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In this paper, a tumor and immune system interaction model consisted of two differential

equations with three time delays is considered in which the delays describe the proliferation of

tumor cells, the process of effector cells growth stimulated by tumor cells, and the differentiation

of immune effector cells, respectively. Conditions for the asymptotic stability of equilibria and

existence of Hopf bifurcations are obtained by analyzing the roots of a second degree

exponential polynomial characteristic equation with delay dependent coefficients. It is shown

that the positive equilibrium is asymptotically stable if all three delays are less than their

corresponding critical values and Hopf bifurcations occur if any one of these delays passes

through its critical value. Numerical simulations are carried out to illustrate the rich dynamical

behavior of the model with different delay values including the existence of regular and irregular

long periodic oscillations. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4870363]

It is very important to study how the immune system

responds to cancer development and progression. On one

hand, innate and adaptive immune cells can suppress tu-

mor growth by destroying cancer cells or restraining their

outgrowth. On the other hand, the immune system can

also promote tumor progression. Recently, various mathe-

matical models have been developed to study the immune

response to tumor cells. Following Mayer et al.,25 Burić

et al.,4 and Yu and Wei,39 in this paper, we propose a tu-

mor and immune system interaction model consisted of

two differential equations with three time delays in which

the delays describe the times necessary for molecule pro-

duction, proliferation, differentiation of cells, transport,

etc. It is well known that systems with multiple delays are

difficult to deal with. Here, we provide some analysis on

the existence and stability of equilibria and existence of

Hopf bifurcations in the model with three delays. We fol-

low the technique of Wei and Ruan
38

(see also Ref. 1) to

study the stability of the positive equilibrium: First, we

start by considering the model with one delay and obtain a

stable interval for the delay; Second, fixing the first delay

in its stable interval, we then introduce the second delay

and obtain a stable interval for it as well; Finally, we fix

the first two delays in their stable intervals and determine

the stability for the third delay. The stability of the positive

equilibrium is thus obtained when the three delays are re-

stricted in their corresponding intervals and Hopf bifurca-

tions occur if any one of these delays passes through its

critical value. Numerical simulations indicate that the

model exhibits regular and irregular periodic oscillations

(and chaotic behaviors), which demonstrate the

phenomenon of long-term tumor relapse. The regular per-

iodic oscillations describe the equilibrium process of

cancer immunoediting in the dual host-protective and

tumor-promoting actions of immunity. The time delay

effects may make the immune-tumor interaction more

irregular.

I. INTRODUCTION

The immune state of a patient with tumor often looks

rather irregular and is unpredictable due to its complex interac-

tions with the tumor. How the immune system responds to can-

cer development and progression is an interesting and

important question in immunology and cancer research. It is

known that innate and adaptive immune cells not only suppress

tumor growth but also promote tumor progression.13,14,21,33,36

Elimination (immunity functions as an extrinsic tumor suppres-

sor in naive hosts), equilibrium (expansion of transformed cells

is held in check by immunity), and escape (tumor cells attenu-

ate immune responses and grow into cancers) are the three

processes in the dual host-protective and tumor-promoting

actions of immunity, called cancer immunoediting.

Recently, there has been much interest in mathematical

modeling of immune response to tumor cells, see for exam-

ple, Refs. 5, 6, 11, 20, 22–27, 32, 34, and 35 and the referen-

ces cited therein. An ideal model can provide insights into

the dynamics of interactions of the immune response with

the tumor and may play a significant role in understanding

the cancer and developing effective drug therapy strategies

against it. However, it is almost impossible to develop realis-

tic models to describe such complex processes. In fact, math-

ematical models for the dynamics of the interaction of the
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immune components with tumor cells are very idealized.

Thus, it is feasible to propose simple models, which can dis-

play some of the essential immunological phenomena.

In 1997, Mayer et al.25 (see also Refs. 4 and 39) pro-

posed a very simple model of the typical immune response

with two ordinary differential equations (ODEs), which is

capable of describing a variety of possible situations.

Although the model is very simple, it demonstrates how the

combination of a few proposed nonlinear interaction rules

between the immune system and the tumor are able to gen-

erate various kinds of immune response. Mayer et al.25 also

pointed out that time delays should be taken into account to

describe the times necessary for molecule production,

proliferation, differentiation of cells, transport, etc.

However, they did not go into any analysis of the delay

model they mentioned. In fact, tumor and immune system

interaction models with delay have been studied exten-

sively, see Refs. 2, 5, 6, 9, 11, 12, 15, 16, 25, 28, 29, and 37

and the references cited therein.

From the above references, we know it is necessary to

consider time delays in the tumor growth model with

immune response. In this article, following Mayer et al.,25

Byrne,5 d’Onofrio and Gandolfi,11 d’Onofrio et al.,12 Burić

et al.,4 and Yu and Wei,39 we consider the following tumor

and immune system interaction model with three time delays

(see Fig. 1)

dT

dt
¼ rTðt� sÞ � kTðtÞEðtÞ

dE

dt
¼ f ðaTðtÞ þ ð1� aÞTðt� dÞÞ þ gðbEðtÞ þ ð1� bÞEðt� DÞÞ � dEðtÞ;

8>>><
>>>:

(1)

where T(t) describes the concentration of tumor cells at time

t, E(t) measures the concentration of relevant active immune

effector cells at time t, r is the intrinsic growth rate of tumor

cells, and s � 0 is the time delay in the proliferation of tumor

cells.5,11,25 The term kTE is the inactivation of tumor cells

by the immune effector cells. The corresponding inactivation

term TE in the equation for E can be neglected since it

should be orders of magnitude smaller than the first two

terms, which are given by the nonlinear functions f(T) and

g(E). f describes the velocity of the stimulation by the pres-

ence of tumor cells and g is the corresponding function

because of autocatalytic effects in the immune system,

where

f ðTÞ ¼ pTu

mv þ Tv
; gðEÞ ¼ sEn

cn þ En

with p; s; u;m; n; v > 0; u � v; n � 1 being constants.

Following Refs. 4 and 39, we write the variable of f as a

combination of T(t) and Tðt� dÞ, which shows the depend-

ence of the rate of creating immunocompetent cells not only

on the size of T(t) but also on the value of Tðt� dÞ, where

d � 0 is the time delay describing the process of effector

cells growth with respect to stimulus by the tumor cells

growth.12 Similarly, we allow the function g to depend on

the combination of E(t) and Eðt� DÞ, where D � 0 is the

time delay appearing in the differentiation of immune effec-

tor cells.25 a; b are constants, and d is the death rate of the

immune effector cells.

Note that some special cases of model (1) have been

considered in the literature. (i) When a¼ 0 and b ¼ 0, the

model was first proposed by Mayer et al.25 to describe the

immune response to tumor cells who showed that the model

has only regular solutions, such as fixed points, periodic

orbits, and orbits asymptotic to these, but the model cannot

describe frequently observed, irregular or chaotic, behavior.

(ii) When s ¼ 0; d ¼ 1, u ¼ v ¼ 4; n ¼ 3;m ¼ 1, and c¼ 1,

Burić et al.4 illustrated that a time delay could introduce cha-

otic dynamics in the model (i.e., with f ðTÞ ¼ pT4

1þT4 ;

gðEÞ ¼ sE3

1þE3). (iii) When s ¼ 0, u ¼ v ¼ 2m1; n ¼ 2n1;

m ¼ 1, and c¼ 1, Yu and Wei39 studied stability switch and

Hopf bifurcations of the model (i.e., with f ðTÞ ¼ pT2m1

1þT2m1
;

gðEÞ ¼ sE2n1

1þE2n1
). In this paper, without loss of generality we

consider the case of m¼ c¼ 1.

It is well known that systems with multiple delays

are difficult to deal with. Various biological models with

two delays have been studied by many researchers and

very interesting dynamics have been observed, see Refs.

1–3, 7, and 39, for example. For biological models with

three or more delays, Glass et al.17 showed numerically

that multiple negative feedback loops with different

delays may generate complex periodic and aperiodic,

FIG. 1. The essential mechanisms of interaction between the tumor cells

T(t) and the immune effector cells E(t).
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chaotic rhythms, as delays vary. Glass and Malta18 gave

the possibility of chaos for normal physiological control

in multi-looped negative feedback systems. We also refer

to the online Wolfram Demonstrations Project,19 which

presents simulations of chaos in tumor growth models

with time delayed immune response. However, there are

very few studies on the mathematical analysis of biologi-

cal models with more than two different delays. In this

paper, we provide detailed mathematical analysis on the

existence and stability of equilibria and existence of Hopf

bifurcations in model (1) with three delays. We follow

the technique of Wei and Ruan38 (see also Ref. 1) to

study the stability of the positive equilibria and the exis-

tence of Hopf bifurcations: we start by considering the

corresponding ODE model when all delays are equal to

zero and obtaining conditions for the stability of the posi-

tive equilibrium. Then, we introduce the three delays into

the model one by one and obtain a stable interval for

each of them. The stability of the positive equilibrium is

thus obtained when the three delays are restricted within

their corresponding intervals and a Hopf bifurcation can

occur if any of these three delays passes through a critical

value. Numerical simulations indicate that the model

exhibits regular and irregular periodic oscillations (and

chaotic behaviors), which demonstrate the phenomenon of

long-term tumor relapse.

The rest of this paper is organized as follows. In Sec. II,

we consider the existence and linear stability of equilibria,

some results for the stability and Hopf bifurcation of the

model with multiple delays are given. Section III devotes to

the numerical analysis and simulations of the main results of

this paper. A brief discussion and more numerical simula-

tions are given in Sec. IV.

II. STABILITY AND BIFURCATION ANALYSIS

In this section, we discuss the existence of equilibria

and determine their stabilities by analyzing the distribution

of eigenvalues of the variational system of (1). Noting the

forms of the functions f and g, system (1) has three types of

equilibria:

(a) Trivial (virgin state) equilibrium (0, 0);

(b) Semi-trivial (tumor-free or immune state) equilibrium

ð0;EiÞ with dEn
i � sEn�1

i þ d ¼ 0;

(c) Positive (tumor-present or coexistence) equilibrium

ðTi;
r
kÞ, where Ti satisfies �mTv

i � pTu
i þ �m ¼ 0 with

�m ¼ dr
k � srn

knþrn :

Let �m ¼ r
k ðd � skrn�1

knþrnÞ; T1 ¼
ffiffiffiffiffiffi

u
v�u

v
p

;B ¼ pTu
1

1þTv
1

. The exis-

tence of all possible equilibria of system (1) can be summar-

ized as follows.

(i) System (1) always has a trivial equilibrium (0,0).

(ii) (a) If n¼ 1, then system (1) has no semi-trivial equi-

librium when s < d and a unique semi-trivial equilib-

rium ð0; s
d � 1Þ when s > d. (b) If n > 1, then system

(1) has no semi-trivial equilibrium when d
s >

1
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn� 1Þn�1n

q
; a unique semi-trivial equilibrium when

d
s ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þn�1n

q
; and two semi-trivial equilibria

when d
s <

1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þn�1n

q
.

(iii) (a) System (1) has no positive equilibrium when u¼ v
and �m < 0 or �m � p; a unique positive equilibrium

ð
ffiffiffiffiffiffiffi

�m
p� �m

u

q
; r

kÞ when u¼ v and 0 < �m < p; and two posi-

tive equilibria ðT2�; r
kÞ and ðT3�; r

kÞ when 0 < u < v

and 0 < �m < B, where T2� and T3� are the positive

roots of �mTv � pTu þ �m ¼ 0 with T2� <
ffiffiffiffiffiffi

u
v�u

v
p

< T3�.

(b) When �m increases to B, the two positive equilibria

ðT2�; r
kÞ and ðT3�; r

kÞ merge into one ð �m; r
kÞ, and when

�m is greater than B, this positive equilibrium

disappears.

Cases (i) and (ii) are easy to see. To see case (iii),

assume u < v, then f 0ðtÞ ¼ T�1ðuþðu�vÞTvÞ
ð1þTvÞ2 ; that is, f(T) is

increasing when 0 < T < T1 and decreasing when T > T1,

where T1 ¼
ffiffiffiffiffiffi

u
v�u

v
p

. On the other hand, we know

limT!1
pTu

1þTv ¼ 0. In fact, the three different shapes of the

stimulation function f(T) can be illustrated as in Figs.

2(a)–2(c), that is, the equilibria are the intersect points of the

horizontal line �m ¼ c (constant) and the curve of f(T). If

u¼ v, it is easy to obtain that f 0ðTÞ > 0 and

limT!1
pTu

1þTu ¼ p.

Let ðT0; E0Þ be any equilibrium of system (1). Assume
�T ¼ T � T0; �E ¼ E� E0. For convenience, removing the

overbars, then the linearized system of (1) at an equilibrium

ðT0; E0Þ is

FIG. 2. Graphs of f(T) for three different parameter sets: (a) u ¼ v ¼ 1; (b) u ¼ v ¼ 5 > 1; (c) u ¼ 1
2
< 1 < v ¼ 2.
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dT

dt
¼ rTðt� sÞ � kE0TðtÞ � kT0EðtÞ

dE

dt
¼ f 0ðT0ÞðaTðtÞ þ ð1� aÞTðt� dÞÞ þ g0ðE0ÞðbEðtÞ þ ð1� bÞEðt� DÞÞ � dEðtÞ:

8>><
>>: (2)

Then, the stability of the equilibrium ðT0; E0Þ is equivalent

to the stability of the trivial equilibrium (0,0) of the linear-

ized system (2).

In order to understand the dynamics of the model, we

now discuss the stability of the equilibria one by one.

A. The trivial (virgin state) equilibrium

For any u; v > 0; n > 0, the first equation of the varia-

tional system of (2) at the trivial equilibrium (0,0) is

dT

dt
¼ rTðt� sÞ:

Noting that r > 0; it is easy to see that the trivial equilibrium

of (1) is unstable for all s; d;D � 0. That is, if there are no

immune effector cells, the tumor cells will not die out once

they invade, this is an obvious result.

B. The semi-trivial (tumor-free) equilibrium

For the stability of the semi-trivial or tumor-free equilib-

rium ð0;EiÞ, the characteristic equation of (2) is

ðk� re�ksþ kEiÞðk� g0ðEiÞð1� bÞe�kDþðd� g0ðEiÞbÞÞ ¼ 0;

(3)

then the characteristic roots of (3) satisfy

kþ A� re�ks ¼ 0 or kþ C1 � C2e�kD ¼ 0; (4)

where A¼ kEi > 0; C1 ¼ dð1� nb
1þEn

i
Þ, C2 ¼ nd

1þEn
i
ð1� bÞ � 0.

If s ¼ D ¼ 0, then the roots of (3) are k1 ¼ r � A and

k2 ¼ C2 � C1. Thus, k1 < 0 and k2 < 0 as r < A and

C2 < C1. On the other hand, for s � 0; D � 0, it is easy to

see that (3) has no zero root and purely imaginary root when

r < A and C2 < C1.

Assume r > A and C1 < C2, we can see that (3) has pos-

itive roots k1 ¼ r � A and k2 ¼ C2 � C1 when s ¼ D ¼ 0. If

�C2 < C1 < C2, then (3) has a pair of purely imaginary

roots 6ix1;2, which satisfy

tan x1s ¼ �
x1

A
; tan x2D ¼ �

x2

C1

: (5)

Thus

s0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � A2
p arccos

A

r
; D0 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

2 � C2
1

p arccos
C1

C2

:

Recalling (4) and (5), we know that sin x1s ¼ �x
r < 0,

sin x2D ¼ �x
C2
< 0, hence sj ¼ 2p� s0 þ 2jp; Dj ¼ 2p� D0

þ 2jp; j ¼ 0; 1; 2:::. If n is given, Ei can be obtained from

(1), then the distribution of ki can be given as follows:

(i) If r < A and C2 < C1, then all roots of (3) have nega-

tive real parts for all s � 0 and D � 0.

(ii) If C1 < �C2, then (3) has roots with positive real part

for s � 0;D � 0.

(iii) If r > A or �C2 < C1 < C2, then (3) has roots with

positive real part when s ¼ D ¼ 0; moreover, (3) has

purely imaginary roots 6ix1 and 6ix2 when s ¼ sj,

D ¼ Dj, respectively, where

sj ¼ 2p� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � A2
p arccos

A

r
þ 2jp;

Dj ¼ 2p� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

2 � C2
1

p arccos
C1

C2

þ 2jp; j ¼ 0; 1; 2; ::: (6)

(iv) If there exists n such that n ¼ En
i þ 1, then (3) has a

zero root, the other roots have negative real parts

when r < A and positive parts when r > A.

(v) If A¼ r and there exists n such that n ¼ ðrkÞ
n þ 1, then

(3) has two zero roots, that is the semi-trivial equilib-

rium degenerates to the trivial equilibrium.

On the other hand, it is easy to see that (3) has a pair of

purely imaginary roots 6ixs when s ¼ sj; D < Dj or 6ixD

when s < sj; D ¼ Dj. To verify whether a Hopf bifurcation

occurs, we study the transversality condition as follows. Let

kðs;DÞ ¼ aðs;DÞ þ ibðs;DÞ be a root of (3) satisfying

aðs;DjÞ ¼ 0, aðsj;DÞ ¼ 0; bðsj;DÞ ¼ x1; bðs;DjÞ ¼ x2: If

r2 � A2 6¼ C2
2 � C2

1, by a direct computation, one has

daðs;DÞ
ds

����
s¼sj;D6¼Dj

¼ x2
1

ð1þ sAÞ2 þ x2
1s

2
> 0;

daðs;DÞ
dD

����
s 6¼sj;D¼Dj

¼ x2
2

ð1þ C1DÞ2 þ x2
2D

2
> 0;

daðs;DÞ
ds

����
s¼sj;D¼Dj

¼ x2
1

ð1þ sAÞ2 þ x2
1s

2
> 0;

daðs;DÞ
dD

����
s¼sj;D¼Dj

¼ x2
2

ðr þ C1DÞ2 þ ðDx2Þ2
> 0:

(7)

Noting 6ix1 and 6ix2 are purely imaginary roots of (3),

then the result follows. From the above discussions, we have

the following stability results.

Theorem 2.1.

(i) If r < A and C1 > C2, then the semi-trivial equilib-
rium ð0;EiÞ of (1) is asymptotical stable for all
s � 0; D � 0;

(ii) If C1 < �C2, then the semi-trivial equilibrium ð0;EiÞ
of (1) is unstable for D � D0; s � s0;

(iii) If r > A, �C2 < C1 < C2, then the semi-trivial equi-
librium ð0;EiÞ of (1) is unstable for
0 < s < s0; 0 < D < D0; r2 � A2 6¼ C2

2 � C2
1; and

023101-4 Bi, Ruan, and Zhang Chaos 24, 023101 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

192.70.171.170 On: Wed, 02 Apr 2014 14:58:25



(1) undergoes Hopf bifurcation at (0;Ei) as s ¼ sj,
D 6¼ Dj, or s 6¼ sj, D ¼ Dj, where sj ¼ 2p� s0 þ 2jp;
Dj ¼ 2p� D0 þ 2jp; j ¼ 0; 1; 2:::.

(iv) Let r > A, �C2 < C1 < C2. If there is no integer k1

such that r2 � A2 6¼ k1ðC2
2 � C2

1Þ, then system (1)
undergoes Hopf-Hopf bifurcation at s ¼ sj; D ¼ Dj,
j ¼ 0; 1; 2:::.

(v) Let r > A, �C2 < C1 < C2. If there exist integers m2

and n2 such that m2
2ðr2 � A2Þ ¼ n2

2ðC2
2 � C2

1Þ, then
system (1) undergoes m2 : n2 resonant bifurcation at
s ¼ sj; D ¼ DjðsjÞ, j ¼ 0; 1; 2:::.

The above results indicate that the stability of the semi-

trivial equilibrium ð0;EiÞ depends on the delays s and D. In fact,

when the delays take some critical values, the stability of the

semi-trivial equilibrium will change and various types of bifurca-

tions such as Hopf, Hopf-Hopf, and resonant bifurcations will

occur at the semi-trivial equilibrium. These demonstrate that the

immune system exhibits various types of oscillatory behavior.

C. The positive (tumor-present) equilibrium

In this section, following the technique of Wei and

Ruan38 (see also Ref. 1), we present detailed study on the sta-

bility of the positive (tumor-present) equilibrium ðT�;E�Þ and

the existence of Hopf bifurcations of system (1) with three

time delays. We start by considering the ODE model when all

three delays are zero and analyze the cases with one, two, and

three delays, respectively. The first result is about the saddle-

node bifurcation in system (1), which indicates the possible

types of the equilibria and the number of positive equilibria.

Theorem 2.2. If 0 < u < v and m ¼ f ðT1Þ, then (1)
undergoes a saddle-node bifurcation, where m and f(T) are
defined as above and T1 ¼

ffiffiffiffiffiffi
u

v�u
v
p

.

We first consider the model when all delays s; d and D
are zero; that is, the ODE model. The characteristic equation

reduces to

k

�
kþ d þ g0

�
r

k

��
þ kT�f 0ðT�Þ ¼ 0: (8)

Thus, k1 þ k2 ¼ �ðd þ g0ðrkÞÞ < 0 and k1k2 ¼ kT�f 0ðT�Þ.
We have the following results.

Theorem 2.3. Let s ¼ d ¼ D ¼ 0.

(i) When u¼ v, the unique positive equilibrium (T�;E�)
of system (1) is a stable node.

(ii) When 0 < u < v, system (1) has two positive equili-
bria (T1�;E�) and (T2�;E�), where (T1�;E�) is a stable
node and (T2�;E�) is a saddle.

When s; d;D increase from zero, it is possible to have

Hopf bifurcations. Hence, in order to study whether (1)

undergoes Hopf bifurcations when the delays s; d;D increase

from zero, for the sake of simplicity, we only consider the

case u¼ v in the rest of this paper. At first, we discuss the ex-

istence of equilibria when u ¼ v :

(i) If m � p or m < 0, then (1) has only one equilibrium,

the trivial equilibrium (0,0);

(ii) If m¼ 0, then (1) has two equilibria, the trivial

equilibrium (0,0) and a semi-trivial equilibrium

ð0; r
kÞ;

(iii) If 0 < m < p, then (1) has two equilibria, the trivial

equilibrium (0,0) and a positive equilibrium

ð m
p�m ;

r
kÞðu ¼ v ¼ 1Þ or ð

ffiffiffiffiffiffiffi
m

p�m
u

q
; r

kÞðu ¼ v > 1Þ.

Recall that the trivial equilibrium (0, 0) is always

unstable and the semi-trivial equilibrium ð0; r
kÞ is stable,

while the stability of the positive equilibrium changes

depending on the parameter values, which is what we will

study next.

If u¼ v and 0 < m < p, m ¼ k
r ðd � skrn�1

knþrnÞ, then (1) has

only one positive equilibrium (T�;E�) with E� ¼ r
k. The char-

acteristic equation at ðT�;E�Þ is

k� re�ks þ kE�; kT�

�f 0ðT�Þa� f 0ðT�Þð1� aÞe�dk; k� ðg0ðE�Þb� dÞ � ð1� bÞg0ðE�Þe�Dk

�����
����� ¼ 0; (9)

where ðT�;E�Þ ¼ ð m
p�m ;

r
kÞ as u ¼ v ¼ 1 and ðT�;E�Þ

¼ ð
ffiffiffiffiffiffiffi

m
p�m

u

q
; r

kÞ as u ¼ v > 1 are defined as above. If

b ¼ 1; s ¼ d, system (1) is studied in Bi and Ruan,2 codi-

mension one and codimension two bifurcations, including

Hopf, Bautin, and Hopf-Hopf bifurcations, were obtained. In

this section, we consider the stability and Hopf bifurcation in

the case s 6¼ d. We establish the main results in two steps: (i)

b ¼ 1 and g0ðE�Þb ¼ d; and (ii) g0ðE�Þb 6¼ d.

1. b51 and g 0ðE�Þb5d

Notice that in this case, the term involving e�Dk

disappears, so that the problem becomes a model with

two delays s and d. There are two subcases: a¼ 1 and

a 6¼ 1.

(a) If a ¼ 1, then the terms containing e�dk also vanish

and we have the special case with only a single delay s.

From (9), the characteristic equation at ðT�;E�Þ is

k2 þ rkþ A1 � kre�ks ¼ 0; (10)

where A1 ¼ f 0ðT�ÞkT� � 0. Noting r ¼ kE� � 0. The

distribution of the roots of Eq. (A1) can be analyzed

using standard techniques (see Appendix), we know

that there are critical values of the delay s so that the

characteristic Eq. (A1) has purely imaginary roots.
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However, the positive equilibrium remains stable if the

delay s is less than the first critical value 2p.

(b) If a 6¼ 1, the second delay d appears and the character-

istic Eq. (9) becomes

k2 þ kð�re�ks þ kE�Þ þ A1ðaþ ð1� aÞe�kdÞ ¼ 0: (11)

From the Hopf bifurcation theorem and the results of

Ruan,30 we obtain the following results on the exis-

tence of a Hopf bifurcation when the second delay

takes some critical values.

Theorem 2.4. Assume A1 > 0, if ja� 1
2
j � 1, s 2 ð0; s0Þ,

then (11) has purely imaginary roots 6ixn with d ¼ dn
j ;

j ¼ 0; 1; 2…, where xn are the positive roots of

gðx; hÞ ¼ x4 þ x2ð2r2 � 2A1aþ 2xr sin xs� 2r2 cos xsÞ

� 2xA1ar sin xsþ A2
1a2ð1� h2Þ

with h ¼ 1�a
a and

dn
j ¼

1

xn
2p� arccos

x2 � aA1 þ xr sin xs
A1ð1� aÞ þ 2jp

 !
; r > cos xs

1

xn
arccos

x2 � aA1 þ xr sin xs
A1ð1� aÞ þ 2jp

 !
; r < cos xs:

8>>>>>><
>>>>>>:

(12)

Moreover, if

2x cos dxþ xrs cos xðd� sÞ
þ rðsin dx� sin xðd� sÞÞ 6¼ 0; (13)

then Eq. (1) undergoes a Hopf bifurcation at ðT�;E�Þ.
The above results indicate that system (1) is more likely

to undergo Hopf bifurcations at the positive equilibrium

when the two delays s and d increase. Thus, the population

densities of the tumor cells and immune effector cells oscil-

late around their steady state values.

Remark 2.5. We use the parameter a to show that the

change of E(t) at time t is decided by the qualities of E(t)
not only at time t but also at time t� s. In the analysis,

we choose a ¼ 1
2
, which shows that the qualities of E(t) at

time t and t� s have the same effect to the change of

E(t). For a < 1
2
, it is easy to obtain gð0; hÞ < 0, then (11)

has purely imaginary roots obviously, which shows that

the change of E(t) depends more on time t� s when

a < 1
2
.

The result of the remark is relevant to the model of

Mayer et al.,25 which is as follows. Noting (A3), we have

gðx; 0Þjx¼0 ¼ �A2
1 < 0, then we have the following

result.

Corollary 2.6. If a¼ 0 and (13) holds, then (1) under-
goes a Hopf bifurcation at ðT�;E�Þ.

2. g 0ðE�Þb 6¼ d

In this case, all three delays appear in the characteristic

Eq. (9). We further consider three subcases: (a) s 6¼ 0; d ¼
D ¼ 0 (one delay); (b) s 6¼ 0; d 6¼ 0;D ¼ 0 (two delays); (c)

sdD 6¼ 0 (three delays).

(a) If s 6¼ 0; d ¼ D ¼ 0, the characteristic equation at

ðT�;E�Þ is

k2 þ B1kþ B2 þ ðB3kþ B4Þe�ks ¼ 0; (14)

where B1 ¼ r þ d � g0ðE�Þ, B2 ¼ rðd � g0ðE�ÞÞ þ A1,

B3 ¼ �r < 0, and B4 ¼ �rðd � g0ðE�ÞÞ. First, we make the

following assumptions:

ðH1Þ B4 þ B2 > 0; B3 þ B1 > 0:
ðH2Þ B2

3�B2
1þ2B2<0; B2

2�B2
4>0 or ðB2

3�B2
1þ2B2Þ2

<4ðB2
2�B2

4Þ:
ðH3Þ B2

2 � B2
4 � 0 or B2

3 � B2
1 þ 2B2 > 0 and ðB2

3 � B2
1

þ 2B2Þ2 ¼ 4ðB2
2 � B2

4Þ:
ðH4Þ B2

3�B2
1þ2B2>0;B2

2�B2
4>0 andðB2

3�B2
1þ2B2Þ2>

4ðB2
2�B2

4Þ:
Define

x2
6 ¼

1

2
ðB2

3 � B2
1Þ þ B26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2

3 � B2
1Þ

2

4
þ B2ðB2

3 � B2
1Þ þ B2

4

s

and s6
j ðj ¼ 0; 1; 2Þ as functions of x and other parameters by

s6
j ¼

s6
1j ¼

1

x6

2jpþ arccos
ðB4 � B1B3Þx2

6 � B4B2

B2
3x

2
66B2

4

( ) !
; if B4B1 þ B3ðx2

6 � B2Þ > 0;

s6
2j ¼

1

x6

ð2jþ 1Þp� arccos
ðB4 � B1B3Þx2

6 � B4B2

B2
3x

2
66B2

4

( ) !
; if B4B1 þ B3ðx2

6 � B2Þ < 0:

8>>>>>><
>>>>>>:

(15)
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Using the results of Bi and Ruan,2 Cooke and Grossman,8

and Ruan,30 we can obtain the following results on the stabil-

ity, Hopf bifurcation, and stability switch in the case of one

delay.

Theorem 2.7. Let (H1) hold and s6
j ðj ¼ 1; 2;…Þ be

defined by (15).

(i) If (H2) holds, then the positive equilibrium ðT�;E�Þ of
(1) is asymptotically stable for all s � 0.

(ii) If (H3) holds, then ðT�;E�Þ is stable for all s 2 ð0; sþ0 Þ
and unstable for s > sþ0 . Moreover, system (1) under-
goes Hopf bifurcation at ðT�;E�Þ as s ¼ sþj ,
j ¼ 0; 1; 2 � � �.

(iii) If (H4) holds, then there is a positive integer l such
that ðT�;E�Þ is stable for

s 2 ½0; sþ0 Þ [ ½s�0 ; sþ1 Þ [ � � � [ ½s�l�1; s
þ
l Þ

and unstable for

s 2 ½sþ0 ; s�0 Þ [ ½sþ1 ; s�1 Þ [ � � � [ ½sþl�1; s
�
l�1Þ:

(b) If s 6¼ 0; d 6¼ 0;D ¼ 0 (a 6¼ 1), then the characteristic

equation can be written as

k2 þ B1kþ B2 � A1ð1� aÞ þ e�ksðB3kþ B4Þ
þ A1ð1� aÞe�kd ¼ 0: (16)

Now assume that the first delay s lies in its stable interval,

we discuss the stability and Hopf bifurcation using the sec-

ond delay d as the bifurcation parameter. Then, we have the

following results.

Theorem 2.8. Assume that ðH1Þ holds, if B2
2 � B2

4 < 0,
s < s0; s0 ¼ minfsþ0 ; s0g, then (16) has purely imaginary
roots 6ix1n with d ¼ dn

j ; j ¼ 0; 1; 2; � � �, where x1n are the
positive roots of

g1ðxÞ ¼ ðB2 � x2 � A1ð1� aÞ þ B4 cos xsþ B3x sin xsÞ2

þðB1x1n þ B3x cos xs� B4 sin xsÞ2 � A2
1ð1� aÞ2

(17)

and

dn
j ¼

1

x1n
2p� arccos

x2 � B2 þ A1ð1� aÞ � B4 cosðxsÞ � B3x sinðxsÞ
A1ð1� aÞ þ 2jp

 !
; sin x1nd < 0;

1

x2n
arccos

x2 � B2 þ A1ð1� aÞ � B4 cosðxsÞ � B3x sinðxsÞ
A1ð1� aÞ þ 2jp

 !
; sin x1nd > 0:

8>>>>><
>>>>>:

(18)

Moreover, if

B3x1ns cos x1nðd� sÞ þ ðB4s� B3Þsin x1nðd� sÞ
� 2x1n cos dx1n � B1 sin dx1n 6¼ 0;

then Eq. (1) undergoes a Hopf bifurcation at ðT�;E�Þ as d¼dn.

(c) If sdD 6¼ 0, all three delays are present and the char-

acteristic equation is

k2 þ B01kþ B02 � A1ð1� aÞ þ e�ksðB3kþ B04 þ rB5e�DkÞ
� ðkþ kE�ÞB5e�Dk þ A1ð1� aÞe�kd ¼ 0; (19)

where B01 ¼ B1 þ B5; B02 ¼ B2 þ rB5; B04 ¼ B4 � rB5, and

B5 ¼ g0ðE�Þð1� bÞ. In the case of three delays, fixing the

first two delays in their stable intervals, we finally discuss

the stability and Hopf bifurcation by using the third delay D
as the bifurcation parameter.

Lemma A3 (see Appendix) gives the existence of D�, in

fact, we can compute D� in a similar way as above for other

critical delay values and have the following main result.

Theorem 2.9. Assume ðH1Þ and B2
2<B2

4 hold, if
s< s0;d<d0, then (16) has purely imaginary roots 6ix2n

with D¼Dn
j ;j¼0;1;2;…, where x2n are the positive roots of

g3ðx2nÞ ¼ ðB02 � x2
2n � A1ð1� aÞð1� cos x2ndÞ � B5r cos x2nDþ B5x2n sin x2nDÞ2

þðB01x2n þ rB5 sin x2nD� xB5 cos x2nD� A1ð1� aÞsin x2ndÞ2

�B024 � B2
3x

2
2n � B2

5r2 � 2B04B5r cos x2nDþ 2B03B5x2nr sin x2nD; (20)

where

Dn
j ¼

1

x2n
2p� arccos

Gðx2nÞ
B5ðx2n þ r sin x2nsÞ2 þ B5ðr cos x2ns� kE�Þ2

þ 2jp

 !
; sin x2nD < 0

1

x2n
arccos

Gðx2nÞ
B5ðx2n þ r sin x2nsÞ2 þ B5ðr cos x2ns� kE�Þ2

þ 2jp

 !
; sin x2nD > 0

8>>>>><
>>>>>:

(21)

023101-7 Bi, Ruan, and Zhang Chaos 24, 023101 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

192.70.171.170 On: Wed, 02 Apr 2014 14:58:25



with

Gðx2nÞ ¼ ðA1ð1� aÞ þ x2
2n � B02ÞE�k þ x2

2nB01 þ A1ð1� aÞr cos x2nðdþ sÞ
þ cos x2nsððB3 � rÞx2

2n � A1ð1� aÞðek þ rÞ � ekB04 þ rB02Þ
þx2n sin x2nsðrB01 � B3ek � B04Þ þ B3x2nr sin 2x2ns

�A1ð1� aÞx2n sin dx2n þ rB04 cos 2x2ns: (22)

Moreover, if

�xð2E�k þ B3rsÞcos dxþ ð�1þ aÞA1dx cosðD� dÞx� B5xrs cos xs

þðB3x� B04xsþ B3E�kxsÞcos xðD� sÞ þ 2xr cos xðDþ sÞ
þðB3r � B01E�k � 2x2 � B04rsÞsin Dxþ A1dE�kð1� aÞsinðD� dÞx
þðB04E�ks� B3E�k þ B3x

2sÞsin xðD� sÞ þ B01r sin xðDþ sÞ
�B5rð1þ E�ksÞsin xs� A1ð1� aÞdr sin xðD� dþ sÞ 6¼ 0; (23)

then Eq. (1) undergoes a Hopf bifurcation at ðT�;E�Þ.
The above results demonstrate that to have stability of

the positive equilibrium ðT�;E�Þ, all three delays have to be

in their corresponding stable intervals, while a Hopf bifurca-

tion occurs at ðT�;E�Þ if any one of the three delays passes

through its critical values.

III. NUMERICAL SIMULATIONS

In this section, we present some numerical simulations

to illustrate the results obtained in Sec. II. Before presenting

the numerical results, we would like to make a couple of

remarks. First, the initial value for model (1) with three

delays takes the form: xðhÞ ¼ /ðhÞ; h 2 ½�s�; 0�, where s� ¼
maxfs; d;Dg and /ðhÞ is a continuous function defined on

½�s�; 0�. For the sake of simplicity, in all simulations, we

choose /ðhÞ ¼ /ð0Þ as a constant defined at h ¼ 0. Second,

the asymptotic behavior of the solutions to the delay model

(1) depends on the initial values, as the further numerical

simulations in Sec. IV demonstrate.

A. The model of Mayer et al.

To compare our results with that of Mayer et al.25 and to

see how delays affect the dynamics of the model, we first

choose two parameter sets that were used in Mayer et al.25

(I) a¼ 0; b¼ 0; n¼ 1; u¼ v¼ 1; r ¼ 1:8; k ¼ 3; p¼ 2;
s¼ 1:5; d ¼ 1:
(II) a¼ 0; b¼ 0; n¼ u¼ v¼ k¼ d¼ 1; r¼ 1:2; p¼ 0:28;
s¼ 2:

From the above analysis, we know that the semi-trivial

equilibrium is unstable and the positive equilibrium is stable;

and certainly, the trivial equilibrium is unstable. For

s ¼ 0:3; d ¼ 0:3; D ¼ 1, the simulations are given in Fig. 3,

which indicate the instability of the trivial and semi-trivial

equilibria and the stability of the positive equilibrium for

both parameter sets.

B. The model with one or two delays

In the following, we give simulations on the results in

Theorems 2.7 and 2.8. We consider the third set of parame-

ters as follows:

FIG. 3. The phase portraits of system (1) in the form of Mayer et al.:25 (a) with parameter set (I); (b) with parameter set (II).
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(III) a ¼ 0:1; n ¼ 3; u ¼ 2; v ¼ 2; r ¼ 0:6; k ¼ 1:3; p
¼ 0:3; s ¼ 0:2; d ¼ 0:5:

For this case, (1) has two equilibria (0,0) and (1.563,

0.461538). Since (0,0) is unstable, we only need to consider

the properties of the positive equilibrium (1.563, 0.461538). If

d ¼ D ¼ 0, from (15), by Theorem 2.7, we know (14) has

only a pair of purely imaginary roots 6ix with x ¼ 0:416274

as s0 ¼ 3:8641, and the positive equilibrium (1.563,

0.461538) is locally stable as s < s0. According to Theorem

2.8, the imaginary roots 6ix1n of (16) are the roots of

�0:010245� 0:36749x2 þx4 þ ð0:0558983þ 0:36x2Þ
	 cos 2ð3:8641xÞ þ ð�0:142236xþ 1:2x3Þ
	 sinð3:8641xÞ þ ð0:0558983þ 0:36x2Þ sin2ð3:8641xÞ
þ cosð3:8641xÞð�0:100101þ 0:189143x2Þ ¼ 0;

(24)

which are the points of intersection of functions (see Fig. 4)

f ðxÞ ¼ x4 � 0:36749x2 � 0:010245

and

hðxÞ ¼ �ð0:0558983þ 0:36x2Þ cos2ð3:8641xÞ

þ ð0:142236x� 1:2x3Þsinð3:8641xÞ

� ð0:0558983þ 0:36x2Þ sin2ð3:8641xÞ

þ cosð3:8641xÞð0:100101� 0:189143x2Þ:

Then, we can see that the only pair of purely imaginary roots

are 60:273i from Fig. 4.

When s ¼ s0 ¼ 3:8641, recalling (18), by a direct com-

putation, we have d0 ¼ 15:1378. We also know that the posi-

tive equilibrium (T�;E�) is stable when s < s0; d < d0. With

the above chosen parameters, by Theorem 2.8, we know that

model (1) exhibits a Hopf bifurcation when d0 ¼ 15:1378

and has bifurcated periodic solutions when d ¼ 15:898

> d0 ¼ 15:1378, as shown in Fig. 5.

The dynamical behaviors of the positive equilibrium

(T�;E�) (stable or unstable) can be seen in Fig. 6. The critical

boundary respects the possible bifurcation values, which are

given by (18). On the other hand, one can see rich dynamical

behaviors of the positive equilibrium as s (respectively d)

increases, a finite number of stability switches may occur.

C. The effect of parameter a

For the above parameters, if a increases from 0.1 to 0.5,

the dynamical behavior of the model does not change com-

pared with Figs. 5 and 6. If a keeps increasing from 0.5 to

0.9, then the functions f ðxÞ and hðxÞ have no points of inter-

section, see Fig. 7. That is when s < s0, as a increases to 0.9,

there are no characteristic roots passing through the imagi-

nary axis. Hence, we have the following result.

Proposition 3.1. Let r ¼ 0:6; k ¼ 1:3; p ¼ 0:3; s ¼ 0:2;
d ¼ 0:5; n ¼ 3; u ¼ 2; v ¼ 2: If a ¼ 0:9, then the positive
equilibrium (0.26087, 4.14083) of (1) is stable when s < s0

and d > 0.

FIG. 4. The roots of (24) which are the intersection points of f ðxÞ and hðxÞ.

FIG. 5. Numerical simulations of system (1) with two delays (s and d) and parameter set (III): (a) Periodic solutions of system (1) in terms of t via a Hopf

bifurcation with ðTð0Þ;Eð0ÞÞ ¼ ð3:7191; 0:2376Þ; (b) Solution trajectories spiral toward the stable limit cycle of system (1) in the ðT;EÞ-plane with

ðT1ð0Þ;E1ð0ÞÞ ¼ ð3:7191; 0:2376Þ and ðT2ð0Þ;E2ð0ÞÞ ¼ ð6:1; 0:26Þ. Here, s ¼ 3:8641 ¼ s0; d ¼ 15:898 > d0 ¼ 15:1378;D ¼ 0.
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In fact, the stable region of the positive equilibrium

becomes bigger and bigger when a increases from 0.1 to 0.5

then to 0.9. The Hopf bifurcation may occur when s and d
are on the critical boundary; that is, the dynamical behavior

of the positive equilibrium changes when the parameter a
increases from 0 to 1. Thus, it is necessary to introduce a

new parameter a into the model of Mayer et al.25

D. The model with three delays

At the end of this section, we will simulate the results

in Theorem 2.9. For convenience, we still use the above

parameter set. First, we need to compute the roots of

(20). Still using the above method, for simplicity, we only

consider the case a ¼ 0:1; b ¼ 0:1. Similarly, from Fig. 8,

we know that (20) has two pairs of imaginary roots

6ix10 and 6ix20 with x10 ¼ 0:2651 and x20 ¼ 0:2809.

But for x10 ¼ 0:2651, there is no D defined in (21) can

be found. Hence, the characteristic equation of (2) has

only one pair of purely imaginary roots 6ix20 with

D0 ¼ 2:0592.

Let s0 ¼ 3:8641; d0 ¼ 15:1378; and D0 ¼ 2:0592.

From the result in last section, we know that the solutions

of (1) are stable when s ¼ 3:8 < s0; d ¼ 13:5 < d0;
and D ¼ 2 < D0, the simulations are presented in Fig. 9. If

s ¼ s0; d ¼ d0; D ¼ D0, then system (1) undergoes a Hopf

bifurcation, the bifurcating periodic solutions can be seen

in Fig. 10.

Note that we have the following property.

Proposition 3.2. Let r ¼ 0:6; k ¼ 1:3; p ¼ 0:3;
s ¼ 0:2; d ¼ 0:5; n ¼ 3; u ¼ 2; and v ¼ 2. If a ¼ 0:1;
b ¼ 0:1, then the positive equilibrium ð1:563; 0:461538Þ
of (1) is stable when s < s0, d < d0 and D < D�ðs; dÞ,
where

D�ðs; dÞ ¼ Fðs; dÞ
x10

arccos
1

ð0:6ð1� cosð0:2809sÞÞ2 þ ð0:2809þ 0:6 sinð0:2809sÞÞ2

with

Fðs; dÞ ¼ 10:4869ð�0:002547� 0:101124 cosð0:2809sÞ2 � 0:133564 sinð0:2809dÞ
þ cosð0:2809sÞð0:074559þ 0:133564 sinð0:2809dÞÞ � 0:101124 sinð0:2809sÞ2

þ cosð0:2809dÞð�0:0625301� 0:133564 sinð0:2809sÞÞ � 0:109526 sinð0:2809sÞÞ:

With the above given parameter values, the stable region

of (1) is given in Fig. 11 in the (s; d; D) parameter space.

Therefore, to have stability of the positive equilibrium, all

three delays s; d, and D have to be lying in their correspond-

ing stable intervals. If any one of these three delays changes

so that ðs; d;DÞ lies outside the stable region, the positive

equilibrium will become unstable, a Hopf bifurcation will

occur, and the densities of the tumor cells and immune cells

will fluctuate around their equilibrium values. If the delays

increase further, more complex dynamical behavior (irregu-

lar long oscillations and chaos) can occur as the numerical

simulations in Sec. IV indicate.

IV. DISCUSSIONS AND MORE SIMULATIONS

In this paper, we considered a tumor and immune system

interaction model consisted of two differential equations with

three time delays in which the delays describe the times neces-

sary for molecule production, proliferation, differentiation of

FIG. 6. Stability diagram of system (1) with two delays in the ðs; dÞ-delay

parameter space.

FIG. 7. The curves f ðxÞ and hðxÞ do not intersect when a ¼ 0:9.
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FIG. 9. Numerical simulations of system (1) with three delays and parameter set (III). (a) Solutions T(t) and E(t) of system (1) converge to the equilibrium val-

ues and (b) solution trajectories of system (1) spiral toward the positive equilibrium in the ðT;EÞ-plane. Here, s ¼ 3:8 < s0; d ¼ 13:5 < d0;D ¼ 2 < D0, and

ðTð0Þ;Eð0ÞÞ ¼ ð1:5; 0:4523Þ.

FIG. 10. Numerical simulations of system (1) with three delays and parameter set (III). (a) Periodic solutions T(t) and E(t) of system (1) in terms of t and (b)

solution trajectories of system (1) spiral toward a periodic orbit in the ðT;EÞ-plane. Here, s ¼ s0 ¼ 3:8641; d ¼ d0 ¼ 15:1378;D ¼ D0 ¼ 2:0592, and

ðTð0Þ;Eð0ÞÞ ¼ ð1:6; 0:2699Þ.

FIG. 8. (a) The locations of f ðxÞ and hðxÞ when a ¼ 0:1; b ¼ 0:1. (a) For 0:2 < x < 1:5 and (b) 0:26 < x < 0:3.
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cells, transport, etc. Following the techniques of B�elair and

Campbell,3 Campbell et al.,7 Ruan and Wei,31 and Yu and

Wei,39 we studied stability and Hopf bifurcation in the tumor-

immune system model. In Sec. II, we provided detailed analy-

sis on the existence and stability of equilibria and existence of

Hopf bifurcations in the model with one, two, or three delays.

In Sec. III, we presented some numerical simulations of the

model in the case when the model (1) only has one positive

equilibrium. Roughly speaking, the positive equilibrium is sta-

ble when all three delays are less than their corresponding crit-

ical values. The positive equilibrium becomes unstable and a

Hopf bifurcation occurs if any one of the three delays passes

through its critical values. Our mathematical analysis and nu-

merical simulations demonstrate that the nonlinear dynamics

of the tumor-immune system interaction model with three

delays are very complex and difficult to study even for the

simple case when there is one positive equilibrium.

In fact, model (1) exhibits more complicated dynamical

behavior than that proved and observed in Secs. II and III

when two or three delays vary. Now, we give more simulations

to show the existence of irregular long periodic oscillations.

For this purpose, we introduce our fourth set of parameter val-

ues as follows:

(IV) a ¼ 0:5; b ¼ 0:9; n ¼ 3; u ¼ 1; v ¼ 3; r ¼ 2; k ¼ 3;
p ¼ 2; s ¼ 1; d ¼ 1:2.

When s ¼ d ¼ D ¼ 0, numerical simulations of system

(1) show that the positive equilibrium is asymptotically sta-

ble (see Fig. 12).

Now we have the following simulations with different

values of the delays s; d, and D.

These simulations demonstrate that the tumor and

immune system interaction model with three time delays

exhibits very rich and complex dynamical behaviors. The

positive equilibrium is stable when s < s0, d < d0, and

D < D0; but when the delays increase, the dynamical behav-

ior becomes more and more complex. When we fix the s ¼
0:5 and increase d and D gradually, the dynamical behavior

changes from regular periodic (Fig. 13) to irregular long per-

iodic (Fig. 14), and finally chaotic (Fig. 15). Therefore, the

time delays play a crucial role in determining the nonlinear

dynamics of the tumor and immune system interaction model

(1). Notice that Mayer et al.25 provided some empirical data

on the number of phenotypically identified natural killer cells

(CD16þ, CD56þ) versus total tumor size during the course of

a metastatic disease (Fibrosarcoma), which exhibit chaotic

behavior: they fluctuate irregularly and unpredictably. Mayer

et al.25 pointed out that their model is unable to produce any

kind of chaotic behavior since it is only two-dimensional. By

modifying their model, we are able to demonstrate numeri-

cally that the two-dimensional model with three delays can

produce chaotic behavior which, in some sense, supports the

empirical data provided by Mayer et al.25

The existence of regular and irregular periodic oscilla-

tions in the tumor and immune interaction model demon-

strates the phenomenon of long-term tumor relapse and has

been observed in some related tumor and immune system

models.12,20,22 The regular periodic oscillations describe the

equilibrium process (expansion of transformed cells is held

in check by immunity) of cancer immunoediting in the dual

FIG. 12. (a1) The stable solutions of system (1) when s ¼ d ¼ D ¼ 0 (a2) The solution trajectory of system (1) converges to the positive equilibrium in the

ðT;EÞ plane. Here, ðTð0Þ;Eð0ÞÞ ¼ ð0:01; 0:18Þ.

FIG. 11. The stability diagram of the positive equilibrium for system (1)

with three delays in the ðs; d;DÞ parameter space.
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FIG. 15. The chaotic solutions in system (1) with parameter set (IV) and s ¼ 0:5; d ¼ 50;D ¼ 38. Here, ðTð0Þ;Eð0ÞÞ ¼ ð0:4; 0:91Þ.

FIG. 13. The regular periodic oscillations in system (1) with parameter set (IV) and s ¼ 0:5; d ¼ 5;D ¼ 8. Here, (a) ðTð0Þ;Eð0ÞÞ ¼ ð0:01; 0:18Þ; (b)

ðT1ð0Þ;E1ð0ÞÞ ¼ ð0:01; 0:18Þ and ðT2ð0Þ;E2ð0ÞÞ ¼ ð0:5; 0:45Þ.

FIG. 14. The irregular long periodic oscillations in system (1) with parameter set (IV) and s ¼ 0:5; d ¼ 30;D ¼ 18. Here, ðTð0Þ;Eð0ÞÞ ¼ ð0:5; 0:61Þ.
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host-protective and tumor-promoting actions of immunity

and support the experimental observations of Koebel et al.21

that the immune system of a naive mouse can restrain cancer

growth for extended time periods. The existence of irregular

long periodic oscillations suggests that with temporal delay

in the immune response cancer may progress to a more

aggressive state. It would be interesting to obtain clinical or

experimental data on tumor and immune cells and see if our

modeling results and simulations apply to the data.

It should be pointed out that we did not prove the exis-

tence of chaos in system (1) theoretically. Instead, following

similar observations in Refs. 17, 18, and 32, we observed

numerically that solutions of system (1) exhibit chaotic behav-

ior when delays take different values. We believe that the

technique and results in Desch et al.10 may be used to prove

the existence of chaos in system (1) with three delays and

leave this for future consideration. Also, our mathematical

analysis and numerical simulations were carried out based on

the assumptions that system (1) has only one positive equilib-

rium (when u¼ v). The case that system (1) has multiple posi-

tive equilibria (when u < v) deserves further investigation.
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APPENDIX: ANALYSIS ABOUT THE POSITIVE
EQUILIBRIUM

Here, we provide some analysis and give the proofs of

some results about the positive equilibrium. If u¼ v and

0 < m < p, m ¼ k
r ðd � skrn�1

knþrnÞ, then (1) has only one positive

equilibrium (T�;E�) with E� ¼ r
k. The characteristic equation at

ðT�;E�Þ is given by Eq. (9). The main results were established

in two steps: (i) b ¼ 1 and g0ðE�Þb ¼ d; and (ii) g0ðE�Þb 6¼ d.

(i) b ¼ 1 and g0ðE�Þb ¼ d. In this case, the term involv-

ing e�Dk disappears, so it becomes a model with two delays s
and d: There are two subcases: a¼ 1 and a 6¼ 1.

(a) If a ¼ 1, the terms containing e�dk also vanish and it

further reduces to a model with a single delay s. From (9),

the characteristic equation at ðT�;E�Þ is

k2 þ rkþ A1 � kre�ks ¼ 0; (A1)

where A1 ¼ f 0ðT�ÞkT� � 0. Noting r ¼ kE� � 0, in order to

consider the distribution of the roots of Eq. (A1), we give a

result as follows.

Lemma A1. Let s ¼ s0
j . Then, (A1) has a pair of purely

imaginary roots 6ix0 with x2
0 ¼ A1, where s0

j ¼ 2jp;
j ¼ 0; 1; 2 � � � :

Proof. Let ix be a root of (A1). Then,

�x2 þ rxiþ A1 � rxið cos xs� i sin xsÞ ¼ 0:

Separating the real and imaginary parts of above equality,

we have

�x2 þ A1 ¼ rx sin xs; rx ¼ rx cos xs: (A2)

Hence, x2 ¼ A1. From the second equation of (A2), it is

easy to obtain that s0
j ¼ 2jp; j ¼ 0; 1; 2 � � �. �

Let kðsÞ ¼ aðsÞ þ ixðsÞ be the root of (A1) satisfying

aðs1
6jÞ ¼ 0, xðs1

6jÞ ¼ x6, then we have the following

results.

Lemma A2.

(i) Since A1 > 0, we have a0ðs0
j Þ ¼ 0 and a00ðs0

j Þ < 0.
Hence, all roots of (A1) have negative real parts except
the purely imaginary roots 6ix, and all purely imagi-
nary roots 6ix are obtained as s0

j ¼ 2jp; j ¼ 0; 1; 2 � � �.
(ii) There exists a s0 < 2p such that (T�;E�) is stable as

s 2 ð0; s0Þ.

Proof. Differentiating both sides of (A1), it follows that

dk
ds
¼ �k2re�ks

2kþ kE� � re�ks þ krse�ks
;

then

dRefkg
ds

� ��1

¼ 2kþ kE� � re�ks

�k2re�ks
� s

k
:

Hence,

dRefkg
ds

� ��1����
k¼ix

¼ 1

x2r2
k2E�2 � 2A1 þ 2x2

6j � r2
� �

¼ 0 :

Differentiating both sides of (A1) once again, we have

Refd2kg
ds2

����
k¼ix

¼ �x2r

2þ rs
< 0:

Hence, að0Þ ¼ að2pÞ ¼ a0ð0Þ ¼ 0 and a00ð0Þ < 0. Noting

that (A1) has no zero roots, then there must exist a s0 < 2p
such that aðsÞ < 0 for s 2 ð0; s0Þ. The proof is complete. �

(b) If a 6¼ 1, the second delay d appears and the charac-

teristic Eq. (9) becomes Eq. (11).

Proof of Theorem 2.4. Substituting ixðx > 0Þ into (11),

we have

�x2 þ ixðkE� � r cos xsþ ir sin xsÞ
þ aA1ð1þ h cos xd� ih sin xdÞ ¼ 0;

where h ¼ 1�a
a : Separating the real and imaginary parts, it

follows that

�x2 � xr sin xsþ aA1 þ aA1h cos xd ¼ 0

xkE� � xr cos xs� aA1h sin xd ¼ 0;

�
(A3)
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that is

ðx2 � A1aþ xr sin xsÞ2 þ ðxr � xr cos xsÞ2 ¼ A2
1a2h2:

Let

gðx; hÞ ¼ x4 þ x2ð2r2 � 2A1aþ 2xr sin xs� 2r2 cos xsÞ
�2xA1ar sin xsþ A2

1a2ð1� h2Þ:

Then, gðx; hÞjð0;1Þ ¼ 0; @gðx;hÞ
@x jð0;1Þ ¼ 0 and

@2gðx; hÞ
@x2

����
ð0;1Þ
¼ �2A1að1þ rsÞ < 0:

Hence gðx; 1Þ has at least one positive solution, at most

finite solutions denoted by xn. Since gðx; hÞ is continu-

ous with respect to h, then gðx; hÞ also has positive sol-

utions as ja� 1
2
j � 0. On the other hand, differentiating

both sides of (11) with respect to d, noting (13), we

have

Refdkg
dd

����
k¼ixn

¼ 2xn cos dxn þ xnrs cos xnðd� sÞ þ ek sin dxn � r sin xnðd� sÞ
ð1� aÞA1xn

6¼ 0:

Then the results are proved.

(ii) g0ðE�Þb 6¼ d. In this case, all three delays appear in the characteristic Eq. (9). We further consider three subcases: (a)

s 6¼ 0; d ¼ D ¼ 0 (one delay); (b) s 6¼ 0; d 6¼ 0;D ¼ 0 (two delays); (c) sdD 6¼ 0 (three delays).

(a) If s 6¼ 0; d ¼ D ¼ 0, the characteristic equation at ðT�;E�Þ reduces to Eq. (14).

Proof of Theorem 2.7. We only need to prove the transversality condition as follows:

dRek
ds

� ��1����
s¼s6

j

¼ 2kþ B1 þ B3e�ks

ke�ksðB3kþ B4Þ

����
s¼s6

j

¼
1

2
ðB2

3 � B2
1 þ 2B2Þ2 � 4ðB2

2 � B2
4Þ

� �1=2

> 0; s ¼ sþj

� 1

2
ðB2

4 � B2
1 þ 2B2Þ2 � 4ðB2

2 � B2
4Þ

� �1=2

< 0; s ¼ s�j :

8>><
>>:

This completes the proof.

(b) If s 6¼ 0; d 6¼ 0;D ¼ 0 (a 6¼ 1), then the characteristic equation becomes Eq. (16).

Proof of Theorem 2.8. Let ix1nðx1n > 0Þ be a root of (16), then

�x2
1n þ B1x1niþ B2 � A1ð1� aÞ þ ðB3x1niþ B4Þð cos x1ns� i sin x1nsÞ
þ A1ð1� aÞð cos x1nd� i sin x1ndÞ ¼ 0: (A4)

Separating the real and imaginary parts, we have

�x2
1n þ B2 � A1ð1� aÞ þ B4 cos x1nsþ B3x1n sin x1nsþ A1ð1� aÞcos x1nd ¼ 0

B1x1n þ B3x1n cos x1ns� B4 sin x1ns� A1ð1� aÞsin x1nd ¼ 0:

(
(A5)

Then,

ð�x2
1n þ B2 � A1ð1� aÞð1� cos x1ndÞÞ2 þ ðB1x1n � A1ð1� aÞsin x1ndÞ2 ¼ B2

3x
2
1n þ B2

4:

Let

g2ðx1nÞ ¼ ð�x2
1n þ B2 � A1ð1� aÞ þ A1ð1� aÞcos x1ndÞ2 þ ðB1x1n � A1ð1� aÞsin x1ndÞ2 � B2

3x
2
1n � B2

4:

It is easy to see that g2ð0Þ ¼ B2
2 � B2

4 < 0 and limx!1 g2ðxÞ > 0. Thus, g2ðxÞ ¼ 0 has at least one positive solution, denoting

all positive solutions by x1n. On the other hand, from (A5), we also know that the purely roots 6ix1n are the roots of

ðB2 � x2 � A1ð1� aÞ þ B4 cos xsþ B3x sin xsÞ2 þ ðB1x1n þ B3x cos xs� B4 sin xsÞ2 ¼ A2
1ð1� aÞ2:

That is, x1n are the positive roots of g1ðxÞ. Differentiating both sides of (16) with respect to d; we have
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Refdkg
dd

����
k¼ix1n

¼
B3x1ns cos x1nðdn

j � sÞ þ ðB4s� B3Þsin x1nðdn
j � sÞ � B1 sin dn

j x1n � 2x1n cos dn
j x1n

ð�1þ aÞA1x1n
:

Then, Eq. (1) undergoes a Hopf bifurcation at ðT�;E�Þ.
(c) If sdD 6¼ 0, all three delays are present and the char-

acteristic equation is given by Eq. (19). The technique is to

fix the first two delays in their stable intervals and discuss

the stability and Hopf bifurcation by using the third delay D
as the bifurcation parameter. In order to study the stability of

ðT�;E�Þ for D 6¼ 0, we need a result which can be proved

similarly as Theorem 7 of Adimy et al.1

Lemma A3. If all roots of Eq. (16) have negative real
parts for s 2 ð0; sþ0 Þ and d 2 ð0; d0Þ, where d0 ¼ minn2N

fdn
0g, then there exists D� ¼ Dðs; dÞ such that all roots of

(19) have negative real parts when D 2 ð0;D�ðs; dÞÞ, and the
positive equilibrium ðT�;E�Þ of (1) is locally asymptotically
stable.
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