (2.5). The Jacobian matrix is given by

Juv =




ū
(− r

K + abv̄
(1+bū)2

) − aū
1+bū − Aū

1+Bū
ev̄

(1+bū)2 0 0
0 0 −D + Eū

1+Bū




and the characteristic equation is
[
λ2 − ū

(− r

K
+

abv̄

(1 + bū)2
)
λ +

adv̄

(1 + bū)2

](
λ + D − Eū

1 + Bū

)
= 0.

If the conditions in Proposition 2.2(i) are satisfied, then the equilibrium Ē on the
(u, v)-plane is stable, that is, Euv is stable restricted to the (u, v)-plane. The
eigenvalue in the w-axis direction is given by

λw = −D +
Eū

1 + Bū
.

Thus, if

D >
Eū

1 + Bū
, (2.11)

then Euv is locally stable and if

D <
Eū

1 + Bū
, (2.12)

then it is a saddle, where the w-axis is the unstable subspace.
(d) Eφ = (φu, φv, 0). If the conditions in Proposition 2.2 (ii) are satisfied,

then the equilibrium Ē on the (u, v)-plane is unstable and there is a unique sta-
ble limit cycle on the (u, v)-plane, denoted by (φu(t), φv(t)). Consequently, Eφ =
(φu(t), φv(t), 0) is a boundary periodic solution for the general system (2.1). Since
Eφ is stable restricted to the (u, v)-plane, we only need to discuss its stability in
the w-axis direction.
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The stability of Eφ is determined by the Floquet multipliers of the variational
system

Φ̇(t) = J(φu, φv, 0)Φ(t), Φ(0) = I, (2.13)
where J(u, v, w) is defined in (2.9) and I is the 3× 3 identity matrix. Let ω be the
period of the periodic solution. Then the Floquet multiplier corresponding to the
w direction is given by

exp
[

1
ω

∫ ω

0

(−D +
Eφu(t)

1 + Bφu(t)
)
dt

]
.

Thus, if

D >

∫ ω

0

Eφu(t)
1 + Bφu(t)

dt, (2.14)

then Eφ is stable and if

D <

∫ ω

0

Eφu(t)
1 + Bφu(t)

dt, (2.15)

then it is unstable in the w-axis direction.
(e) Euw = (ũ, 0, w̃). Similarly, Euw is a boundary equilibrium on the (u,w)-

plane, where ũ and w̃ are given in (2.8). As was the case in (c), we know that
if the conditions in Proposition 2.3(i) are satisfied, then the equilibrium Ẽ on the
(u,w)-plane is stable, that is, Euw is stable restricted to the (u,w)-plane. The
eigenvalue in the v-axis direction is given by

λv = −d +
eũ

1 + bũ
.

Thus, if

d >
eũ

1 + bũ
, (2.16)

then Euw is locally stable and if

d <
eũ

1 + bũ
, (2.17)

then it is a saddle, with the v-axis as the unstable subspace.
(f) Eψ = (ψu(t), 0, ψw(t)). If the conditions in Proposition 2.3(ii) are satisfied,

then there is a unique limit cycle on the (u, w)-place, denoted by (ψu(t), ψw(t)).
Then Eψ = (ψu(t), 0, ψw(t)) is a boundary periodic solution for the general system
(2.1). As in (d), we obtain that if

d >

∫ ω

0

eψu(t)
1 + bψu(t)

dt, (2.18)

then Eψ is stable and if

d <

∫ ω

0

eψu(t)
1 + bψu(t)

dt, (2.19)

then it is unstable in the v-axis direction.

Remark 2.4. Notice that d is required to be less than e
b , eK

1+bK , and eũ
1+bũ in (2.4),

(2.10)(i), and (2.17), respectively. Since eu
1+bu is an increasing function in u > 0

and ũ < K, we have
eũ

1 + bũ
<

eK

1 + bK
<

e

b
.

Thus, if (2.17) holds, then (2.4) and (2.10)(i) hold. Similarly, (2.12) holds, then
(2.7) and (2.10)(ii) hold.
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To obtain uniform persistence of the whole system (2.1), we employ the Acyclicity
Theorem of Butler, Freedman and Waltman [4, 6]. To this end, we must ensure that
the boundary equilibria and periodic orbits do not form a heteroclinic cycle, which
is the acyclicity condition in the uniform persistence theorem in Butler, Freedman
and Waltman [4] and Butler and Waltman [6] (see also Freedman, Ruan and Tang
[19] and Yang and Ruan [41]).

Recall that both E0 and EK are saddles. Euv is unstable in the w-axis direction
if (2.12) holds, Eφ is unstable in the w-axis direction if (2.15) holds, Euw is unstable
in the v-axis direction if (2.17) holds, and Eψ is unstable in the w-axis direction if
(2.19) holds.

We now have the main theorem in this section.

Theorem 2.5. If the boundary equilibria Euv and Euw exist, assume (2.12) and
(2.17) hold; if the boundary periodic orbits Eφ and Eψ exist, assume (2.15) and
(2.19) hold. Then system (2.1) is uniformly persistent.

Remark 2.6. In the case of boundary equilibria, the uniform persistence conditions
are (2.12) and (2.17).

(a) Since d = eū
1+bū , condition (2.17) means that

eū

1 + bū
<

eũ

1 + bũ
. (2.20)

Since eu
1+bu is increasing, the above inequality requires that ū < ũ. Thus, to have

long term survival of both consumers on the common resource, ū, the u-component
of Euv (the boundary equilibrium without interference) must be less than ũ, the
u-component of Euw (the boundary equilibrium with interference).

(b) It is well-known that the system is not uniformly persistent if C = 0, that
is, if w also satisfies the Holling II functional response (Hsu, Hubbell and Waltman
[21, 22]). Let us see how the introduction of C (the interference constant) can make
the system uniformly persistent. Since ū < ũ, we have

Eū

1 + Bū
<

Eũ

1 + Bũ
. (2.21)

Also, since D = Eũ
1+Bũ+Cw̃ , condition (2.12) is equivalent to

Eũ

1 + Bũ + Cw̃
<

Eū

1 + Bū
. (2.22)

Thus, assuming the inequality (2.21) holds, if we introduce the interference constant
C with

C ≥ ũ− ū

ūw̃
,

then the inequality (2.22) holds and the system (2.1) is uniformly persistent, and
in fact, permanent.

(c) Notice that the proof of dissipativity does not depend upon C. So the quantity
(ũ − ū)/ūw̃ should be bounded above independent of the size of C even though ū
and w̃ depend on C. So we can obtain (2.22).

2.4. Local and Global Stability of the Interior Equilibrium. The dissipa-
tivity and uniform persistence of the system now guarantee (see Butler, Freedman
and Waltman [4] and Hutson and Schmitt [24])) that system (2.1) has an interior
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equilibrium E∗ = (u∗, v∗, w∗), where

u∗ =
d

e− bd
,

v∗ =
e

ad

{
ru∗(1− u∗

K
)− A

CE

[
(E −BD)u∗ −D

]}
, (2.23)

w∗ =
(E −BD)u∗ −D

CD
.

Remark 2.7. Notice that u∗, the u-component of the interior equilibrium E∗, is
equal to ū, the u-component of the boundary equilibrium Euv without interference.

The Jacobian matrix of system (2.1) at E∗ takes the form

J∗ =




f∗u f∗v f∗w
g∗u 0 0
h∗u 0 h∗w


 , (2.24)

where

f∗u = u∗
[− ru∗

K
+

abv∗

(1 + bu∗)2
+

ABw∗

(1 + Bu∗ + Cw∗)2
]
, f∗v = − au∗

1 + bu∗
< 0,

f∗w = − Au∗(1 + Bu∗)
(1 + Bu∗ + Cw∗)2

< 0, g∗u =
ev∗

(1 + bu∗)2
> 0,

h∗u =
Ew∗(1 + Cw∗)

(1 + Bu∗ + Cw∗)2
> 0, h∗w = − CEu∗w∗

(1 + Bu∗ + Cw∗)2
< 0.

The characteristic equation is given by

λ3 + a1λ
2 + a2λ + a3 = 0, (2.25)

where

a1 = −(f∗u + h∗w), a2 = f∗uh∗w − f∗wh∗u − f∗v g∗u, a3 = f∗v g∗uh∗w.

Since a3 > 0, by Routh-Hurwitz criteria we have the following result on the local
stability of E∗.

Theorem 2.8. Assume that

a1 = −(f∗u + h∗w) > 0 (2.26)

and

a1a2 − a3 = −f∗u(f∗uh∗w − f∗wh∗u − f∗v g∗u)− h∗w(f∗uh∗w − f∗wh∗u) > 0, (2.27)

then the interior equilibrium E∗ is locally stable.

Finally, we give a sufficient condition for the global stability of the interior equi-
librium E∗.

Theorem 2.9. If
max{b,B}(K − u∗) < 1, (2.28)

then the interior equilibrium E∗ is globally stable.

Proof. Choose a Liapunov function as follows:

V (u, v, w) = α

∫ u

u∗

x− u∗

x
dx + β

∫ v

v∗

y − v∗

y
dy + γ

∫ w

w∗

z − w∗

z
dz, (2.29)
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where α, β, and γ are positive constants to be determined. Along any trajectory of
system (2.1), we have

dV

dt
= α(u− u∗)

[
r(1− u

K
)− av

1 + bu
− Aw

1 + Bu + Cw

]

+β(v − v∗)
(
− d +

eu

1 + bu

)
+ γ(w − w∗)

(
−D +

Eu

1 + Bu + Cw

)

= α(u− u∗)
[
− r(u− u∗)

K
−

(
av

1 + bu
− av∗

1 + bu∗

)

−
(

Aw

1 + Bu + Cw
− Aw∗

1 + Bu∗ + Cw∗

)]

+β(v − v∗)
( eu

1 + bu
− eu∗

1 + bu∗

)

+γ(w − w∗)
( Eu

1 + Bu + Cw
− Eu∗

1 + Bu∗ + Cw∗

)

= α
[
− r

K
+

abv∗

(1 + bu)(1 + bu∗)
+

ABw∗

(1 + Bu + Cw)(1 + Bu∗ + Cw∗)

]
(u− u∗)2

+
1

1 + bu

[
− αa + βe− βbeu∗

1 + bu∗

]
(u− u∗)(v − v∗)

+
[
− αA +

αACw∗

1 + Bu∗ + Cw∗
+ γE − γBEu∗

1 + Bu∗ + Cw∗

] (u− u∗)(w − w∗)
1 + Bu + Cw

− γCD

1 + Bu + Cw
(w − w∗)2.

Choose

α = 1, β =
a

e− bd
, γ =

A(Eu∗ − CDw∗)
Eu∗(E −BD)

.

Since

D =
Eu∗

1 + Bu∗ + Cw∗
<

Eu∗

Cw∗
,

we can see that γ > 0. Therefore,

dV

dt
=

[
− r

K
+

abv∗

(1 + bu)(1 + bu∗)
+

ABw∗

(1 + Bu + Cw)(1 + Bu∗ + Cw∗)

]
(u− u∗)2

− ACD(Eu∗ − CDw∗)
Eu∗(E −BD)(1 + Bu + Cw)

(w − w∗)2.

The coefficient for (w − w∗)2 is always negative. The coefficient for (u− u∗)2 is

− r

K
+

abv∗

(1 + bu)(1 + bu∗)
+

ABw∗

(1 + Bu + Cw)(1 + Bu∗ + Cw∗)

≤ − r

K
+

abv∗

1 + bu∗
+

ABw∗

1 + Bu∗ + Cw∗

≤ − r

K
+ max{b,B}

( av∗

1 + bu∗
+

ABw∗

1 + Bu∗ + Cw∗

)

≤ − r

K

[
1−max{b,B}(K − u∗)

]
.

Thus, if (2.28) is satisfied, then dV
dt ≤ 0 and dV

dt = 0 if and only if u = u∗, v =
v∗, w = w∗. The largest invariant subset of the set of the points where dV

dt = 0 is
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(u∗, v∗, w∗). Therefore, LaSalle’s Invariance Principle implies that E∗ = (u∗, v∗, w∗)
is globally stable. This completes the proof.

3. One Resource and Many Consumers. In this section we will show that it
is possible for an arbitrary number of consumers to persist on a single resource
provided that all consumers have a Beddington-DeAngelis functional response with
suitable parameter values. Note that the only mechanism for mutual interference
by consumers is the intraspecific feeding interference embodied in the Beddington-
DeAngelis functional response. Our analytic approach is based on the notion of
practical persistence (Cantrell and Cosner [7] and Cosner [12]). The key idea is to
obtain asymptotic upper and lower bounds on densities by comparing each equation
for the density of a species in the model with equations for best case and worst case
scenarios.

The system we shall consider is

du

dt
= ru

(
1− u

K

)
−

n∑

i=1

Aiuwi

1 + Biu + Ciwi
,

dwi

dt
= wi

(
−D +

Eiu

1 + Biu + Ciwi

)
, i = 1, 2, . . . , n,

(3.1)

where u(t) represents the density of the resource and wi(t)(i = 1, 2, . . . , n) denotes
the density of the ith consumer species at time t, respectively. Let

A = max
1≤i≤n

{Ai}, A = min
1≤i≤n

{Ai},

and define B, B, C,C, etc. analogously. The positive orthant is invariant under
(3.1), and we will consider only positive solutions. As in the proof of Proposition
2.1, we can show that

d

dt

(
u +

n∑

i=1

Ai

Ei
wi

)
≤ (r + D)(K + ε)−D

(
u +

n∑

i=1

Ai

Ei
wi

)
,

which implies that

lim sup
t→∞

(
u +

n∑

i=1

Ai

Ei
wi

)
≤ (r + D)(K + ε)

D
.

Thus, we have:

Proposition 3.1. The system (3.1) is dissipative.

Let

w =
(E −B D)K −D

C D
.

To formulate and derive a persistence result we will use the following hypotheses:

(E −B D)K −D > 0, (3.2)

r − nA w

1 + Cw
= r − nA[(E −B D)K −D]

C(E −B D)K
> 0, (3.3)

K(E −B D)
(
1− nA w

r(1 + Cw)

)
−D > 0. (3.4)

Note that (3.3) and (3.4) imply (3.2) and that (3.2) implies

(E −B D)K −D > 0, (3.5)
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which in turn implies w > 0. Furthermore, note that Cw does not depend on C,
but w → 0 as C →∞. It follows that (3.3)-(3.5) will be satisfied if (3.2) holds and
C is sufficiently large.

Theorem 3.2. Suppose that (3.3)-(3.5) hold. Then for any solution to (3.1) with
all components initially positive and any ε > 0, there is a T > 0 such that for t > T,

u ≥ K
[
1− nA w

r(1 + Cw)

]
− ε (3.6)

and

wi ≥ K(E −B D)
C D

[
1− nA w

r(1 + Cw)

]
−D − ε, i = 1, 2, . . . , n. (3.7)

Remark 3.3. By the discussion following (3.5), the hypotheses (3.3) and (3.4) will
hold and (3.6) and (3.7) will yield positive lower bounds on u and wi, i = 1, 2, . . . , n,
provided C = min1≤i≤n{Ci} is sufficiently large.

Proof. The proof is based on two observations: First, if

du

dt
≥ f(u) and

dw

dt
≤ g(w)

with f(s) ≥ g(s) and u(0) ≥ w(0), then u(t) ≥ w(t) for all t. This is a standard
comparison principle, which extends to reaction-diffusion equations among other
types of models; see Cantrell and Cosner [7] and Cosner [12], for example. Second,
if f(u) is smooth and has the properties f(0) = f(K) = 0 and

f(u)

{
> 0 for 0 < u < K,

< 0 for u > K,

then any solution to du/dt = f(u) which is initially positive must approach K as
t →∞. In particular, for any ε > 0 there is a t1 such that

K − ε ≤ u(t) ≤ K + ε for t > t1.

For the first inequality we will write u →≥ K to indicate that u is asymptotically
greater than or equal to K. Symmetrically, we will write u →≤ K to indicate that
u is asymptotically less than or equal to K.

Suppose (u,w1, . . . , wn) is a solution to (3.1) with all components initially posi-
tive, we have

du

dt
≤ ru

(
1− u

K

)
,

so if u(0) > 0 then u →≤ K since all solutions to

du

dt
= ru

(
1− u

K

)

which are positive at t = 0 approach K as t →∞. Thus, for any ε1 > 0 there is a
t1 so that u(t) ≤ K + ε1 for t > t1. For t > t1 we also have

dwi

dt
≤ wi

( Ei(K + ε1)
1 + Bi(K + ε1) + Ciwi

−Di

)

≤ wi

( E(K + ε1)
1 + B(K + ε1) + Cwi

−D
)
. (3.8)
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If ε1 is sufficiently small and (3.5) holds then all positive solutions of

dw

dt
= w

( E(K + ε1)
1 + B(K + ε1) + Cw

−D
)

(3.9)

approach
(E −B D)(K + ε1)−D

C D
as t →∞. It follows that for any ε2 > 0 we can choose ε1 > 0 sufficiently small so
that for some t2 > t1 we have

wi ≤ (E −B D)(K + ε1)−D

C D
+ ε2

provided t > t2. Using w defined previously, we have

wi →≤ w as t →∞ for i = 1, 2, . . . , n.

Thus, for any ε3 > 0 we can choose ε2 > 0 sufficiently small so that for t > t2 we
have

du

dt
≥ ru

(
1− u

K

)
− u

( n∑

i=1

Aw

1 + Cw
− ε3

)

= u
(
r − ru

K
− nA w

1 + Cw
− ε3

)
. (3.10)

If (3.3) holds and ε3 > 0 is small then all positive solutions of the logistic equation

du

dt
= u

(
r − ru

K
− nA w

1 + Cw
− ε3

)
(3.11)

approach

K
[
1−

( nA w

r(1 + Cw)

)
− ε3

r

]

as t → ∞. Any solution of (3.10) is bounded below by the solution to (3.11) with
the same initial data. Since ε3 > 0 was arbitrary, we have

u →≥ u ≡ K
[
1−

( nA w

r(1 + Cw)

)]
as t →∞

so that (3.6) holds for t sufficiently large. Also, for any ε4 ∈ (0, u) there is a t3 > t2
such that for t > t3 we have for each i that

dwi

dt
≥ wi

( E(u− ε4)
1 + B(u− ε4) + Cwi

−D
)
. (3.12)

If (3.4) holds and ε4 is sufficiently small then all positive solutions of

dw

dt
= w

( E(u− ε4)
1 + B(u− ε4) + Cw

−D
)

(3.13)

approach
(E −B D)(u− ε4)−D

C D
> 0

as t → ∞. Since solutions to (3.13) are lower bounds for solutions of (3.12) and
since ε4 is arbitrary, we have

wi →≥ (E −B D)(u− ε4)−D

C D
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for each i, so that for t sufficiently large (3.7) holds. This completes the proof.

Remark 3.4. Sharper estimates on the asymptotic behavior of u and w1, . . . , wn

could be obtained by making separate estimates for wi in terms of Ai, . . . , Ei for
each i instead of using the maximum or minimum coefficients. However, the sharper
results would also be more complicated.

Theorem 3.2 extends directly to the reaction-diffusion system

∂u

∂t
= d∆u + ru

(
1− u

K

)
−

n∑

i=1

Aiuwi

1 + Biu + Ciwi
on Ω,

∂wi

∂t
= di∆wi + wi

(
−D +

Eiu

1 + Biu + Ciwi

)
, (3.14)

∂u

∂n
=

∂wi

∂n
= 0 on ∂Ω, i = 1, 2, . . . , n

where Ω ⊆ Rn is a bounded domain, ∆ denotes the Laplace operator, and ∂
∂n

denotes the outer normal derivative on ∂Ω. The only modification of the proof is
that the comparisons between equations and inequalities which yield the bounds
must be justified by comparison principles based on the maximum principle rather
than simple differential inequalities.

4. Discussion. In systems where there is no intraspecific or interspecific inter-
ference but only competition for resources between consumers, the conventional
wisdom is that the number of consumer species which can coexist is less than or
equal to the number of distinct resources. This has been shown in a number of
models, including chemostat models (Smith and Waltman [38]) and the pseudo-
equilibrium case of Lotka-Volterra model (MacArthur [31] and Yodzis [42]). In the
models which we have considered, the coefficients Ci measure the amount of in-
traspecific feeding interference that occurs in the ith consumer species. There are
several mechanisms which can produce the effect of intraspecific feeding interfer-
ence. Those include spatial restrictions on where the resource can be exploited and
the loss of foraging time due to interactions with conspecifics; see Cosner et al. [11]
and the references therein for further discussion. In the case of a single consumer
and resource, increasing the coefficient C has the effect of making the consumer
density at equilibrium smaller but also stabilizes the equilibrium in some cases; see
Cantrell and Cosner [8]. In a sense the phenomenon is like the paradox of enrich-
ment, since the naive assumption would be that reducing intraspecific interference
would benefit the consumer by raising the consumer density at equilibrium. In fact,
that does occur, but the equilibrium may also lose stability and bifurcate to a limit
cycle.

In the case of two consumers, our results indicate that sufficiently strong in-
traspecific feeding interference of one consumer can not only ensure the long term
survival of itself but also guarantee the coexistence of the other consumer which
is otherwise out competed. To illustrate numerically, choose r = 1.5,K = 3, a =
0.45, b = 0.35, d = 0.45, e = 0.55, A = 0.55, B = 0.35, D = 0.45, E = 0.65, and let C
(the intraspecific interference parameter) vary. When C = 0, that is, when there is
no intraspecific interference, numerical simulations show that the consumer species
with density w out competes the consumer species with density v (see Figure 4.1).
Introducing intraspecific interference only among the consumer species with density
w makes the system coexistent not only in the sense of uniform persistence (Figure
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Figure 4.1. When C = 0, the consumer species with density w
wins the competition and the consumer species with density v tends
toward extinction.
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Figure 4.2. When C = 0.2, both consumer species coexist.

4.2) but also in the sense of global stability (Figure 4.3). A possible explanation of
this phenomenon is that intraspecific feeding interference in one consumer reduces
its equilibrium density and allows the other consumer to have better access to the
resource. It is also interesting to observe that when the carrying capacity K of the
resource is increased in the example, the interior equilibrium loses stability and a
three dimensional positive periodic solution arises via Hopf bifurcation. This indi-
cates that the paradox of enrichment phenomenon may occur for the two consumer
model as well. However, the three dimensional positive periodic solution can also
be regarded as bifurcating from the two dimensional boundary periodic orbit on
the (u,w)−plane when C increases from 0 to certain positive value (see Figure 4.4).

In the case of many consumers, Theorem 3.2 shows that intraspecific feeding
interference can allow coexistence of several consumers on a single resource, but
the proof also gives an asymptotic upper bound on consumer densities which gets
smaller as the amount of intraspecific interference increases.

Under different conditions on the coefficients the comparison methods we have
used here could be used to obtain extinction results. In the present paper our
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Figure 4.3. The interior equilibrium is globally stable.
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Figure 4.4. Choose K = 6. When C = 0, the two dimensional
boundary periodic orbit Eψ is stable and the consumer species with
density v goes extinction. Increasing C to 0.2, a three dimensional
positive periodic orbit bifurcates from Eψ.

interest is to establish that multiple consumers can persist on a single resource, so
we will not pursuit the point further.
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