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Abstract
When the asymptotic spreading for classical monostable Lotka–Volterra competition
diffusion systems is concerned, extinction or persistence of the two competitive species
is completely determined by the dynamics of the corresponding kinetic systems, while
the size of initial values does not affect the final states. The purpose of this paper is to
demonstrate the rich dynamics induced by the initial values in a class of degenerate
competition diffusion systems with weak Allee effect. We present various extinction
or persistence results by selecting different initial values although the corresponding
kinetic system is fixed, which also implies the existence of balance between degener-
ate nonlinear reaction and diffusion. For example, even if the positive steady state of
the corresponding kinetic system is globally asymptotically stable, we observe four
different spreading–vanishing phenomena by selecting different initial values. In addi-
tion, the interspecific competition of one species may be harmful to the persistence
of the other species by taking proper initial values. Our results show that the superior
competitor in the sense of the corresponding kinetic system is not always unbeatable,
it can be wiped out by the inferior competitor in the sense of the corresponding kinetic
system depending on the size of initial habitats as well as the intensity of Allee effect.
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1424 W.-J. Bo et al.

1 Introduction

In population dynamics, there are many models describing interspecific and intraspe-
cific competitions. One of the most important models is the following Lotka–Volterra
competition diffusion system

{
∂u(t,x)

∂t = d1Δu(t, x) + r1u(t, x) [1 − u(t, x) − av(t, x)] ,
∂v(t,x)

∂t = d2Δv(t, x) + r2v(t, x) [1 − bu(t, x) − v(t, x)] ,
(1.1)

where u(t, x), v(t, x) denote the population densities at time t > 0 and location
x ∈ R of two competitors, respectively, and all parameters are positive. In the last
two decades, there is a vast body of literature on the asymptotic spreading of the
corresponding initial value problem of (1.1), see Lewis et al. (2002), Weinberger et al.
(2002), Lin and Li (2012), Carrère (2018), Girardin and Lam (2019), in which only
the nonnegative initial values are considered due to the biological background. The
corresponding kinetic system of (1.1) is

{
du(t)
dt = r1u(t) [1 − u(t) − av(t)] ,

dv(t)
dt = r2v(t) [1 − bu(t) − v(t)] ,

(1.2)

and the existence and stability of steady states of (1.2) can be obtained by direct
analysis, which will be presented in Sect. 2.

When (1.2) admits only one stable steady state (monostable case), the stability
of the steady state is crucial in determining the extinction or persistence of the two
competitive species. More precisely, if 0 ≤ a < 1 < b, then (1.2) has a stable steady
state (1, 0).With this assumption, once the initial value of u has nonempty support, the
species u will successfully occupy the habitat while v will be extinct in any compact
subset of the habitat (Girardin and Lam 2019; Lewis et al. 2002; Weinberger et al.
2002). If 0 ≤ a, b < 1, then (1.2) has a positive stable steady state, which implies
the coexistence of both species. In this case, if both initial values of u and v have
nonempty supports, then u and v will coexist in any compact subset of the habitat (Lin
and Li 2012). Therefore, when the monostable case is involved, the nonlinear reaction
plays an important role on spreading or vanishing, while the diffusion only affects
the spreading speed. Of course, when a, b > 1 such that (1.2) has two locally stable
steady states (0, 1) and (1, 0), then the dynamics of (1.1) are rich and depend on the
initial values (Carrère 2018).

Will these phenomena occur in more general competition systems? In this paper,
we consider the following degenerate competition diffusion system

{
∂u(t,x)

∂t = d1Δu(t, x) + r1u p(t, x) [1 − u(t, x) − av(t, x)] ,
∂v(t,x)

∂t = d2Δv(t, x) + r2vq(t, x) [1 − bu(t, x) − v(t, x)] ,
(1.3)

where u(t, x) and v(t, x) denote the population densities of two competitors at time
t and location x , respectively, t > 0, x ∈ R, di , ri > 0, i = 1, 2 and p, q ≥ 1. The
factors u p(x, t) and vq(x, t) with p > 1 or q > 1 describe the situation that one
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The effect of initial values on extinction or persistence 1425

or both competitors exhibit weak Allee effect in the absence of competition (Allee
1931). The interspecific term appears analogously as the self-regulation term and is
proportional to u p(vq). In addition, a ≥ 0 (b ≥ 0) is interpreted as measuring the
extent of competitor v(u) consuming resources needed by u(v) and thus reducing the
population growth rate for u(v) (Murray 2002, 2003; Cantrell and Cosner 2004). In
what follows, we use p and q to describe the degeneracy of u and v, respectively, and
(1.3) is called a non-degenerate system if p = q = 1, while it is degenerate if p > 1
or q > 1. The corresponding kinetic system of (1.3) is

{
du(t)

∂t = r1u p(t) [1 − u(t) − av(t)] ,
dv(t)
∂t = r2vq(t) [1 − bu(t) − v(t)] ,

(1.4)

which has a trivial equilibrium (0, 0) and two spatially homogeneous equilibria (1, 0)
and (0, 1). Furthermore, if a, b ∈ (0, 1) or a, b ∈ (1,+∞), then (1.4) has an extra
spatially homogeneous equilibrium K = (k1, k2) defined by

(k1, k2) =
(

1 − a

1 − ab
,
1 − b

1 − ab

)
.

When p, q ≥ 1, the existence and stability of steady states of (1.4) are similar to
that in (1.2), which will be presented in Sect. 2. As we have mentioned, the dynamics
of (1.1) are determined by the nonlinear reaction in themonostable case.Moreover, the
interspecific competition could increase the local extinction rate in a metapopulation
system (Bengtsson 1989). The purpose of this paper is to investigate the long time
behavior of (1.3).Wewant to study whether the dynamics of (1.3) are fully determined
by a and b if (1.4) is monostable and consider the effect of degeneracy as well as
interspecific competition on the asymptotic spreading of (1.3) in both monostable and
bistable cases.

In the degenerate case of (1.3), when the interspecific competition vanishes, we can
obtain a Fisher equation with degenerate nonlinearity. Its propagation properties have
been investigated intensively, see Aronson and Weinberger (1978), Bebernes et al.
(1997), Berestycki and Nirenberg (1992), Wu et al. (2006), Zlatoš (2006), Chen and
Qi (2007, 2009, 2019), Liang and Zhao (2007), Wu and Xing (2008), Du and Matano
(2010), Alfaro (2017), Chen et al. (2017), He et al. (2017). In particular, Aronson and
Weinberger (1978) pointed out that the successful propagation may depend on the
degeneracy of nonlinearity as well as the size of the support of initial value. Based on
the results by Aronson and Weinberger (1978), we will show that (1.3) may exhibit
very rich dynamics depending on the initial values.

It should be noted that in population dynamics, the nonlinear reaction plays a
crucial role on spreading or vanishing in the non-degeneratemonostable case,while the
diffusion only affects the spreading speed. However, our results show that the diffusion
may also affect the spreading or vanishing of (1.3) in the degenerate monostable case,
and some sufficient conditions on the balance between degenerate nonlinear reaction
and diffusion are given in this work. Under proper conditions of the initial values
and degeneracy of nonlinearity, we find that the superior competitor could be washed

123

Author's personal copy



1426 W.-J. Bo et al.

out by the inferior one in the sense of the corresponding kinetic system. Moreover,
different from that in the non-degenerate case, by selecting different initial values
in the degenerate case with 0 ≤ a,b < 1, four different spreading phenomena may
be observed and the interspecific competition of one species may be harmful to the
persistence of the other species. To illustrate our results, some numerical simulations
are presented.

The rest of this paper is organized as follows. In Sect. 2, we give some preliminaries
including the dynamics of (1.4), comparison principle of (1.3), and some conclusions
from Aronson and Weinberger (1978) and Du and Matano (2010). The main results
are presented in Sect. 3, which include some sufficient conditions for the persistence
or extinction of u and v. We then provide some numerical simulations in Sect. 4, and
the paper ends with a compendious discussion on the topic in Sect. 5.

2 Preliminaries

In this section, we introduce some concepts and review some relevant results. Firstly,
we present the dynamics of (1.4) with positive initial values. If 0 ≤ a, b < 1, then
(1.4) has a unique positive equilibrium (k1, k2) which is a stable node. In fact, define

ai (s) = ski , bi (s) = ski + (1 − s)(1 + ε), i = 1, 2,

a(s) = (a1(s), a2(s)), b(s) = (b1(s), b2(s))

with ε > 0 small enough and s ∈ (0, 1]. By Lemma 5.7.4 of Smith (2008), we obtain
a strictly contracting rectangle of (1.4). Therefore, (k1, k2) is globally asymptotically
stable, that is, the solution (u(t), v(t)) of (1.4) satisfies

lim
t→+∞ (|u(t) − k1| + |v(t) − k2|) = 0

with the initial values u(0) > 0 and v(0) > 0, which is similar to that in (1.2). For
other cases, we can also analyze the stability. Particularly, p, q ≥ 1 do not affect the
existence and stability of steady states in (1.4), and we list the conclusions as follows:

(1) (u(t), v(t)) → (0, 1) as t → +∞ if 0 ≤ b ≤ 1 ≤ a and a �= b;
(2) (u(t), v(t)) → (1, 0) as t → +∞ if 0 ≤ a ≤ 1 ≤ b and a �= b;
(3) (u(t), v(t)) → {(0, 1), (1, 0), (k1, k2)} as t → +∞ if a, b > 1, which depends

on the initial values;
(4) (u(t), v(t)) → (k1, k2) as t → +∞ if 0 ≤ a, b < 1.

Let

X = {u(x)|u(x) : R → R is bounded and uniformly continuous}

be equipped with the compact open topology and maximum norm ‖ · ‖. Moreover,
denote

X+ = {u : u ∈ X and u(x) ≥ 0 for all x ∈ R}.
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The effect of initial values on extinction or persistence 1427

Furthermore, if m ≤ n ∈ R, then define

X[m,n] = {u : u ∈ X and m ≤ u(x) ≤ n for all x ∈ R}

and

X2[m,n] = {(u1, u2) : ui ∈ X and m ≤ ui (x) ≤ n for all x ∈ R, i = 1, 2}.

In order to obtain the spreading speed of the competition system with degenerate
nonlinearity described by (1.3), we consider the following initial value problem

⎧⎪⎨
⎪⎩

∂u(t,x)
∂t = d1Δu(t, x) + r1u p(t, x) [1 − u(t, x) − av(t, x)] ,

∂v(t,x)
∂t = d2Δv(t, x) + r2vq(t, x) [1 − bu(t, x) − v(t, x)] ,

(u(0, x), v(0, x)) = (u(x), v(x)) ∈ X2[0,1],
(2.1)

in which t > 0, x ∈ R, a, b ≥ 0, di , ri > 0, i = 1, 2 and p, q ≥ 1.
Following Definition 4 and Remark 2 of Fife and Tang (1981), we introduce an

admissible pair of super- and sub-solutions of (2.1) as follows.

Definition 2.1 Assume that

u(t, x) = min{u1(t, x), . . . , un(t, x)}, v(t, x) = min{v1(t, x), . . . , vn(t, x)},
u(t, x) = max{u1(t, x), . . . , un(t, x)}, v(t, x) = max{v1(t, x), . . . , vn(t, x)}

are continuous functions for some integer n, x ∈ R, t ∈ [0, T ∗) with some T ∗ > 0.
Then (u, v) and (u, v) are said to be a pair of super- and sub-solutions of (2.1) if they
satisfy the following statements:

(i) (0, 0) ≤ (u(0, x), v(0, x)) ≤ (u(x), v(x)) ≤ (u(0, x), v(0, x)) ≤ (1, 1) for x ∈
R and (0, 0) ≤ (u(t, x), v(t, x)), (u(t, x), v(t, x)) ≤ (1, 1) for t > 0, x ∈ R;

(ii) if u(t, x) = ui (t, x) for some i ∈ {1, . . . , n}, then

∂ui (t, x)

∂t
≥ d1Δui (t, x) + r1u

p
i (t, x)

[
1 − ui (t, x) − av(t, x)

]
and v(t, x) satisfies a similar inequality;

(iii) if u(t, x) = ui (t, x) for some i ∈ {1, . . . , n}, then

∂ui (t, x)

∂t
≤ d1Δui (t, x) + r1u

p
i (t, x)

[
1 − ui (t, x) − av(t, x)

]
and v(t, x) satisfies a similar inequality.

By virtue of the comparison principle, we have the following lemma.
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1428 W.-J. Bo et al.

Lemma 2.1 Assume that (u(t, x), v(t, x)) and (u(t, x), v(t, x)) are a pair of super-
and sub-solutions of (2.1) with t ∈ [0, T ∗) and x ∈ R. Then there is a unique solution
(u(t, x), v(t, x)) of (2.1) satisfying

(u(t, x), v(t, x)) ≤ (u(t, x), v(t, x)) ≤ (u(t, x), v(t, x)) for all (t, x) ∈ [0, T ∗) × R.

To describe the extinction or persistence of (1.3), for any p ≥ 1, we first recall the
following initial value problem involving p-degree Fisher nonlinearity

{
∂z(t,x)

∂t = dΔz(t, x) + r z p(t, x) [A − Mz(t, x)] , t > 0, x ∈ R,

z(0, x) = z(x), x ∈ R,
(2.2)

where all coefficients are positive and z(x) ∈ X[0,A/M] has nonempty compact support.
For the first equation in (2.2), there are many results on traveling wave solutions, see
e.g., Berestycki and Nirenberg (1992), Chen and Qi (2007, 2009, 2019), Liang and
Zhao (2007), Chen et al. (2017). Furthermore, the upper and lower bounds of the
critical speed were investigated by Chen and Qi (2007, 2009, 2019); Chen et al.
(2017).

Let

w = M

A
z, t1 = r Ap

M p−1 t, x1 =
(

r Ap

dM p−1

)1/2

x .

Then the first equation in (2.2) can be transformed into

∂w(t1, x1)

∂t1
= Δw(t1, x1) + w p(t1, x1) [1 − w(t1, x1)] , t1 > 0, x1 ∈ R.

It should be noted that there is a sharp speed c∗ > 0 such that (2.2) has a monotone
increasing traveling wave solution if and only if c ≥ c∗ (Berestycki and Nirenberg
1992; Liang and Zhao 2007). Moreover, in view of Theorem 4 of Chen and Qi (2007),
we have

c∗ =
√

dr Ap

M p−1K (p)
, (2.3)

where K (p) is a strictly monotone increasing function of p and K (1)=1/4, K (2)=2.
For positive constants d, r , A, M given above, define a continuous function

ψ(A,M)(t, x; ξ, p, r , d) = A

M

[(
1

2
− 1

p − 1

)
/(st + ξ)

] 1
p−1

e−sx2/4d(st+ξ) (2.4)

with some p > 3, ξ > 0 and s = r Ap

M p−1 . A straightforward calculation yields that

ψt − dΔψ − r Aψ p ≥ 0 for all (t, x) ∈ (0,+∞) × R,
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The effect of initial values on extinction or persistence 1429

which implies that ψ is a super-solution of (2.2) if z(x) ≤ ψ(A,M)(0, x; ξ, p, r , d) for
x ∈ R. By virtue of the stability results of (2.2) investigated in Sect. 3 of Aronson
andWeinberger (1978), Theorem 1.1 and Remark 4.12 of Du and Matano (2010), and
the spreading theory established by Theorem 2.17 of Liang and Zhao (2007), we can
obtain the following spreading properties.

Lemma 2.2 Assume that z(x) ∈ X[0,A/M]. Then the solution z(t, x) of (2.2) is well
defined in (0,+∞) × R and the following properties hold.

(i) For any fixed p ∈ [1, 3], if ε ∈ (0, c∗) is given and z(x) �≡ 0, then

lim
t→+∞, |x |<(c∗−ε)t

z(t, x) = A

M
.

(ii) For any fixed p > 3,

(a) suppose further that ε ∈ (0, c∗) is given and g(x) ∈ X[0,A/M] has nonempty
compact support. Then there exists a positive constant σ := σ( f ,d)(g(x))
independent of ε such that

lim
t→+∞,|x |<(c∗−ε)t

z(t, x) = A

M
(2.5)

if z(x) ≥ λg(x) for every λ > σ , while

lim
t→+∞ z(t, x) = 0 uniformly in R

for z(x) ≤ σ g(x);
(b) if z(x) ≤ ψ(A,M)(0, x; ξ, p, r , d) for x ∈ R and some ξ > 0, then

lim
t→+∞ z(t, x) = 0 uniformly in R.

(iii) For any given ε > 0 and p ≥ 1, if z(x) has nonempty compact support, then

lim
t→+∞, |x |>(c∗+ε)t

z(t, x) = 0.

Remark 2.1 Actually, for any given p > 3, define a continuous function

ψA(t, x; p, r , d, α, β) = g(t)ϕ(t, x)

with

g(t) : =
(
1 − (p − 1)r Aα p−1

2β(p − 3)

(
1 − 1

(1 + 4βdt)
p−3
2

))− 1
p−1

,

ϕ(t, x) : = α√
1 + 4βdt

e− β
1+4βdt x

2
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1430 W.-J. Bo et al.

for some positive α, β > 0 such that β >
(p−1)r Aα p−1

2(p−3) . Then it is also a super-solution

of (2.2) with z(x) ≤ ψA(0, x; p, r , d, α, β) = αe−βx2 and satisfies

lim
t→+∞ ψA(t, x; p, r , d, α, β) = 0 uniformly in x ∈ R.

3 Main results

In this section, we investigate the asymptotic spreading of (1.3) with a, b ≥ 0, which
involves the cases of strong and weak interspecific competition. Before stating our
results, for any given p, q ≥ 1, we first define positive constants

c1 =
√

d1r1
K (p)

, c2 =
√

d2r2
K (q)

,

where K (p) and K (q) are strictly monotone increasing functions given by (2.3).
Further define a continuous function v(t, x) as a solution of the following initial value
problem

{
∂v(t,x)

∂t = d2Δv(t, x) + r2vq(t, x) [1 − v(t, x)] , t > 0, x ∈ R,

v(0, x) = v(x), x ∈ R.

In what follows, to simplify the notation, for any given g(x) ∈ X+ having nonempty
compact support, we write u(x) > σ g(x) if u(x) ≥ λg(x) for every λ > σ . For
any given q > 3, let ψ(t, x; ξ2, q, r2, d2) be a continuous function defined in (2.4)
with A = M = 1 and some ξ2 > 0. Moreover, let g1(x) ∈ X[0,1] be a continuous
function with nonempty compact support. Then Lemma 2.2 implies that there exists
a positive constant σ1 := σ1(g1(x)) > 0 such that if v(x) ≤ ψ(0, x; ξ2, q, r2, d2) or
v(x) ≤ σ1g1(x), then

lim
t→+∞ v(t, x) = 0 uniformly in x ∈ R.

Similarly, we can define u(t, x) and ψ(t, x; ξ1, p, r1, d1) for any p > 3. In addition,
for any given g3(x) ∈ X[0,1] with nonempty compact support, there exists a positive
constant σ3 := σ3(g3(x)) > 0 such that if u(x) ≤ ψ(0, x; ξ1, p, r1, d1) or u(x) ≤
σ3g3(x), then

lim
t→+∞ u(t, x) = 0 uniformly in x ∈ R.

Note that for any given functions g1(x), g3(x) ∈ X[0,1] with nonempty compact
support, we could fix constants σ1 and σ3 depending on parameters in (2.1). Moreover,
from the property of autonomous equations/systems, the above results remain true if

u(x) ≤ ψ(t ′, x; ξ1, p, r1, d1)
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The effect of initial values on extinction or persistence 1431

or

v(x) ≤ ψ(t ′, x; ξ2, q, r2, d2)

for some given t ′ ∈ [0,∞). This feature holds in the following discussion on (2.1),
but we only take t ′ = 0 for the sake of simplicity.

Using the comparison principle, we have the following theorem.

Theorem 3.1 Assume that (u(x), v(x)) ∈ X2[0,1] has nonempty compact support. Then
the solution (u(t, x), v(t, x)) of (2.1) is well defined in (0,+∞) × R and satisfies the
following statements.

(i) For any given p > 3, if u(x) ≤ σ3g3(x) or u(x) ≤ ψ(0, x; ξ1, p, r1, d1), then

lim
t→+∞ u(t, x) = 0 uniformly in x ∈ R.

(ii) For any given q > 3, if v(x) ≤ σ1g1(x) or v(x) ≤ ψ(0, x; ξ2, q, r2, d2), then

lim
t→+∞ v(t, x) = 0 uniformly in x ∈ R.

When a, b ∈ [0, 1), we further define positive constants

c3 =
√
d1r1(1 − a)p

K (p)
, c4 =

√
d2r2(1 − b)q

K (q)
,

c5 =
√
d1r1(1 − a)p−1

K (p)
, c6 =

√
d2r2[1 − b(1 − a)]

K (q)
.

Let u(t, x) and v(t, x) be defined by

{
∂u(t,x)

∂t = d1Δu(t, x) + r1u p(t, x)
[
1 − a − u(t, x)

]
, t > 0, x ∈ R,

u(0, x) = u(x), x ∈ R,

and

{
∂v(t,x)

∂t = d2Δv(t, x) + r2vq(t, x)
[
1 − b − v(t, x)

]
, t > 0, x ∈ R,

v(0, x) = v(x), x ∈ R,

respectively. From the comparison principle and Lemma 2.2, for any given p, q > 3
and g2(x) ∈ X[0,1−b], g4(x) ∈ X[0,1−a] with nonempty compact support, there exist
constants σi := σi (gi (x)) > 0(i = 2, 4) such that if u(x) > σ4g4(x), then

lim inf
t→+∞ inf|x |<(c3−ε)t

u(t, x) ≥ 1 − a
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1432 W.-J. Bo et al.

for any given ε ∈ (0, c3), while

lim inf
t→+∞ inf|x |<(c4−ε)t

v(t, x) ≥ 1 − b

if v(x) > σ2g2(x) and ε ∈ (0, c4) is given. In what follows, we assume that gi (x)
are given functions with i ∈ {1, 2, 3, 4}, so we may fix the corresponding constants
σi depending on parameters in (2.1).

It should be noted that one important measure of invasion of a species is the speed
at which it spreads into the other competitor’s habitat. In what follows, we consider
the invasion speeds of the diffusion competition model (1.3), in which the competitors
occupy a common habitat with different competitive ability. For the sake of clarity,
this section is split into two subsections.

3.1 Weak competition case 0 ≤ a, b < 1

Firstly, we consider the asymptotic spreading of (1.3) with 0 ≤ a, b < 1, which
is the case of the so-called weak competition. From Sect. 2, when 0 ≤ a, b < 1,
the unique positive equilibrium (k1, k2) of (1.4) is globally asymptotically stable. If
p = q = 1, Lin and Li (2012) established some results on the asymptotic spreading
of (1.3) with coinvasion-coexistence process, where both u and v are invaders. There
are several interesting phenomena modeled by this process, see e.g., Davis (1981),
Chesson (2000). In what follows, we only focus on the degenerate case and consider
the balance between degenerate nonlinear reaction and diffusion. In particular, we
introduce the following condition

(F1): d2r2
K (q)

<
d1r1(1−a)p

K (p) .

Theorem 3.2 Assume that (u(x), v(x)) ∈ X2[0,1] and u(x) has nonempty compact
support. If 0 ≤ a, b < 1, then the solution (u(t, x), v(t, x)) of (2.1) is well defined
for all (t, x) ∈ (0,+∞) × R and the following properties hold:

(i) For any given ε > 0,

lim
t→+∞ sup

|x |>(c1+ε)t
u(t, x) = 0.

(ii) Suppose further that p > 3 is given. If u(x) ≤ σ3g3(x) or u(x) ≤
ψ(0, x; ξ1, p, r1, d1), then

lim
t→+∞ u(t, x) = 0 uniformly in R.

Moreover,

(a) assume that ε ∈ (0, c2) is given and v(x) �≡ 0, if q ≤ 3 or q > 3 and
v(x) > σ2g2(x), then

lim
t→+∞ inf|x |<(c2−ε)t

v(t, x) = 1;
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(b) if lim inf|x |→+∞ v(x) > 0, then

lim
t→+∞ v(t, x) = 1 uniformly in R.

(iii) For any v(x) ≥ 1− b with x ∈ R, let L1, L2 ∈ R be given constants and w(t, x)
be the solution of

{
∂w(t,x)

∂t = d1Δw(t, x) + r1w p(t, x) [1 − k − w(t, x)] , t > 0, x ∈ R,

w(0, x) = u(x), x ∈ R

with k ∈ [0, 1), denote

Σk
0 := {u(x) ∈ B : w(t, x) → 0 as t → +∞ uniformly in x ∈ R},

where

B = {u(x) : u(x) ∈ X[0,1] with u(x) > 0 in (L1, L2)

and u(x) = 0 in R\(L1, L2)}

and B is the closure of B, if u(x) ∈ Σ
1−a(1−b)
0 , then

lim
t→+∞(u(t, x) + |v(t, x) − 1|) = 0 uniformly in R.

In addition, Σk
0 is nonempty, closed in B and Σ0

0 � Σ
1−a(1−b)
0 if Σ0

0 �= {0} and
B.

(iv) Suppose further that (F1) holds and v(x) has nonempty compact support. If p ≤ 3
or p > 3 and u(x) > σ4g4(x), then we can obtain the following properties:

(a) for any given ε ∈ (0, c5),

lim inf
t→+∞ inf|x |<(c5−ε)t

u(t, x) ≥ 1 − a;

(b) for any given q > 3, if v(x) ≤ σ1g1(x) or v(x) ≤ ψ(0, x; ξ2, q, r2, d2), then

lim
t→+∞ v(t, x) = 0 uniformly in R

and

lim
t→+∞ inf|x |<(c1−ε)t

u(t, x) = 1

for any given ε ∈ (0, c1);
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(c) for any given ε > 0, if c5 > c2 + c6, then

lim
t→+∞ sup

|x |>(c6+ε)t
v(t, x) = 0;

(d) for any given ε ∈ (0, c5−c2
2 ), then

lim
t→+∞,(c2+ε)t<|x |<(c5−ε)t

u(t, x) = 1;

(e) for any given ε ∈ (0, c4), if q ≤ 3 or q > 3 and v(x) > σ2g2(x), then

lim
t→+∞ sup

|x |<(c4−ε)t
(|u(t, x) − k1| + |v(t, x) − k2|) = 0.

For the sake of simplicity, the proof of Theorem 3.2 is divided into several lemmas,
through which 0 ≤ a, b < 1, p, q ≥ 1, (u(x), v(x)) ∈ X2[0,1] and u(x) has nonempty
compact support.

Lemma 3.1 For any given p > 3, if u(x) ≤ σ3g3(x) or u(x) ≤ ψ(0, x; ξ1, p, r1, d1),
then

lim
t→+∞ u(t, x) = 0 uniformly in R.

Moreover, the following properties hold.

(i) Assume that ε ∈ (0, c2) is given and v(x) �≡ 0. If q ≤ 3 or q > 3 and v(x) >

σ2g2(x), then

lim inf
t→+∞ inf|x |<(c2−ε)t

v(t, x) = 1.

(ii) If lim inf|x |→+∞ v(x) > 0, then

lim
t→+∞ v(t, x) = 1 uniformly in R.

Proof Since v(t, x) ≥ 0 for all t > 0 and x ∈ R, we have

{
∂u(t,x)

∂t ≤ d1Δu(t, x) + r1u p(t, x) [1 − u(t, x)] , t > 0, x ∈ R,

u(0, x) = u(x), x ∈ R.

For any given p > 3, if u(x) ≤ σ3g3(x) or u(x) ≤ ψ(0, x; ξ1, p, r1, d1), then u(t, x)
is a super-solution of u(t, x), the comparison principle implies that

lim
t→+∞ u(t, x) = 0 uniformly in x ∈ R.
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It then follows that for any ε′ > 0, there exists a sufficient large number T1 > 0 such
that u(t, x) ≤ ε′ for all t > T1 and x ∈ R. Hence,

∂v(t, x)

∂t
≥ d2Δv(t, x) + r2v

q(t, x)
[
1 − bε′ − v(t, x)

]
(3.1)

with t > T1 and x ∈ R. We prove the conclusions in two steps.

Step 1. v(x) �≡ 0. Since u(t, x) ≤ 1 and b < 1, it follows that{
∂v(t,x)

∂t ≥ d2Δv(t, x) + r2vq(t, x) [1 − b − v(t, x)] , t > 0, x ∈ R,

v(0, x) = v(x), x ∈ R.

So v(t, x) is a sub-solution of v(t, x). Thus, if q ≤ 3 or q > 3 and v(x) > σ2g2(x),
then

lim inf
t→+∞ inf|x |<(c4−ε0)t

v(t, x) ≥ 1 − b

for any given ε0 ∈ (0, c4).
When ε ∈ (0, c2) is given, we can choose ε′ > 0 small enough such that

√
d2r2
K (q)

− ε <

√
d2r2(1 − bε′)q

K (q)
,

then Theorem 2.17 of Liang and Zhao (2007) and (3.1) imply that

lim inf
t→+∞ inf|x |<(c2−ε)t

v(t, x) ≥ 1 − bε′. (3.2)

Due to the arbitrariness of ε′, we deduce the assertion of (i).
Step 2. lim inf|x |→+∞ v(x) > 0. Let β = 2br2. Then

∂v(t, x)

∂t
≥ d2Δv(t, x) − βv(t, x).

It then follows that v(t, x) ≥ e−βt ṽ(t, x) with t > 0, x ∈ R, in which ṽ(t, x) is the
solution of {

∂ṽ(t,x)
∂t = d2Δṽ(t, x), t > 0, x ∈ R,

ṽ(0, x) = v(x), x ∈ R.

Since lim inf |x |→+∞ v(x) > 0, there exists θ ∈ (0, 1) such that ṽ(t, x) > θ > 0 as
|x | → +∞. Furthermore, by virtue of the strong maximum principle, for any fixed
T2 ≥ T1 > 0, there exists θ1 := θ1(T2) such that v(T2, x) > θ1 > 0 for all x ∈ R.
The asymptotic stability of the steady state in (3.1) further implies that

lim inf
t→+∞ v(t, x) ≥ 1 − (1 + b)ε′ uniformly in x ∈ R.
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Since ε′ > 0 is arbitrary, we complete the proof. 
�
Lemma 3.2 Assume that q > 3 is given. If v(x) ≤ ψ(0, x; ξ2, q, r2, d2) or v(x) ≤
σ1g1(x), then

lim
t→+∞ v(t, x) = 0 uniformly in R. (3.3)

Moreover, suppose that p ≤ 3 or p > 3 and u(x) > σ4g4(x). Then

lim
t→+∞,|x |<(c1−ε)t

u(t, x) = 1

for any given ε ∈ (0, c1).

Proof Following exactly the same arguments as that in Lemma 3.1, we complete the
proof. 
�

By selecting different initial values in (2.1), the above two lemmas reflect that one
species may vanish if the Allee effect of this species is strong enough and the initial
habitat size is sufficient small, while the invasion front of the other species is similar to
that of single species described by the Fisher equation. Comparing with Lemma 3.1,
we shall present that the interspecific competition may be harmful to the persistence
in the following two lemmas.

Lemma 3.3 Suppose that p ≥ 1 is given. For the following initial value problem

{
∂w(t,x)

∂t = d1Δw(t, x) + r1w p(t, x) [1 − k − w(t, x)] , t > 0, x ∈ R,

w(0, x) = u(x), x ∈ R
(3.4)

with k ∈ [0, 1), let L1, L2 ∈ R be given constants and

Σk
0 := {u(x) ∈ B : w(t, x) → 0 as t → +∞ uniformly in x ∈ R},

where

B = {u(x) : u(x) ∈ X[0,1] with u(x) > 0 in (L1, L2)

and u(x) = 0 in R\(L1, L2)}

and B denotes the closure of B, if Σk
0 �= {0} and B, then Σk

0 is strictly monotone
increasing in k.

Proof Assume that 1 > k1 > k2 are two nonnegative constants, Σk1
0 and Σ

k2
0 are the

corresponding set, w1 and w2 are the corresponding solutions of (3.4), then it suffices
to prove that Σk2

0 � Σ
k1
0 . Form the comparison principle, Σk1

0 and Σ
k2
0 are connected

and w2 ≥ w1 for all t > 0, x ∈ R, then Σ
k2
0 ⊂ Σ

k1
0 . Now we show Σ

k2
0 �= Σ

k1
0 .
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Firstly, for any given k ∈ [0, 1), define

Σk
1−k := {u(x) ∈ B : w(t, x) → 1 − k as t → +∞ locally uniformly in x ∈ R}.

Based on Theorem 1 and Lemma 2.1 of Du andMatano (2010), we haveΣk
1−k ∪Σk

0 =
B and Σk

1−k ∩ Σk
0 = ∅. Since Σk

0 �= {0} and B, then Σk
1−k is nonempty. The rest of

the proof is divided into two steps.

Step 1. Σk
1−k is open in B. For any given α ∈ (0, 1 − k), Theorem 2.17 of Liang

and Zhao (2007) implies that there exists Lα > 0 such that if u(x) > α with x ∈
[−Lα, Lα], then w(t, x) → 1 − k as t → +∞ locally uniformly in R. Hence,

u(x) ∈ Σk
1−k ⇐⇒ min−Lα≤x≤Lα

w(t0, x) > α for some t0 > 0. (3.5)

If u(x) ∈ Σk
1−k , then the right side of (3.5) holds. By virtue of the continuous

dependence on initial values of the solution, the right side of (3.5) also holds for
|w(x) − u(x)| < δ with w(x) ∈ B if δ > 0 is small enough, so w(x) ∈ Σk

1−k . Thus,
Σk

1−k is an open set in B.

Step 2. Σ
k2
0 �= Σ

k1
0 . Since Σ

k1
1−k1

is nonempty and open in B and 0 ∈ Σ
k1
0 , it

follows that Σ
k1
0 is nonempty and closed in B, so Σ

k1
0 ∩ Σ

k1
1−k1 is nonempty. Taking

u(x) ∈ Σ
k1
0 ∩ Σ

k1
1−k1 , if Σ

k2
0 �= Σ

k1
0 is not true, then u(x) ∈ Σ

k2
0 . On the other hand,

since Σ
k1
0 �= {0} and B, the maximum principle implies that w2(t, x) > w1(t, x) > 0

for t > 0, x ∈ R.
Note that

wi (t, x) = wi (t − s, x, wi (s, ·)) with i = 1, 2 for any 0 ≤ s ≤ t,

and w2(s, x, u(x)) > w1(s, x, u(x)) for any fixed s > 0. By virtue of the continuous
dependence on initial values of the solution, the comparison principle implies that
w2(t, x) ≥ 1 − k1 locally uniformly in R as t → +∞, which contradicts with
u(x) ∈ Σ

k2
0 . Hence, Σk2

0 �= Σ
k1
0 . The proof is complete. 
�

Lemma 3.4 Assume that p > 3 is given and Σk
0 , B are defined by Lemma 3.3 with

k ∈ [0, 1). For any v(x) ≥ 1 − b with x ∈ R, if u(x) ∈ Σ
1−a(1−b)
0 , then

lim
t→+∞(u(t, x) + |v(t, x) − 1|) = 0 uniformly in R. (3.6)

In addition, Σk
0 is nonempty, closed in B and Σ0

0 � Σ
1−a(1−b)
0 if Σ0

0 �= {0} and B.

Proof If v(x) ≥ 1− b, then the comparison principle implies that v(t, x) ≥ 1− b for
all t > 0, x ∈ R, that is

∂u(t, x)

∂t
≤ d1Δu(t, x) + r1u

p(t, x) [1 − a(1 − b) − u(t, x)] , t > 0, x ∈ R.

123

Author's personal copy



1438 W.-J. Bo et al.

Hence, by Lemma 3.1, (3.6) holds if u(x) ∈ Σ
1−a(1−b)
0 . Note that v(t, x) ≥ 0 for all

t > 0, x ∈ R, then

∂u(t, x)

∂t
≤ d1Δu(t, x) + r1u

p(t, x) [1 − u(t, x)] , t > 0, x ∈ R,

and so

lim
t→+∞ u(t, x) = 0 uniformly in R

if u(x) ∈ Σ0
0 . When Σ0

0 �= {0} and B, then the comparison principle reflects that

Σ
1−a(1−b)
0 �= {0}, so Σ0

0 � Σ
1−a(1−b)
0 if Σ

1−a(1−b)
0 = B. If Σ

1−a(1−b)
0 �= B, then

Σ
1−a(1−b)
0 ,Σ0

0 �= {0} and B, applying Lemma 3.3, we complete the proof. 
�
It should be noted that if p ∈ [1, 3], then Σk

0 = {0} for any given k ∈ [0, 1).
The first four lemmas reveal that the vanishing phenomenon occurs in the degenerate
system (1.3), which depends on the size of initial habitats as well as the intensity of
Allee effect. Hereafter, we consider the coexistence of these two species.

Lemma 3.5 Assume that ε ∈ (0, c3) is given. If p ≤ 3 or p > 3 and u(x) > σ4g4(x),
then

lim inf
t→+∞ inf|x |<(c3−ε)t

u(t, x) ≥ 1 − a.

Proof Clearly, we have v(t, x) ≤ 1 for all t > 0 and x ∈ R, then

∂u(t, x)

∂t
≥ d1Δu(t, x) + r1u

p(t, x) [1 − a − u(t, x)] , t > 0, x ∈ R.

From the definition of u(t, x), if p ≤ 3 or p > 3 and u(x) > σ4g4(x), then Lemma 2.2
together with the comparison principle ensures our results. The proof is complete. 
�
Lemma 3.6 Assume that (F1) holds and v(x) has nonempty compact support. If p ≤ 3
or p > 3 and u(x) > σ4g4(x), then

lim inf
t→+∞ inf|x |<(c5−ε)t

u(t, x) ≥ 1 − a

for any given ε ∈ (0, c5).

Proof Since u(t, x) ≥ 0 and v(x) ∈ X[0,1] has nonempty compact support, then

∂v(t, x)

∂t
≤ d2Δv(t, x) + r2v

q(t, x) [1 − v(t, x)] , t > 0, x ∈ R,

from the definition of v(t, x), the comparison principle and Lemma 2.2 imply that

lim
t→+∞ sup

|x |>(c2+ε0)t
v(t, x) = 0 (3.7)
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for any given ε0 > 0. When (F1) holds, from Lemma 3.5 and (3.7), for any ε′ > 0,
there exists a sufficient large number T1 > 0 such that

(i) sup2|x |<(c2+c3)t
v(t,x)
u(t,x) < 1

1−a−ε′ ;
(ii) sup2|x |≥(2c2+ε0)t v(t, x) < ε′

for all t > T1. Hence, we have

∂u(t, x)

∂t
≥ d1Δu(t, x) + r1u

p(t, x)

[
1 − aε′ − 1 − ε′

1 − a − ε′ u(t, x)

]

for t > T1 and x ∈ R.
For any given ε ∈ (0, c5), choosing ε′ > 0 small enough such that

√
d1r1(1 − a)p−1

K (p)
− ε <

√
d1r1(1 − aε′)p(1 − a − ε′)p−1

(1 − ε′)p−1K (p)
,

then Theorem 2.17 of Liang and Zhao (2007) and the comparison principle imply that

lim inf
t→+∞ inf|x |<(c5−ε)t

u(t, x) ≥ (1 − aε′)(1 − a − ε′)
1 − ε′ .

Due to the arbitrariness of ε′, the proof is complete. 
�
Lemma 3.7 Assume that Lemma 3.6 holds and ε > 0 is given. If c5 > c2 + c6, then

lim
t→+∞ sup

|x |>(c6+ε)t
v(t, x) = 0.

Proof It suffices to consider the case c5 − ε > c2 + c6 with any given small number
ε > 0. Let δ > 0 such that

(
c6 + ε

2

)2 = d2r2[1 − b(1 − a − δ)]
K (q)

.

Lemma 3.6 implies that there exists a positive number T5 > 0 such that

(a) inf |x |<(c5−ε/4) u(t, x) ≥ 1 − a − δ
2 , t > T5.

For the following equation

∂ω(t, x)

∂t
= d2Δω(t, x) + r2ω

q(t, x) [1 − ω(t, x)] , (3.8)

there exists a traveling wave solution connecting 0 and 1 if and only if c ≥ c2. Let
(c2, φ)be the travelingwave solution of (3.8)with critical speed, thenφ(z) ismonotone
increasing in z and satisfies

{
d2φ′′(z) − c2φ′(z) + r2φq(z)(1 − φ(z)) = 0, z ∈ R,

φ(−∞) = 0, φ(+∞) = 1.
(3.9)
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Now we define continuous functions

V (t, x) = min{φ(x + c2t + s1), φ(−x + c2t + s1)}

and

v(t, x) = min

{
φ(±x + c2t + s1), φ

(
±c6 + ε/2

c2
(x + (c6 + ε/2)t) + s1

)}

with some s1 > 0 large enough such that v(T5, x) ≥ v(T5, x) for all x ∈ R. Note
that for any s1 > 0 such that v(x) ≤ V (0, x), V (t, x) is a super-solution of ω(t, x)
with ω(0, x) = v(x), x ∈ R, which implies v(t, x) ≤ V (t, x) for all t > 0, x ∈ R.
Moreover, for each fixed t > 0, since c6 < c2, the monotonicity of φ implies that

v(t, x) = φ(∓x + c2t + s1) as x → ±∞.

Hence, s1 is admissible.
Further construct continuous functions

u(t, x) = 1, u(t, x) = w(t, x), v(t, x) = 0,

in which w(t, x) is given by

{
∂w(t,x)

∂t = d1Δw(t, x) + r1w p(t, x)
[
1 − w(x, t) − aV (t, x)

]
,

w(x, 0) = u(x).

Lemmas 3.5 and 3.6 imply that w(t, x) satisfies the inequality (a) if t > T5.
In what follows, we verify that (u, v) and (u, v) are a pair of super- and sub-

solutions of (2.1) with t > T5, x ∈ R. By the construction of V (t, x), it is clear that
u(t, x), u(t, x), v(t, x) satisfy Definition 2.1. Therefore, we only need to prove that
v(t, x) also satisfies Definition 2.1.

If t > T5 and v(t, x) = φ(x + c2t + s1), then the positivity of u(t, x) implies that

vt − d2vxx − r2v
q [

1 − bu − v
]

≥ vt − d2vxx − r2v
q [1 − v]

= c2φz − d2φzz − r2φ
q [1 − φ]

= 0

with z = x + c2t + s1.

When v(t, x) = φ
(
c6+ε/2

c2
(x + (c6 + ε/2)t) + s1

)
, we have

φ

(
c6 + ε/2

c2
(x + (c6 + ε/2)t) + s1

)
< φ(x + c2t + s1).
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It then follows from the monotonicity of φ that

c6 + ε/2

c2
(x + (c6 + ε/2)t) + s1 < x + c2t + s1,

that is

−x < (c2 + c6 + ε/2)t < (c5 − ε/2)t .

Let ξ = c6+ε/2
c2

(x + (c6+ε/2)t)+ s1, then φ(ξ) satisfies (3.9). Hence, for any t > T5,
(a) holds, so

vt − d2vxx − r2v
q [

1 − bu − v
]

≥ vt − d2vxx − r2v
q [1 − b(1 − a − δ/2) − v]

= (c6 + ε/2)2

c2
φξ − d2

(c6 + ε/2)2

c22
φξξ − r2φ

q [1 − b(1 − a − δ/2) − φ]

=
[(

(c6 + ε/2)2

c22
− 1

)
(1 − φ) + b(1 − a − δ/2)

]
r2φ

q

≥ bδr2φ
q/2 ≥ 0.

Lemma 2.1 further implies that

(u(t, x), v(t, x)) ≤ (u(t, x), v(t, x)) ≤ (u(t, x), v(t, x))

for all t ≥ T5 and x ∈ R. The proof is complete. 
�

Lemma 3.8 Assume that Lemma 3.6 holds and ε ∈ (0, c5−c2
2 ) is given. Then

lim
t→+∞,(c2+ε)t<|x |<(c5−ε)t

u(t, x) = 1.

Proof Since (F1) holds and a, b ∈ [0, 1), p, q ≥ 1, then c2 < c5. From Lemma 3.6,
there exists u∗ > 0 such that

lim inf
t→+∞ inf

(c2+ε/2)t<|x |<(c5−ε/2)t
u(t, x) = u∗,

lim sup
t→+∞

sup
(c2+ε/2)t<|x |<(c5−ε/2)t

v(t, x) = 0.

Let {εk}+∞
k=1 be a sequence such that

ε/2 = ε1 < ε2 < · · · , lim
k→+∞ εk = ε.
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Further define {uk∗}+∞
k=1 by

lim inf
t→+∞ inf

(c2+εk )t<|x |<(c5−εk )t
u(t, x) = uk∗.

Then u∗ ≤ uk−1∗ ≤ uk∗ ≤ 1 for any positive integer k ≥ 2. Hence, we have
limk→+∞ uk∗ = u∗ and 0 < u∗ ≤ u∗ ≤ 1. In addition,

u∗ ≤ lim inf
t→+∞ inf

(c2+ε)t<|x |<(c5−ε)t
u(t, x).

Let κ > 0 be a constant such that 2κ ∈ (0, u∗), then there exist positive constants T
and N such that

∫ T

0

∫ N

−N

1√
4πd1s

e
− y2

4d1s dyds > 1 − κ.

By the definition of lim inf, we can find a sequence {tkn }+∞
n=1 with limn→+∞ tkn = +∞

such that

u(tkn , xkn ) ≤ uk∗ + κ

for (c2+εk)tkn < |xkn | < (c5−εk)tkn . On the other hand, the monotonicity of εk implies
that

inf
(c2+εk−1)t<|x |<(c5−εk−1)t

u(t, x) ≥ uk−1∗ − κ

and

sup
(c2+εk−1)t<|x |<(c5−εk−1)t

v(t, x) ≤ κ

with tkn sufficient large and t ∈ [tkn − T , tkn ]. Further choose tkn large enough such that

(εk − εk−1)(t
k
n − T ) > N + c5T ,

then u(t, y) ≥ uk−1∗ − κ and v(t, y) ≤ κ for t ∈ [tkn − T , tkn ], y ∈ [xkn − N , xkn + N ].
Denote β = 2(p + q)(r1 + r2) and define continuous functions

{
F1(u, v)(t, x) = βu(t, x) + r1u p(t, x)[1 − u(t, x) − av(t, x)],
F2(u, v)(t, x) = βv(t, x) + r2vq(t, x)[1 − bu(t, x) − v(t, x)]

for (0, 0) ≤ (u(t, x), v(t, x)) ≤ (1, 1). Then F1 is monotone increasing in u and
decreasing in v, while F2 is monotone increasing in v and decreasing in u. For any
given (u(x), v(x)) ∈ X2[0,1], define (T1(t), T2(t)) by
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⎧⎪⎨
⎪⎩
T1(t)u(x) = e−βt√

4πd1t

∫ +∞
−∞ e

− (x−y)2

4d1 t u(y)dy,

T2(t)v(x) = e−βt√
4πd2t

∫ +∞
−∞ e

− (x−y)2

4d2 t v(y)dy.

In view of the basic solution of the heat equation, we have

u(tkn , xkn ) = T1(T )u(tkn − T , xkn ) +
∫ tkn

tkn−T
T1(t

k
n − s)F1(u, v)(s, xkn )ds.

Setting n → +∞, the monotonicity of F1 implies that

uk∗ + κ ≥ β(uk−1∗ − κ) + r1(1 − κ)(uk−1∗ − κ)p
[
1 − (uk−1∗ − κ) − aκ

]
β

.

It then follows from the arbitrariness of κ that

uk∗ ≥ βuk−1∗ + r1(uk−1∗ )p(1 − uk−1∗ )

β
.

Further let k → +∞, we have u∗ ≥ 1. Note that u∗ ≤ 1, then u∗ = 1, which
completes the proof. 
�
Lemma 3.9 Assume that Lemma 3.6 holds and ε ∈ (0, c4) is given. If q ≤ 3 or q > 3
and v(x) > σ2g2(x), then

lim
t→+∞ sup

|x |<(c4−ε)t
(|u(t, x) − k1| + |v(t, x) − k2|) = 0.

Proof Since u(t, x) ≤ 1, if q ≤ 3 or q > 3 and v(x) > σ2g2(x), the comparison
principle implies that

lim inf
t→+∞ inf|x |<(c4−ε/2)t

v(t, x) > 0.

When (F1) holds, then c4 < c5, and Lemma 3.6 implies that

lim inf
t→+∞ inf|x |<(c4−ε/2)t

u(t, x) > 0.

Hence, there exist positive constants u∗,+ ≥ u∗,− > 0 and v∗,+ ≥ v∗,− > 0 such that

lim inf
t→+∞ inf|x |<(c4−ε/2)t

u(t, x) = u∗,−, lim sup
t→+∞

sup
|x |<(c4−ε/2)t

u(t, x) = u∗,+,

lim inf
t→+∞ inf|x |<(c4−ε/2)t

v(t, x) = v∗,−, lim sup
t→+∞

sup
|x |<(c4−ε/2)t

v(t, x) = v∗,+.

From the definitions of lim inf and lim sup, applying similar arguments as that in
Lemma 3.8, we complete the proof. 
�
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Remark 3.1 Compared with the non-degenerate case, when the positive steady state of
the corresponding kinetic system (1.4) is globally asymptotically stable, Theorems 3.1
and 3.2 imply that four different spreading phenomenamayoccur by selecting different
initial values in the degenerate case of (1.3).

Remark 3.2 In the weak competition case of (1.3) with degenerate nonlinearity, our
results show that the interspecific competition may play a nontrivial role from the
viewpoint of persistence. In fact, Σ0

1 is a threshold set on the persistence of u when
the interspecific competition vanishes while the threshold set may be reduced due to
interspecific competition. This phenomenon is significantly different from the case of
p, q ∈ [1, 3].

3.2 Other cases a ≥ 0, b ≥ 1

Different from the above subsection, we investigate the asymptotic spreading of (1.3)
with a ≥ 0, b ≥ 1 in this subsection, which implies that the competition of u is
strong. When p = q = 1 and b > 1, Lewis et al. (2002) obtained some results on the
dynamics of (2.1) with interspecific exclusive process for 0 < a < 1 while Carrère
(2018) showed that the system may form a propagating terrace if a > 1, which are
different from the weak competition case.

Theorem 3.3 Assume that (u(x), v(x)) ∈ X2[0,1] and u(x) has nonempty compact
support. For any a ≥ 0, b ≥ 1 and p > 3, if u(x) ≤ σ3g3(x) or u(x) ≤
ψ(0, x; ξ1, p, r1, d1), then the classical solution (u(t, x), v(t, x)) of (2.1) is well
defined in (0,+∞) × R and

lim
t→+∞ u(t, x) = 0 uniformly in R.

In addition, the following properties hold:

(i) Suppose further that ε ∈ (0, c2) is given and v(x) �≡ 0. If q ≤ 3 or q > 3 and

lim inf
t→+∞ v(t, x) > 0 uniformly in any compact subset with x ∈ R, (3.10)

then

lim inf
t→+∞ inf|x |<(c2−ε)t

v(t, x) = 1.

(ii) If lim inf|x |→+∞ v(x) > 0, then

lim
t→+∞ v(t, x) = 1 uniformly in R.
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Proof According to the comparison principle and Lemma 3.1, it suffices to consider
the properties of v(t, x). Since

lim
t→+∞ u(t, x) = 0 uniformly in R,

for any ε′ > 0, there exists T ′ > 0 such that

∂v(t, x)

∂t
≥ d2Δv(t, x) + r2v

q(t, x)
[
1 − bε′ − v(t, x)

]
(3.11)

for all t > T ′ and x ∈ R.
When v(x) �≡ 0, if q ≤ 3 or q > 3 and

lim inf
t→+∞ v(t, x) > 0 uniformly in any compact subset with x ∈ R,

from Theorem 2.17 of Liang and Zhao (2007) and Lemma 2.2, for any given ε ∈
(0, c2), choosing ε′ > 0 small enough such that

√
d2r2
K (q)

− ε <

√
d2r2(1 − bε′)q

K (q)
,

then

lim inf
t→+∞ inf|x |<(c2−ε)t

v(t, x) ≥ 1 − bε′,

which implies the assertion of (i). When lim inf |x |→+∞ v(x) > 0, applying the same
argument as that in Step 2 of Lemma 3.1, the proof is complete, 
�

Now, we give some sufficient conditions to ensure (3.10).

Proposition 3.1 Assume that p > 3 and u(x) ≤ ψ(0, x; ξ1, p, r1, d1) with some

ξ1 >
(
1
2 − 1

p−1

)
bp−1. Let q > 3 and

m :=
((

1

2
− 1

p − 1

)
/ξ1

)1/(p−1)

,

suppose further that g5(x) ∈ X[0,1−bm] is given with nonempty compact support. Then
there exists a positive constant σ5 := σ5(g5(x)) such that if v(x) > σ5g5(x), then
(3.10) holds.
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Proof If u(x) ≤ ψ(0, x; ξ1, p, r1, d1), then the comparison principle implies that
u(t, x) ≤ ψ(t, x; ξ1, p, r1, d1) for all t > 0, x ∈ R, so

u(t, x) ≤
[(

1

2
− 1

p − 1

)
/(r1t + ξ1)

]1/(p−1)

e−r1x2/4d1(r1t+ξ1)

≤
((

1

2
− 1

p − 1

)
/ξ1

)1/(p−1)

= m.

For any ξ1 >
(
1
2 − 1

p−1

)
bp−1, we have 1 − bu(t, x) ≥ 1 − bm > 0. Thus,

∂v(t, x)

∂t
≥ d2Δv(t, x) + r2v

q(t, x) [1 − bm − v(t, x)]

with 1 − bm > 0 and t > 0, x ∈ R. If g5(x) ∈ X[0,1−bm] with nonempty compact
support, then the comparison principle and Lemma 2.2 imply the existence of σ5. The
proof is complete. 
�

In what follows, we summarize some of implications of the above results, which
will be divided into several cases.

3.2.1 Case 1: a > 1, b > 1

It should be noted that a > 1 and b > 1 ensure that the equilibria (0, 1) and (1, 0)
are locally stable and the coexistence state (k1, k2) is unstable for (1.4), which is the
case of the so-called strong competition. When p = q = 1, as stated by Carrère
(2018), the dynamics of the diffusion competition system depend crucially on the sign
of traveling wave solutions of (1.3) with proper initial conditions. However, due to
the degeneracy, Theorems 3.1 and 3.3 imply that one competitor may be vanishing
once the degeneracy of nonlinearity is strong enough and the size of the support of
initial value is sufficiently small, which is independent of the sign of traveling wave
solutions. Moreover, if p = 1 or q = 1, which shows that the per capita growth of one
competitor is maximal at small densities, in light of constructing appropriate super-
and sub-solutions as that in Lemma 2 of Carrère (2018), the following results could
also be obtained.

Lemma 3.10 Assume that (u(x), v(x)) ∈ X2[0,1] has nonempty compact support and
a > 1, b > 1. Then the solution (u(t, x), v(t, x)) of (2.1) is well defined for all
(t, x) ∈ (0,+∞) × R and satisfies the following statements:

(i) For any given ε > 0,

lim
t→+∞ sup

|x |>(c+ε)t
(u(t, x) + v(t, x)) = 0, c = max{c1, c2}. (3.12)

(ii) Suppose further that ε ∈ (0, |c1−c2|
2 ) is given,
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(a) if c2 < c1 and p = 1, then

lim
t→+∞ sup

(c2+ε)t<|x |<(c1−ε)t
(|u(t, x) − 1| + v(t, x)) = 0;

(b) if c1 < c2 and q = 1, then

lim
t→+∞ sup

(c1+ε)t<|x |<(c2−ε)t
(u(t, x) + |v(t, x) − 1|) = 0.

3.2.2 Case 2: 0 < a < 1, b > 1

Firstly, we recall some classical results on the asymptotic spreading of (1.3) with
0 < a < 1, b > 1. Let w = 1 − v in (1.3), then a straightforward calculation yields

{
∂u(t,x)

∂t = d1Δu(t, x) + r1u p(t, x) [1 − a − u(t, x) + aw(t, x)] ,
∂w(t,x)

∂t = d2Δw(t, x) + r2(1 − w(t, x))q [bu(t, x) − w]
(3.13)

for (t, x) ∈ (0,+∞) × R, which is cooperative in the range (0, 0) ≤ (u, w) ≤ (1, 1).
This change of variables maps (0, 1) to (0, 0), (1, 0) to (1, 1), and (0, 0) to (0, 1).
Assume that (0, 0) ≤ (u(x), v(x)) ≤ (1, 1), (u(x), v(x)) = (0, 1) outside a bounded
interval, and u(x) �≡ 0 in R, the spreading speed has been well established, see e.g.,
Lewis et al. (2002), Weinberger et al. (2002), Li et al. (2005), Liang and Zhao (2007),
Fang and Zhao (2014), which can be described by the following lemma.

Lemma 3.11 Assume that (u(x), v(x)) ∈ X2[0,1] and 0 < a < 1, b > 1. Then for any
p, q ≥ 1, the classical solution (u(t, x), v(t, x)) of (2.1) iswell defined in (0,+∞)×R

and satisfies the following statements:

(i) If for any σ > 0, there is a positive number rσ such that u(x) > σ, 1− v(x) > σ

with x on an interval of length 2rσ , then there exists a constant c∗ > 0 such that

lim
t→+∞ sup

|x |<(c∗−ε)t
(|u(t, x) − 1| + v(t, x)) = 0

for any given ε ∈ (0, c∗).
(ii) For any given ε > 0, if (u(x), v(x)) = (0, 1) outside a bounded interval and

u(x) �≡ 0 in R, then there exists a constant c∗
f ≥ c∗ such that

lim
t→+∞ sup

|x |>(c∗
f +ε)t

(u(t, x) + |v(t, x) − 1|) = 0.

The classical results reveal the interspecific competitive exclusive process between
the resident and the invader, in which the invader is superior than the resident. There
are many historical records reflect this process, such as the competition between gray
and red squirrels in United Kingdom (Okubo et al. 1989). It should be noted that if
p = q = 1, then c∗

f = c∗ and rσ is independent of σ (Lewis et al. 2002), which
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implies that the invasion is successful no matter how small the size of the support of
initial values is. When p or q > 1, Theorems 3.1 and 3.3 reflect that although the
invader is strong enough, the invasion may also be failure.

3.2.3 Case 3: a = 1, b = 1

When a = b = 1, due to the appearance of infinitely many steady states u+v = 1, the
dynamics of (1.3) are rather rich. As we know that if the competition system modeled
by (1.3) differs only in their diffusion rates, that is, r1 = r2 = a = b = 1, then the
existence and stability of the classical solutions with p = q = 1 in a bounded domain
were considered by Dockery et al. (1998), Hutson et al. (2001, 2002), Lou (2006) and
a very recent paper by Lou et al. (2019). In reaction-diffusion systems, it is normally
expected that the reaction terms will play a central role in the dynamics. However, in
the present case the per capita growth represented by these terms are identical. Thus,
the dynamics are principally driven by the differences in the diffusion. Their results
show that the slower diffusion competitor has stronger competition. When p or q > 1,
Theorems 3.1 and 3.3 imply that either the slow or fast diffusion could be selected,
which depends on the degeneracy of nonlinearity as well as the size of the support of
initial values.

4 Numerical simulations

In this section, we present some numerical simulations to illustrate our main results
obtained in Sect. 3.We consider the following degenerate competition diffusion system

{
∂u(t,x)

∂t = d1Δu(t, x) + u p(t, x) [1 − u(t, x) − av(t, x)] ,
∂v(t,x)

∂t = d2Δv(t, x) + vq(t, x) [1 − bu(t, x) − v(t, x)]
(4.1)

with constants a, b ≥ 0 and p, q ≥ 1, through which we define

u(x) = v(x) = cos x, |x | ≤ π/2; u(x) = v(x) = 0, |x | ≥ π/2.

To simulate u and v, we cutoff the domain R by letting u(t, x) = v(t, x) = 0 if x is
large, which is due to the fact

lim
x→∞ u(t, x) = lim

x→∞ v(t, x) = 0 for any fixed t > 0.

4.1 Weak competition

In this subsection, we consider (4.1) with

d1 = d2 = 1, p = 3.1, q = 3.2, a = 1/10, b = 3/10, (4.2)
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which implies the weak competition case in the corresponding kinetic system. With
the initial value (u(x), v(x)), Fig. 1a, b imply the coexistence of both species. Fig-
ure 1c, d are obtained if the initial value becomes (u(x)/10, v(x)), and Fig. 1e, f are
accomplished by taking the initial value (u(x)/10, v(x)/10). Hence, by selecting dif-
ferent initial values, we may observe some different spreading–vanishing phenomena
in (4.1), see Fig. 1 and Theorems 3.1 and 3.2.

4.2 Other cases

(i)Monostable case. First let

d1 = d2 = 1, p = 3.1, q = 3.2, a = 2, b = 3/10, (4.3)

then the corresponding kinetic system is the monostable case and v is much stronger
than u. Figure 2a, b are derived by taking the initial value (2u(x), v(x)/3). In Fig. 2c,
d, we still use the initial value (u(x), v(x)). Figure 2 demonstrates that the superior
competitor v could be wiped out by the inferior competitor u, which depends on the
initial values, also see Theorems 3.1 and 3.3.

(ii) Bistable case. Selecting

d1 = d2 = 1, p = 3.1, q = 3.2, a = 1.2, b = 1.3, (4.4)

then the corresponding kinetic system becomes the bistable case. Figure 3a–d are
obtained with the corresponding initial values (2u(x), v(x)/3) and (u(x)/3, v(x)),
respectively. These figures illustrate that the successful spreading of u and v may
depend on the initial values, and the degeneracy may lead to extinction, see Theo-
rems 3.1 and 3.3.

(iii)Having infinitelymany steady states. Nowwe consider (4.1) with a = b = 1,
under which the system admits infinitely many steady states satisfying u + v = 1.
Even in the corresponding kinetic system, it is difficult to confirm the limit behavior
of a solution. By selecting

d1 = d2 = 1, p = q = 4, a = b = 1 (4.5)

with initial value (u(x)/2, v(x)/5), we obtain Fig. 4a, b, which implies the effect of
initial value. By these figures, it is possible that large initial value leads to stronger
ability for persistence.

4.3 The effect of interspecific competition

Now we consider the effect of interspecific competition on the asymptotic spreading
in (4.1) by taking d1 = d2 = 1. Let

p = 3.1, a = 0. (4.6)
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Fig. 1 Weak competition. Numerical simulations of the solution (u(x, t), v(x, t)) of (4.1) with parameters
given in (4.2). a, b u(x, t) and v(x, t) with initial value (u(x), v(x)); c, d u(x, t) and v(x, t) with initial
value (u(x)/10, v(x)); e, f u(x, t) and v(x, t) with initial value (u(x)/10, v(x)/10)

We obtain Fig. 5a for u(x, t) with the initial value u(x). Figure 5b, c are obtained by
selecting

p = 3.1, q = 2, a = 9/10, b = 3/10 (4.7)
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Fig. 2 Monostable case. Numerical simulations of the solution (u(x, t), v(x, t)) of (4.1) with parameters
given in (4.3). a, b u(x, t) and v(x, t) with initial value (2u(x), v(x)/3); c, d u(x, t) and v(x, t) with initial
value (u(x), v(x))

and taking the initial value (u(x), v(x)). These figures reveal that the interspecific
competition may lead to extinction, see (iii) of Theorem 3.2.

With the initial value u(x), Fig. 5d for u(x, t) is obtained by choosing

p = 2.9, a = 0. (4.8)

That is, when the interspecific competition vanishes, u will spread and almost arrive
its capacity 1 in the compact interval. To show the effect of interspecific competition,
further letting

p = 2.9, q = 2, a = 9/10, b = 3/10, (4.9)

we have Fig. 5e, f with the initial value (u(x), v(x)). These figures reflect that the
interspecific competition may decrease the spreading speed of u significantly. How-
ever, we are not able to present a precise spreading speed here and plan to study this
in the future.
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Fig. 3 Bistable case. Numerical simulations of the solution (u(x, t), v(x, t)) of (4.1) with parameters given
in (4.4). a, b u(x, t) and v(x, t) with initial value (2u(x), v(x)/3); c, d u(x, t) and v(x, t) with initial value
(u(x)/3, v(x))

Fig. 4 When a = b = 1. Numerical simulations of the solution (u(x, t), v(x, t)) of (4.1) with parameters
given in (4.5) and initial value (u(x)/2, v(x)/5)
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Fig. 5 The effect of interspecific competition. Numerical simulations of the solution (u(x, t), v(x, t)) of
(4.1) with d1 = d2 = 1 and different interspecific competition parameter values. a u(x, t) with parameters
in (4.6) and initial value u(x); b, c u(x, t) and v(x, t)with parameters in (4.7) and initial value (u(x), v(x));
d u(x, t) with parameters in (4.8) and initial value u(x); e, f u(x, t) and v(x, t) with parameters in (4.9)
and initial value (u(x), v(x))
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Fig. 6 The effect of degeneracy. Numerical simulations of the solution u(x, t) and v(x, t) of (4.1) with
parameters in (4.10) and initial value (u(x)/5, v(x)/5)

4.4 The effect of degeneracy and diffusion

In this subsection, we consider the effect of degeneracy and diffusion in (4.1) with
a = b = 1, so far these results have not been proven in the present paper. With the
same initial value (u(x)/5, v(x)/5), we obtain Fig. 6a, b by letting

d1 = d2 = 1, p = 3.1, q = 20, a = b = 1, (4.10)

which imply that the stronger degeneracy may be harmful to the persistence in (4.1).
To show the effect of diffusion, we consider (4.1) with different diffusion rates. By

selecting
d1 = 1, d2 = 8, p = q = 4, a = b = 1 (4.11)

and
d1 = 6, d2 = 1, p = q = 2, a = b = 1, (4.12)

we obtain Fig. 7a–d, which show that the smaller diffusion may be favorable for the
persistence in (4.1). Unfortunately we are not able to analyze the effect of diffusion
in this paper.

5 Discussion

In population dynamics, it is natural to assume that the per capita growth is maximal
at low densities since the competition is sufficiently small (Fisher 1937; Kolmogorov
et al. 1937). However, individuals may have trouble to find mates and the genetic
diversities are scant at very low densities. In addition, some species engage in group
defense, cooperative hunting or other beneficial social behaviors which are not pos-
sible if the densities are too low. Hence, this assumption may be unrealistic in some
situations, that is, the per capita growth is no longer maximal at low densities, which
is the so-called Allee effect (Allee 1931). In addition, it turns out that diffusion can
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Fig. 7 The effect of diffusion. Numerical simulations of the solution of (4.1). a, b u(x, t) and v(x, t) with
parameters in (4.11) and initial value (u(x), v(x)); c, d u(x, t) and v(x, t) with parameters in (4.12) and
initial value (u(x), v(x))

amplify Allee effect and in some cases can create Allee effect at the level of the over-
all population even when such effect is not present locally. With these concerns, we
investigated the diffusion competition system (1.3) with degenerate nonlinearity in
this work, the degeneracy means that the per capita growth of one or both species
is zero at low densities, which is also referred to as weak Allee effect (Allee 1931).
Several interesting phenomena ranging from population dynamics to chemical waves
are modeled by the weak Allee effect, see Aronson and Weinberger (1978), Alikakos
et al. (1999), Kim and Lin (2006), Chen and Qi (2007).

In this paper, we investigated the long time behavior of (1.3)with degenerate nonlin-
earity, inwhich the interspecific competitionmaybe strong orweak. To our knowledge,
the extinction or persistence of two competitors modeled by (1.1) is principally driven
by the dynamics of the corresponding kinetic systems in the monostable case, which is
independent of the size of the support of initial values. For the degenerate monostable
case of (1.3), various extinction or persistence results may occur by selecting different
initial values, which imply that the size of the support of initial values could affect the
extinction or persistence of (1.3). Moreover, some sufficient conditions that assure the
extinction or persistence of biological invasion were given. These conditions can be
interpreted as requiring appropriate sizes of initial habitats as well as suitable intensity
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ofAllee effect.Moreover, some numerical simulationswere also presented to illustrate
these theoretical results.

To better understand these phenomena, we provided some explanations. In the
non-degenerate monostable case of (1.3), the nonlinearity reaction is strong enough
such that it plays a crucial role on spreading or vanishing, while the diffusion only
affects the spreading speed. On the other hand, the nonlinearity involves a weak Allee
effect in the degenerate case, which makes the reaction less competitive. Then the
balance between the degenerate nonlinear reaction and diffusion should be taken into
consideration. In this paper, we presented some sufficient conditions for the balance
of degenerate nonlinear reaction and diffusion. From the biological point of view, due
to the influence of diffusion (by selecting different initial values), these conditions
reveal that the superior competitor in the sense of the corresponding kinetic system
does not always win, it can be washed out by the inferior competitor in the sense
of the corresponding kinetic system. Moreover, if the degenerate competition system
modeled by (1.3) differs only in their diffusion rates, then either the slow or fast
diffusion could be selected.

Different from that in the non-degenerate case, the size of the support of initial val-
ues could also affect the extinction or persistence for the degenerate diffusion system
(1.3) in the monostable case, and the interspecific competition of one species may be
harmful to the persistence of the other species. We also obtained some results on the
bistable case, which are independent of the sign of traveling wave solutions. More-
over, numerical simulations provide some illustrations about the effect of interspecific
competition, degeneracy as well as diffusion on the asymptotic spreading of (1.3) (see
Figs. 5, 6, 7). However, only some sufficient conditions for the success or failure of
asymptotic spreading were given in this paper. To obtain more precise results, further
investigations are needed.
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