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a b s t r a c t

Since intraguild predation (IGP) is a ubiquitous and important community module
in nature and Allee effect has strong impact on population dynamics, in this paper
we propose a three-species IGP food web model consisted of the IG predator,
IG prey and basal prey, in which the basal prey follows a logistic growth with
strong Allee effect. We investigate the local and global dynamics of the model with
emphasis on the impact of strong Allee effect. First, positivity and boundedness
of solutions are studied. Then existence and stability of the boundary and interior
equilibria are presented and the Hopf bifurcation curve at an interior equilibrium
is given. The existence of a Hopf bifurcation curve indicates that if competition
between the IG prey and IG predator for the basal resource lies below the curve
then the interior equilibrium remains stable, while if it lies above the curve then
the interior equilibrium loses its stability. In order to explore the impact of Allee
effect, the parameter space is classified into sixteen different regions and, in each
region, the number of interior equilibria is determined and the corresponding
bifurcation diagrams on the Allee threshold are given. The extinction parameter
regions of at least one species and the necessary coexistence parameter regions of
all three species are provided. In addition, we explore possible dynamical patterns,
i.e., the existence of multiple attractors. By theoretical analysis and numerical
simulations, we show that the model can have one (i.e. extinction of all species),
two (i.e. bi-stability) or three (i.e. tri-stability) attractors. It is also found by
simulations that when there exists a unique stable interior equilibrium, the model
may generate multiple attracting periodic orbits and the coexistence of all three
species is enhanced as the competition between the IG prey and IG predator for
the basal resource is close to the Hopf bifurcation curve from below. Our results
indicate that the intraguild predation food web model exhibits rich and complex
dynamic behaviors and strong Allee effect in the basal prey increases the extinction
risk of not only the basal prey but also the IG prey or/and IG predator.
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. Introduction

Intraguild predation (IGP) is defined as the killing and eating of potential competitors and is a
ombination of predation and competition [1]. A simple example of an IGP food web is the tri-trophic
ommunity module including a predator population (IG predator) and its prey (IG prey) sharing a common
esource. Since the IG predator feeds on different trophic levels (the IG prey and their common basal
esource), and simultaneously competes with another species (its IG prey), it is a specific case of omnivory [2–
]. IGP is an important community module to understand the mechanism for persistence of complex food
ebs. Because of the ubiquity and importance of this interaction in nature, IGP has received considerable
ttention [6–10].

Various IGP models have been proposed and studied by many researchers. Holt and Polis [11] formed
three-species Lotka–Volterra type IGP model with Holling Type I functional response and showed that

ncrease in the strength of intraguild predation could destabilize the positive equilibrium. Tanabe and
ambe [12] also considered an IGP model with the same functional response as in [11] and observed that

ntraguild predation might destabilize the system and induce chaos by numerical simulations. Hsu, Ruan,
nd Yang [2] considered a three-species food web model with Lotka–Volterra type interaction between
opulations, classified the parameter space into three categories containing eight cases, and demonstrated
xtinction results for five cases and verified uniform persistence for the other three cases. For more studies
n the dynamics of IGP models, including ODE models, PDE models and delay models, we refer to [13–21]
nd the references therein.

In many studies of IGP models, see for example [2,3,11,12,14–16,18,19], the common prey of the IG
redator and IG prey is assumed to follow the logistic growth. Although a logistic growth function can better
epict individual population growth and has become extremely popular, but in real natural situation there
re abundant evidences showing that, unlike the logistic growth, populations at low densities are influenced
y positive relationship between the growth rate and the density of the population [22–27]. This biological
henomenon is known as Allee effect [23,25,27,28] and occurs when the species engages in social behavior
uch as cooperative hunting or group defense [22,23,29–32].

A simple model with Allee effect takes the form

dX

dt
= rX(K − X)(X − K0), (1.1)

where r > 0, K > 0 and |K0| < K. The term X − K0 is included as a modification of the logistic model.
When 0 < K0 < K, K0 is a threshold population level (called Allee threshold), below which the population
eclines to extinction while above which the population persists. In this case, Eq. (1.1) describes the strong
llee effect [33–37]. If K0 ≤ 0, Eq. (1.1) represents the weak Allee effect [38]. A population with weak Allee

effect does not have a critical threshold. Allee effect can result in the increase of the likelihood of extinction.
Recently, Allee effect has attracted much attention owing to its strong potential impact on population
dynamics and there are several different ways to model strong Allee effect (e.g. see [33,34,39–47]).

In this paper, we consider a three-species intraguild predation food web model which includes a predator
population (IG predator) and its prey (IG prey) sharing a common prey. It is assumed that the shared prey
exhibits strong Allee effect which is formulated by following [33–37]. The IGP food web model is represented
as follows:

dR
dt = rR

(
1 − R

K

)
(R − K0) − b1RP − b2RQ,

dP
dt = P (e1b1R − b3Q − dp),
dQ
dt = Q(e2b2R + e3b3P − dq),

(1.2)

here R(t), P (t) and Q(t) denote the densities of the shared prey, IG prey and IG predator at time t,
espectively. All parameters are positive. r and K are the intrinsic growth rate and carrying capacity of
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the shared prey R, respectively; K0 is the Allee threshold satisfying 0 < K0 < K; dp and dq are death
rates of the IG prey P and IG predator Q, respectively; b1 and b2 are predation rates of species P and Q

to the shared prey R, respectively; b3 is the predation rate of the IG predator Q to IG prey P ; e1 and e2
are conversion rates of resource consumption into reproduction for species P and Q, respectively; e3 is the
conversion rate of the IG predator from the IG prey.

System (1.2) can be used to model many IGP food webs with strong Allee effect such as the predatory
invertebrates–planktivorous fish–herbivorous zooplankton system, in which both predatory invertebrates
and planktivorous fish feed on herbivorous zooplankton, while planktivorous fish also feeds on predatory
invertebrates [48]. Sarnelle and Knapp [49] showed that the zooplankton suffers a strong Allee effect.

For mathematical simplification, we rewrite model (1.2) in a nondimensional form. Let x = R
K , y = P, z =

and τ = rKt. Then (1.2) takes the form

x′ = x(x − θ)(1 − x) − αxy − βxz,
y′ = γ1y(x − a1z − d1),
z′ = γ2z(x + a2y − d2),

(1.3)

where θ = K0
K , 0 < θ < 1, and α = b1

rK , β = b2
rK , γi = eibi

r (i = 1, 2), a1 = b3
e1b1K , a2 = e3b3

e2b2K , d1 = dp

e1b1K , d2 =
dq

e2b2K .
We will provide detailed mathematical analysis of model (1.3) with related biological implications. The

main purpose of this article is to investigate the following two questions: First, how does Allee effect affect
the dynamics of intraguild predation? Second, in the presence of Allee effect on the shared prey, under what
conditions will the shared prey, IG prey and IG predator coexist?

To answer these two questions, we first show the positive invariance and boundedness of model (1.3)
in Section 2. In order to understand the dynamics of (1.3), in Section 3 we first discuss the local and
global properties of subsystems of (1.3). Then in Section 4 we investigate the existence and local stability
of boundary equilibria and interior equilibria as well as the existence of Hopf bifurcation. The extinction
of at least one species of the basal prey x, IG prey y and IG predator z is also studied in Section 4. Our
results indicate that Allee effect in the basal prey increases the extinction risk of not only the basal prey
but also the IG prey or/and IG predator. In Section 5 we explore the impact of Allee effect on the dynamics
of model (1.3) in detail. The parameter space of λ = (α, β, a1, a2, d1, d2) is divided into sixteen different
regions, and in each region the number of interior equilibria is determined and the corresponding bifurcation
diagrams on the Allee threshold θ are given. The extinction parameter regions of at least one species and
the necessary coexistence parameter regions of all three species are obtained. In Section 6, we focus on the
possible dynamical patterns, i.e., the existence of multiple attractors, and their biological implications. It is
shown that model (1.3) can have one (i.e. extinction of all species), two (i.e. bi-stability) or three (i.e. tri-
stability) attractors. We also find by simulations that the orbits which tend to the extinction state and the
stable interior equilibrium may be attracted to some periodic orbits as (γ1, γ2) is close to the Hopf bifurcation
curve from below, and thus multiple attracting periodic orbits are generated and the coexistence of all three
species is enhanced. In Section 7, we briefly make a comparison between the dynamics of model (1.3) and
the dynamics of the IGP model without Allee effect in the basal prey, and provide a summary of our results.

2. Positivity and boundedness

We define the state space of (1.3) as X = {(x, y, z) ∈ R3
+} with its interior defined as X̊ = {(x, y, z) ∈

3
+ : xyz > 0}.

heorem 2.1. (Positivity and Boundedness)
˚
(i) Both X and X are positively invariant sets of system (1.3);
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(ii) System (1.3) is uniformly ultimately bounded in X, and lim supt→∞ x(t) ≤ 1, lim supt→∞ y(t) ≤
1
α

[
(1−θ)2

4d1
+ γ1

]
.

Proof. (i). For x ≥ 0, y ≥ 0 and z ≥ 0, we have x′|x=0 = 0, y′|y=0 = 0, z′|z=0 = 0, which implies that
x = 0, y = 0, z = 0 are invariant manifolds, respectively. Due to the continuity of the system, we can conclude
that system (1.3) is positively invariant in X and X̊.

(ii). Choose any point (x, y, z) ∈ X. Since

x′|x=1 = −αy − βz ≤ 0, x′|x>1 = x(x − θ)(1 − x) − αxy − βxz ≤ 0,

we have lim supt→∞ x(t) ≤ 1.
Define two functions by N = γ1x + αy and W = γ2x + βγ2a2

γ1a1
y + βz, then we have

dN

dt
≤ γ1x(x − θ)(1 − x) − αγ1d1y = h(x) − γ1d1N(t),

here h(x) = γ1x(x − θ)(1 − x) + γ2
1d1x, and

dW
dt = γ2x(x − θ)(1 − x) − αγ2xy + βγ2a2

a1
y(x − d1) − βγ2d2z

= H(x, y) − γ2d2W (t),

here
H(x, y) = γ2x(x − θ)(1 − x) − αγ2xy + βγ2a2

a1
y(x − d1) + γ2

2d2

(
x + βa2

γ1a1
y

)
.

ince limt→∞ x(t) ≤ 1, for any ϵ > 0 there exists T1 > 0 such that for t > T1, x(t) ≤ 1 + ϵ. Let
ϵ = max0≤x≤1+ϵ h(x). Thus, for t > T1, N ′(t) ≤ Lϵ − γ1d1N . This implies that

lim sup
t→∞

N(t) = lim sup
t→∞

(γ1x(t) + αy(t)) ≤ L

γ1d1
,

where L = max0≤x≤1 h(x). Therefore, y(t) is uniformly ultimately bounded. Notice that

h(x) ≤ γ1

(
(1 − θ)2

4 + γ1d1

)
, x ∈ [0, 1].

hus, we have
lim sup

t→∞
y(t) ≤ 1

α

[
(1 − θ)2

4d1
+ γ1

]
.

enote B = 1
α

[
(1−θ)2

4d1
+ γ1

]
. Then, there exists T2 > T1 such that for t > T2, y(t) ≤ B + ϵ. Let

Mϵ = max
0≤x≤1+ϵ,0≤y≤B+ϵ

H(x, y).

Thus, for t > T2, W ′(t) ≤ Mϵ − γ2d2W . This implies that

lim sup
t→∞

W (t) = lim sup
t→∞

(
γ2x + βγ2a2

γ1a1
y + βz

)
≤ M

γ2d2
,

where M = max0≤x≤1,0≤y≤B H(x, y). Therefore, z(t) is also uniformly ultimately bounded. The proof is
omplete. □

emark 2.2. Theorem 2.1 indicates that IGP model (1.3) with Allee effect in the basal prey has a compact
lobal attractor {(x, y, z) ∈ X : 0 ≤ x ≤ 1, 0 ≤ y, z ≤ B, B > 0}.
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Table 1
The local stability of equilibria for subsystems.

Subsystems Equilibria Existence conditions Stability conditions

xy-subsystem

Exy
0 Always Always L.A.S.

Exy
θ

Always Always unstable. Saddle if θ < d1, source if θ > d1
Exy

1 Always L.A.S. if d1 ≥ 1, saddle if d1 < 1
Exy θ < d1 < 1 L.A.S. if 1

2 (1 + θ) < d1 < 1, source if θ < d1 < 1
2 (1 + θ)

xz-subsystem

Exz
0 Always Always L.A.S.

Exz
θ Always Always unstable. Saddle if θ < d2, source if θ > d2

Exz
1 Always L.A.S. if d2 ≥ 1, saddle if d2 < 1

Exz θ < d2 < 1 L.A.S. if 1
2 (1 + θ) < d2 < 1, source if θ < d2 < 1

2 (1 + θ)

yz-subsystem Eyz
0 Always L.A.S.

3. Dynamics of subsystems

In order to understand the dynamics of the full model (1.3), we first consider the dynamics of the following
subsystems:

1. The xy-subsystem. The predator–prey model in the absence of the IG predator z

x′ = x(x − θ)(1 − x) − αxy, y′ = γ1y(x − d1) (3.1)

as three boundary equilibria Exy
0 := (0, 0), Exy

θ := (θ, 0) and Exy
1 := (1, 0), and an interior equilibrium

xy :=
(
d1, 1

α (d1 − θ)(1 − d1)
)

if θ < d1 < 1.
2. The xz-subsystem. The predator–prey model in the absence of the IG prey y

x′ = x(x − θ)(1 − x) − βxz, z′ = γ2z(x − d2) (3.2)

as three boundary equilibria Exz
0 := (0, 0), Exz

θ := (θ, 0) and Exz
1 := (1, 0), and an interior equilibrium

xz :=
(

d2, 1
β (d2 − θ)(1 − d2)

)
if θ < d2 < 1.

3. The yz-subsystem. The predator–prey model in the absence of the basal prey x

y′ = γ1y(−a1z − d1), z′ = γ2z(a2y − d2) (3.3)

has a unique trivial equilibrium Eyz
0 := (0, 0).

From Theorem 2.1, we have the following result.

orollary 3.1. Both subsystems (3.1) and (3.2) are positively invariant and uniformly ultimately bounded
n R2

+ with lim supt→∞ x(t) ≤ 1.

.1. Local dynamics of subsystems

The local stability of equilibria of subsystems (3.1)–(3.3) can be summarized as follows.

heorem 3.2. The existence and local stability of equilibria of (3.1)–(3.3) are listed in Table 1. Moreover, the
y-subsystem (3.1) undergoes a Hopf-bifurcation at equilibrium Exy with d1 = 1

2 (1+ θ) and the xz-subsystem
(3.2) undergoes a Hopf-bifurcation at equilibrium Exz with d2 = 1

2 (1 + θ).

Proof. Since the xy-subsystem (3.1) and the xz-subsystem (3.2) have the same form, we only need to
analyze the xy-subsystem (3.1). The local stability is determined by the eigenvalues λi(i = 1, 2) of the
following Jacobian matrix J associated to subsystem (3.1), evaluated at equilibria

J |E =
(

(x − θ)(1 − x) + x(1 − x) − x(x − θ) − αy −αx
)

.

γ1y γ1(x − d1)
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At Exy
0 = (0, 0), we have eigenvalues λ1 = −θ < 0, λ2 = −γ1d1 < 0, which imply that Exy

0 is always
ocally asymptotically stable.

At Exy
θ = (θ, 0), we get λ1 = θ(1 − θ) > 0 since 0 < θ < 1 and λ2 = γ1(θ − d1). Thus, Exy

θ is always
nstable and is a saddle if θ < d1 and a source if θ > d1.

At Exy
1 = (1, 0), we get λ1 = −(1 − θ) < 0, λ2 = γ1(1 − d1). Thus, Exy

1 is locally asymptotically stable if
1 > 1 and a saddle point if d1 < 1.

If d1 = 1, then Exy
1 is nonhyperbolic with eigenvalues λ1 = −(1 − θ) < 0, λ2 = 0. We use Center Manifold

heorem to determine the stability of subsystem (3.1) at Exy
1 . For that, consider

Φ(y) = b1y2 + b2y3 + higher order terms.

y some simple calculation we can get Φ(y) ≡ 0. Thus, the flow on the center manifold is given by
dy
dt = −γ1d1y. Therefore, the boundary equilibrium Exy

1 is locally asymptotically stable if d1 = 1.
At Exy =

(
d1, 1

α (d1 − θ)(1 − d1)
)

(θ < d1 < 1), the characteristic equation is as follows

det(λI − J |Exy ) = λ2 − d1(1 − 2d1 + θ)λ + γ1d1(d1 − θ)(1 − d1) = 0.

Clearly, Reλ1 and Reλ2 have the same sign since 1 > d1 > θ. From λ1 +λ2 = d1(1−2d1 +θ), we can conclude
that Exy is locally asymptotically stable if 1

2 (1 + θ) < d1 < 1, while it is a source if θ < d1 < 1
2 (1 + θ).

If d1 = 1
2 (1 + θ), then the characteristic equation of Exy has a pair of purely imaginary roots

λ1 = i
√

γ1d1(d1 − θ)(1 − d1), λ2 = −i
√

γ1d1(d1 − θ)(1 − d1).

Let A = d1(1 − 2d1 + θ). Notice that

dA

d(d1)

⏐⏐⏐⏐
d1= 1

2 (1+θ)
= −(1 + θ) < 0.

hus, according to Theorem 3.1.3 in [50], we know that the subsystem (3.1) undergoes a Hopf-bifurcation
t Exy when d1 = 1

2 (1 + θ).
The yz-subsystem has a unique trivial equilibrium Eyz

0 = (0, 0). The eigenvalues at Eyz
0 are λ1 = −γ1d1 <

and λ2 = −γ2d2 < 0. Hence, Eyz
0 is locally asymptotically stable. The proof is complete. □

emark 3.3. (1) Both the existence and local stability of boundary and interior equilibria of the
y-subsystem (3.1) (xz-subsystem (3.2)) are independent of γ1 (γ2, respectively). (2) Theorem 3.2 suggests
hat the coexistence of the basal prey x and IG prey y (IG predator z) at the equilibrium Exy (Exz) of
ubsystem (3.1) ((3.2)) is determined by the Allee threshold θ and the death rate of IG prey y (IG predator
) since Exy (Exz) is locally asymptotically stable if 1

2 (1 + θ) < d1 < 1 ( 1
2 (1 + θ) < d2 < 1, respectively).

.2. Global features of subsystems

In this subsection, we focus on the global dynamics of both subsystems (3.1) and (3.2). First, we have
he following theorem regarding the extinction of one or both species.

heorem 3.4. (Extinction)

(i) If d1 ≥ 1, then the population of the IG prey y in the xy-subsystem (3.1) goes extinct for any initial
condition in R2

+. Similarly, if d2 ≥ 1, then the population of the IG predator z in the xz-subsystem (3.2)
2 ;
goes extinct for any initial condition in the interior of R+
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(

(ii) If d1 ≤ θ, then the solution of the xy-subsystem (3.1) converges to (0, 0) for any initial condition in the
interior of R2

+. Similarly, if d2 ≤ θ, then the solution of the xz-subsystem (3.2) converges to (0, 0) for
any initial condition in the interior of R2

+;
(iii) If x(0) ≤ θ, then all species in both subsystems (3.1) and (3.2) converge to (0, 0);
(iv) In the absence of the basal prey x, both the IG prey and IG predator go extinct for any initial condition

in R2
+.

Proof. We only need to prove the result for the xy-subsystem (3.1) and the yz–subsystem (3.3).
Let d1 > 1. By lim supt→∞ x(t) ≤ 1, we have that for sufficiently small ϵ > 0 satisfying d1 > 1 + ϵ, there

exists T1 > 0 such that for all t > T1, x(t) ≤ 1 + ϵ. Then by the second equation of the xy-subsystem (3.1),
we have that

y′ = γ1y(x − d1) ≤ γ1y(1 + ϵ − d1) ≤ 0, ∀t > T1.

It follows that limt→∞ y(t) = 0.
If d1 = 1, then according to Theorem 3.2, the xy-subsystem (3.1) only has three boundary equilibria

Exy
u , u = 0, θ, 1, where both Exy

0 and Exy
1 are locally asymptotically stable and Exy

θ is a saddle. Corollary 3.1
implies that the xy-subsystem (3.1) has a compact global attractor. Thus, from an application of Poincaré-
Bendixson theorem [51] we conclude that limt→∞ y(t) = 0 for any solution (x(t), y(t)) of (3.1) initiated from
the interior of R2

+.
If d1 ≤ θ, then from Theorem 3.2, the xy-subsystem (3.1) only has three boundary equilibria Exy

u , u =
0, θ, 1, where Exy

0 is locally asymptotically stable, Exy
θ is unstable, and Exy

1 is a saddle point. Thus,
Corollary 3.1 and Poincaré–Bendixson theorem [51] imply that limt→∞(x(t), y(t)) = (0, 0) for any solution
x(t), y(t)) of (3.1) initiated from the interior of R2

+.
Assume x(0) ≤ θ. From the first equation of the xy-subsystem (3.1), we have

x′|x<θ ≤ 0, and x′|x=θ ≤ 0,

which implies that limt→∞ x(t) = 0. Thus, the second equation of (3.1) implies that limt→∞ y(t) = 0.
In the absence of the basal prey x, the yz-subsystem (3.3) has a unique equilibrium (0, 0) which is locally

asymptotically stable. Theorem 2.1 implies that the yz-subsystem (3.3) has a compact global attractor. Thus,
Poincaré–Bendixson theorem [51] implies that the solution of the yz-subsystem (3.3) converges to (0, 0) for
any initial condition in R2

+. The proof is complete. □

Remark 3.5. The second part of Theorem 3.4 is about IG prey (IG predation)-driven extinction due to
Allee effect of the basal prey population. The invasion or reproduction of the IG prey (IG predator) is
excessive while the reproduction of the basal prey is not fast enough to sustain its own population. Thus,
the excessive invasion or reproduction of the IG prey (IG predator) drives the population of basal prey to
below its Allee threshold and eventually to zero, which consequently drives the population of the IG prey (IG
predator, respectively) to extinction. The third and fourth statements of Theorem 3.4 indicate that in the
absence of the basal prey, when the population density of the basal prey is below its Allee threshold, all
species will be extinct.

Now, let θ, α, γ1 be fixed and d1 vary, we show the global dynamics of the xy-subsystem (3.1). The features
of the xz-subsystem (3.2) are same to (3.1) and are omitted here. We refer to Sieber and Hilker [52], Wang
et al. [37] and Kang et al. [53] for more details and numerical simulations.

(i) d1 ≥ 1. This leads to the IG prey free dynamics with Exy
0 ∪ Exy

1 as attractors.
(ii) 1

2 (1+θ) < d1 < 1. There is a transcritical bifurcation at d1 = 1. When the value of d1 is decreased from
1, Exy

1 becomes unstable and a unique and locally asymptotically stable interior equilibrium Exy appears.
(iii) d1 = 1

2 (1 + θ). A Hopf bifurcation occurs.
(iv) There exists a threshold value d∗ : θ < d∗ < 1 (1 + θ) such that
1 1 2
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(a) when d∗
1 < d1 < 1

2 (1 + θ), there exists a unique limit cycle such that below the stable manifold of Exy
θ

trajectories converge to the limit cycle and above the stable manifold of Exy
θ trajectories converge to the

extinction equilibrium Exy
0 ;

b) when d1 = d∗
1, the unique stable limit cycle disappears and a heteroclinic bifurcation occurs; i.e., there is

a heteroclinic orbit connecting Exy
1 to Exy

θ . Outside the heteroclinic cycle, trajectories converge to Exy
0 ,

while inside the heteroclinic cycle trajectories converge towards the heteroclinic cycle;
(c) when θ < d1 < d∗

1, the heteroclinic orbit is broken, which leads Exy
0 to be globally asymptotically stable

and all species cannot coexist.

(v) d1 ≤ θ. The IG prey-driven extinction occurs and no interior equilibrium appears any more, all
rajectories in the interior of R2

+ converge to Exy
0 .

. Dynamics of the full IGP system

In this section, we study the dynamics of the full IGP system (1.3). First, we study the existence and
tability of boundary equilibria of system (1.3).

.1. Boundary equilibria of the full IGP system

It is easy to check that system (1.3) has three axial equilibria:

E0 = (0, 0, 0), Eθ = (θ, 0, 0), E1 = (1, 0, 0),

nd two planar equilibria:

E2 =
(

d2, 0,
1
β

(d2 − θ)(1 − d2)
)

if θ < d2 < 1,

E3 =
(

d1,
1
α

(d1 − θ)(1 − d1), 0
)

if θ < d1 < 1.

The existence and stability of these boundary equilibria can be summarized as the following theorem.

heorem 4.1. (Existence and Stability of Boundary Equilibria) Sufficient conditions for the existence and
ocal stability of boundary equilibria for system (1.3) are summarized in Table 2.

roof. The Jacobian matrix J associated to system (1.3) is given by

J |E =

⎛⎝(x − θ)(1 − x) + x(1 − x) − x(x − θ) − αy − βz −αx −βx
γ1y γ1(x − a1z − d1) −γ1a1y
γ2z γ2a2z γ2(x + a2y − d2)

⎞⎠ .

At E0 = (0, 0, 0), we have eigenvalues λ1 = −θ, λ2 = −γ1d1, λ3 = −γ2d2, which imply that E0 = (0, 0, 0)
s always locally asymptotically stable.

At Eθ = (θ, 0, 0), we get λ1 = θ(1 − θ) > 0, λ2 = γ1(θ − d1) and λ3 = γ2(θ − d2). Thus, Eθ is always
nstable and a source if d1 < θ, d2 < θ and a saddle if at least one of d1 and d2 is larger than θ.

At E1 = (1, 0, 0), we get λ1 = −(1 − θ) < 0, λ2 = γ1(1 − d1) and λ3 = γ2(1 − d2). Thus, E1 is locally
symptotically stable if d1 > 1, d2 > 1 while a saddle if at least one of d1 and d2 is less than 1.

At E2 =
(

d2, 0, 1
β (d2 − θ)(1 − d2)

)
(θ < d2 < 1), the characteristic equation is given by(

λ − γ1

(
d2 − d1 − 1

a1(d2 − θ)(1 − d2)
))(

λ2 − d2(1 − 2d2 + θ)λ + γ2d2(d2 − θ)(1 − d2)
)

= 0.

β
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Table 2
The boundary equilibria and their local stability for system (1.3).

Boundary equilibria Existence conditions Stability conditions

E0 Always Always L.A.S.

Eθ Always Always unstable. Source if 0 < d1, d2 < θ;
Saddle if at least one of d1 and d2 is
larger than θ.

E1 Always L.A.S. if d1, d2 > 1; Saddle if at least one
of d1 and d2 is less than 1.

E2 θ < d2 < 1 L.A.S. if d1 > d2 − a1
β

(d2 − θ)(1 − d2) and
1
2 (1 + θ) < d2 < 1;
Source if d1 < d2 − a1

β
(d2 − θ)(1 − d2) and

θ < d2 < 1
2 (1 + θ);

Saddle if either
(1) d1 < d2 − a1

β
(d2 − θ)(1 − d2), 1

2 (1 + θ) <

d2 < 1 or
(2) d1 > d2 − a1

β
(d2 − θ)(1 − d2), θ < d2 <

1
2 (1 + θ).

E3 θ < d1 < 1 L.A.S. if d2 > d1 + a2
α

(d1 − θ)(1 − d1) and
1
2 (1 + θ) < d1 < 1;
Source if d2 < d1 + a2

α
(d1 − θ)(1 − d1) and

θ < d1 < 1
2 (1 + θ);

Saddle if either
(1) d2 < d1 + a2

α
(d1 − θ)(1 − d1), 1

2 (1 + θ) <

d1 < 1 or
(2) d2 > d1 + a2

α
(d1 − θ)(1 − d1), θ < d1 <

1
2 (1 + θ).

Thus, we have λ2 = γ1

(
d2 − d1 − 1

β a1(d2 − θ)(1 − d2)
)

and λ1, λ3 are roots of the following equation:

λ2 − d2(1 − 2d2 + θ)λ + γ2d2(d2 − θ)(1 − d2) = 0.

Notice that θ < d2 < 1, we know that E2 is locally asymptotically stable if d1 > d2 − 1
β a1(d2 − θ)(1 − d2)

and 1
2 (1 + θ) < d2 < 1; E2 is a saddle if either⎧⎪⎨⎪⎩

d1 < d2 − 1
β

a1(d2 − θ)(1 − d2),

1
2(1 + θ) < d2 < 1,

or

⎧⎪⎨⎪⎩
d1 > d2 − 1

β
a1(d2 − θ)(1 − d2),

θ < d2 <
1
2(1 + θ),

and a source if d1 < d2 − 1
β a1(d2 − θ)(1 − d2) and θ < d2 < 1

2 (1 + θ).
At E3 =

(
d1, 1

α (d1 − θ)(1 − d1), 0
)

(θ < d1 < 1), the characteristic equation is given by(
λ − γ2

(
d1 − d2 + 1

α
a2(d1 − θ)(1 − d1)

))(
λ2 − d1(1 − 2d1 + θ)λ + γ1d1(d1 − θ)(1 − d1)

)
= 0.

Thus, E3 is locally asymptotically stable if d2 > d1 + 1
α a2(d1 − θ)(1 − d1) and 1

2 (1 + θ) < d1 < 1; E3 is a
saddle if either ⎧⎪⎨⎪⎩

d2 < d1 + 1
α

a2(d1 − θ)(1 − d1),
1
2(1 + θ) < d1 < 1,

or

⎧⎪⎨⎪⎩
d2 > d1 + 1

α
a2(d1 − θ)(1 − d1),

θ < d1 <
1
2(1 + θ),

and a source if d < d + 1 a (d − θ)(1 − d ) and θ < d < 1 (1 + θ). The proof is complete. □
2 1 α 2 1 1 1 2
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emark 4.2.

(1) According to Theorem 4.1, both E2 and E3 are locally asymptotically stable in R3
+ if{ 1

2 (1 + θ) < d1 < d2 < 1,
a1
β > d2−d1

(d2−θ)(1−d2) , a2
α < d2−d1

(d1−θ)(1−d1) .

(2) By Theorem 3.2 and the proof of Theorem 4.1, if d1 > d2 − a1
β (d2 − θ)(1 − d2), θ < d2 < 1

2 (1 + θ),
then E2 is a saddle in R3

+, but it is a source in the xz-plane and there exists d∗
2 : θ < d∗

2 < 1
2 (1 + θ)

such that for d∗
2 < d2 < 1

2 (1 + θ) there is a unique stable limit cycle surrounding E2. Similarly, if
d2 > d1 + a2

α (d1 − θ)(1 − d1), θ < d1 < 1
2 (1 + θ), then E3 is a saddle in R3

+, but it is a source in the
xy-plane, and there exists d∗

1 : θ < d∗
1 < 1

2 (1 + θ) such that for d∗
1 < d1 < 1

2 (1 + θ) there is a unique
stable limit cycle surrounding E3.

(3) Both the existence and local stability of boundary equilibria of (1.3) are independent of (γ1, γ2).

4.2. Extinction

By Theorems 2.1, 3.2 and 3.4, we have the following result regarding the extinction of at least one species
of the basal prey x, IG prey y and IG predator z.

Theorem 4.3. (Basic Global Features)

(i) If d1 ≥ 1, then limt→∞ y(t) = 0. If, in addition, d2 ≥ 1, then limt→∞ max{y(t), z(t)} = 0. While if
d1 ≥ 1 and d2 ≤ θ, then limt→∞(x(t), y(t), z(t)) = E0;

(ii) If d2 ≥ 1 + a2
α

[
(1−θ)2

4d1
+ γ1

]
, then limt→∞ z(t) = 0. If, in addition, d1 ≤ θ, then limt→∞(x(t), y(t),

z(t)) = E0;
(iii) All trajectories of system (1.3) converge to E0 if x(0) ≤ θ.

roof. (i) The fact that

x′ = x(x − θ)(1 − x) − αxy − βxz ≤ x(x − θ)(1 − x) − αxy,
y′ = γ1y(x − a1z − d1) ≤ γ1y(x − d1)

mplies that the dynamics of x and y of the full system (1.3) can be governed by the xy-subsystem (3.1).
herefore, by Theorem 3.4, d1 ≥ 1 implies limt→∞ y(t) = 0 and the limiting system of (1.3) is the
z-subsystem (3.2). Thus, if in addition d2 ≥ 1, then

lim
t→∞

max{y(t), z(t)} = 0.

oreover, if in addition d2 ≤ θ, then from Theorem 3.2 we can conclude that the omega limit set of the
z-plane is E0 ∪ Eθ ∪ E1. By Theorem 2.1 and the condition d1 ≥ 1 (Theorem 3.4), for any ϵ > 0, all
rajectories enter the compact set [0, 1] × [0, ϵ] × [0, B] when time is large enough. Therefore, the conditions
1 ≥ 1 and d2 ≤ θ indicate that for any ϵ > 0, all trajectories enter the compact set M = [0, 1] × [0, ϵ] × [0, ϵ]
hen time is large enough. Choose ϵ > 0 small enough, then the omega limit set of the interior of M is E0

ince E0 is locally asymptotically stable and Eθ, E1 are unstable according to Theorem 3.2. Therefore, the
onditions d1 ≥ 1 and d2 ≤ θ imply that limt→∞(x(t), y(t), z(t)) = E0.

(ii) By Theorem 2.1, we have lim supt→∞ x(t) ≤ 1 and lim supt→∞ y(t) ≤ 1
α

[
(1−θ)2

4d1
+ γ1

]
. This indicates

hat for any ϵ > 0 sufficiently small, there exists a time T > 0 such that for all t > T ,

dz
< γ2

(
1 + ϵ + a2

[
(1 − θ)2

+ γ1 + ϵ

]
− d2

)
.

zdt α 4d1
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It follows from the arbitrariness of ϵ and the condition 1 + a2
α

[
(1−θ)2

4d1
+ γ1

]
≤ d2 that limt→∞ z(t) = 0. The

rest of this item can be shown by applying similar arguments as in the proof of (i).
(iii) If x(0) ≤ θ, similar to the proof of Theorem 3.4, we have limt→∞(x(t), y(t)) = 0. Thus, the third

equation of (1.3) implies limt→∞ z(t) = 0. Therefore, all trajectories of system (1.3) converge to E0. The
proof is complete. □

Remark 4.4. Theorem 4.3 implies the following statements:
(1) The high death rate(s) of the IG prey or/and IG predator lead(s) to the extinction of the IG prey

or/and IG predator.
(2) If d1 ≥ 1 and d2 ≤ θ (or d2 ≥ 1 + a2

α

[
(1−θ)2

4d1
+ γ1

]
and d1 ≤ θ), then the IG predator (or IG prey,

respectively)-driven extinction occurs due to Allee effect of the basal prey population, and all species will
be extinct. Therefore, Allee effect in the basal prey increases the extinction risk of not only the basal prey
but also both IG prey and predator, even if the initial population density of the basal prey is abundant.

(3) The initial population of the basal prey plays an important role in the persistence of x or y or z due
to Allee effect in the basal prey. If the population density of the basal prey is low, then all species will be
extinct.

4.3. Interior equilibrium

In this subsection, we explore sufficient conditions for the existence of the interior equilibria and their
stability for system (1.3).

The interior equilibria of system (1.3) are determined by the following equations:⎧⎨⎩ (x − θ)(1 − x) − αy − βz = 0,
x − a1z − d1 = 0,
x + a2y − d2 = 0.

Thus, (x∗, y∗, z∗) is an interior equilibrium of system (1.3) if and only if x∗ is a positive root of the following
quadratic equation

f(x) := x2 −
(

1 + θ + α

a2
− β

a1

)
x + θ + d2α

a2
− d1β

a1
= 0, (4.1)

and
y∗ = 1

a2
(d2 − x∗) > 0, z∗ = 1

a1
(x∗ − d1) > 0. (4.2)

Let
∆ =

(
1 + θ + α

a2
− β

a1

)2
− 4

(
θ + d2α

a2
− d1β

a1

)
. (4.3)

f ∆ < 0, then the quadratic equation (4.1) has no root, and hence system (1.3) has no interior equilibrium.
f ∆ ≥ 0, then the quadratic equation (4.1) has two real roots x∗

1 and x∗
2 (x∗

1 ≤ x∗
2):

x∗
1 = 1

2

(
1 + θ + α

a2
− β

a1
−

√
∆

)
, x∗

2 = 1
2

(
1 + θ + α

a2
− β

a1
+

√
∆

)
. (4.4)

Clearly, x∗
1 ≤ 1

2

(
1 + θ + α

a2
− β

a1

)
≤ x∗

2. Let

y∗
i = 1

a2
(d2 − x∗

i ), z∗
i = 1

a1
(x∗

i − d1), i = 1, 2.

If ∆ > 0, then the number of interior equilibria is determined by the relative locations of x∗
1, x∗

2 and d1, d2:

• No interior equilibrium if (1) d1, d2 ≤ x∗
1, or (2) d1, d2 ≥ x∗

2, or (3) x∗
1 ≤ d1, d2 ≤ x∗

2;
• A unique interior equilibrium E∗ = (x∗, y∗, z∗) if d < x∗ < d ≤ x∗;
1 1 1 1 1 1 2 2
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• Two interior equilibria E∗
1 = (x∗

1, y∗
1 , z∗

1) and E∗
2 = (x∗

2, y∗
2 , z∗

2) if d1 < x∗
1 ≤ x∗

2 < d2;
• A unique interior equilibrium E∗

2 = (x∗
2, y∗

2 , z∗
2) if x∗

1 ≤ d1 < x∗
2 < d2.

Based on the above analysis and the Theorem 4.3, we obtain the following sufficient conditions for which
ystem (1.3) has no interior equilibrium.

heorem 4.5. (No Interior Equilibrium) System (1.3) has no interior equilibrium if one of the following
onditions is satisfied:

(i) d1 ≥ 1;
(ii) d2 ≥ 1 + a2

α

[
(1−θ)2

4d1
+ γ1

]
;

(iii) d2 ≥ d1;
(iv) ∆ =

(
1 + θ + α

a2
− β

a1

)2
− 4

(
θ + d2α

a2
− d1β

a1

)
< 0;

(v) ∆ =
(

1 + θ + α
a2

− β
a1

)2
− 4

(
θ + d2α

a2
− d1β

a1

)
≥ 0 and one of the following conditions holds: (1)

d1, d2 ≤ x∗
1, (2) d1, d2 ≥ x∗

2, (3) x∗
1 ≤ d1, d2 ≤ x∗

2.

Now, we state the existence and local stability of the interior equilibria for system (1.3).

Theorem 4.6. (Existence and Local Stability of Interior Equilibria)

(i) If ∆ > 0, d1 < x∗
1 < d2 ≤ x∗

2, then system (1.3) has a unique interior equilibrium E∗
1 = (x∗

1, y∗
1 , z∗

1).
(ii) If ∆ > 0, d1 < x∗

1 < x∗
2 < d2, then system (1.3) has two interior equilibria E∗

1 = (x∗
1, y∗

1 , z∗
1) and

E∗
2 = (x∗

2, y∗
2 , z∗

2).
(iii) If ∆ > 0, x∗

1 ≤ d1 < x∗
2 < d2, then system (1.3) has a unique interior equilibrium E∗

2 = (x∗
2, y∗

2 , z∗
2).

Moreover, if E∗
1 exists then it is always unstable; and if E∗

2 exists then it is locally asymptotically stable if and
only if x∗

2 > 1
2 (1 + θ) and ρ > 0. In addition, if x∗

2 > 1
2 (1 + θ) then system (1.3) undergoes a Hopf bifurcation

t E∗
2 when ρ = 0. Here,

ρ = x∗
2(2x∗

2 − (1 + θ))(γ1αy∗
2 + γ2βz∗

2) +
(

α

a2
− β

a1

)
γ1γ2a1a2y∗

2z∗
2 . (4.5)

Proof. The existence of the interior equilibria can be directly obtained. At E∗
i (i = 1, 2), the Jacobian

atrix J |E∗
i

associated to system (1.3) is given as follows:

J |E∗
i

=

⎛⎝x∗(1 − x∗) − x∗(x∗ − θ) −αx∗ −βx∗

γ1y∗ 0 −γ1a1y∗

γ2z∗ γ2a2z∗ 0

⎞⎠ ,

hich yields the characteristic equation F (λ) = λ3 + τ1λ2 + τ2λ + τ3 = 0, where

τ1 = x∗
i (2x∗

i − (1 + θ)),
τ2 = γ1αx∗

i y∗
i + γ2βx∗

i z∗
i + γ1γ2a1a2y∗

i z∗
i ,

τ3 = γ1γ2a1a2

(
2x∗ −

(
1 + θ + α

a2
− β

a1

))
x∗

i y∗
i z∗

i , i = 1, 2.

ote τ2 > 0. At E∗
1 , since x∗

1 < 1
2

(
1 + θ + α

a2
− β

a1

)
, we know τ3 < 0. Therefore, F (λ) = 0 has at least one

positive real root and hence E∗ is always unstable.
1
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At E∗
2 , since x∗

2 > 1
2

(
1 + θ + α

a2
− β

a1

)
, we know τ3 > 0. Let

∆1 = τ1 = x∗
2(2x∗

2 − (1 + θ)),

∆2 =
⏐⏐⏐⏐ τ1 τ3

1 τ2

⏐⏐⏐⏐ = x∗
2

(
x∗

2(2x∗
2 − (1 + θ))(γ1αy∗

2 + γ2βz∗
2) +

(
α

a2
− β

a1

)
γ1γ2a1a2y∗

2z∗
2

)
= x∗

2ρ,

∆3 =

⏐⏐⏐⏐⏐⏐
τ1 τ3 0
1 τ2 0
0 τ1 τ3

⏐⏐⏐⏐⏐⏐ = τ3∆2.

rom Routh–Hurwitz criterion, E∗
2 is locally asymptotically stable if and only if x∗

2 > 1
2 (1 + θ) and ρ > 0.

Assume x∗
2 > 1

2 (1+θ). We will use ρ as the bifurcation parameter. It is easy to see that ρ = 1
x∗

2
(τ1τ2 −τ3).

The characteristic equation in the eigenvalues of E∗
2 can be rewritten as follows:

λ3 + τ1λ2 + 1
τ1

(x∗
2ρ + τ3)λ + τ3 = 0.

In the case ρ = 0, we have (λ+τ1)
(

λ2 + τ3
τ1

)
= 0, which gives one negative root λ1 = −τ1 = −x∗

2(2x∗
2−(1+θ))

ince x∗
2 > 1

2 (1 + θ), and a pair of purely imaginary roots λ2,3 = ±i
√

τ3
τ1

. If ρ > 0, then we have ∆2 > 0, so
all eigenvalues have negative real parts and E∗

2 is stable. If ρ < 0, then we have ∆2 < 0, so λ2,3 have positive
eal parts and E∗

2 is unstable.
If ρ ̸= 0, let the eigenvalues be denoted λ = p(ρ) + q(ρ)i with p(0) = 0 and q(0) =

√
τ3
τ1

> 0. To show a

opf bifurcation occurs, we need to show dp(ρ)
dρ |ρ=0= p′(0) ̸= 0. Implicitly differentiating the characteristic

equation with respect to ρ, we get

3λ2λ′ + 2τ1λλ′ + x∗
2

τ1
λ + 1

τ1
(x∗

2ρ + τ3)λ′ = 0.

Evaluating it at ρ = 0, we have (
3λ2 + 2τ1λ + τ3

τ1

)
λ′ + x∗

2
τ1

λ = 0.

Since λ(0) = q(0)i, λ2(0) = −q2(0) = − τ3
τ1

and λ′(0) = p′(0) + q′(0)i, we obtain

−2τ3

τ1
p′(0) − 2

√
τ1τ3q′(0) + i

[
2
√

τ1τ3p′(0) − 2τ3

τ1
q′(0) + x∗

2
τ1

√
τ3

τ1

]
= 0.

Setting the real and imaginary terms of the equation above equal to 0, respectively, we get[
τ3
τ1

√
τ1τ3

−√
τ1τ3

τ3
τ1

] [
p′(0)
q′(0)

]
=
[

0
x∗

2
2τ1

√
τ3
τ1

]
.

Thus, p′(0) = − x∗
2τ1

2(τ3
1 +τ3) < 0. The proof is complete. □

From (4.5), α
β − a2

a1
< 0 is necessary for the occurrence of Hopf bifurcation. It is easy to see that if

x∗
2 > 1

2 (1 + θ) then ρ = 0 is equivalent to Γ (γ1, γ2) = 0, where Γ (γ1, γ2) is given by

Γ (γ1, γ2) = 1
γ1

β

y∗
2

+ 1
γ2

α

z∗
2

− a2β − a1α

x∗
2(2x∗

2 − (1 + θ)) . (4.6)

Thus, we directly have the following result.

Corollary 4.7. If the interior equilibrium E∗
2 exists and x∗

2 > 1
2 (1 + θ), then E∗

2 is locally asymptotically
stable if and only if the pair of parameters (γ1, γ2) satisfies Γ (γ1, γ2) > 0; while system (1.3) undergoes a

opf bifurcation at E∗ on the curve Γ (γ , γ ) = 0.
2 1 2
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Fig. 1. Parameter values: θ = 0.2, d1 = 0.7, d2 = 0.9, α = β = a1 = 1, a2 = 2. System (1.3) has a unique interior equilibrium
E∗

2 = (0.7653, 0.0673, 0.0653). (a) The Hopf bifurcation curve on the (γ1, γ2)-plane. (b) When (γ1, γ2) = (5, 5), E∗
2 is locally

asymptotically stable. (c) When (γ1, γ2) = (7.2864296, 8), which lies on the bifurcation curve Γ(γ1, γ2) = 0, E∗
2 loses its stability

and a limit cycle is born due to the Hopf bifurcation. In both (b) and (c), the initial value is chosen as (0.5, 0.2, 0.2).

Remark 4.8. Theorem 4.6 and Corollary 4.7 indicate the following implications:
(1) System (1.3) has at most two interior equilibria E∗

1 and E∗
2 . The existence of both E∗

1 and E∗
2 depends

on Allee effect and is independent of the pair of parameters (γ1, γ2). E∗
1 is always unstable while the stability

of E∗
2 depends on Allee threshold θ.

(2) Assuming E∗
2 exists and x∗

2 > 1
2 (1+θ). From (4.6), if the ratio of the attack rates on the basal prey of

IG prey to IG predator is not less than the conversion rate of IG predator from IG prey (i.e., α
β − a2

a1
≥ 0),

hen E∗
2 is stable for all (γ1, γ2). However, if α

β − a2
a1

< 0, then (γ1, γ2) determines the stability of E∗
2 . The

Hopf bifurcation curve Γ (γ1, γ2) = 0 depicts the relationship between competition levels of the IG prey and
IG predator for the basal resource. If the competition of IG prey and IG predator for the basal resource lies
below the critical curve Γ (γ1, γ2) = 0, then E∗

2 remains stable, while above it E∗
2 loses its stability.

(3) For example, take θ = 0.2, d1 = 0.7, d2 = 0.9, α = β = a1 = 1, a2 = 2, then system (1.3) has
a unique interior equilibrium E∗

2 = (0.7653, 0.0673, 0.0653). Clearly, x∗
2 > 1

2 (1 + θ) and α
β − a2

a1
< 0. If

we choose γ1 = γ2 = 5, then Γ (γ1, γ2) = 2.08 > 0 and E∗
2 is locally asymptotically stable according to

heorem 4.6 (see Fig. 1(a) and (b)). However, if we choose (γ1, γ2) = (7.2864296, 8), which lies on the Hopf
ifurcation curve Γ (γ1, γ2) = 0, then E∗

2 loses its stability and system (1.3) has periodically oscillating
olutions (see Fig. 1(c)).

From Theorems 4.5 and 4.6, the number of interior equilibria can be described by the signs of f(d1), f(d2)
and f

(
1
2

(
1 + θ + α

a2
− β

a1

))
, and the relative locations of d1, d2 and 1

2

(
1 + θ + α

a2
− β

a1

)
.

Corollary 4.9. Let 0 < d1 < d2, d1 < 1.

(i) If one of the following conditions is satisfied, then system (1.3) has no interior equilibrium:

(a) f
(

1
2

(
1 + θ + α

a2
− β

a1

))
> 0;

(b) f(d1) < 0, f(d2) < 0;
(c) f(d1) > 0, f(d2) > 0, f

(
1
2

(
1 + θ + α

a2
− β

a1

))
< 0 and f ′(d1)f ′(d2) > 0 (i.e., either d1 < d2 <

1
2

(
1 + θ + α

a2
− β

a1

)
or d2 > d1 > 1

2

(
1 + θ + α

a2
− β

a1

)
).

(ii) If f(d1) > 0, f(d2) < 0, then system (1.3) has a unique interior equilibrium E∗
1 = (x∗

1, y∗
1 , z∗

1) satisfying
d < x∗ < d < x∗.
1 1 2 2
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(iii) If f(d1) < 0, f(d2) > 0, then system (1.3) has a unique interior equilibrium E∗
2 = (x∗

2, y∗
2 , z∗

2) satisfying
x∗

1 < d1 < x∗
2 < d2.

(iv) If f(d1) > 0, f(d2) > 0, f
(

1
2

(
1 + θ + α

a2
− β

a1

))
< 0 and d1 < 1

2

(
1 + θ + α

a2
− β

a1

)
< d2 (i.e., f ′(d1)

f ′(d2) < 0), then system (1.3) has two interior equilibria E∗
1 = (x∗

1, y∗
1 , z∗

1) and E∗
2 = (x∗

2, y∗
2 , z∗

2)
satisfying d1 < x∗

1 < x∗
2 < d2.

oreover, if E∗
1 exists then it is always unstable; and if E∗

2 exists then it is locally asymptotically stable if
and only if x∗

2 > 1
2 (1 + θ) and Γ (γ1, γ2) > 0, where Γ (γ1, γ2) is defined in (4.6).

Denote ∆(d1, d2) =
(

1 + θ + α
a2

− β
a1

)2
− 4

(
θ + d2α

a2
− d1β

a1

)
. The following lemma can be easily verified.

emma 4.10. Let 0 < d1 < d2, d1 < 1.

(i) f
(

1
2

(
1 + θ + α

a2
− β

a1

))
> 0 is equivalent to ∆(d1, d2) < 0;

(ii) f(d1) > 0 is equivalent to d2 > d1 + a2
α (d1 − θ)(1 − d1);

(iii) f(d2) > 0 is equivalent to d1 < d2 − a1
β (d2 − θ)(1 − d2).

Thus, Corollary 4.9 can be restated as follows.

orollary 4.11. Let 0 < d1 < d2, d1 < 1.

(i) If one of the following conditions is satisfied, then system (1.3) has no interior equilibrium.

(a) ∆(d1, d2) < 0;
(b) d2 < d1 + a2

α (d1 − θ)(1 − d2), d1 > d2 − a1
β (d2 − θ)(1 − d2);

(c) d2 > d1 + a2
α (d1 − θ)(1 − d2), d1 < d2 − a1

β (d2 − θ)(1 − d2), ∆(d1, d2) > 0, and f ′(d1)f ′(d2) > 0.

(ii) If d2 > d1 + a2
α (d1 − θ)(1 − d2) and d1 > d2 − a1

β (d2 − θ)(1 − d2), then system (1.3) has a unique interior
equilibrium E∗

1 = (x∗
1, y∗

1 , z∗
1) satisfying d1 < x∗

1 < d2 < x∗
2.

(iii) If d2 < d1 + a2
α (d1 − θ)(1 − d2) and d1 < d2 − a1

β (d2 − θ)(1 − d2), then system (1.3) has a unique interior
equilibrium E∗

2 = (x∗
2, y∗

2 , z∗
2) satisfying x∗

1 < d1 < x∗
2 < d2.

(iv) If d2 > d1 + a2
α (d1 − θ)(1 − d2), d1 < d2 − a1

β (d2 − θ)(1 − d2), ∆(d1, d2) > 0, and f ′(d1)f ′(d2) < 0, then
system (1.3) has two interior equilibria E∗

1 = (x∗
1, y∗

1 , z∗
1) and E∗

2 = (x∗
2, y∗

2 , z∗
2) satisfying d1 < x∗

1 <

x∗
2 < d2.

oreover, if E∗
1 exists then it is always unstable; and if E∗

2 exists then it is locally asymptotically stable if
nd only if x∗

2 > 1
2 (1 + θ) and Γ (γ1, γ2) > 0, where Γ (γ1, γ2) is defined in (4.6).

The above result shows the impact of (d1, d2) on the dynamics of system (1.3). See Fig. 2, in which we
take θ = 0.12, α = 0.42, β = 0.88, a1 = 1.5, a2 = 1.1, γ1 = γ2 = 1 and regard (d1, d2) as the bifurcation
arameters.

emark 4.12. Theorem 4.6 and Corollary 4.11, combined with Fig. 2, indicate the following implications:
(1) If E1 is locally asymptotically stable, then system (1.3) has no interior equilibrium and both E2 and

3 do not exist (see Fig. 2).
(2) If E2 is locally asymptotically stable, then system (1.3) has at most one interior equilibrium E∗

1 which
s unstable if it exists (see Fig. 2). This implies that the IG-prey goes extinct. In fact, since E2 is locally
symptotically stable, we know from Theorem 4.1 that

1(1 + θ) < d2 < 1, d1 > d2 − a1 (d2 − θ)(1 − d2),
2 β
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Fig. 2. Two-dimensional bifurcation diagram on the (d1, d2)-plane. Here θ = 0.12, α = 0.42, β = 0.88, a1 = 1.5, a2 = 1.1, γ1 = γ2 = 1.

which imply that f(d2) < 0, where f(x) is defined by (4.1). Therefore, system (1.3) has at most one interior
equilibrium E∗

1 which is unstable if it exists by Theorem 4.6.
(3) If E3 is locally asymptotically stable, then from Theorem 4.1 we know that 1

2 (1 + θ) < d1 < 1 and
2 > d1 + a2

α (d1 − θ)(1 − d1). It follows that f(d1) > 0 and system (1.3) may have no, one or two interior
equilibria. More precisely, (a) if 1

2 (1+θ) < d1 < 1 and either ∆ < 0 or f(d1) > 0, f(d2) > 0, f ′(d1)f ′(d2) > 0,
hen system (1.3) has no interior equilibrium; (b) if 1

2 (1 + θ) < d1 < 1 and f(d1) > 0 > f(d2), then
system (1.3) has a unique interior equilibrium E∗

1 which is unstable; (c) if 1
2 (1 + θ) < d1 < 1,∆ > 0 and

f(d1) > 0, f(d2) > 0, f ′(d1)f ′(d2) < 0, then system (1.3) has two interior equilibria E∗
1 and E∗

2 . In this case,
∗
2 must be locally asymptotically stable. In fact, E3 is locally asymptotically stable and E∗

1 and E∗
2 exist,

e have
d2 > x∗

2 >
1
2

(
1 + θ + α

a2
− β

a1

)
> x∗ > d1 >

1
2(1 + θ),

hich implies that α
β − a2

a1
> 0, and hence ρ > 0. Therefore, E∗

2 is locally asymptotically stable by
heorem 4.6. For example, we take parameters θ = 0.1, d1 = 0.7, d2 = 0.95, a1 = 4, a2 = 1.35, α = β =

γ1 = γ2 = 1, then system (1.3) has two interior equilibria:

E∗
1 = (0.7328, 0.1609, 0.0082), E∗

2 = (0.8579, 0.0682, 0.0395).

learly, 0.55 = 1
2 (1 + θ) < 0.7 = d1 < 1 and 0.95 = d2 > d1 + a2

α (d1 − θ)(1 − d1) = 0.943. By Theorem 4.1,
E3 = (0.7, 0.18, 0) is locally asymptotically stable. Since α

a2
− β

a1
= 0.4907 > 0, E∗

2 is locally asymptotically
stable by Theorem 4.6 (see Fig. 14).

(4) From the above two last items, we see that if both E2 and E3 are locally asymptotically stable, then
system (1.3) has a unique interior equilibrium E∗

1 , which is unstable.

5. The impact of Allee effect

In this section, we focus on the impact of θ on the dynamics of system (1.3). The discriminant ∆ defined
by (4.3) of the quadratic polynomial f(x) in (4.1) is a function of θ. We rewrite it as follows:

∆(θ) = θ2 − 2
(

1 + β − α
)

θ +
(

1 + α − β
)2

− 4
(

d2α − d1β
)

. (5.1)

a1 a2 a2 a1 a2 a1
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f

Fig. 3. (a) The parameter space Λ : Λ = Λ− ∪ Λ+, Λ− =
⨆3

j=1
Λ−

j
, Λ+ =

⨆3

j=1
Λ+

j
, Λ+

2 =
⨆9

j=0
Λ+

2j
, Λ+

3 =
⨆3

j=1
Λ+

3j
. (b) The locally

enlarged diagram for Λ+
2j

, j = 0, 1, 2, 3. Here, d1 = 0.65, d2 = 0.75.

∆(θ) = 0 has the discriminant

δ = 16
(

(1 − d1) β

a1
− (1 − d2) α

a2

)
. (5.2)

Denote λ = (α, β, a1, a2, d1, d2). Define the parameter space

Λ =
{

λ ∈ R6
+ : αβa1a2 > 0, 0 < d1 < d2, d1 < 1

}
.

By the sign of δ, we divide Λ into two regions (see Fig. 3):

Λ− =
{

λ ∈ R6
+ : αβa1a2 > 0, 0 < d1 < d2, d1 < 1, (1 − d1) β

a1
− (1 − d2) α

a2
≤ 0
}

,

Λ+ =
{

λ ∈ R6
+ : αβa1a2 > 0, 0 < d1 < d2, d1 < 1, (1 − d1) β

a1
− (1 − d2) α

a2
> 0
}

.

The following statements are clear.
(1) If λ = (α, β, a1, a2, d1, d2) ∈ Λ−, then for each θ ∈ R, ∆(θ) ≥ 0 and f(x) has two real roots x∗

1 ≤ x∗
2

given by (4.4).
(2) If λ ∈ Λ+, then ∆(θ) = 0 has two different real roots θ∗ < θ∗∗ given by

θ∗ = 1 + β
a1

− α
a2

−
√

δ
2 = 1 + β

a1
− α

a2
− 2
√

(1 − d1) β
a1

− (1 − d2) α
a2

,

θ∗∗ = 1 + β
a1

− α
a2

+
√

δ
2 = 1 + β

a1
− α

a2
+ 2
√

(1 − d1) β
a1

− (1 − d2) α
a2

.
(5.3)

For θ ∈ R : θ ≤ θ∗ or θ ≥ θ∗, ∆(θ) ≥ 0 and f(x) has two real roots x∗
1 ≤ x∗

2 (at θ = θ∗, θ∗∗, x∗
1 = x∗

2), while
or θ∗ < θ < θ∗∗, ∆(θ) < 0 and f(x) has no real root.

The real roots of f(x) = 0 can be regarded as functions of θ. We rewrite x∗
1 and x∗

2 as follows:

x∗
1,2(θ) = 1

(
1 + θ + α − β ±

√
∆(θ)

)
, (5.4)
2 a2 a1
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here ∆(θ) is defined by (5.1). At θ = 0, 1,

x∗
1,2(0) = 1

2

(
1 + α

a2
− β

a1
±
√(

1 + α
a2

− β
a1

)2
− 4

(
d2α
a2

− d1β
a1

))
,

x∗
1,2(1) = 1

2

(
2 + α

a2
− β

a1
±
√(

2 + α
a2

− β
a1

)2
− 4

(
1 + d2α

a2
− d1β

a1

))
.

(5.5)

In order to explore the impact of θ on the dynamics of system (1.3), we consider the following two cases:
(i) λ ∈ Λ−, (ii) λ ∈ Λ+.

5.1. The case λ ∈ Λ−

Lemma 5.1. Let λ ∈ Λ−, x∗
1 = x∗

1(θ) and x∗
2 = x∗

2(θ) be two different real roots of f(x) = 0 for θ ∈ (0, 1).
We have the following statements:

(i) x∗
2(θ) ≥ 1 for all θ ∈ (0, 1), which indicates that system (1.3) has at most one unstable interior

equilibrium E∗
1 (x∗

1, y∗
1 , z∗

1);
(ii) x∗

1(θ) ≤ 1 for all θ ∈ (0, 1), x∗
1(0) > 0 and x∗

1(1) > d2;
(iii) x∗

1(θ) is strictly increasing and concave on (0, 1).

Proof. λ ∈ Λ− implies 0 < d1 < d2 < 1 and d2α
a2

− d1β
a1

≤ α
a2

− β
a1

. Thus,

∆(θ) ≥
(

1 + θ + α

a2
− β

a1

)2
− 4

(
θ + α

a2
− β

a1

)
=
(

1 −
(

θ + α

a2
− β

a1

))2
.

hen, for θ ∈ (0, 1), we have that if θ + α
a2

− β
a1

≤ 1,

x∗
1(θ) = 1

2

(
1 + θ + α

a2
− β

a1
−
√
∆(θ)

)
≤ θ + α

a2
− β

a1
≤ 1,

x∗
2(θ) = 1

2

(
1 + θ + α

a2
− β

a1
+
√

∆(θ)
)

≥ 1,

nd that if θ + α
a2

− β
a1

> 1, x∗
1(θ) < 1, x∗

2(θ) > θ + α
a2

− β
a1

> 1.
By a direct computation, we get

d
dθ x∗

1(θ) = 1√
∆(θ)

(1 − x∗
1(θ)), d2

dθ2 x∗
1(θ) = 2

(∆(θ))
3
2

(x∗
1(θ) − 1)(x∗

2(θ) − 1).

herefore, x∗
1(θ) is strictly increasing and concave on (0, 1).

Since 1−d2
1−d1

α
a2

− β
a1

≥ 0, we get α
a2

− β
a1

> 0. Thus,

d2α

a2
− d1β

a1
= d1

(
d2

d1

α

a2
− β

a1

)
> d1

(
α

a2
− β

a1

)
> 0.

herefore, x∗
1(0) > 0.

If x∗
1(1) ≤ d2, then by a direct computation, we have that (d2 − d1) β

a1
≤ −(1 − d2)2 < 0, which is

mpossible. Therefore, x∗
1(1) > d2. The proof is complete. □

By Lemma 5.1, we divide Λ− into three different regions

Λ−
1 = {λ ∈ Λ− : d1 < d2 ≤ x∗

1(0)} , Λ−
2 = {λ ∈ Λ− : d1 ≤ x∗

1(0) < d2} ,
Λ−

3 = {λ ∈ Λ− : x∗
1(0) < d1 < d2} .

t is clear that Λ− = Λ− ∪ Λ− ∪ Λ− (see Fig. 3).
1 2 3
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Fig. 4. Bifurcation diagrams on θ in the case λ ∈ Λ−. Here, γ1 = 1, γ2 = 1. Blue segment shows the interior equilibrium E∗
1 .

(a) λ ∈ Λ−
1 and no interior equilibrium for all θ ∈ (0, 1); (b) λ ∈ Λ−

2 and there is a unique unstable interior equilibrium E∗
1 for

θ ∈ (0, θ2), and no interior equilibrium for θ ∈ [θ2, 1), θ2 = 0.2167; (c) There is no interior equilibrium for θ ∈ (0, θ1] ∪ [θ2, 1) and
a unique unstable interior equilibrium E∗

1 for θ ∈ (θ1, θ2), θ1 = 0.2, θ2 = 0.35. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

We also have the following lemma.

Lemma 5.2.

(i) If there exists θ ∈ R, denoted by θ1, such that d1 = x∗
1(θ) or d1 = x∗

2(θ), then θ1 = d1 − α
a2

d2−d1
1−d1

.
(ii) If there exists θ ∈ R, denoted by θ2, such that d2 = x∗

1(θ) or d2 = x∗
2(θ), then θ2 = d2 − β

a1
d2−d1
1−d2

.

Now, by Theorems 4.5 and 4.6 and Lemmas 5.1 and 5.2, for the case λ ∈ Λ−, we show the impact of Allee
threshold θ on the dynamics of system (1.3) as follows.

Theorem 5.3. Let λ ∈ Λ−, x∗
1 = x∗

1(θ) and x∗
2 = x∗

2(θ) be two different real roots of f(x) = 0 for θ ∈ (0, 1).
θ1 and θ2 are given in Lemma 5.2.

(i) If λ ∈ Λ−
1 , then system (1.3) has no interior equilibrium for all θ ∈ (0, 1) (see Fig. 4(a)).

(ii) If λ ∈ Λ−
2 , then system (1.3) has a unique unstable interior equilibrium E∗

1 (x∗
1, y∗

1 , z∗
1) for θ ∈ (0, θ2),

while no interior equilibrium for θ ∈ [θ2, 1) (see Fig. 4(b)).
(iii) If λ ∈ Λ−

3 , then system (1.3) has no interior equilibrium for θ ∈ (0, θ1] ∪ [θ2, 1), while it has a unique
unstable interior equilibrium E∗

1 (x∗
1, y∗

1 , z∗
1) for θ ∈ (θ1, θ2) (see Fig. 4(c)).

roof. We only show the proof of (iii). Let λ ∈ Λ−
3 . From Lemma 5.1, we know that system (1.3) has at most

ne unstable interior equilibrium E∗
1 (x∗

1, y∗
1 , z∗

1), and x∗
1(0) < d1 < d2 < x∗

1(1). Also, from Lemma 5.1, we
now that x∗

1(θ) is strictly increasing and concave on (0, 1). Thus, there exists a unique θ1 ∈ (0, 1) such that
1 = x∗

1(θ). Also, there exists a unique θ2 ∈ (0, 1) such that d2 = x∗
1(θ). By Lemma 5.2, θ1 = d1 − α

a2
d2−d1
1−d1

,
2 = d2 − β

a1
d2−d1
1−d2

.
Clearly, θ1 < θ2. By the monotonic property of x∗

1(θ), we have that if θ ∈ (0, θ1], then d1 ≥ x∗
1(θ).

If θ ∈ [θ2, 1), then d2 ≤ x∗
1(θ). Therefore, by Theorem 4.5, system (1.3) has no interior equilibrium for

θ ∈ (0, θ1] ∪ [θ2, 1). If θ ∈ (θ1, θ2), then d1 < x∗
1(θ) < d2, and hence system (1.3) has a unique unstable

nterior equilibrium E∗
1 (x∗

1, y∗
1 , z∗

1) by Theorem 4.6. □
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.2. The case λ ∈ Λ+

Now let λ ∈ Λ+. In this case the equation ∆(θ) = 0 has two real roots θ∗ < θ∗∗ given by (5.3). If θ ≤ θ∗

r θ ≥ θ∗∗, then ∆(θ) ≥ 0 and f(x) = 0 has two real roots x∗
1 ≤ x∗

2, which is given by (4.4), and has no real
oot if θ∗ < θ < θ∗∗.

We divide Λ+ into three regions (see Fig. 3)

Λ+
1 = {λ ∈ Λ+ : θ∗ ≤ 0}, Λ+

2 = {λ ∈ Λ+ : 0 < θ∗ < 1}, Λ+
3 = {λ ∈ Λ+ : θ∗ ≥ 1}.

f λ ∈ Λ+
1 , we have the following result, which implies that system (1.3) has no interior equilibrium for all

∈ (0, 1).

heorem 5.4. Let λ ∈ Λ+, θ∗ and θ∗∗ be two real roots of ∆(θ) = 0 given by (5.3). Let x∗
1 = x∗

1(θ) and
∗
2 = x∗

2(θ) be two real roots of f(x) = 0 for θ ∈ R : θ ≤ θ∗ or θ ≥ θ∗∗.

(i) If θ ≥ θ∗∗, θ ∈ R+, then x∗
1(θ) > 1;

(ii) If θ∗ < 1, then for θ ∈ (θ∗, 1), system (1.3) has no interior equilibrium. Especially, if λ ∈ Λ+
1 , then for

all θ ∈ (0, 1), system (1.3) has no interior equilibrium.

roof. By θ ≥ θ∗∗, we have θ + α
a2

− β
a1

≥ 1. Since (1 − d1) β
a1

− (1 − d2) α
a2

> 0 is equivalent to
d2α
a2

− d1β
a1

> α
a2

− β
a1

, we have

∆(θ) <

(
1 + θ + α

a2
− β

a1

)2
− 4

(
θ + α

a2
− β

a1

)
=
(

1 −
(

θ + α

a2
− β

a1

))2
.

hus, x∗
1 = 1

2

(
1 + θ + α

a2
− β

a1
−

√
∆
)

> 1. The second result is clear since f(x) = 0 has no real root if
∗ < θ < θ∗∗ and x∗

1(θ) > 1 for θ ∈ R+ : θ ≥ θ∗∗. □

We consider the case λ ∈ Λ+
2 . First, we have the following lemma.

emma 5.5. Let λ ∈ Λ+ and θ∗ > 0. Let x∗
1(θ) and x∗

2(θ) be two real roots of f(x) = 0 for θ ∈ (0, θ∗).
hen x∗

1(θ) and x∗
2(θ) have the following properties:

(i) x∗
1(θ) < x∗

2(θ) < 1 in (0, θ∗). In particular, x∗
2(0) < 1;

(ii) x∗
1(θ) is strictly increasing and convex on (0, θ∗);

(iii) x∗
2(θ) is strictly decreasing and concave on (0, θ∗);

(iv) At θ = θ∗, x∗
1(θ) = x∗

2(θ) = 1 −
√

δ
4 , where δ is given in (5.2).

Proof. It is clear that x∗
1(θ) = x∗

2(θ) = 1−
√

δ
4 at θ = θ∗. Similar to the proof of Theorem 5.4(i), we can show

hat x∗
1(θ) < x∗

2(θ) < 1, θ ∈ (0, θ∗). In fact, by θ ≤ θ∗, we have θ+ α
a2

− β
a1

< 1. Since (1−d1) β
a1

−(1−d2) α
a2

> 0

is equivalent to d2α
a2

− d1β
a1

> α
a2

− β
a1

, we have ∆(θ) <
(

1 −
(

θ + α
a2

− β
a1

))2
. Thus,

x∗
1(θ) < x∗

2(θ) = 1
2

(
1 + θ + α

a2
− β

a1
+
√
∆(θ)

)
< 1.

By a direct computation, we get
d

dθ x∗
1(θ) = 1√

∆(θ)
(1 − x∗

1(θ)), d
dθ x∗

2(θ) = 1√
∆(θ)

(x∗
2(θ) − 1),

d2

dθ2 x∗
1(θ) = 2

(∆(θ))
3
2

(x∗
1(θ) − 1)(x∗

2(θ) − 1), d2

dθ2 x∗
2(θ) = 2

(∆(θ))
3
2

(1 − x∗
1(θ))(x∗

2(θ) − 1).

herefore, x∗
1(θ) is strictly increasing and convex on (0, θ∗), and x∗

2(θ) is strictly decreasing and concave on
0, θ∗). □
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By Lemma 5.5, we divide Λ+
2 into the following ten different regions by the relative positions of

x∗
1(0), x∗

2(0), 1 −
√

δ
4 , d1 and d2 (see Fig. 3).

Λ+
20 =

{
λ ∈ Λ+

2 : d1 < d2 ≤ x∗
1(0) < 1 −

√
δ

4

}
,

Λ+
21 =

{
λ ∈ Λ+

2 : d1 ≤ x∗
1(0) < d2 ≤ 1 −

√
δ

4

}
,

Λ+
22 =

{
λ ∈ Λ+

2 : d1 ≤ x∗
1(0) < 1 −

√
δ

4 < d2 < x∗
2(0)

}
,

Λ+
23 =

{
λ ∈ Λ+

2 : d1 ≤ x∗
1(0) < 1 −

√
δ

4 < x∗
2(0) ≤ d2

}
,

Λ+
24 =

{
λ ∈ Λ+

2 : x∗
1(0) < d1 < d2 ≤ 1 −

√
δ

4

}
,

Λ+
25 =

{
λ ∈ Λ+

2 : x∗
1(0) < d1 < 1 −

√
δ

4 < d2 < x∗
2(0)

}
,

Λ+
26 =

{
λ ∈ Λ+

2 : x∗
1(0) < d1 < 1 −

√
δ

4 < x∗
2(0) ≤ d2

}
,

Λ+
27 =

{
λ ∈ Λ+

2 : 1 −
√

δ
4 ≤ d1 < d2 < x∗

2(0)
}

,

Λ+
28 =

{
λ ∈ Λ+

2 : 1 −
√

δ
4 ≤ d1 < x∗

2(0) ≤ d2

}
,

Λ+
29 =

{
λ ∈ Λ+

2 : d2 > d1 ≥ x∗
2(0) > 1 −

√
δ

4

}
.

Now, by Theorems 4.5 and 4.6 and Lemmas 5.2 and 5.5, for the case λ ∈ Λ+
2 we show the impact of Allee

threshold θ on the dynamics of system (1.3) as follows.

Theorem 5.6. Let λ ∈ Λ+
2 , x∗

1(θ) and x∗
2(θ) be two real roots of f(x) = 0 for θ ∈ (0, θ∗), θ1 and θ2 be given

n Lemma 5.2.

(i) If λ ∈ Λ+
20, then for all θ ∈ (0, 1), system (1.3) has no interior equilibrium (see Fig. 5(a)).

(ii) If λ ∈ Λ+
21, then system (1.3) has a unique interior equilibrium E∗

1 (x∗
1, y∗

1 , z∗
1) for θ ∈ (0, θ2), and no

interior equilibrium for θ ∈ [θ2, 1) (see Fig. 5(b)).
(iii) If λ ∈ Λ+

22, then system (1.3) has a unique interior equilibrium E∗
1 (x∗

1, y∗
1 , z∗

1) for θ ∈ (0, θ2], two
interior equilibria E∗

1 (x∗
1, y∗

1 , z∗
1) and E∗

2 (x∗
2, y∗

2 , z∗
2) for θ ∈ (θ2, θ∗), and no interior equilibrium for

θ ∈ (θ∗, 1) (see Fig. 5(c)).
(iv) If λ ∈ Λ+

23, then system (1.3) has two interior equilibria E∗
1 (x∗

1, y∗
1 , z∗

1) and E∗
2 (x∗

2, y∗
2 , z∗

2) for θ ∈ (0, θ∗),
and no interior equilibrium for θ ∈ (θ∗, 1) (see Fig. 5(d)).

(v) If λ ∈ Λ+
24, then system (1.3) has no interior equilibrium for θ ∈ (0, θ1] ∪ [θ2, 1), and a unique interior

equilibrium E∗
1 (x∗

1, y∗
1 , z∗

1) for θ ∈ (θ1, θ2) (see Fig. 5(e)).
(vi) Let λ ∈ Λ+

25.

(a) If θ1 > θ2, then system (1.3) has no interior equilibrium for θ ∈ (0, θ2] ∪ (θ∗, 1), a unique interior
equilibrium E∗

2 (x∗
2, y∗

2 , z∗
2) for θ ∈ (θ2, θ1], two interior equilibria E∗

1 (x∗
1, y∗

1 , z∗
1) and E∗

2 (x∗
2, y∗

2 , z∗
2)

for θ ∈ (θ1, θ∗) (see Fig. 5(f));
(b) If θ1 < θ2, then system (1.3) has no interior equilibrium for θ ∈ (0, θ1] ∪ (θ∗, 1), a unique interior

equilibrium E∗
1 (x∗

1, y∗
1 , z∗

1) for θ ∈ (θ1, θ2], two interior equilibria E∗
1 (x∗

1, y∗
1 , z∗

1) and E∗
2 (x∗

2, y∗
2 , z∗

2)
for θ ∈ (θ2, θ∗) (see Fig. 5(g));

(c) If θ1 = θ2, then system (1.3) has no interior equilibrium for θ ∈ (0, θ1] ∪ (θ∗, 1), and two interior
equilibria E∗

1 (x∗
1, y∗

1 , z∗
1) and E∗

2 (x∗
2, y∗

2 , z∗
2) for θ ∈ (θ1, θ∗) (see Fig. 5(h)).

(vii) If λ ∈ Λ+
26, then system (1.3) has a unique interior equilibrium E∗

2 (x∗
2, y∗

2 , z∗
2) for θ ∈ (0, θ1], two

interior equilibria E∗
1 (x∗

1, y∗
1 , z∗

1) and E∗
2 (x∗

2, y∗
2 , z∗

2) for θ ∈ (θ1, θ∗), and no interior equilibrium for
∗
θ ∈ (θ , 1) (see Fig. 5(i)).
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viii) If λ ∈ Λ+
27, then system (1.3) has no interior equilibrium for θ ∈ (0, θ2] ∪ [θ1, 1), and a unique interior

equilibrium E∗
2 (x∗

2, y∗
2 , z∗

2) for θ ∈ (θ2, θ1) (see Fig. 5(j)).
(ix) If λ ∈ Λ+

28, then system (1.3) has a unique interior equilibrium E∗
2 (x∗

2, y∗
2 , z∗

2) for θ ∈ (0, θ1), and no
interior equilibrium for θ ∈ [θ1, 1) (see Fig. 5(k)).

(x) If λ ∈ Λ+
29, then for all θ ∈ (0, 1), system (1.3) has no interior equilibrium (see Fig. 5(l)).

oreover, if E∗
1 exists then it is always unstable; if E∗

2 exists then it is locally asymptotically stable if and
nly if x∗

2 > 1
2 (1 + θ) and Γ (γ1, γ2) > 0; and system (1.3) undergoes a Hopf bifurcation at E∗

2 on the curve
(γ1, γ2) = 0, where Γ (γ1, γ2) is defined in (4.6).

roof. We only show the proof of the case (vi-a) λ ∈ Λ+
25 and θ1 > θ2. Since λ ∈ Λ+

25, we have 0 < θ∗ < 1
and

x∗
1(0) < d1 < 1 −

√
δ

4 < d2 < x∗
2(0) < 1.

y Lemma 5.5, we know that on (0, θ∗), x∗
1(θ) is strictly increasing and convex, while x∗

2(θ) is strictly
ecreasing and concave. At θ = θ∗, x∗

1(θ) and x∗
2(θ) intersect each other, i.e., 1 −

√
δ

4 = x∗
1(θ∗) = x∗

2(θ∗).
hus, there exists a unique θ1 ∈ (0, θ∗) such that d1 = x∗

1(θ1). Also, there exists a unique θ2 ∈ (0, θ∗) such
hat d2 = x∗

2(θ2). By Lemma 5.2, θ1 = d1 − α
a2

d2−d1
1−d1

, θ2 = d2 − β
a1

d2−d1
1−d2

.
Since θ1 > θ2, by the monotonic properties of x∗

1(θ) and x∗
2(θ), we have that

• if θ ∈ (0, θ2], then x∗
1(θ) ≤ d1 < d2 and x∗

2(θ) ≥ d2 > d1. By Theorem 4.5, system (1.3) has no interior
equilibrium;

• if θ ∈ (θ∗, 1), then by Theorem 5.4 system (1.3) has no interior equilibrium;
• if θ ∈ (θ2, θ1], then x∗

1(θ) ≤ d1 < x∗
2(θ) < d2. By Theorem 4.6, system (1.3) has a unique interior

equilibrium E∗
2 (x∗

2, y∗
2 , z∗

2);
• if θ ∈ (θ1, θ∗), then d1 < x∗

1(θ) ≤ x∗
2(θ) < d2. By Theorem 4.6, system (1.3) has two interior equilibria

E∗
1 (x∗

1, y∗
1 , z∗

1) and E∗
2 (x∗

2, y∗
2 , z∗

2).

By Theorem 4.6, if E∗
1 exists then it is always unstable; if E∗

2 exists then it is locally asymptotically stable
f and only if x∗

2 > 1
2 (1 + θ) and Γ (γ1, γ2) > 0; and the model undergoes a Hopf bifurcation at E∗

2 on the
curve Γ (γ1, γ2) = 0. The proof is complete. □

For the case λ ∈ Λ+
3 , we first have the following lemma.

Lemma 5.7. Let λ ∈ Λ+
3 , i.e., θ∗ ≥ 1, x∗

1(θ) and x∗
2(θ) be two real roots of f(x) = 0 for θ ∈ (0, θ∗). Then

x∗
1(0) < 0 and d2 > d1 > x∗

2(1).

By Lemmas 5.5 and 5.7, we divide the parameter space Λ+
3 into the following three different regions (see

Fig. 3).
Λ+

31 =
{

λ ∈ Λ+
3 : 0 < d1 < d2 < x∗

2(0)
}

, Λ+
32 =

{
λ ∈ Λ+

3 : 0 < d1 < x∗
2(0) ≤ d2

}
,

Λ+
33 =

{
λ ∈ Λ+

3 : d2 > d1 ≥ x∗
2(0)

}
.

hus, we have the following result.

heorem 5.8. Let λ ∈ Λ+
3 , i.e., θ∗ ≥ 1, x∗

1(θ) and x∗
2(θ) be two real roots of f(x) = 0 for θ ∈ (0, θ∗).

(i) If λ ∈ Λ+
31, then system (1.3) has no interior equilibrium for θ ∈ (0, θ2] ∪ [θ1, 1), and a unique interior

equilibrium E∗
2 (x∗

2, y∗
2 , z∗

2) for θ ∈ (θ2, θ1) (see Fig. 6(a)).
(ii) If λ ∈ Λ+

32, then system (1.3) has a unique interior equilibrium E∗
2 (x∗

2, y∗
2 , z∗

2) for θ ∈ (0, θ1), and no
interior equilibrium for θ ∈ [θ1, 1) (see Fig. 6(b)).

+
(iii) If λ ∈ Λ33, then for all θ ∈ (0, 1), system (1.3) has no interior equilibrium (see Fig. 6(c)).
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Moreover, if E∗
2 exists then it is locally asymptotically stable if and only if x∗

2 > 1
2 (1 + θ) and Γ (γ1, γ2) > 0;

nd system (1.3) undergoes a Hopf bifurcation at E∗
2 on the curve Γ (γ1, γ2) = 0, where Γ (γ1, γ2) is given by

4.6).

emark 5.9. For convenience, denote L(λ) = (1 − d1) β
a1

− (1 − d2) α
a2

. The following statements are easy
to check:

(1) x∗
1(0) − d2 > 0(= 0) is equivalent to d2 − β

a1
d2−d1
1−d2

< 0(= 0, resp.);
(2) x∗

1(0) − d1 > 0(= 0) is equivalent to d1 − α
a2

d2−d1
1−d1

< 0(= 0, resp.);
(3) x∗

2(0) − d2 > 0(= 0) is equivalent to β
a1

− d2(1−d2)
d2−d1

< 0(= 0, resp.);
(4) x∗

2(0) − d1 > 0(= 0) is equivalent to α
a2

− d1(1−d1)
d2−d1

< 0(= 0, resp.);
(5) 1 −

√
δ

4 − d2 > 0(= 0) is equivalent to L(λ) − (1 − d2)2 < 0(= 0, resp.);
(6) 1 −

√
δ

4 − d1 > 0(= 0) is equivalent to L(λ) − (1 − d1)2 < 0(= 0, resp.).
Thus, Λ−

1 ,Λ−
2 and Λ−

3 can be rewritten equivalently as the following forms:

Λ−
1 =

{
λ ∈ Λ− : β

a1
≥ d2(1−d2)

d2−d1

}
, Λ−

2 =
{

λ ∈ Λ− : β
a1

< d2(1−d2)
d2−d1

, α
a2

≥ d1(1−d1)
d2−d1

}
,

Λ−
3 =

{
λ ∈ Λ− : α

a2
< d1(1−d1)

d2−d1

}
.

Λ+
2j , j = 0, 1, . . . , 9, can be rewritten equivalently as the following forms:

Λ+
20 =

{
λ ∈ Λ+

2 : β
a1

> d2(1−d2)
d2−d1

, L(λ) < (1 − d2)2
}

,

Λ+
21 =

{
λ ∈ Λ+

2 : α
a2

≥ d1(1−d1)
d2−d1

, β
a1

< d2(1−d2)
d2−d1

, L(λ) ≤ (1 − d2)2
}

,

Λ+
22 =

{
λ ∈ Λ+

2 : α
a2

≥ d1(1−d1)
d2−d1

, β
a1

< d2(1−d2)
d2−d1

, L(λ) > (1 − d2)2
}

,

Λ+
23 =

{
λ ∈ Λ+

2 : α
a2

≥ d1(1−d1)
d2−d1

, β
a1

≥ d2(1−d2)
d2−d1

, (1 − d2)2 < L(λ) < (1 − d1)2
}

,

Λ+
24 =

{
λ ∈ Λ+

2 : α
a2

< d1(1−d1)
d2−d1

, L(λ) ≤ (1 − d2)2
}

,

Λ+
25 =

{
λ ∈ Λ+

2 : α
a2

< d1(1−d1)
d2−d1

, β
a1

< d2(1−d2)
d2−d1

, (1 − d2)2 < L(λ) < (1 − d1)2
}

,

Λ+
26 =

{
λ ∈ Λ+

2 : α
a2

< d1(1−d1)
d2−d1

, β
a1

> d2(1−d2)
d2−d1

, L(λ) < (1 − d1)2
}

,

Λ+
27 =

{
λ ∈ Λ+

2 : β
a1

< d2(1−d2)
d2−d1

, L(λ) ≥ (1 − d1)2
}

,

Λ+
28 =

{
λ ∈ Λ+

2 : α
a2

< d1(1−d1)
d2−d1

, β
a1

≥ d2(1−d2)
d2−d1

, L(λ) ≥ (1 − d1)2
}

,

Λ+
29 =

{
λ ∈ Λ+

2 : α
a2

≥ d1(1−d1)
d2−d1

, L(λ) > (1 − d1)2
}

,

and Λ+
3j , j = 1, 2, 3, can be rewritten as the follows:

Λ+
31 =

{
λ ∈ Λ+

3 : β
a1

< d2(1−d2)
d2−d1

}
, Λ+

32 =
{

λ ∈ Λ+
3 : β

a1
≥ d2(1−d2)

d2−d1
, α

a2
< d1(1−d1)

d2−d1

}
,

Λ+
33 =

{
λ ∈ Λ+

3 : α
a2

≥ d1(1−d1)
d2−d1

}
.

We summarize Theorems 5.3, 5.6 and 5.8 as follows:

heorem 5.10.

(i) If λ ∈ Λ−
1 ∪ Λ+

1 ∪ Λ+
20 ∪ Λ+

29 ∪ Λ+
33, then for all θ ∈ (0, 1), system (1.3) has no coexistence equilibrium.

(ii) If λ ∈ Λ−
2 ∪Λ−

3 ∪Λ+
21 ∪Λ+

22 ∪Λ+
24, then for θ ∈ (0, 1), system (1.3) has at most one interior equilibrium

E∗(x∗, y∗, z∗) which is always unstable if it exists.
1 1 1 1
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Fig. 5. Bifurcations on θ in the case λ ∈ Λ+
2 , i.e., 0 < θ∗ < 1. Here, γ1 = 1, γ2 = 1. Blue curve represents the interior equilibrium E∗

1
which is unstable, green and red curves represent the interior equilibrium E∗

2 where green means local asymptotical stability and red
means instability. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

(iii) If λ ∈ Λ+
23 ∪Λ+

25 ∪Λ+
26 ∪Λ+

27 ∪Λ+
28, then system (1.3) may have the coexistence equilibrium E∗

2 (x∗
2, y∗

2 , z∗
2),

which depends on the value of θ in (0, 1). The stability of E∗
2 is dependent on (γ1, γ2), E∗

2 is locally
∗ 1 (1 + θ) and Γ (γ , γ ) > 0.
asymptotically stable if and only if x2 > 2 1 2
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Fig. 6. Bifurcation diagrams on θ in the case λ ∈ Λ+
3 , i.e., θ∗ ≥ 1. Here, γ1 = 1, γ2 = 1. Green and red segments represent the

interior equilibrium E∗
2 where green means local asymptotical stability and red means instability. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

Remark 5.11. Theorems 5.3, 5.6, 5.8 and 5.10 demonstrate that system (1.3) has rich and complex
dynamical behaviors due to Allee effect in the basal prey. Theorem 5.10 also implies the following statements:

(1) The first two statements of Theorem 5.10 give the parameters regions of λ, in which the extinction of
one of the species x, y and z may occur for all θ ∈ (0, 1).

(2) The third statement of Theorem 5.10 indicates that λ ∈ Λ+
23 ∪ Λ+

25 ∪ Λ+
26 ∪ Λ+

27 ∪ Λ+
28 is necessary for

the coexistence of all three species x, y and z.

6. Multiple attractors

In this section, we focus on possible dynamical patterns, i.e., the existence of multiple attractors, for
system (1.3). Based on our previous analysis, system (1.3) can have one (i.e. extinction of all species),
two (i.e. bi-stability) or three (i.e. tri-stability) attractors.

6.1. Extinction of all species

From Theorems 4.1 and 4.3, we know that the strong Allee effect in the basal prey may cause the
extinction of all species.

(a) From Theorem 4.3, we know that if the initial population density of the basal prey is below its Allee
threshold, i.e., x(0) ≤ θ, then the extinction of all species x, y and z occurs.

(b) According to Theorem 4.1, the extinction state E0 is always an attractor due to the strong Allee
effect in the basal prey x. In addition, Theorem 4.3 implies that E0 is a global attractor if d1 ≥ 1, d2 ≤ θ

or d1 ≤ θ, d2 ≥ 1 + a2
α

[
(1−θ)2

4d1
+ γ1

]
. This indicates that IG predator (IG prey)-driven extinction due to the

strong Allee effect in the basal prey population combined with the high natural death rate of IG prey (IG
predator, respectively) leads to the extinction of all species.

6.2. Bi-stability

System (1.3) may have two attractors: one is E0 and the other one is: (1) E1 (Fig. 7); (2) E2 (Fig. 8);
(3) E3 (Fig. 9); (4) the stable interior equilibrium E∗

2 (Fig. 10); (5) the unique stable limit cycle surrounding
E2 in the xz-plane (Fig. 11); (6) the unique stable limit cycle surrounding E3 in the xy-plane (Fig. 12);
(7) the stable limit cycle in intR3

+ (Fig. 1).
(a) System (1.3) has two attractors E0 ∪E1 if d1 ≥ 1, d2 ≥ 1 (see Fig. 7). In this case, both E0 and E1 are
locally asymptotically stable and E2 and E3 do not exist by Theorem 4.1, and system (1.3) has no interior
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Fig. 7. Bi-stability: E0 ∪ E1. Parameters: θ = 0.1, d1 = d2 = 1.2, a1 = 1.5, a2 = 1, α = 0.5, β = γ1 = γ2 = 1. System (1.3) has no
interior equilibrium since d1, d2 > x∗

2 (see the left figure) and no E2 and E3 since d1 > 1, d2 > 1. Therefore, system (1.3) has two
attractors E0 ∪ E1 (see the right figure). The initial values are chosen as (0.1, 0.8, 0.8), (0.5, 0.6, 0.7) and (0.8, 0.1, 0.55). The blue orbit
starting from (0.1,0.8,0.8) tends to E0, the orbits initiating at (0.5,0.6,0.7) (the green curve) and (0.8,0.1,0.55) (the red curve) tend
to E1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Bi-stability: E0 ∪ E2. Parameters: θ = 0.1, d1 = 0.5, d2 = 0.65, a1 = 2, a2 = 0.5, α = β = γ1 = γ2 = 1. The left figure indicates
that d1 < x∗

1 < d2 < x∗
2 and hence system (1.3) has a unique unstable interior equilibrium E∗

1 . E3 exists but is unstable, E2 is
ocally asymptotically stable. Therefore, system (1.3) has two attractors E0 ∪ E2 (see the right figure). The initial values are same as
n Fig. 7. The trajectories initiating at (0.1,0.8,0.8) (the blue curve) and (0.5,0.6,0.7) (the green curve) tend to E0. The trajectory
nitiating at (0.8,0.1,0.55) (the red curve) tends to E2. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

quilibrium by Theorem 4.5. This indicates that the high natural death rates of IG prey and IG predator
ake the basal prey to possibly survive.
(b) System (1.3) has two attractors E0 ∪ E2 if 1

2 (1 + θ) < d2 < 1, d1 > d2 − a1
β (d2 − θ)(1 − d2), which

mplies that E2 exists and is locally asymptotically stable by Theorem 4.1 and system (1.3) has at most one
nstable interior equilibrium E∗

1 by Corollary 4.11, and one of conditions is satisfied:

• d1 ≤ θ. In this case, system (1.3) has no E3. This indicates that the IG prey-driven extinction combined
with the high ratio of attack rates of IG predator on IG prey to the basal prey such that a1

β > d2−d1
(d2−θ)(1−d2)

with 1
2 (1 + θ) < d2 < 1 leads to the extinction of IG prey and the possible survival of IG predator.

• d1 ≥ 1. In this case, system (1.3) has no interior equilibrium by Theorem 4.5 and no E3 by Theorem 4.1.
This indicates that the high natural death rate of IG prey combined with the high ratio of attack rates
of IG predator on IG prey to basal prey such that a1

β > d2−d1
(d2−θ)(1−d2) with 1

2 (1 + θ) < d2 < 1 leads to the
extinction of IG prey and the possible survival of IG predator.

• θ < d1 < 1, d2 < d1 + a2
α (d1 − θ)(1 − d1). In this case, system (1.3) has no interior equilibrium by

Corollary 4.11. E3 exists but is unstable by Theorem 4.1. This indicates that both the high ratio of
the attack rates of IG predator on IG prey to basal prey and the high ratio of the predation rate of
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Fig. 9. Bi-stability: E0 ∪ E3. Parameters: θ = 0.1, d1 = 0.6, d2 = 1.2, a1 = 1, a2 = 0.9, α = 1, β = 1.1, γ1 = γ2 = 1. System (1.3) has
o interior equilibrium (see the left figure) and no E2. E3 exists and is locally asymptotically stable. Therefore, system (1.3) has two
ttractors E0 ∪ E3 (see the right figure). The initial values are same as in Fig. 7. The orbits initiating at (0.1,0.8,0.8) (the blue curve)
nd (0.5,0.6,0.7) (the green curve) tend to E0. The orbit initiating at (0.8,0.1,0.55) (the red curve) tends to E3. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

IG predator on IG prey to the attack rate of IG prey on basal prey such that a1
β > d2−d1

(d2−θ)(1−d2) and
a2
α > d2−d1

(d1−θ)(1−d1) with 1
2 (1 + θ) < d2 < 1, θ < d1 < 1 lead to the extinction of IG prey and the possible

survival of IG predator.
• θ < d1 < 1

2 (1 + θ), d2 > d1 + a2
α (d1 − θ)(1 − d1). In this case, system (1.3) has a unique unstable interior

equilibrium E∗
1 by Corollary 4.11. E3 exists but is unstable by Theorem 4.1. This indicates that the high

ratio of the attack rates of IG predator on IG prey to basal prey and the low ratio of the predation rate
of IG predator on IG prey to the attack rate of IG prey on basal prey such that a1

β > d2−d1
(d2−θ)(1−d2) and

a2
α < d2−d1

(d1−θ)(1−d1) with θ < d1 < 1
2 (1 + θ) < d2 < 1 lead to the extinction of IG prey and the possible

survival of IG predator.
• As an example, take parameters: θ = 0.1, d1 = 0.5, d2 = 0.65, a1 = 2, a2 = 0.5, α = β = γ1 =

γ2 = 1. System (1.3) has a unique unstable interior equilibrium E∗
1 by Theorem 4.6 (see Fig. 8). By

Theorem 4.1, E3(0.5, 0.2, 0) exists but is unstable, E2(0.65, 0, 0.1925) is locally asymptotically stable.
Therefore, system (1.3) has two attractors E0 ∪ E2 (see Fig. 8).

(c) System (1.3) has two attractors E0 ∪E3 if 1
2 (1+θ) < d1 < 1, d2 > d1 + a2

α (d1 −θ)(1−d1), which implies
that E3 exists and is locally asymptotically stable by Theorem 4.1, and one of the following conditions is
satisfied:

• d2 ≥ 1. In this case, system (1.3) has at most one unstable interior equilibrium E∗
1 by Corollary 4.11 and

no E2 by Theorem 4.1. This indicates that the high natural death rate of IG predator combined with
the low ratio of the predation rate of IG predator on IG prey to the attack rate of IG prey on the basal
prey such that a2

α < d2−d1
(d1−θ)(1−d1) with 1

2 (1 + θ) < d1 < 1 leads to the extinction of IG predator and the
possible survival of IG prey.

• d2 < 1, d1 < d2 − a1
β (d2 − θ)(1 − d2),

(
2d1 −

(
1 + θ + α

a2
− β

a1

))(
2d2 −

(
1 + θ + α

a2
− β

a1

))
> 0. In

this case, system (1.3) has no interior equilibrium by Corollary 4.11, and E2 exists but is unstable by
Theorem 4.1. This indicates that both the low ratio of the attack rates of IG predator on IG prey to the
basal prey and the low ratio of the predation rate of IG predator on IG prey to the attack rate of IG
prey on the basal prey such that a1

β < d2−d1
(d2−θ)(1−d2) and a2

α < d2−d1
(d1−θ)(1−d1) with 1

2 (1 + θ) < d1 < d2 < 1
and either 1 + θ + α

a2
− β

a1
< 2d1 or 1 + θ + α

a2
− β

a1
> 2d2 lead to the extinction of IG predator and the

possible survival of IG prey.
• As an example, take parameters θ = 0.1, d1 = 0.6, d2 = 1.2, a1 = 1, a2 = 0.9, α = 1, β = 1.1, γ1 = γ2 = 1.

System (1.3) has no interior equilibrium by Theorem 4.6 (see Fig. 9). By Theorem 4.1, E does not
2
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Fig. 10. Bi-stability: E0 ∪ E∗
2 . Parameters: θ = 0.1, d1 = 0.5, d2 = 0.8, a1 = 1.5, a2 = 1, α = 0.5, β = 1, γ1 = γ2 = 1. System (1.3)

has a unique interior equilibrium E∗
2 (see left figure) which is locally asymptotically stable. E2 and E3 exist but both are unstable.

Therefore, system (1.3) has two attractors E0 ∪ E∗
2 (see the right figure). The initial values are same as in Fig. 7. The trajectories

initiating at (0.1,0.8,0.8) (the blue curve) and (0.5,0.6,0.7) (the green curve) tend to E0, the trajectory initiating at (0.8,0.1,0.55) (the
red curve) tends to E∗

2 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

exist, E3(0.6, 0.2, 0) exists and is locally asymptotically stable. Therefore, system (1.3) has two attractors
E0 ∪ E3 (see Fig. 9).

(d) System (1.3) has two attractors E0 ∪ E∗
2 if one of the following conditions is satisfied:

• d1 < d2, d1 < d2 − a1
β (d2 − θ)(1 − d2), d2 < d1 + a2

α (d1 − θ)(1 − d1) and α
a2

− β
a1

+
√
∆ > 0 with

α

a2
− β

a1
> −x∗

2(2x∗
2 − (1 + θ))(γ1αy∗

2 + γ2βz∗
2)

γ1γ2a1a2y∗
2z∗

2
. (6.1)

In this case, system (1.3) has a unique stable interior equilibrium E∗
2 . E2 and E3 exist possibly but both

are unstable. All species may survive.
• θ < d1 < 1

2 (1+θ), d1 < 1
2

(
1 + θ + α

a2
− β

a1

)
< d2, d1 < d2− a1

β (d2−θ)(1−d2), d2 > d1+ a2
α (d1−θ)(1−d1)

and α
a2

− β
a1

+
√
∆ > 0 with (6.1) holds. In this case, system (1.3) has two interior equilibria E∗

1 which
is unstable and E∗

2 which is locally asymptotically stable. E3 exists and E2 possibly exists but both are
unstable. All species may survive.

• As an example, take the parameters as in Fig. 1: θ = 0.2, d1 = 0.7, d2 = 0.9, α = β = a1 = 1, a2 = 2.
By Theorem 4.6 and Fig. 1, system (1.3) has a unique interior equilibrium E∗

2 . Both E2(0.9, 0, 0.07) and
E3(0.7, 0.15, 0) exist but are unstable. Take γ1 = γ2 = 5, then E∗

2 is locally asymptotically stable (see
Fig. 1(b)). Therefore, system (1.3) has two attractors E0∪E∗

2 . We also give another example (see Fig. 10)
to show that system (1.3) has two attractors E0 ∪ E∗

2 .

(e) The case that the other attractor is a limit cycle: (1) the stable limit cycle surrounding E2 in the
z-plane (Fig. 11); (2) the stable limit cycle surrounding E3 in the xy-plane (Fig. 12); (3) the stable limit
ycle in intR3

+ (see Fig. 1(c)).

.3. Tri-stability

System (1.3) may have three attractors: one is E0, the other two are: (1) E2 and E3 (see Fig. 13);
2) E3 and the stable interior equilibrium E∗

2 (see Fig. 14); (3) E2 and the stable limit cycle surrounding
3 which locates in the xy-plane (see Fig. 15); (4) the stable interior equilibrium E∗

2 and the stable limit
ycle surrounding E which locates in the xy-plane (see Fig. 16); (5) the stable limit cycle surrounding E
3 2
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E

t
θ

Fig. 11. Bi-stability: E0 and the stable limit cycle surrounding E2 in the xz-plane. We take d1 = d2 = 0.5 and keep other parameters
unchange in Fig. 10. System (1.3) has no interior equilibrium (see the left figure). E3 is a source. E2 is a saddle in R3

+ but a source
in the xz-plane and there exists a unique stable limit cycle surrounding E2. Initial values: (0.1, 0.2, 0.4), (0.5, 0.4, 0.1), (0.8, 0.1, 0.2).
The trajectory initiating at (0.1,0.2,0.4) (the blue curve) tends to E0. The trajectories initiating at (0.5,0.4,0.1) (the green curve) and
(0.8,0.1,0.2) (the red curve) tend to the stable limit cycle surrounding E2 in the xz-plane (see the right figure). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Bi-stability: E0 and the stable limit cycle surrounding E3 in the xy-plane. We take d1 = 0.5, d2 = 0.95 and keep other
parameters unchange in Fig. 10. System (1.3) has no interior equilibrium (see the left figure). E2 is a saddle and has no stable
manifold in intR3

+. E3 is a saddle in R3
+ but a source in the xy-plane and there exists a unique stable limit cycle surrounding E3.

Initial values are same as in Fig. 11. The trajectory initiating at (0.1,0.2,0.4) (the blue curve) tends to E0. The trajectories initiating
at (0.5,0.4,0.1) (the green curve) and (0.8,0.1,0.2) (the red curve) tend to the stable limit cycle surrounding E3 in the xy-plane. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

which locates in the xz-plane and the stable limit cycle surrounding E3 which locates in the xy-plane (see
Fig. 17).

(a) System (1.3) has three attractors E0∪E2∪E3 if 1
2 (1+θ) < d1 < d2 < 1, d1 > d2− a1

β (d2−θ)(1−d2), d2 >

d1 + a2
α (d1 −θ)(1−d1). In this case, system (1.3) has a unique unstable interior equilibrium E∗

1 . This implies
that different initial values lead IG prey or IG predator to extinction. For example, we take parameters
θ = 0.1, d1 = 0.6, d2 = 0.8, a1 = 2, a2 = 0.2, α = 0.5, β = 1, γ1 = γ2 = 1. By Theorem 4.6, system
(1.3) has a unique unstable interior equilibrium E∗

1 (see Fig. 13). By Theorem 4.1, both E2(0.8, 0, 0.21) and
3(0.6, 0.4, 0) exist and are stable. Therefore, system (1.3) has three attractors E0 ∪ E2 ∪ E3 (see Fig. 13).
(b) System (1.3) has three attractors E0 ∪ E3 ∪ E∗

2 if 1
2 (1 + θ) < d1 < 1, d1 < 1

2

(
1 + θ + α

a2
− β

a1

)
<

d2, d1 < d2− a1
β (d2−θ)(1−d2), d2 > d1+ a2

α (d1−θ)(1−d1), and α
a2

− β
a1

+
√
∆ > 0 with (6.1) holds. In this case,

system (1.3) has another unstable interior equilibrium E∗
1 . E2 exists possibly but is unstable. This implies

hat different initial values lead to the survival of IG prey or all species. For example, we take parameters
= 0.1, d = 0.7, d = 0.95, a = 4, a = 1.35, α = β = γ = γ = 1. By Theorem 4.6, system (1.3) has two
1 2 1 2 1 2
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Fig. 13. Tri-stability: E0 ∪ E2 ∪ E3. Parameters: θ = 0.1, d1 = 0.6, d2 = 0.8, a1 = 2, a2 = 0.2, α = 0.5, β = 1, γ1 = γ2 = 1. System (1.3)
has a unique unstable interior equilibrium E∗

1 (see the left figure). Both E2 and E3 exist and are stable. Initial values are same as
in Fig. 7. The blue orbit starting from (0.1,0.8,0.8) tends to E0, the green orbit starting from (0.5,0.6,0.7) tends to E3, and the red
orbit starting from (0.8,0.1,0.55) tends to E2 (see the right figure). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 14. Tri-stability: E0 ∪ E3 ∪ E∗
2 . Parameters: θ = 0.1, d1 = 0.7, d2 = 0.95, a1 = 4, a2 = 1.35, α = β = γ1 = γ2 = 1. System (1.3) has

two interior equilibria: E∗
1 = (0.7328, 0.1609, 0.0082), E∗

2 = (0.8579, 0.0682, 0.0395) (the left figure). E∗
1 is unstable, and E∗

2 is stable.
E2 is unstable while E3 is stable. Therefore, system (1.3) has three attractors E0 ∪ E3 ∪ E∗

2 (the right figure). Initial values are same
as in Fig. 7. The blue orbit starting from (0.1,0.8,0.8) tends to E0, the green orbit starting from (0.5,0.6,0.7) tends to E3, and the
red orbit starting from (0.8,0.1,0.55) tends to the interior equilibrium E∗

2 . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

interior equilibria: E∗
1 which is unstable, and E∗

2 which is stable. By Theorem 4.1, E2 = (0.95, 0, 0.0425) is
unstable while E3 = (0.7, 0.18, 0) is stable. Therefore, system (1.3) has three attractors E0 ∪ E3 ∪ E∗

2 (see
Fig. 14).

(c) By numerical simulations, we know that system (1.3) possibly has three attractors: one is E0, the other
two are: (1) E2 and the stable limit cycle surrounding E3 which locates in the xy-plane (see Fig. 15); (2) the
stable interior equilibrium E∗

2 and the stable limit cycle surrounding E3 which locates in the xy-plane (see
Fig. 16); (3) the stable limit cycle surrounding E2 which locates in the xz-plane and the stable limit cycle
surrounding E3 which locates in the xy-plane (see Fig. 17).

6.4. Multiple attracting periodic orbits

When system (1.3) has a unique locally asymptotically stable interior equilibrium E∗
2 , the orbits tend to

the extinction state E0 and the stable interior equilibrium E∗
2 may be attracted to some periodic orbits as

the pair of parameters (γ1, γ2) varies from the stable region to the unstable region. Even though we are not

able to prove it analytically, we can perform simulations to confirm this phenomenon. Taking parameters
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Fig. 15. Tri-stability: E0 ∪ E2 and the stable limit cycle surrounding E3 which locates in the xy-plane. Parameters: θ = 0.1, d1 =
0.5, d2 = 0.95, a1 = 13, a2 = 1, α = β = γ1 = γ2 = 2. Initial values are same as in Fig. 7. The blue orbit starting from (0.1,0.8,0.8)
tends to E0, the green orbit starting from (0.5,0.6,0.7) tends to the stable limit cycle surrounding E3 which locates in the xy-plane,
and the red orbit starting from (0.8,0.1,0.55) tends to E2. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 16. Tri-stability: E0 and the stable interior equilibrium E∗
2 and the stable limit cycle surrounding E3 which locates in the xy-plane.

Parameters: θ = 0.1, d1 = 0.5, d2 = 0.85, a1 = 1.5, a2 = 2, α = β = γ1 = γ2 = 1. Initial values: (0.1,0.2,0.4),(0.5,0.4,0.1),(0.8,0.1,0.2).
The blue orbit starting from (0.1,0.2,0.4) tends to E0, the green orbit starting from (0.5,0.4,0.1) tends to the stable limit cycle
surrounding E3 which locates in the xy-plane, and the red orbit starting from (0.8,0.1,0.2) tends to the stable interior equilibrium
E∗

2 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Tri-stability: E0 and the stable limit cycle surrounding E2 which locates in the xz-plane and the stable limit cycle surrounding
E3 which locates in the xy-plane. Parameters: θ = 0.1, d1 = 0.5, d2 = 0.52, a1 = 0.18, a2 = 0.11, α = β = γ1 = γ2 = 1. Initial values
are same as in Fig. 16. The blue orbit starting from (0.1,0.2,0.4) tends to E0, the green orbit starting from (0.5,0.4,0.1) tends to the
stable limit cycle surrounding E3 which locates in the xy-plane, and the red orbit starting from (0.8,0.1,0.2) tends to the stable limit
cycle surrounding E2 which locates in the xz-plane. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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= 0.1, d1 = 0.65, d2 = 1.5, a1 = 1.5, a2 = 5, α = 0.5, β = 1, system (1.3) has a unique interior
quilibrium E∗

2 = (0.7711, 0.1458, 0.0807) (see Fig. 18(a)). In addition, the boundary equilibrium E2 does
ot exist, and E3 exists but is unstable. Let γ2 = 1 be fixed. It is easy to check that Γ (γ1, γ2) = 0 when
1 = 1.0938542, Γ (γ1, γ2) > 0 and E∗

2 is locally asymptotically stable when γ1 < 1.0938542, while unstable
hen γ1 > 1.0938542.
(a) Take γ1 = 0.2. From Fig. 18(b) we see that E∗

2 is locally asymptotically stable. From Fig. 18(c) it
an be seen that both the orbits initiated from (0.3, 0.1, 0.45) (blue orbit) and (0.3, 0.28, 0.8) (green orbit)
end to the extinction state E0, and the red orbit initiated from (0.8, 0.2, 0.1) tends to the stable interior
quilibrium E∗

2 . Thus, E0 ∪ E∗
2 are two attractors of system (1.3).

(b) Take γ1 = 0.8. Then E∗
2 is still locally asymptotically stable. From Fig. 18(d), we can see that

he orbits initiated from (0.3, 0.28, 0.8) (green orbit) and (0.8, 0.2, 0.1) (red orbit) still tend E0 and E∗
2 ,

espectively. However, the orbit initiated from (0.3, 0.1, 0.45) (blue orbit), which tended to E0 when γ1 = 0.2,
ow is attracted to a periodic orbit. In this case, in addition to the two attractors E0 ∪ E∗

2 , system (1.3) has
nother attracting periodic orbit (see Fig. 18(d)).

(c) Take γ1 = 1. Then E∗
2 is still locally asymptotically stable. In fact, the eigenvalues at E∗

2 are
1 = −0.33525695, λ2,3 = −0.0028533322 ± 0.45254531i. From Fig. 18(e), we can see that the orbit

nitiated from (0.3, 0.1, 0.45) (blue orbit) still tends to a periodic orbit. However, the orbit initiated from
0.3, 0.28, 0.8) (green orbit), which tended to E0 when γ1 = 0.2 and γ1 = 0.8, now is attracted to another
eriodic orbit. In addition, the orbit initiated from (0.8, 0.2, 0.1) (red orbit), which tended to E∗

2 when
1 = 0.2 and γ1 = 0.8, now is also attracted to a periodic orbit. Therefore, in this case, in addition to
he two attractors E0 ∪ E∗

2 , system (1.3) has three attracting periodic orbits (see Fig. 18(e)).
(d) When (γ1, γ2) = (1.0938542, 1), i.e., (γ1, γ2) lies on the Hopf bifurcation curve Γ (γ1, γ2) = 0, E∗

2
oses its stability and all orbits initiated from (0.3, 0.1, 0.45) (blue orbit), (0.3, 0.28, 0.8) (green orbit) and
0.8, 0.2, 0.1) (red orbit) are attracted to some periodic orbits (see Fig. 18(f)).

From these numerical simulations we know that with the increase of γ1 (γ1 < 1.0938542), multiple
ttracting periodic orbits may appear. This indicates that as (γ1, γ2) is close to the Hopf bifurcation curve
(γ1, γ2) = 0 from the stable region Γ (γ1, γ2) > 0, the possibility of survival of all three species may increase,
eanwhile the basin of attraction of the coexistence equilibrium E∗

2 decreases until it loses its stability.

. Discussion

In this paper, we proposed a three-species intraguild predation food web model (1.3) which includes the
G predator, IG prey and basal prey. The shared prey follows the logistic growth with strong Allee effect.

e investigated the local and global dynamics of the system with emphasis on the impact of strong Allee
ffect.

For the following three-species Lotka–Volterra intraguild predation food web model without Allee effect
n the shared prey

x′ = x(1 − x) − αxy − βxz,
y′ = γ1y(x − a1z − d1),
z′ = γ2z(x + a2y − d2),

(7.1)

e know that it has four boundary equilibria: E0 = (0, 0, 0), E1 = (1, 0, 0), E2 = (d2, 0, 1
β (1 − d2)) and

E3 = (d1, 1
α (1 − d1), 0), and at most one positive equilibrium E∗ = (x∗, y∗, z∗), where

x∗ = a1a2 + βa2d1 − αa1d2

a1a2 + βa2 − αa1
, y∗ = 1

a2
(d2 − x∗), z∗ = 1

a1
(x∗ − d1).

For the detailed dynamic analysis of IGP models of Lotka–Volterra type, we refer to [2,11,12,54] for some
references.
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Fig. 18. Parameters: θ = 0.1, d1 = 0.65, d2 = 1.5, a1 = 1.5, a2 = 0.5, α = 0.5, β = 1. Except the two attractors E0 ∪ E∗
2 , system

(1.3) may exist in other attracting periodic orbits as γ1 (γ1 < 1.0938542) increases with fixed γ2 = 1. (a) System (1.3) has a unique
interior equilibrium E∗

2 = (0.7711, 0.1458, 0.0807). (b) Hopf bifurcation on (γ1, γ2). If γ1 < 1.0938542, E∗
2 is local asymptotically stable.

(c) γ1 = 0.2, the red orbit which initiated from (0.8, 0.2, 0.1) tends to E∗
2 , the blue and green orbits initiated from (0.3, 0.1, 0.45) and

(0.3, 0.28, 0.8), respectively, tend to the extinction state E0. (d) γ1 = 0.8, the red and green orbits which initiated from (0.8, 0.2, 0.1)
and (0.3, 0.28, 0.8) still tend to E∗

2 and E0, respectively, while the blue orbit initiated from (0.3, 0.1, 0.45) tends to a periodic solution.
(e) γ1 = 1, all the orbits initiated from (0.3, 0.28, 0.8) (green orbit), (0.3, 0.1, 0.45) (blue orbit) and (0.8, 0.2, 0.1) (green orbit), tend
to different periodic solutions, respectively. (f) γ1 = 1.0938542, i.e., (γ1, γ2) lies on the Hopf bifurcation curve Γ(γ1, γ2) = 0, E∗

2 loses
its stability and all the orbits initiated from (0.3, 0.1, 0.45) (blue orbit), (0.3, 0.28, 0.8) (green orbit) and (0.8, 0.2, 0.1) (red orbit) are
attracted to some periodic orbits. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Comparing the dynamics of model (1.3) (with Allee effect in the basal prey) to the dynamics of (7.1) (no
Allee effect in the basal prey), we see that model (1.3) may have two resource-alone states Eθ and E1 and
two coexistence equilibria E∗ and E∗, where E and E∗ arise due to Allee effect in the basal resource.
1 2 θ 1
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or model (7.1), E0 is always unstable while it is stable for model (1.3). Strong Allee effect in the basal
prey makes the initial conditions play an extreme important role in the survive of all three species, and
increases the extinction risk of not only the basal resource but also the IG prey or/and IG predator. Due
to the nonlinearity introduced by Allee effect, the existence and stability of boundary equilibria E2, E3 and

ositive equilibrium E∗
2 all are dependent on the Allee threshold θ. Differing from model (7.1), model (1.3)

has multiple tri-stability and multiple attracting periodic orbits. Therefore, the proposed model (1.3) with
strong Allee effect in the basal prey exhibits much richer and more complex dynamic behaviors than (7.1).

The dynamic behaviors of model (1.3) obtained in this paper by theoretical analysis and numerical
simulations can be summarized as follows:

(a) Theorem 4.1 indicates that the extinction state E0 is always an attractor due to Allee effect in the
basal prey x. Theorem 4.3 indicates that strong Allee effect in the basal prey makes initial conditions very
important for the survival of the basal prey as well as the IG prey and IG predator. If the initial population
density of the basal prey is below its Allee threshold, i.e., x(0) ≤ θ, then the extinction of all species x, y and
z occurs. Theorem 4.3 also implies that IG predator (IG prey)-driven extinction due to strong Allee effect of
the basal prey population combined with the high natural death rate of IG prey (IG predator, respectively)
leads to the extinction of all species. Therefore, strong Allee effect in the basal prey increases the extinction
risk of not only the basal prey but also the IG prey or/and predator. This partially answers the first question
listed in Section 1.

(b) The existence and stability of the boundary and interior equilibria were presented in Theorem 4.6.
Model (1.3) has at most two interior equilibria E∗

1 and E∗
2 , in which E∗

1 is always unstable. The existence
f E∗

1 and E∗
2 and the stability of E∗

1 are independent of (γ1, γ2). However, if E∗
2 exists, then its stability

an be determined by (γ1, γ2). The Hopf bifurcation curve Γ (γ1, γ2) = 0 at E∗
2 on (γ1, γ2), which depicts

he relationship between competition levels of the IG prey and IG predator for the basal resource, is given
n Corollary 4.7. If the competition between the IG prey and IG predator for basal resource lies below the
ritical curve Γ (γ1, γ2) = 0, then E∗

2 remains stable, while above it E∗
2 loses its stability. This partially

nswers the second question posed in Section 1.
(c) In order to explore the impact of Allee effect, the parameter space of λ = (α, β, a1, a2, d1, d2) was

ompletely classified into sixteen different regions, and in each region the number of interior equilibria was
resented as θ varies in (0, 1), and the corresponding bifurcation diagrams on the Allee threshold θ were
hown. See Theorems 5.3, 5.4, 5.6 and 5.8 in Section 5. Based on these theorems, we inductively gave the
ossible extinction parameter regions of at least one species and the necessary coexistence parameter regions
f all three species in Theorem 5.10. This may answer the two questions posed in Section 1.

(d) Model (1.3) exhibits rich and complex dynamic behaviors due to Allee effect in the basal prey x.
n Section 6, we provided the possible dynamical patterns, i.e., the existence of multiple attractors, for
odel (1.3). By theoretical analysis and numerical simulations, we showed that system (1.3) can have one

i.e. extinction of all species), two (i.e. bi-stability) or three (i.e. tri-stability) attractors. This may answer
he first question listed in Section 1.

(e) In Section 6 we also found by simulations that when there exists a unique stable interior equilibrium
∗
2 , the orbits which tended to the extinction state E0 may be attracted to some periodic orbits as (γ1, γ2)
ets closer to the Hopf bifurcation curve Γ (γ1, γ2) = 0 from the stable region Γ (γ1, γ2) > 0, meanwhile
he basin of attraction of the coexistence equilibrium E∗

2 decreases until it loses its stability since the orbits
hich tended to E∗

2 also may be attracted to some periodic orbits. Thus, multiple attracting periodic orbits
re generated and the coexistence of all three species is enhanced as the competition between the IG prey
nd IG predator for the basal resource is close to the Hopf bifurcation curve from below. This also may
nswer the second question listed in Section 1.

Our study provided useful insights on how Allee effect affects the coexistence and extinction of intraguild

redation species. By numerical simulations, we found in Section 6 that system (1.3) may have multiple
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attracting periodic orbits but we were unable to provide a theoretical proof. Seasonal effects are important
for the persistence and extinction of species. For future modeling study, it is meaningful to explore the impact
of Allee effect in the nonautonomous version of model (1.3).
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[33] E. González-Olivares, et al., Multiple stability and uniqueness of the limit cycle in a Gause-type predator–prey model

considering the Allee effect on prey, Nonlinear Anal. RWA 12 (2011) 2931–2942.
[34] Md.S. Rahman, S. Chakravarty, An eco-epidemiological model of competitive interacting species with Allee effect, Int.

J. Dyn. Control 3 (2015) 239–252.
[35] G.A.K. van Voorn, L. Hemerik, M.P. Boer, B.W. Kooi, Heteroclinic orbits indicate overexploitation in predator–prey

systems with a strong Allee effect, Math. Biosci. 209 (2007) 451–469.
[36] M.H. Wang, M. Kot, Speeds of invasion in a model with strong or weak Allee effects, Math. Biosci. 171 (2001) 83–97.
[37] J. Wang, J. Shi, J. Wei, Predator-prey system with strong Allee effect in prey, J. Math. Biol. 62 (2011) 291–331.
[38] P.J. Pal, T. Saha, Qualitative analysis of a predator–prey system with double Allee effect in prey, Chaos Solitons Fractals

73 (2015) 36–63.
[39] L. Berec, V. Bernhauerová, B. Boldin, Evolution of mate-finding Allee effect in prey, J. Theoret. Biol. 441 (2018) 9–18.
[40] S.R.J. Jang, Allee effects in a discrete-time host-parasitoid model, J. Difference Equ. Appl. 12 (2006) 165–181.
[41] Y. Kang, Scramble competitions can rescue endangered species subject to strong Allee effects, Math. Biosci. 241 (2013)

75–87.
[42] Y. Kang, A.-A. Yakubu, Weak Allee effects and species coexistence, Nonlinear Anal. RWA 12 (2011) 3329–3345.
[43] S.J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theor. Popul. Biol. 64

(2003) 201–209.
[44] M. Sen, M. Banerjee, Y. Takeuchi, Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator

model, Math. Biosci. Eng. 15 (4) (2018) 883–904.
[45] D. Sen, S. Ghorai. M. Banerjee, Allee effect in prey versus hunting cooperation on predator-enhancement of stable

coexistence, Internat. J. Bifur. Chaos 29 (6) (2019) 1950081.
[46] W. Wang, Population dispersal and Allee effect, Ric. Mat. 65 (2016) 535–548.
[47] S.R. Zhou, C.Z. Liu, G. Wang, The competitive dynamics of metapopulation subject to the Allee-like effect, Theor.

Popul. Biol. 65 (2004) 29–37.
[48] V. Makler-Pick, M.R. Hipsey, T. Zohary, Y. Carmel, G. Gal, Intraguild predation dynamics in a lake ecosystem based

on a coupled hydrodynamic-ecological model: the example of Lake Kinneret (Israel), Biology 6 (2017) 22.
[49] O. Sarnelle, R.A. Knapp, Zooplankton recovery after fish removal: limitations of the egg bank, Limnol. Oceanogr. 49

(4, part 2) (2004) 1382–1392.
[50] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, in: Texts in Applied Mathematics, vol.

2, Springer, New York, 1990.
[51] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,

Springer-Verlag, 1983.
[52] M. Sieber, F.M. Hilker, The hydra effect in predator–prey models, J. Math. Biol. 64 (2012) 341–360.
[53] Y. Kang, S.K. Sasmal, A.R. Bhowmick, J. Chattopadhyay, Dynamics of a predator–prey system with prey subject to

Allee effects and disease, Math. Biosci. Eng. 11 (4) (2014) 877–918.
[54] T. Revilla, Effects of intraguild predation on resource competition, J. Theoret. Biol. 214 (2002) 49–62.

http://refhub.elsevier.com/S1468-1218(20)30124-3/sb25
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb25
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb25
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb25
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb25
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb26
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb26
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb26
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb27
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb28
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb28
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb28
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb29
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb29
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb29
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb30
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb30
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb30
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb31
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb32
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb32
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb32
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb33
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb33
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb33
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb34
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb34
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb34
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb35
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb35
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb35
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb36
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb37
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb38
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb38
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb38
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb39
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb40
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb41
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb41
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb41
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb42
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb43
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb43
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb43
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb44
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb44
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb44
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb45
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb45
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb45
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb46
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb47
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb47
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb47
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb48
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb48
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb48
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb49
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb49
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb49
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb50
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb50
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb50
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb51
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb51
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb51
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb52
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb53
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb53
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb53
http://refhub.elsevier.com/S1468-1218(20)30124-3/sb54

	Dynamics of an intraguild predation food web model with strong Allee effect in the basal prey
	Introduction
	Positivity and boundedness
	Dynamics of subsystems
	Local dynamics of subsystems
	Global features of subsystems

	Dynamics of the full IGP system
	Boundary equilibria of the full IGP system
	Extinction
	Interior equilibrium

	The impact of Allee effect
	The case -
	The case +

	Multiple attractors
	Extinction of all species
	Bi-stability
	Tri-stability
	Multiple attracting periodic orbits

	Discussion
	Acknowledgments
	References


