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We consider a simplified neural network model for a ring of four neurons where each neuron
receives two time delayed inputs: One from itself and another from the previous neuron. Lo-
cal stability analysis of the positive equilibrium leads to a characteristic equation containing
products of four transcendental functions. By analyzing the equivalent system of four scalar
transcendental equations, we obtain sufficient conditions for the linear stability of the posi-
tive equilibrium Furthermore, we show that a Hopf bifurcation can occur when the positive

equilibrium loses stability

1. Introduction

In 1984, Hopfield [1984] proposed a simplified neu-
ra} network model based on the assumption that the
elements in the network respond and communicate
instantaneously with each other. In reality, neural
networks often have time delays, for example due to
the finite switching speed of amplifiers in electronic
neural networks, or due to finite signal propagation
time in biological networks. In a first attempt to
study this effect, Marcus and Westervelt [1989] in-
corporated a single time delay into the connection
terms of Hopfield's model and observed sustained

oscillations resulting from this time delay. Further

detailed investigation on Marcus and Westervelt’s
neural network model with a single delay can be
found in [Bélair, 1993; Bélair et al., 1996; Gopal-
samy & Leung, 1996; Liao & Liac, 1997; Ye et al,
1994} and the references therein.
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In 1994, Baldi and Atiya [1994] constructed a
network that consists of a ring of neurons connected
cyclically with delayed inferactions. Different de-
lays are introduced for the communication between
the adjacent neuwrons. In the last few years, such
neural network models with multiple delays have
been studied extensively, we refer to [Gopalsamy
& He, 1994; van den Driessche & Zou, 1998; Ye
et al, 1995] for stability analysis by constructing
Liapunov functions. However, the local stability
and bifurcation analysis of neural network models
with multiple delays are very complicated. In order
to obtain a deep and clear understanding of the dy-
namics of such models, researchers have focused on
two-neuron network models with two delays, see,
for example, [Babcock & Westervelt, 1987; Majee
& Roy, 1997; Olien & Bélair, 1997; Wei & Ruan,
1999, etc.
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Recently, Campbell [1999] generalized Baldi
and Atiya's model to a network that consists of a
ring of neurons where the jth element receives two
time delayed inputs: One from itself and another
from the previous element. She studied not only
the stability of the fixed points of the network but
also the bifurcation of new solutions when stability
is lost. Due to the high dimension of the model and
the complexity of the analysis, the sufficient con-
ditions for local stability and bifurcations are very
general.

In this paper, we simplify Campbell's model in
two ways. First, we assume that the time delays in
the communication between each pair of adjacent
neurons are identical. The model then takes the
form:

Cis(t) = ~%uj(t> + Fy(u(t — o))

-}*Gj(u?'mi(t - T)), j=1,2,...,n,
(1)
where C; > 0 and R; > 0 represent the capaci-
tance and resistance of each neuron, respectively,
F; and Gj are nonlinear functions representing, re-
spectively, the feedback from neuron j to itself and
the connection from j to 7 — 1, and the index 0 is
taken equal to n. We should point out that a simi-
lar linear neural network model was considered by
Khatitonov and Paice [1997].
Normalizing system (1) leads to

uj(t) = —*dej(t) + fj(Uj(t - O'))

+gj(Uj_1(t—T)), Jmlr 2,...,m,
(2)
where d; > 0. As shown in [Campbell, 1999], the
linear stability analysis of system (2) will lead to
a characteristic equation involving products of n
terms, where n is the number of neurons in the ring.
Clearly, solving the characteristic equation becomes
more difficult if n is large. Also, the numbers of the
roots of the characteristic equation depends on the
oddness or evenness of n. In fact, when o = 0, Baldi
and Atiya [1994] showed that it was impossible for
(2) with the g; decreasing functions and n even to
exhibit self-sustained oscillation. This lack of stable
oscillatory behavior for rings with an even number
of elements has been the subject of a number of
papers (see e.g. [Mallet-Paret & Sell, 1996]). By
contrast, Campbell {1999] has shown that (2) with
n even can exhibit self-sustained oscillations and
thus merits further investigation. The case n = 2

has been studied in detail in [Shayer & Campbell,
1099], so our second simplification of Campbell’s
model is to restrict our attention to the case n = 4.
By doing so, we are able to derive detailed and easy-
to-check conditions on the local stability and Hopf
bifurcation of the network.

2. Stability and Hopf Bifurcation

First of all, we assume that system (2) has a fixed
point
W= (uf, uh, o up) (3)

where u;‘ satisfies

diuy = fi(u}) +gi(uj_y) -

The existence of such solutions depends, of course,
on the particular functions f; and g; used in the
model. Assuming that such a fixed point exists, one
can translate it to the origin via the transformation

2(t) = ult) - ', (4)
where = (z1, ®2,..., Tn)? - Then (1) becomes

&5(t) = ~djz;(t) + Fj(z;(t — o))

+Gj($j—1(t—'r))> jji:za“"yn-:
(5)
where Fj(z;(t — 0)) + Gj(z1(t — 7)) = —djuj +
fi(zi(t—o)+ u;) +gi{zj-1(t—T1} +u}‘_1), If f; and
g; are sufficiently smooth, one can expand F; and
G, in the Taylor series about z(t) = 0. Hence, we

have the linearization of (5) at £ = 0.

(1) = —djz;(t) + a;z;(t — o)
+bj$j_.1(t— 7’), i=1,...,n, (6)

where a; = fj(u3), b = gj(uj_;). Physically, a; and
b; can be thought of as strengths of the connections
between neurons.

In order to study the linearized stability of the
fixed point z = 0 and the Hopf bifurcation of (5),
we must investigate the characteristic equation as-
sociated with (6). Denote I as the identity matrix,
D = diag(dy, da, . .., dn), A = diag(as, az,.. ., @),
and

0o 0 - 0 b

bp 0 - 0 O
B = ) 0 0

g 0

0 0 b, O



Then the characteristic equation associated with
(6) is

det(A + D — Ae™* — Be™ ) =0,

which leads to the following
n Tt
[TO+d —ae™) =T Ge™). ()
=1

Usually, it is difficult to analyze the distribution of
zeros for (7) since there may be complex coefficients.
For example, when n = 3, d; =d, aj = a, b; = b,
(7) is equivalent to

A+d—ae™? =phe N,

—1+4 /31 he=

—AG
At d—ge™ 7 = 2 '
}\._i_d_a_e“)\gm :i:m—‘\/gibe'“}‘r
2 1

It is well known that analyzing a t{ranscendental
equation involving both ¢™*" and e™* could be
very complicated (see [Hale & Huang, 1993; Olien &
Bélair, 1997] and the 1eferences therein). We shall
concentrate our study on system (1) or (5) with

a; =a, bj=b, noe g,

that is, we shall consider a network consisting of a
ring of four identical neurons (see Fig. 1). The cor-
responding characteristic equation takes the form

(A+d—ae ) = (be )1, (8)

In the following, we employ a result from [Ruan
& Wei, 1999} and the idea used in [Campbell, 1999]
to analyze Eq. (8). For convenience, we first state a
result of the authors [Ruan & Wei, 1999] as follows.

Theorem 2.1. For the transcendental equation

AT p§°) Al pffllA +pi0

+ [Pgl) ’)\Th-l +
+oo o PMA 4 plT

A e

+pMe™rm =0, (9)
Q'S (pg.[}}?‘""7p7(10)1""1pgll)l"‘“)pf'lm); TI}'"',Tm)

varies, the sum of the orders of the zeros of (9) in
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Fig 1.

A ring of four identical neurons

the open right half-plane can change only if o zero
appears on or crosses the imaginary azis.

Now, we consider (8). We know that (8) is

equivalent to

A—ae ™ —be 4 d=0,
A ae"™ 4+ be N 4+ d=0,

10
A —ae ™ 4 ibe”M 4 d =0, (10)
A—ae™ —jbe +d=0.
When 7 = 0, (10) becomes
A—ae™ 4 (d—b) =0,
A—ae™ 4 (d+b) =0, (1)
A—ae™? 4 (d+1ib) = 0,
A—ae™? + (d—ib) = 0.
For convenience, we make the following

assumptions

(P1) a®> — (d — b)®> <0 and a® —d% < 0;
(P2) (P1) does not hold,;
(P3) a® — (d+b)? <0 and a® — d* < 0;
(P4) (P3) does not hold.

The following lemma tells us when all roots of
Eq. (8) with r == 0 have negative real parts.

Lemma 2.2. Suppose thatd > 0 endd—a > |b|.

(i) If either b > 0 and {P1) or b < 0 and (P3} hold,
then all roots of (8) with v = 0 have negative
real parts for every o € [0, oo);
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(i1} if either b > 0 and (P2) or b < 0 and (P4)
hold, then there ezists a og > 0 such that all
roots of (8) with v = 0 have negative real parts
for o € [0, gg).

Proof For (8) with 7 = 0, when ¢ = 0, its roots
can be expressed as

)\1,2 = _,.(d,... a)ib and )\3,4 = u(dwa) +ib.

Clearly, d — a > |b| implies that A;2 < 0 and
ReAss = —(d — a) < 0, this shows that all roots
of (8) have negative real parts for o = 0 and r =0.

Under the conditions of this lemma, it is clear
that {8) can have no zero roots. Further, iw(w > 0)
is a root of (8) with v = 0 if and only if iw is a root
of one of {11). If one can prove that (11) has no
purely imaginary roots, then applying Theorem 2.1
one obtains that all 1oots of (8) have negative real
parts.

In fact, if iw(w > 0) is a 100t of (11}, one of the
following must hold

{d—bmaCOSUJU

w = —a sin wo,

d+b=acoswo
w = —qa sin wo,

12
d = a cos wo (12)
w+ b= —a sin wo,
d=a cos wo
W b= —a sin wo.
By (12), we have
wl=a?—(d-b)?
?=a®— (d+b)*
w? = a* — ( ) (13)

(w+b)? = a? — d?
(w — b)? = a® — d?.

If b > 0 and (P1) hold, then each of (13) has no
positive real root for w. This proves the first part
of (i).

Similarly, one can prove the same conclusion
under the conditions b < 0 and {P3).

Now, we prove (ii}. Assumptions (P2) and
d — a > b mean that either a® — (d — ) > 0 or
a? — d? > 0 holds. Without loss of generality, as-
sume that

a?—(d=b)2 >0, a®—(d+b)?>0,

vai—d?>b.

a?—d®>>0 and

From (18), we then have
Wi = VAT TR, ol = e (d+ b,
w[()a) = —b+Va? ~d?, w{g&) =b+vVal —dt.

Let

o‘(()l) = % Arccos u,
Wy a

g((}z) = '%ﬁ arccos ?I—ﬂ,
Wy @

o'{(}a) - aIccos d
W a’

g{(}"} m 1 AICCOS d
w((f) a

and denote
g == min{cr((}l), 0{(32), 0’((;3): 0'64)}" (14)

Clearly, og is the first value of ¢ > 0 such that (8)
with v = 0 has purely imaginary roots.

Notice that all roots of (8) with r = 0 have neg-
ative real parts for & = 0, so by Theorem 2.1, we
know that all roots of (8) with r = 0 have negative
real parts for o € [0, ap).

The proof of the second part of (ii} is similar to
the above discussion. This completes the proof. ™

Now, we return to Eq. (8). iw{w > 0) is a root
of (8) if and only if iw is a root of one of (10),
which means that w satisfies one of the following
set of equations

{dwacoswo‘r—“bcoswr

w + a sin we = —b sin wr,
d - a cos wg = —b cos wr
w -+ a sin we = b sin wr,
(15)
d—a cos wo = —b sin wr
w + a sin we = ~b cos wr,

d—a cos we = bsin wr
w+a sin wo = b cos wr.

From these equations we see that w must satisfy

w? + (d% 4+ a® — b%) + 2aw sin wo
2ad

= cos wo . (16)



Clearly, if (16} has roots, then the number of roots
is finite, denoted by wy,. ., ws. Then, from (15)
we can define that (j =1, 2,..., n)

ay 1 d—a cos wjo
T; ) = — AIrCeOs | —mmmrpm——
4 Wy b ’

(2) 1 d — a cos wjo
% = e arccogi ——————— ] |
7 w,- b
(@) 1 . d — a cos w;o
T = e [T — AIC8IN [ — o 1}
Y u}j b
(4) 1 . {d=acos wjr
;) = — aresin{ ———— | .
3 Wj b

(17)

Thus, applying Theorem 2.1 and Lemma 2.2, we
obtain the following.

I (1) _(2) _(3) _(4)
Tp =2 1I_<I_i'1£n{rj STy T T }.

Theorem 2.3. Suppose d >0 andd—a > |b].

(i) If b > 0 and (PI) (or b < O and (P3)) hold
and (16) has positive roots, then there ezists a
76 > 0 such that all roots of (8) have negative
real part for v € [0, 1), where 7 is defined by
(17);

(ii) ifb > 0 and (P1) (or b < 0 and (P3)) hold and
(16) has no positive root, then all roots of (8)
have negative real parts for every v 2 0,

(iii) if b > 0 and (P2) (or b < O and (P{)) hold
and for o € [0, oo) Eq. (16) has positive roots,
then there exists a 19 > 0 such that all roots
of (8) with o € [0, op) have negative real parts
for 7 € [0, 7o), where 1o is defined by (17);

(iv) if b > 0 and (P2) (o7 b < 0 and (P4)) hold and
for o € [0, oo) (16} has no positive roots, then
all roots of (8) with o € [0, og) have negative
real parts for every 7 > 0.

It is easy to find conditions which guarantee
that ((16)) has no positive root. For instance,

w? + (d? + a? — b?) + 2aw sin wo
2ad

>1  (18)

is such a condition.

In fact, from the inequality d —a > |b|, we know
that (d® + a® — b*)/2ad > 1, if ad > 0. On the
other hand, as long as 2la| < 1 and ¢ < 1, we have
w? + 2aw sin we > 0. Hence, under the conditions
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d—a>bf, ad > 0, 2la| £ 1 and ¢ < 1, we know
that (18) has no positive root. Summarizing the
above discussion, we have the following result.

Corollary 2.4. Suppose thatd > 0, d —a > |bj,
<2<l andeor <1,

(i) If b > 0 and (PI) (or b < 0 and (P3)) hold,
then all roots of {8) have negative real parts for
T >0

(H) if & > 0 and (P2) (or b < 0 and (P4}) hold,
then all roots of (8) have negative real parts for
e [0, 1N][0, op) and every v > 0.

By the above discussion, we know that under
the condition (i) or {ii) of Theorem 2.3, ro may bea
Hopf bifurcation value for the system (5). To verify
this, we study the transversality condition. Let

A7) = ar) + iw(r)
be the root of Eq. {8) satisfying

a(ro) =0, w(rn)=wo,

where 7p is defined by (17}, wg is w; related to mp.

Theorem 2.5. Suppose thatd >0, d—a > |b} and
either the condition (%) or (if) in Theorem 2.3 holds,
then o (1) > 0 or &/(7p) = 0, and when o (1p) > 0,
1o is the Hopf bifurcation value of system (5).

Proof From the proof of Theorem 2.3, we know
that all roots of (B) have negative real parts for
r € [0, 7o), and when r = 75, {8) has a pair of
purely imaginary roots +iwp. For a contradiction,
we assume that /() < 0. Then by the continuity
of a(r), we have that a{r) > 0 as 7 < 7p and close
to 19. This contradicts Theorem 2.3 and completes
the proof. M

Finally, we regard b and 7 as parameters and
use the method from [Campbell, 1999] to investi-
gate the system (5).

When b = 0, (8) becomes

Atd—ae™ =0, (19)

Lemma 2.6, If
lal<d and o >0

ar

a<—d and o< Lt arIccos (—CE) )
a? — d* a

then all roots of (19} have negative real parts.
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Proof If ja| < d o1 a < —d, then the root of {19)
foro=201is
A=-d+a<0.

iw(w > 0) is a root of (19} if and only if w satisfies

d=acoswa,
(20)

w = ~g sin we,

which implies that (19) has no purely imaginary
roots for every o > 0 as |a] < d. This completes the
proof of the first part of the lemma.

By (20) we have

Thus, w is well-defined for a« < —d < 0. Let

1 - yd
m arccos E 3

we know that iva* ~ d? is a purely imaginary root
of (19) with ¢ = gg. Cleaily, for ¢ € [0, ou),
Eq. (19) has no root on the imaginary-axis. By
Theorem 2.1, we obtain the second conclusion of
the lemma. This completes the proof. M

(21)

g =

From (15), for fixed a, d and o, one can see that
iw(w > 0) is a root of (8) if and only if b, r and w
gatisfy

b+=\/w2+(

d? + a?) + 2aw sin wo - 2ad cos wo

w=+va®~d?.
(22)
i and one of the following 77 (i = 1, 2, 3, 4):
ot [azctan ( Chal (S);n:;a)) + 2871‘} , wtasinwoe <0
d—ac
d—acoswo >0,
= l[arctaun( w+asmwa)>w}~2£+l)n} w+asinwo >0
w d -~ a cos wo
[axctan( w+asmwa))+(2£+1 ] d—acoswe <0
d — a cos wo
l[arctan( W a sin wo )+(2£+1)rr] d—acoswe >0,
w ~{(d — a cos wa)
1
r;‘ =93 = [arctan ( Wt a:ii:;gﬂ + 23#} , W+ asinws >0
d—acoswo <0; (23)
1
— [azctan( wt asin wo ) +2(f+ 1)), woasinwes <0
w (d — a cos we)
(1 [a;ccot (w+asm wa) + (2€ + I)N] , d—coswo >0,
w d— a cos wo
rg‘“ =
l{a,rccot (w-}-asm wg)+2£ } d—cos wo < 0;
w d — a cos wo
[arccot (w+a sin wd) +2€1r] , d—acoswo >0,
d —a cos wo
+ _
Ty =
[arccot (w+a sin wo*) +{2¢ + l)ﬁ] , d—acoswo <0,
d — a cos wo
where £ =0,1,2,...,0r
b7 = —\/wz + {(d? + @?) + 2aw sin wo — 20d cos wo (24)



and one of the following " (i = 1, 2, 3, 4):

1 w+ a sin wo
— |arctan + {2041
w ~(d — a cos wa)
_ 1 w ~+— o sin wo
= —_ arctan
w — @ Co8 Wo)
1 W —}- a sin wo
— |arctan +
L w —{d — a cos wo)
(1 —(w + a sin wo)
— arctan
w — @ CO8 WO
- 1 —(w + a sin wo}
T, =4 — aictan
w — 4 COS Wo
1 —(w + a sin wo
— arctan
] — @ COS WO
(1 u + a sin wo
— aIccot
_ W — @ COS WO
T3 =
1 W+ 4 Sin wo
— atccot
L W d— a cos wo
1 i, + a sin wo
— |arccot
_ w — @ COS WO
Ty =
1 w -§- o sin wo
— |arccot
— @ COS WO

where £ =0, 1, 2,....

For fixed a, d and o, Egs. (22) and (23), (24)
and (25) describe curves which lie in the right and
left of the (b, 7) plane, 1espectively, and are param-
eterized by w. Clearly, ‘rf“ and 77 (3 = 1, 2, 3, 4)
may not be continuous at some points w, this means
that the curve (b*, r¥) or (67, 77) has discontinu-
ities. This shows that these curves may be very
complicated. Nevertheless, we can still make some
assertions about the parameter values for which the
trivial solution of (5) is asymptotically stable.

Lemma 2.7. For fized a, d and o, if b* as de-
fined by (22) and (24) are monotone inw, then there
are no intersection points of the curves defined by
(6%, it} or of the curves defined by (b~, 7,7) for
every i € {1, 2, 3, 4}. IfbT is increasing in w then
there are no intersectz'on points of the curves defined
by (6%, 77 or (b7, mT) (i =1, 2, 3, 4) with the line
b=d—a or b= —(d — a), respectively.

The proof of Lemma 2.7 is similar to that of
Lemma 2.3 of [Campbeli, 1999], so is omitted.

—§~2€n‘], w+ a sin wo > 0

+2£n’}, wasinwe <0

>+2€+1 }, w+asinwe >0
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)T{}, d—acos we >0,

d—acos wor <0;

2(£+1)7r)], w+asinwe < 0

d-—acoswsr >0,

(25)

)-i— (20 + 1) ] d — cos wo < 0
)-{-23#], d—coswo >0,
)+(2€+1)n], d — cos wo < 0;
+ {22+ ) ] d~acoswo >0,

+2€rs], d—acoswo <,

Theorem 2.8. Let a, d, o be fized and the condi-
tions of Lemma 2.6 be satisfied. If b* is increasing
in w, then the stability region of the system (5) is

~{d—a)<b<d~a and 7>0. (26)
Proof Lemma 2.6 implies that all roots of (8) with
b = 0 have negative real parts. Lemma 2.7 implies
that (8) has no root appearing on the imaginary
axis when b* is increasing in w and (26) holds. By
Theorem 2.1 the conclusion follows. This completes
the proof. W

Remark 2.9. From (10), we know that A = 0is a
100t of (8) when b=d —a or b = —(d — a). Denote

= Ab) the root of (8) satisfying A(d ~a) =0 or
AMa — d) = 0. We obtain that

dA 1
—cﬁ;bzd_az 14+ac+(d—a)r >0
or
da = ~1 <0
db bz e (s 14 a0+ (d, - G)T ‘
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This means that (8) has a positive real root
when b > d-—-aor b < d-a So, wecan say that
Theorem 2.8 gives the best estimate for the stability
of system (5).

A natural question is when is b increasing.
The following lemma answers this question.

Lemma 2.10. If |al < d, 2lale < 1 and |a] <
(1/20(1 + do)) for a < 0, or a < (3n/40(1 + do))
for a > 0, then b is increasing in w and

10 in w

7o = 7] = = |arctan (—m) + 2{¢ + 1)#],
w d — a cos wo
1 w sin wo

PR e arctan( tas )+(2£+1)7r],
w d— a cos wo
17 w sin wo

Ty =Ty = - arccot( +a ) (2£+1)rr],
w | d — o cos wo
1

r5 = 1 = = |arccot (w-{-asm wcr) 23#],
w - 1 COS WO

(27)
where £=0,1, 2,....

Proof Differentiating both sides of (22) with w,
we have

db* 1 . .
— = = [w + asinweo + aow cos wo + ado sin wo]

1 1
b"' { ( -+ Qg COs Wo

+ Ew«i—a(l +da)sinwa}} .

From |a|e < (1/2) we have w((1/2) + av cos wo) >
0 for w > 0. Meanwhile, the inequality |a] <
(1/20(1+dg)) for a < 0 or a < (3n/40(1+do)) for
a > 0 implies that (1/2)w + a(l + do) sin wo > 0
for w > 0. Thus we obtain (db™/dw) > 0 for w > 0.
This completes the proof of the first part.

Also, |a] < d and 2|alc < 1 imply that
d—a cos wa > 0 and w+a sin wo > 0 for w > 0, 1e-
spectively. Hence, (27) follows from (23) and (25).
This completes the proof. W

Applying Theorem 2.8 and Lemma 2.10, we
have the following conclusion.

Theorem 2.11. If |o| < d, 2|ajlc < 1 and ei-
ther |a| < (1/20(1 + do)) for a < 0 ora <
(3n /40 (1 + da)) for a > 0, then the stability region
of the system (5) is given by

—(d—a)<b<d—a and 7>0.

Clearly, under the conditions of Lemma 2.10,
(w+ asinwe)/{d — acoswo) > 0 for all w > 0.
Hence, each function of (27) is continuous in w and

m rf= lim 77 =00, i=1,234 (28)
w—0+ w—0t

and
im r" = lim 77 =0, i=1,23,4. (29
WO Tt OO

Denote the curves defined by (22) and (23), and
(24) and {25) by rF(b) and r7 (B)(i = 1, 2, 3, 4),
respectively. From lim,,_ oo b™ = 00, limy.up b= =
+(d — a), (28) and (29), we have

lim 777 (b) = hm (b)y=20
b—+00
and
1i By = i (b)) =
M%ﬁl}ma) i (6) bw}»}ffilma) i () =00
fori=1,2, 38 4.

We know that if (b{wg), T(wp)) Lies on one of
the curves mentioned above, then (8) has a pair
of purely imaginary roots +iwy. Denote the root of

(8) by
AlD) = afb) + w(b)

satisfying a(b(wg)) = 0 and w{b(wp)) = wo.

Suppose that |a| < d, 2|alo < 1 and
jal))-

(i) If (blwg), 7(wo)) lies on one of the curves
defined by (22), then for all wy

da(b(wg))
db

Lemma 2.12.
r > min(o, ola|/(d -

> 0;

(i) #f (b(wn), r(wo)) lies on one of the curves
defined by (24), then for all wo

da(b(w))
et 0/ <0

Proof Consider first  the  situation when
{b{wp), T(wp)) belongs to one of the curves defined
by (22) and (23). Note that along these curves
b(wg) > 0, and that |o| < d and 2|alo < 1 im-
ply d — acoswge > 0 and wp + a sin wpe > 0,
respectively.



There are four cases depending on which of the
7 in (23) gives the value of r(wo).

Case 1. In this case, A(b) is a root of the fizst
equation of (11). Differentiating both sides of it
with respect to b, we have

dA _ g™
db 1+ aoe=? 4 bre— X"

Hence
day !
bt} w b AT —Mo—T1) )
( db) T+ e 4 are
Substituting b(wy) into this equation, we obtain
dA(blwo))\
(—(u&%m@l) = [b{wo) T{wp) + cos woT(wo)
+ ao cos wy(o ~ T{wp))]
+ i[Sil'l w(}T(wo)
— ao sin wo(o — r{wo))]-
From the first equation of (15) we have

cos wyT(wp) > 0 and from the second
wob{wo)T{we) = —b(wy) sin wyr{wy)
= wp + @ sin woo > we(l — |alo),
which leads to b{wg)r(wp) = 1 — |ale. Thus
[B{wo) T (wp) + cos woT(wy) + ao cos wy{o ~ T{wp))]
>1-—lale —|alo > 0.
Cases 2 and 3 correspond to A(b) being a root of

the second and third equations of {11} and can be
proven in a similar manner to Case 1.

Case 4. In this case, A(b) is a root of the fourth
equation of (11). In a similar manner to Case 1 we
obtain

-1
(W) = [blwo)7(wo) + sin wor{wo)

— ao sin wolo — {wp))]
— i[cos woT{wo)

+ ao cos wo(o — T{wg))] -

From the seventh equation of (15} we have
sin wgt{wy) > 0 and from the eighth

blwg) > blwp) cos wyT(wp)

= wy + asin wpo > we(l ~ [a|o),
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which leads to b(wg)T{wo) > wor(wp){l—lale]. Thus
fo<r

[b(wo)T(wy) + sin wot{wo) + ao sin wo(T(wo) — )]
> wor(we)[1 — |ale] — lalowy[T(wp) — o]

== wor(wo)[1 — 2]ala] + |alwee® > 0.
Further, from the seventh equation of (15) we have
b{wy) = b(wy) sin wyr(wg) = d+a cos wyo > d—|a -
Thus, if 7 > |ale/(d — |a|) then

[blwo) T{wo) + sin woT(we) + ao sin wy(r{we) — )]

> T{wo){d ~ [a|) — |ale > 0.

In all cases we have shown that

Re (W)M >0,

The conclusion follows from the fact that

dA(B{w))\
=)

sign W = sign Re (

The proof for the situation when (b{wp), T(wp)) be-
longs to one of the curves defined by (24) and (25)
is similar.

Our final result is about the Hopf bifuzcation
in system (5).

Theorem 2.13. Suppose that the hypothesis of
Lemma 2.12 are satisfied, then for any (b{uwp),
T(wg)) which lies on ezactly one of the curves de-
fined by (22) or (24), system (5) undergoes a Hopf
bifurcation at b{wg).

Remark 2 14. Points of intersection of two curves
defined by (22) or (24) are excluded from Theo-
rem 2.13 to ensure the nonresonant condition of the
Hopf Bifurcation Theorem [Hale & Verduyn Lunel,
1993] is satisfied.

Theorems 2.11 and 2.13 are illustrated in Fig. 2
and Theorems 2.3 and 2.13 are illustrated in Fig. 3.
In both cases, the shadowed 1egion is the stability
region, and the solid curves are Hopf bifurcation
curves.
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br-(d-a)

b=d-a

Fig 2 The stability diagram for system (5} under the conditions of Theorem 211

\
\

fola
"~ d-fa|

be-(d-a)

Fig 3.

3. Discussion

It is well known that time delays in response or
transmission have a dramatic influence on the dy-
namics of the neural network models. In particu-
lar, a time delay can induce sustained oscillations
in convergent networks (see [Marcus & Westervelt,
1989]) and even chaos in three-neuron networks
(see [Marcus et al., 1991]). Recently, 1esearch has
focused on the dynamics of neural networks with
multiple delays (see [Babcock & Westervelt, 1987;
Baldi & Atiya, 1994; Campbell, 1999; Majee & Roy,
1997; Olien & Bélair, 1997; Wei & Ruan, 1999}} and
many interesting dynamical phenomena have been
observed.

b=d-a

The stability diagram for system (5) under the conditions (i) of Theorem 2.3,

In this paper, we have considered a simplified
version of the neural network model with multi-
ple delays proposed by ome of us in [Campbell,
1999]. We have studied a ring of four neurons where
each neuron receives two time delayed inputs: one
from itself and another from the previous neuron.
We have analyzed the local stability of the posi-
tive equilibrium and obtained explicit conditions for
when this stability is independent of the size of the
time delays. We have also characterized when the
time delay can cause the equilibrium to lose stabil-
ity and studied the Hopf bifurcation which results.
As shown in [Campbell, 1999] (and suggested by
Fig. 3), we expect that this type of neural networks
could exhibit more complicated and interesting



dynamics such as codimension two and Hopf-Hopf
bifurcations. We leave this for future investigation.
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