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Abstract
Travelingwave solutions in general time-dependent (including time-periodic) reaction
–diffusion equations and systems of equations have attracted great attention in the last
two decades. The aim of this paper is to study the propagation phenomenon in a
general time-heterogeneous environment. More specifically, we investigate general-
ized traveling wave solutions for a two-component time-dependent non-cooperative
reaction–diffusion system which has applications in epidemiology and ecology. Suf-
ficient conditions on the existence and nonexistence of generalized traveling wave
solutions are established. In the susceptible-infectious epidemic model setting, gener-
alized traveling waves describe the spatio-temporal invasion of a disease into a totally
susceptible population. In the context of predator–prey systems, the generalized travel-
ing waves describe the spatial invasion of predators introduced into a new environment
where the prey population is at its carrying capacity.
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1 Introduction

In this paper we study the existence of generalized traveling wave solutions for the
following two-component time-dependent reaction–diffusion system

{
∂t u − d(t)∂2x u = F1(t, u, v),

∂tv − ∂2x v = F2(t, u, v),
t ∈ R, x ∈ R, (1.1)

where the functions F1 and F2 are defined by

F1(t, u, v) := �(t) − μ(t)u − β(t)uv,

F2(t, u, v) := β(t)uv − γ (t)v,
(1.2)

respectively. Here the time-dependent coefficients d(t), �(t), μ(t), β(t) and γ (t)
are all continuous and bounded functions defined on R and, for any function m ∈
{d,�,μ, β, γ }, we assume that

m := inf
t∈Rm(t) > 0. (1.3)

Furthermore, the diffusion coefficient d(t) is assumed to be uniformly continuous on
R.

System (1.1) arises in epidemiology and population dynamics. In the context of
epidemiology, the state variables u = u(t, x) and v = v(t, x) denote the density
of susceptible and infectious individuals, respectively, located at the spatial position
x ∈ R at time t . In the absence of disease, namely when v = 0, the system reduces to
the vital dynamics for u that reads as

∂t u − d(t)∂2x u = �(t) − μ(t)u, (1.4)

This means that, in the absence of disease, there is a time-dependent influx �(t)
entering the population as well as a natural—time-dependent—exit rate μ(t) for the
population.When the disease is introduced, β(t) denotes the time-dependent infection
rate while γ (t) represents the recovering or removal rate for the infected individuals.
When all coefficient functions are constants, the existence of traveling wave solutions
in (1.1) has been studied extensively, see for example,Hosono and Ilyas [12,13],Källen
[17], Murray [20], etc. When all coefficient functions are time-dependent, there are
very few results on the existence of traveling wave solutions. Recently, Wang et al.
[28] studied a periodic SIR epidemic model with diffusion and standard incidence and
established the existence of periodic traveling waves by investigating the fixed points
of a nonlinear operator defined on an appropriate set of periodic functions. They also
proved the nonexistence of periodic traveling waves via the comparison arguments
combined with the properties of the spreading speed of an associated subsystem.

System (1.1) can also be used to describe problems in population dynamics, in
particular a predator–prey system. In that setting, u(t, x) and v(t, x) represent the
density of the prey and that of the predators, respectively, at time t and spatial location
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x ∈ R. Similarly, traveling wave solutions in diffusive predator–prey models with
constant coefficients have been investigated by many researchers, see for example
Dunbar [9], Gardner [10], Huang et al. [14], Huang [15,16], Lin [18], Mischaikow
and Reineck [19], etc. There are some studies on traveling waves in periodic Lotka–
Volterra competition models (Bao andWang [3], Bo et al. [4], Zhao and Ruan [29,30])
andperiodicLotka–Volterra predator–preymodels (Wang andLin [27]), but once again
there are very few results on travelingwaves in time-dependent diffusive predator–prey
models.

In the above time-dependent system (1.1), we assumed that the diffusion coefficient
for the v-component does not depend on time and equals 1. However, as it will be
discussed below (see Sect. 2), using a suitable change of variable, the results obtained
in this work concerning the existence and non-existence of generalized traveling wave
solutions for (1.1)–(1.2) also allow us to cover the case when the diffusion coefficient
for the v-component also depends on the time variable t .

Traveling wave solutions in general time-dependent (including time-periodic)
reaction–diffusion systems have also attracted great attention in the last two decades,
we refer to Alikakos et al. [2], Contri [6], Hamel and Rossi [11], Nadin [21], Sheng
and Guo [24], Shen [25] and the references cited therein. For general time-dependent
reaction–diffusion equations, we use the terminology of generalized traveling waves
for general time-heterogeneous environments as in Nadin and Rossi [22] and gen-
eral heterogeneous environments as in Nadin and Rossi [23]. The aim of this paper
is to study the propagation phenomenon for (1.1)–(1.2) posed in a general time-
heterogeneous environment.Wewill particularly study the existence and nonexistence
of generalized traveling waves for this problem.

In order to precisely define what we mean by a generalized traveling wave solution
for (1.1)–(1.2), note that when v = 0, this problem, namely (1.4), admits a unique
bounded and time global solution u∗ = u∗(t)which is explicitly given by the formula

u∗(t) =
∫ t

−∞
e− ∫ t

s μ(l)dl�(s)ds, t ∈ R. (1.5)

Note the improper integral converges since μ > 0 as mentioned in (1.3). This result
directly follows from the parabolic comparison principle. Indeed setting m− ≤ m+
the lower and upper bounds of a bounded and time global solution, u = u(t, x), of
(1.4), it readily follows that for all s ≤ t and x ∈ R

m−e− ∫ t
s μ(l)dl ≤ u(t, x) −

∫ t

s
�(σ)e− ∫ t

σ μ(l)dldσ ≤ m+e− ∫ t
s μ(l)dl .

Since inf{μ(t), t ∈ R} > 0, one obtains letting s → −∞ that u(t, x) = u∗(t) for all
x ∈ R and t ∈ R.

Equipped with this notation, we introduce the definition of a generalized traveling
wave for (1.1)–(1.2).

Definition 1.1 A three-tuple function (U , V , c) : R2×R
2×R → [0,∞)×[0,∞)×R

is said to be a generalized traveling wave of Problem (1.1)–(1.2) with the time varying
wave speed t �→ c(t) if
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(i) the function c(t) is measurable and bounded and, the function pair (U , V ) is
positive and bounded;

(ii) the function

(u, v) (t, x) = (U , V ) (t, ξ) with ξ = x −
∫ t

0
c(s)ds

is an entire solution of Problem (1.1)–(1.2), that is, a solution defined for (t, x) ∈
R × R;

(iii) the pair (U , V ) satisfies the following behaviour at ξ = ∞

lim
ξ→∞ (U , V ) (t, ξ) = (

u∗(t), 0
)
uniformly for t ∈ R, (1.6)

and a persistence condition at ξ = −∞, that reads as

lim inf
ξ→−∞ inf

t∈R V (t, ξ) > 0 and lim inf
ξ→−∞ inf

t∈R
∣∣u∗(t) −U (t, ξ)

∣∣ > 0. (1.7)

In the above definition, (U , V ) corresponds to the so-called wave profile while the
function t �→ c(t) is referred to as the time varying wave speed function.

The aim of this work is to investigate the existence and nonexistence of generalized
traveling wave solutions for System (1.1) with the functions F1 and F2 defined in
(1.2). Coming back to (1.1) and using Definition 1.1, we observe that a generalized
wave profile (U , V , c) satisfies the following parabolic system

{
∂tU = d(t)∂2ξU + c(t)∂ξU + F1 (t,U , V ) ,

∂t V = ∂2ξ V + c(t)∂ξV + F2 (t,U , V ) ,
for (t, ξ) ∈ R × R, (1.8)

together with (1.6) and (1.6). In this paper we present sufficient conditions to ensure
the existence and nonexistence of solutions for the above system (1.8) under (1.6) and
(1.6).

2 Main results

In this section we present the main results that will be proved later. To do so we need
to introduce some notations that will be used throughout this paper.

As in [22] or [23], we introduce the so-called least mean value for a function
g ∈ L∞(R) as follows

M−(g) := sup
T>0

inf
s∈R

1

T

∫ T

0
g(l + s)dl. (2.1)
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Let us also recall (see [22]) that, for each function g ∈ L∞(R), the least mean value
M−(g) also has the following important reformulations:

M−(g) = lim
T→∞ inf

s∈R
1

T

∫ T

0
g(l + s)dl = sup

a∈W 1,∞(R)

inf
t∈R

(
a′(t) + g(t)

)
. (2.2)

This alternative variational reformulation will be used throughout this work.
Next, define the bounded function δ : R → R as the growth function and the

parameter T , respectively, by

δ(t) = β(t)u∗(t) − γ (t), t ∈ R, and T = M− (δ(·)) . (2.3)

Using the above notations, the main result is the following theorem.

Theorem 2.1 Assume that T > 0. For each λ > 0 and a = a(t) ∈ W 1,∞(R), consider
the bounded function cλ,a : R → [0,∞) defined by

cλ,a(t) = λ + λ−1δ(t) + a′(t), t ∈ R. (2.4)

Then, for each λ ∈ (0,
√
T ) and a ∈ W 1,∞(R), Problem (1.1)–(1.2) admits a gener-

alized traveling wave, according to Definition 1.1, for the wave speed t �→ cλ,a(t).

Let us observe that, for each a ∈ W 1,∞(R) and λ > 0, one has

M−(cλ,a) = λ + λ−1T .

Moreover, define the function 
 : (0,∞) → (0,∞) by


(λ) := λ + λ−1T .

Note that it reaches its minimum for λ > 0 at λ = √
T . Hence the above result

ensures that, for each c > 

(√

T
)

= 2
√
T , Problem (1.1)–(1.2) admits a generalized

traveling wave solution with a wave speed function c = c(t) such that M−(c) = c.
Furthermore, for each c > 2

√
T , there are infinitymany admissible functions c = c(t)

withM−(c) = c.
Next we show that our above existence result is somehow sharp and provides a

necessary condition on the least mean value of the wave speed function for Problem
(1.1)–(1.2) to admit generalized traveling waves. Our next result is the following
theorem.

Theorem 2.2 Assume that T > 0. Let (U , V , c) be a generalized traveling wave
solution of Problem (1.1)–(1.2) according to Definition 1.1. Then the wave speed
function c = c(t) satisfies

M−(c) ≥ 2
√
T .
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The combination of the above two results provides somehow sharp information on
admissible wave speed functions. Indeed, let us consider the set of admissible wave
speed functions, denoted by C, that is the set ofwave speeds c = c(t) such that Problem
(1.1)–(1.2) admits a generalized traveling wave with the wave speed c = c(t). Then
the above theorems indicate that(

2
√
T ,∞

)
⊂ {

M−(c) : c ∈ C
} ⊂

[
2
√
T ,∞

)
.

Remark 2.3 One may notice that the methodology developed in this work can be
applied to obtain the existence of generalized traveling wave solutions for System
(1.1)–(1.2) when�(t) ≡ μ(t) ≡ 0. However as far as non-existence is concerned, our
arguments do not apply to this situation. Indeed, our proof for Theorem 2.2 is mostly
based on the persistence of the V -component beyond the front, namely for ξ → −∞.
This latter property does not correspond to the expected behaviour of generalized
traveling waves in the limit case �(t) ≡ μ(t) ≡ 0.

In the remaining part of this section, we explore how the above results also allow
us to treat systems similar to (1.1)–(1.2) with two time-varying diffusion coefficients,
namely a system of the following form

{
∂t u − du(t)∂2x u = �(t) − μ(t)u − β(t)uv,

∂tv − dv(t)∂2x v = β(t)uv − γ (t)v,
t ∈ R, x ∈ R, (2.5)

wherein the functions du(t) and dv(t) are both uniformly continuous on R and
uniformly positive while all other coefficient functions are uniformly positive and
bounded. To that aim, one may observe that the above problem reduces to (1.1)–(1.2)
by using a suitable change of the time variable. Set

τ(t) =
∫ t

0
dv(σ )dσ, t ∈ R. (2.6)

Then this map τ is a strictly increasing bijection of R. Denote

(̂u, v̂) (τ, x) = (u, v) (t, x),

then we have for w = u, v that

∂tw(t, x) = ∂τ ŵ(τ, x)dv(t).

So the function pair (̂u, v̂) becomes a solution of the following system of equations

{
dv(t)∂τ û = du(t)∂2x û + �(t) − μ(t )̂u − β(t )̂uv̂,

dv(t)∂τ v̂ = dv(t)∂2x v̂ + β(t )̂uv̂ − γ (t )̂v,
for (τ, x) ∈ R × R,

Next, recalling that τ = τ(t) is given in (2.6), we set
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d(τ ) = du(t)

dv(t)
, β̃(τ ) = β(t)

dv(t)
, μ̃(τ ) = μ(t)

dv(t)

�̃(τ ) = �(t)

dv(t)
, γ̃ (τ ) = γ (t)

dv(t)
.

(2.7)

Then (̂u, v̂) becomes a solution of the following parabolic problem

{
∂τ û = d(τ )∂2x û + �̃(τ ) − μ̃(τ )̂u − β̃(τ )̂uv̂,

∂τ v̂ = ∂2x v̂ + β̃(τ )̂uv̂ − γ̃ (τ )̂v,
for (τ, x) ∈ R × R, (2.8)

that corresponds to Problem (1.1)–(1.2) with different τ -dependent parameter func-
tions.

Note that applying Theorems 2.1 and 2.2 relies on the parameter T . Denote by δ̃(τ )

the corresponding growth function defining the parameter T for System (2.8). The
growth function δ(t) for the original System (2.5) is given by δ(t) = dv(t)δ̃(τ (t)).
Hence, the parameter T can be rewritten as follows

T = M− (
δ̃
)

= lim
T→∞ inf

τ∈R
1

T

∫ τ+T

τ

δ̃(s)ds

= lim
T→∞ inf

l∈R
1

T

∫ τ−1(l+T )

τ−1(l)
δ̃(τ (t))dv(t)dt

= lim
T→∞ inf

l∈R
1

T

∫ τ−1(l+T )

τ−1(l)
δ(σ )dσ.

Hence, in terms of the original parameters in System (2.5) the condition T > 0
becomes

T = lim
T→∞ inf

l∈R T−1
∫ τ−1(l+T )

τ−1(l)
δ(σ )dσ > 0,

and the latter condition explicitly depends upon the diffusion coefficient dv(t) and
another notion of the least mean value than the one given in (2.1).

The rest of this paper is organized as follows. Section 3 is devoted to the proof of
the existence of suitable bounded solutions for system (1.8). In Sect. 4 we complete
the proofs of both Theorems 2.1 and 2.2. To this end we develop arguments in Propo-
sition 4.1 that allow us to prove (1.6) as well as the nonexistence result as stated in
Theorem 2.2.

3 Existence of solutions

Throughout this section we assume that

T = M−(δ) > 0. (3.1)
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Consider the function 
 : (0,∞) → R defined by


(λ) := 1

λ

[
λ2 + T

]
.

Next define the quantity c� > 0 by

c� = 2
√
T = min

λ>0

(λ) = 


(√
T

)
.

We have the following theorem on the existence of bounded solutions.

Theorem 3.1 (Existence of bounded solutions for (1.8)) Assume that (3.1) is satisfied.

Then for each λ ∈
(
0,

√
T

)
and a ∈ W 1,∞(R), Problem (1.8) admits a positive and

bounded solution (U , V ) = (U , V ) (t, ξ) for the wave speed function t �→ cλ,a(t) =
λ + λ−1δ(t) + a′(t) that furthermore satisfies

inf
t∈R V (t, ξ) > 0, ∀ξ ∈ R,

lim
ξ→∞ (U , V ) (t, ξ) = (

u∗(t), 0
)
uniformly for t ∈ R,

V (t, ξ) ∼ e−λ(ξ+a(t)) as ξ → ∞ uniformly for t ∈ R.

(3.2)

Proof The proof relies on the construction of a suitable sub- and super-solution pair.
These constructions are described below in the step. The second step deals with the
uniform boundedness of the constructed solutions and completes the proof of the
theorem.

Throughout this proof we fix λ ∈
(
0,

√
T

)
and a ∈ W 1,∞(R). For notational

simplicity we write c = c(t) instead of cλ,a = cλ,a(t).
First step (i) consider the function Ū (t, ξ) := u∗(t) and observe that it satisfies

∂t Ū − d(t)∂2ξU − c(t)∂ξ Ū = F1
(
t, Ū , 0

)
, ∀(t, ξ) ∈ R × R.

(ii) Next consider the function V̄ (t, ξ) = e−λ(ξ+a(t)) and note that it satisfies the
equation

∂t V̄ = −λa′(t)V̄ , ∂ξ V̄ = −λV̄ , ∂2ξ V̄ = λ2V̄ ,

so that one gets

∂t V̄ − ∂2ξ V̄ − c(t)∂ξ V̄ = V̄
[
−λa′(t) − λ2 + c(t)λ

]
= λV̄

[
−a′(t) − λ + λ + λ−1δ(t) + a′(t)

]
= δ(t)V̄ .

Thus, V (t, ξ) = e−λ(ξ+a(t)) satisfies

∂t V̄ − ∂2ξ V̄ − c(t)∂ξ V̄ = F2
(
t, u∗(t), V̄

)
, (t, ξ) ∈ R × R.
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(iii) Now we construct a function U (t, ξ) satisfying

∂tU − d(t)∂2ξU − c(t)∂ξU ≤ F1(t,U , V̄ ) = �(t) − μ(t)U − β(t)UV̄ on {(t, ξ) : U ≥ 0}.

We look for such a function with the form

U (t, ξ) = u∗(t)g(ξ) with g(ξ) = 1 − Ke−κξ ,

where K > 0 and 0 < κ < λ are parameters that will be chosen later so that K > 1
and κ = κ(K ) > 0 small enough. For t ∈ R and ξ ∈ R such that 1 − Ke−κξ ≥ 0,
namely for ξ ≥ 1

κ
ln(K ) and t ∈ R, we have

∂tU − d(t)∂2ξU − c(t)∂ξU − F1(t,U , V̄ )

= K
[
u∗(t)d(t)κ2 − c(t)κ − �(t)

]
e−κξ + β(t)u∗(t)e−λ(ξ+a(t)) [

1 − Ke−κξ
]

≤ e−κξ
{
K

[
u∗(t)d(t)κ2 − c(t)κ − �(t)

]
+ β(t)u∗(t)e−λa(t)e

κ−λ
κ

ln(K )
}

.

Now fix K > 1 and choose κ = κ(K ) ∈ (0, λ) small enough such that

K
[
u∗(t)d(t)κ2 − c(t)κ − �(t)

]
+ β(t)u∗(t)e−λa(t)e

κ−λ
κ

ln(K ) < 0, ∀t ∈ R.

Recall that the latter condition can be achieved since inf{�(t), t ∈ R} > 0 and the
different time-dependent functions are bounded. Hence with such a choice for the
parameters, one obtains that the function U satisfies

∂tU − d(t)∂2ξU − c(t)∂ξU ≤ F1(t,U , V̄ )

for all t ∈ R and ξ ≥ κ−1 ln(K ), that is on the set {(t, ξ) ∈ R
2 : U (t, ξ) ≥ 0}.

(iv) Now we set

U−(t, ξ) := max
(
0,U (t, ξ)

)
and look for a constant h > λ and a function b = b(t) ∈ W 1,∞(R) such that the
function

V (t, ξ) = e−λ(ξ+a(t)) − e−λa(t)+b(t)e−hξ

satisfies the following differential inequality

∂t V − ∂2ξ V − c(t)∂ξV ≤ F2
(
t,U−, V

) = [
β(t)U− − γ (t)

]
V (3.3)
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on the set {(t, ξ) ∈ R×R : V (t, ξ) ≥ 0} = {(t, ξ) ∈ R×R : b(t)− (h −λ)ξ ≤ 0}.
To that aim, note that, setting A(t) = e−λa(t)+b(t), one has

∂t V (t, ξ) = −λa′(t)e−λ(ξ+a(t)) − A′(t)e−hξ , ∂ξV (t, ξ) = −λe−λ(ξ+a(t)) + hA(t)e−hξ ,

∂ξξV (t, ξ) = λ2e−λ(ξ+a(t)) − h2A(t)e−hξ .

Hence, recalling that c(t) = λ + λ−1δ(t) + a′(t), we have

∂t V − ∂2ξ V − c(t)∂ξV − [
β(t)U− − γ (t)

]
V

= e−λ(ξ+a(t))
[
−λa′(t) − λ2 + c(t)λ − β(t)U− + γ (t)

]
+ e−hξ

[
−A′(t) + h2A(t) − c(t)hA(t) + A(t)

[
β(t)U− − γ (t)

]]
= e−λ(ξ+a(t))β(t)

[
u∗(t) −U−]

+ e−hξ
[
−A′(t) + h2A(t) − c(t)hA(t) + A(t)

[
β(t)U− − γ (t)

]]
.

In order to satisfy (3.3), setting η = h − λ > 0, it is sufficient to have for all (t, ξ) ∈
R × R with b(t) < ηξ that

β(t)u∗(t)Ke−κξ + e−ηξ eb(t)
[
λa′(t) − b′(t) + h2 − c(t)h + δ(t)

]
≤ 0. (3.4)

To handle this problem and to find a suitable function b ∈ W 1,∞(R) and a constant
h = λ + η > λ such that the above inequality is satisfied, let us fix η ∈ (0, κ) small
enough and b0 ∈ W 1,∞(R) such that there exists ε > 0 with

λa′(t) − b′
0(t) + h2 − c(t)h + δ(t) ≤ −ε, ∀t ∈ R.

To that aim we make use of the second expression for the least mean value given in
(2.2). Recalling that c(t) = λ + λ−1δ(t) + a′(t), one has

λa′(t) − b′
0(t) + h2 − c(t)h + δ(t)

= −h

[(
1 − λ

h

)
a′(t) + b′

0(t)

h
− h + λ +

(
λ−1 − h−1

)
δ(t)

]
.

Since λ−1 > h−1, one gets

M− [
−h + λ +

(
λ−1 − h−1

)
δ(t)

]
= −h + λ +

(
λ−1 − h−1

)
T

= 
(λ) − 
(h).

Since λ ∈
(
0,

√
T

)
, choose η ∈ (0, κ) small enough such that


(λ) − 
(λ + η) > 0.
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Next letting ε = h
2 [
(λ) − 
(λ + η)] and recalling (2.2), we know that there exists

B = B(t) ∈ W 1,∞(R) such that

B ′(t) −
(
h2 − c(t)h + δ(t)

)
≥ ε, ∀t ∈ R.

Set b0(t) := λa(t) + B(t) that satisfies

λa′(t) − b′
0(t) + h2 − c(t)h + δ(t) ≤ −ε, ∀t ∈ R.

We now come back to (3.4) and look for the function b = b(t) under the form
b(t) = b0(t) + ln ρ for some constant ρ > 0 sufficiently large. In order to find the
constant ρ > 0 such that (3.4) holds, recalling that η = h − λ < κ , it is sufficient to
have

β(t)u∗(t)Ke−b0(t) ≤ ερe(κη−1−1)b0(t)+(κη−1−1) ln ρ, ∀t ∈ R,

that is

β(t)u∗(t)Ke−κη−1b0(t) ≤ εeκη−1 ln ρ, ∀t ∈ R,

which is satisfied as soon as ρ > 0 is large enough.
In conclusion, we have chosen the constant h = λ + η > λ and the function

b(t) = b0(t) + ln ρ such that the corresponding function V satisfies (3.3) on the set{
(t, ξ) ∈ R × R : V (t, ξ) ≥ 0

}
.

Remark 3.2 If the functions δ(t) and a(t) are T -periodic for some T > 0, then the
function b(t) can also be chosen to be T -periodic.

Second step In the second step we complete the proof of the theorem. To that aim,
for n ≥ 1 we consider the reaction–diffusion system

{
∂tU = d(t)∂2ξU + c(t)∂ξU + F1(t,U , V ),

∂t V = ∂2ξ V + c(t)∂ξV + F2(t,U , V ),
for t ≥ −n, ξ ∈ R,

with the condition at t = −n:

U (−n, ξ) = max
(
0,U (−n, ξ)

)
and V (−n, ξ) = max

(
0, V (−n, ξ)

)
, ξ ∈ R.

The above Cauchy problem admits a globally defined solution. We denote it by
(Un, V n) and recall that it is defined for t ≥ −n and for ξ ∈ R. Observe also that, from
the construction of the sub- and super-solutions in the step, successive applications of
the parabolic comparison principle ensures that the sequence {(Un, V n)} satisfies the
following super and lower estimates

max
(
0,U

) ≤ Un ≤ U and max
(
0, V

) ≤ V n ≤ V
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for any n ≥ 1 and for all t ≥ −n and ξ ∈ R.

Next in order to take the limit as n → ∞, we need to derive new estimates for
the sequence of functions {(Un, V n)} to ensure that it is uniformly bounded. Notice
that since Un(t, ξ) ≤ u∗(t) for all t ≥ −n and ξ ∈ R, we know that this solution
component Un is bounded. We investigate the other solution component V n in the
next lemma.

Lemma 3.3 The function V n(t, ξ) is uniformly bounded on [−n,∞) × R, namely
there exists some constant M > 0 such that, for any n large enough, one has

V n(t, ξ) ≤ M, ∀t ≥ −n, ξ ∈ R.

To prove this lemma, consider the sequence of functions {(Un, Vn)} defined for
t ≥ 0 and ξ ∈ R by

(Un, Vn) (t, ξ) = (
Un, V n) (t − n, ξ),

that satisfies the following initial value parabolic system

{
∂tUn = d(t − n)∂2ξUn + c(t − n)∂ξUn + F1(t − n,Un, Vn),

∂t Vn = ∂2ξ Vn + c(t − n)∂ξVn + F2(t − n,Un, Vn),
for t > 0, ξ ∈ R,

together with

Un(0, ξ) = max
(
0,U (−n, ξ)

)
and Vn(0, ξ) = max

(
0, V (−n, ξ)

)
, ξ ∈ R.

To handle this problem we remove the convection term by defining the function
{(un(t, ξ), vn(t, ξ)} by

(un, vn)(t, ξ) = (Un, Vn)

(
t, ξ −

∫ t

0
c(l − n)dl

)
, ∀t ≥ 0, ∀ξ ∈ R.

Note that it satisfies the following reaction–diffusion system without the drift term

{
∂t un = d(t − n)∂2ξ un + F1(t − n, un, vn),

∂tvn = ∂2ξ vn + F2(t − n, un, vn),
for t > 0, ξ ∈ R, (3.5)

together with

un(0, ξ) = Un(0, ξ) and vn(0, ξ) = Vn(0, ξ), ξ ∈ R. (3.6)

Now to prove the above boundedness lemma, it is sufficient to show that {vn} is
uniformly bounded on [0,∞) × R for n large enough. To that aim we follow and
extend some ideas taken from Ducrot et al. [8].
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Proof As mentioned above, in order to prove Lemma 3.3 we will prove that the solu-
tions of (3.5)–(3.6) are uniformly bounded for t ≥ 0, ξ ∈ R and for n large enough.

To that aim let us observe that the sequences {un(0, ·)} and {vn(0, ·)} are uniformly
bounded and let us also recall that un(t, ξ) ≤ u∗(t − n) is uniformly bounded with
respect to t ≥ 0, ξ ∈ R and n ≥ 0. Now in order to prove that the sequence (t, ξ) �→
vn(t, ξ) enjoys the same property, we argue by contradiction by assuming that there
exists a sequence {(tn, ξn)} with tn > 0, ξn ∈ R such that

vn(tn, ξn) → ∞ as n → ∞.

Since un ≤ ‖u∗‖L∞(R) is uniformly bounded, fix K > 0 large enough such that

β(t − n)un(t, ξ) + vn(0, ξ) ≤ K , ∀t ≥ 0, ξ ∈ R, n ≥ 0.

Hence, the comparison principle ensures that

vn(t, ξ) ≤ KeKt , ∀t ≥ 0, ξ ∈ R, n ≥ 0,

so that tn → ∞ as n → ∞.
Assume, without loss of generality, that

tn = min{t > 0 : ‖vn(t, ·)‖L∞(R) = n} and vn(tn, ξn) ∈ [n/2, n] .

Define {ṽn(t, ξ)} by

ṽn(t, ξ) = vn(t + tn, ξ + ξn)

vn(tn, ξn)
.

It becomes a solution of the equation

∂t ṽn(t, ξ) = ∂2ξ ṽn(t, ξ) + an(t, ξ)ṽn(t, ξ), t > −tn, ξ ∈ R,

wherein the sequence of functions {an(t, ξ)} is defined by

an(t, ξ)=β(t+tn−n)un(t+tn,ξn+ξ) − γ (t + tn − n), ∀t ≥ −tn, ∀ξ ∈ R. (3.7)

Now, since {un(t, ξ)} is uniformly bounded, the sequence of functions {an(t, ξ)} is
uniformly bounded for t ≥ −tn , ξ ∈ R and n ≥ 0. From our construction, one may
observe that, for all n ≥ 1, all t ∈ [−tn, 0] and all ξ ∈ R, one has

ṽn(t, ξ) ≤ max
t∈[0,tn ]

‖vn(t, ·)‖L∞(R) × 2

n
≤ 2.

On the other hand, since an(t, ξ) ≤ K one obtains from the parabolic comparison
principle that

ṽn(t, ξ) ≤ 2eK t , ∀n ≥ 1, t ≥ 0, ξ ∈ R.
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As a consequence, the sequence of functions {ṽn(t, ξ)} is uniformly bounded with
respect to n ≥ 1 on each domain of the form [−tn, T ] × R with T > 0. Due to
parabolic estimates, one may assume, possibly along a subsequence still denoted by
n, that

ṽn(t, ξ) → ṽ(t, ξ) locally uniformly for (t, ξ) ∈ R × R as n → ∞.

Furthermore, the function ṽ(t, ξ) satisfies

{
ṽ(0, 0) = 1,(
∂t − ∂2ξ

)
ṽ(t, ξ) + a(t, ξ)ṽ(t, ξ) = 0, ∀(t, ξ) ∈ R × R,

wherein the bounded function a(t, ξ) denotes an L∞
loc-weak star limit of the bounded

sequence of functions {an(t, ξ)}. As a consequence we obtain that ṽ(t, ξ) > 0 for all
(t, ξ) ∈ R×R and, using the definition of the sequence {ṽn(t, ξ)}, we conclude that

vn(t+tn, ξn+ξ) → ∞ locally uniformly for (t, ξ) ∈ R×R as n → ∞. (3.8)

Now we make the following claim.

Claim 3.4 The sequence of functions {un(t, ξ)} satisfies

lim
n→∞ un(t + tn, ξ + ξn) = 0, ∀(t, ξ) ∈ R × R.

Proof of Claim 3.4 Let M > 0, R > 0 and T > 0 be given. Consider the function
u = unT ,R , the solution of the problem⎧⎪⎪⎨

⎪⎪⎩
∂t u = d(tn + t)∂2ξ u + � −

(
μ + βM

)
u, t ∈ (−T , T ), |ξ | ≤ R,

u(−T , ξ) = u∗, ξ ∈ [−R, R],
u (t,±R) = u∗, t ∈ (−T , T ),

wherein we have set

� = sup
t∈R

�(t), u∗ = sup
t∈R

u∗(t), μ = inf
t∈Rμ(t), β = inf

t∈Rβ(t).

Due to (3.8), choose n0 ≥ 1 large enough (depending on M , R and T ) such that

vn(t + tn, ξ + ξn) ≥ M, ∀n ≥ n0, t ∈ [−T , T ], ξ ∈ [−R, R].

Hence, because of the above definition, the parabolic comparison principle ensures
that

un(t + tn, ξ + ξn) ≤ unT ,R(t, ξ) for any n ≥ n0, |ξ | ≤ R, |t | ≤ T . (3.9)
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Next observe that one has

0 ≤ unT ,R(t, ξ) ≤ �

μ
for any n ≥ n0, |ξ | ≤ R, |t | ≤ T .

As a consequence of this uniform boundedness and parabolic regularity, for any pos-
itive constants T , R, M and any sequence {nk}k≥0 tending to ∞ as k → ∞, one may
extract a subsequence, still denoted by {nk}, such that

unkT ,R(t, ξ) → ûT ,R(t, ξ),

uniformly for |t | ≤ T
2 and |ξ | ≤ R

2 , wherein the function ûT ,R satisfies

∂t u = d∗(t)∂2ξ u + � −
(
μ + βM

)
u, |t | ≤ T

2
, |ξ | ≤ R

2
.

Herein d∗ is a L∞-weak star limit of the bounded sequence {d(tnk + ·)}k≥0. Here
again, because of the uniform boundedness with respect to T and R of ûT ,R , using
parabolic regularity, for any sequence {Tk} and {Rk} tending to infinity, onemay extract
subsequences, still denoted by {Tk} and {Rk} such that

ûTk ,Rk (t, ξ) → û(t, ξ) locally uniformly for (t, ξ) ∈ R × R,

where the limit function û becomes a bounded entire solution of the problem

∂t u = d∗(t)∂2ξ u + � −
(
μ + βM

)
u, (t, ξ) ∈ R × R,

so that û(t, ξ) = �
μ+Mβ

for all (t, ξ) ∈ R × R.

As a consequence one gets

lim sup
T→∞
R→∞

lim sup
n→∞

unT ,R(t, ξ) ≤ �

μ + Mβ
, ∀(t, ξ) ∈ R × R.

Next we infer from (3.9) that, for all (t, ξ) ∈ R × R,

lim sup
n→∞

un(t + tn, ξ + ξn) ≤ �

μ + Mβ
, ∀M > 0,

which yields, letting M → ∞,

lim
n→∞ un(t + tn, ξ + ξn) = 0, ∀(t, ξ) ∈ R × R.

This completes the proof of Claim 3.4. ��
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We are now able to complete the proof of Lemma 3.3. To that aim, recall that γ > 0
is given by

γ = inf
t∈R γ (t).

Using Claim 3.4 and recalling the definition of the sequence {an(t, ξ)} in (3.7), its
L∞
loc(R

2)-weak limit a(t, ξ) satisfies

a(t, ξ) ≤ −γ , ∀(t, ξ) ∈ R × R.

Hence, from the above construction, the function ṽ(t, ξ) satisfies the following prop-
erties

ṽ(0, 0) = 1,

ṽ(t, ξ) ≤ 2, ∀t ∈ (−∞, 0], ∀ξ ∈ R,

∂t ṽ(t, ξ) ≤ ∂2ξ ṽ(t, ξ) − γ ṽ(t, ξ), ∀(t, ξ) ∈ R × R.

Observe that v(t, ξ) := e−γ t is a super-solution of the above equation. Hence, fix
T > 0, so that we get

ṽ(−T , ξ) ≤ 2 ≤ 2e−γ T v(−T , ξ), ∀ξ ∈ R,

and thus, using the parabolic comparison, we obtain

ṽ(t, ξ) ≤ 2e−γ T v(t, ξ), ∀t ≥ −T , ξ ∈ R.

This implies, with (t, ξ) = (0, 0), that

ṽ(0, 0) ≤ 2e−γ T , ∀T > 0.

Finally, since γ > 0, this contradicts the normalization condition ṽ(0, 0) = 1 and
completes the proof of the lemma. ��

Now using parabolic regularity coupled with the above estimates, there exists a
sub-sequence of {(Un, V n)} still denoted by the same notation, and a bounded limit
function pair (U , V ) such that

(
Un, V n) (t, ξ) → (U , V )(t, ξ) locally uniformly for (t, ξ) ∈ R × R.

Furthermore, (U , V ) satisfies the problem

{
∂tU = d1(t)∂2ξU + c(t)∂xU + F1(t,U , V ),

∂t V = ∂2ξ V + c(t)∂x V + F2(t,U , V ),
for t ∈ R, ξ ∈ R,
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and, recalling that (U , V ) are bounded, they also enjoy the following estimates

max
(
0,U

) ≤ U ≤ U and max
(
0, V

) ≤ V ≤ V , (3.10)

The lower estimate above for V ensures that there exists ξ0 large enough such that

inf
t∈R V (t, ξ) > 0, ∀ξ > ξ0.

Therefore, V > 0 on R×R due to the maximum principle and one also deduces that

inf
t∈R V (t, ξ) > 0, ∀ξ ∈ R.

This proves the property in (3.2). Furthermore, it follows from the positivity of V
and the maximum principle that U (t, ξ) < u∗(t) for all (t, ξ) ∈ R

2. Next the above
estimates, namely (3.10), also ensure that

lim
ξ→∞ (U (t, ξ), V (t, ξ)) = (

u∗(t), 0
)
uniformly for t ∈ R,

that completes the proof of the second property in (3.2). Finally, the third condition
in (3.2) follows from the second estimate in (3.10) since the functions V and V have
the same behavior as ξ → ∞. This completes the proof of Theorem 3.1. ��

4 Proofs of Theorems 2.1 and 2.2

In this section, we complete the proofs of Theorems 2.1 and 2.2. To that aim throughout
this section we again assume that

T > 0. (4.1)

Then Theorems 2.1 and 2.2 will follow from the next key proposition.

Proposition 4.1 Let (U , V ) be a bounded and positive solution of (1.8) for some given
bounded wave speed function t �→ c(t) and satisfy

∃ξ0 ∈ R, inf
t∈R V (t, ξ0) > 0. (4.2)

Then, for any c ∈
[
0, 2

√
T

)
, it holds that

lim inf
t→∞ inf

τ∈R V

(
t − τ,

∫ t

0
[c − c(l − τ)] dl

)
> 0.

As already mentioned above this key proposition will allow us to prove both The-
orems 2.1 and 2.2. The proof of Proposition 4.1 relies on several steps. Its proof is
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inspired from dynamical systems ideas and more precisely from uniform persistence
theory. We refer to Cantrell and Cosner [5] for the persistence theory in reaction–
diffusion equations, Smith andThieme [26] for persistence theory in general dynamical
systems, and Zhao [31] for persistence theory in infinite dimensional dynamical sys-
tems.We also refer to [1,7,8] for the study of spatial propagation for reaction–diffusion
equations using such ideas. The two last mentioned works [7,8] are concerned with the
study of asymptotic speed of spread while the one [1] deals with the study of traveling
wave for some reaction–diffusion problems in some homogeneous environment. Here
we extend such arguments to the delicate case of problems posed in a time-varying
environment.

We start with the following remark and lemma. Let g ∈ L∞(R) be given. Consider
the set of translations of g, namely the set {g(· + h), h ∈ R}. It is relatively compact
with respect to the L∞(R) weak−� topology and we denote by Hg its closure with
respect to L∞(R) weak−� topology. This set is referred to as the ω-limit set of g in
[23] and we refer to Proposition 4.4 of the aforementioned paper for further properties
on the least mean value on the ω-limit set. Now we present a lemma which will be
needed in the following discussion.

Lemma 4.2 Let g ∈ L∞(R) be given. Then the following holds

M−(g) ≤ M− (ĝ) , ∀ ĝ ∈ Hg.

Proof Let ĝ ∈ Hg be given. Then there exists a sequence {hn} such that

g(t + hn) → ĝ(t) in L∞(R) weak-� topology.

Thus, one has for all T > 0 and n ≥ 0 that

inf
s∈R

1

T

∫ T

0
g(l + s)dl ≤ 1

T

∫ σ+T

σ

g(l + hn)dl, ∀σ ∈ R.

Hence, letting n → ∞ yields

inf
s∈R

1

T

∫ T

0
g(l + s)dl ≤ 1

T

∫ σ+T

σ

ĝ(l + σ)dl, ∀σ ∈ R.

Taking the infimum for σ ∈ R on the right hand side and the limit when T → ∞
yields

M−(g) ≤ M− (ĝ) .

This completes the proof of the lemma. ��
Fix c ∈ (0, c�) and consider the τ -parametrized function pair (u, v) defined by

(u, v)(t, ξ ; τ) = (U , V )

(
t − τ, ξ +

∫ t

0
[c − c(l − τ)] dl

)
(4.3)

123



Generalized traveling waves for time-dependent...

for all (t, ξ) ∈ R × R and for parameter τ ∈ R. Next observe that (u, v) satisfies the
system of equations

{
∂t u = d(t − τ)∂2ξ u + c∂ξu + F1(t − τ, u, v),

∂tv = ∂2ξ v + c∂ξ v + F2(t − τ, u, v),
for t ∈ R, τ ∈ R, ξ ∈ R.

Consider the set of time translations given by

S = {(u, v)(t + h, ξ ; τ), h ∈ R, τ ∈ R} .

Due to parabolic regularity this set is relatively compact with respect to the open
compact topology on R × R. We consider its closure, denoted by S, with respect to
the open compact topology, namely those of C0

loc (R × R)2. In other words, one has
(ũ, ṽ) ∈ S if there exist two sequences {hn}n≥0 and {τn}n≥0 such that

lim
n→∞ (u, v) (t + hn, ξ ; τn) = (ũ, ṽ) (t, ξ) in C0

loc (R × R)2 .

One may also observe that the above convergence also holds weakly inW 1,2
p,loc(R×R)

for any p ∈ [1,∞) and that, for each k ≤ 1, one also has

lim
n→∞ ∂kξ (u, v) (t + hn, ξ ; τn) = ∂kξ (ũ, ṽ) (t, ξ) in C0

loc (R × R)2 .

With this notation, the step to prove Proposition 4.1 consists in the follow-
ing lemma, that somehow corresponds to a weak persistence property for the set
S \ {

(ũ, ṽ) ∈ S : ṽ ≡ 0
}
.

Lemma 4.3 There exists ε > 0 such that for all (ũ, ṽ) ∈ S with ṽ �≡ 0 one has

lim sup
t→∞

ṽ(t, 0) ≥ ε.

In order to prove the above lemma, we consider now the hull, denoted by �, of the
function σ ∈ BUC(R) × L∞(R)4 × BUC(R) given by

σ(t) = (
d(t),�(t), μ(t), β(t), γ (t), u∗(t)

)
, t ∈ R.

It is defined by

� = cl {σ(· + h), h ∈ R} ,

wherein cl denotes the closure with respect to the open compact topology for the and
the last components and the L∞(R)4 weak−� topology. The set � is endowed with

this topology. In other words, one has σ̃ =
(
d̃, �̃, μ̃, β̃, γ̃ , ũ∗

)
∈ � if there exists a
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sequence {hn}n≥0 ⊂ R such that

(
d(t + hn), u

∗(t + hn)
) →

(
d̃(t), ũ∗(t)

)
in C0

loc(R),

(�,μ, β, γ ) (t + tn) →
(
�̃, μ̃, β̃, γ̃

)
(t) for the L∞(R)4 weak-� topology.

Consider also the set

S = {((u, v) (t + h, ξ ; τ), σ (t + h − τ)) , (h, τ ) ∈ R × R} ,

as well as S , the closure of S with respect to the product topology of S × �. Let us
also observe that for each (ũ, ṽ) ∈ S there exists σ̃ ∈ � such that ((ũ, ṽ) , σ̃ ) ∈ S. In
other words, the projection on the variable (u, v) from S into S is onto.

Next, since for each pair of sequences {hn} and {τn}, the function pair (un, vn)(t, ξ)

:= (u, v)(t + hn, ξ ; τn) satisfies the system of equations

{
∂t un = d(t + hn − τn)∂

2
ξ un + c∂ξun + F1(t + hn − τn, un, vn),

∂tvn = ∂2ξ vn + c∂ξ vn + F2(t + hn − τn, un, vn),
for (t, ξ) ∈ R

2,

it follows that for each (ũ, ṽ) ∈ S there exists σ̃ ∈ � such that ((ũ, ṽ) , σ̃ ) ∈ S while
(ũ, ṽ) is a solution of the following system of equations

(Pσ̃ )

⎧⎨
⎩

[
∂t − d̃(t)∂2ξ − c∂ξ

]
ũ = �̃(t) − μ̃(t)ũ − β̃(t)ũṽ,[

∂t − ∂2ξ − c∂ξ

]
ṽ = ṽ

[
β̃(t)ũ − γ̃ (t)

]
,

(t, ξ) ∈ R
2.

in which we have set σ̃ = (d̃, �̃, μ̃, β̃, γ̃ , ũ∗). One may in addition observe, due to
the strong comparison principle and since ṽ ≥ 0, that

(ũ, ṽ) ∈ S and ṽ �≡ 0 ⇔ ṽ > 0,

while

(ũ, ṽ) ∈ S and ṽ ≡ 0 ⇔ (ũ, ṽ) ≡ (
ũ∗(t), 0

)
.

This last point follows from the fact that (1.4) has a unique bounded entire solution,
that is spatially homogeneous. Such a property has been discussed in Sect. 1.

We are now in position to prove Lemma 4.3.

Proof of Lemma 4.3 To prove this lemma, let us argue by contradiction by assuming
that there exist a sequence {(un, vn, σn)} ∈ S withσn = (

dn,�n, μn, βn, γn, u∗
n

) ∈ �,
vn > 0 and a sequence {tn} such that

vn(t + tn, 0) ≤ 1

n + 1
, ∀n ≥ 0, ∀t ≥ 0. (4.4)
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Here recall that (un, vn) satisfies Problem
(
Pσn

)
above. Consider now the sequence

{(Un, Vn, σn(· + tn))} given by

(Un, Vn)(t, ξ) := (un, vn)(t + tn, ξ). (4.5)

Then (Un, Vn) becomes a solution of
(
Pσn(·+tn)

)
. Next, since (4.4) implies that

Vn(t, 0) → 0 as n → ∞ uniformly for t ≥ 0, (4.6)

it readily follows that, possibly up to a subsequence,

(
Un(t, ξ) − u∗

n(t + tn), Vn(t, ξ)
)
(t, ξ) → (0, 0) as n → ∞ (4.7)

uniformly on [0,∞) × [−R, R], for any R > 0. To see this, assume by contradiction
that there exists two sequences {τn} ⊂ [0,∞) and {ξn} ⊂ R with ξn → ξ∞ ∈ R as
n → ∞ such that

Vn(τn, ξn) → α > 0 as n → ∞.

Then due to parabolic regularity, up to a subsequence, {(Un, Vn)(t +τn, ξ)} converges
to (U∞, V∞)(t, ξ) locally uniformly on R×R. Here (U∞, V∞) is a solution of (Pσ̂ ),
for some σ̂ ∈ �, that satisfies V∞(0, ξ∞) = α > 0 and V∞(t, 0) = 0 for all t ≥ 0
(see (4.6)). This contradicts the parabolic comparison principle for the V∞-equation
and ensures that Vn(t, ξ) → 0 as n → ∞, uniformly for t ≥ 0 and locally uniformly
for ξ ∈ R. The limit (4.7) for the sequence {Un} follows from those of {Vn} together
with the uniqueness of bounded entire solution for (1.4).

Now we make the following claim.

Claim 4.4 Let θ > 0 be given. Then there exists R = R(θ) > 0 large enough such
that for each function g = g(t) ∈ L∞(R) with

M−(g) − c2

4
> θ,

any function z = z(t, ξ) : [0,∞)×[−R, R] → [0,∞) solving the following problem

⎧⎪⎨
⎪⎩
z(0, ξ) ∈ C0 ([−R, R]) with z(0, ξ) ≥ 0, z(0, ξ) �≡ 0,

∂t z = ∂2ξ z + c∂ξ z + g(t)z, t > 0, ξ ∈ (−R, R),

z(t,±R) = 0 ∀t ≥ 0,

becomes unbounded in infinite time, namely it satisfies

lim
t→∞ sup

|ξ |≤R
z(t, ξ) = ∞.
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Proof of Claim 4.4 Define the parabolic operator L by

L = ∂t − ∂2ξ − c∂ξ − g(t).

In order to prove this claim, it is sufficient to construct a function z = z(t, ξ) such
that, for R > 0 large enough, one has

L
[
z
]
(t, ξ) ≤ 0, ∀(t, ξ) ∈ [0,∞) × [−R, R],

z(t,±R) = 0, ∀t ≥ 0

and such that z(t, 0) → ∞ as t → ∞.
To that aim, fix R > 0 that will be chosen latter and consider a function φR such

that

− φ′′
R(ξ) = λRφR(ξ), ξ ∈ (−R, R),

φR(±R) = 0 and φR(ξ) > 0, ∀ξ ∈ (−R, R).

Now we construct the function z = z(t, ξ) with the following form

z(t, ξ) = eλt−a(t)φR(ξ)e− c
2 ξ

for some parameter λ > 0 and some function a = a(t) ∈ W 1,∞(R) to be determined
latter. Note that one has

L
[
z
]
(t, ξ) = eλt−a(t)e− cξ

2 φR(ξ)

[
λ − a′(t) − g(t) + λR + c2

4

]
.

Hence, we choose 0 < λ < θ and, recalling that λR → 0 as R → ∞, fix R = R(θ) >

0 large enough such that

λ + λR < θ ≤ M−(g) − c2

4
.

Next, one gets

M−
(
g − c2

4
− (λ + λR)

)
= M−(g) − c2

4
− (λ + λR) ≥ θ − (λ + λR).

Thus, due to (2.2), there exists a ∈ W 1,∞(R) such that

a′(t) + g(t) − c2

4
> λ + λR for all t ∈ R,

and the function z satisfies all suitable properties. This completes the proof of the
claim. ��
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Now fix ε > 0 small enough such that

T − ε‖β‖L∞(R) − c2

4
> ε > 0

and fix R = R(ε) > 0, the constant provided by Claim 4.4 with θ = ε. Next, due to
(4.7), one has for all n large enough that

Un(t, ξ) ≥ u∗
n(tn + t) − ε, ∀t ≥ 0, ξ ∈ [−R, R].

Fix n large enough as above, so that Vn > 0 satisfies

∂t Vn ≥ ∂2ξ Vn + c∂ξVn + gn(t)Vn(t, ξ), t ≥ 0, ξ ∈ [−R, R],

with the function gn = gn(t) defined by gn(t) := βn(t + tn)u∗
n(t + tn) − γn(t + tn) −

εβn(t + tn). Observe that

M−(gn) ≥ T − ε‖β‖L∞(R),

so that Claim 4.4 together with the parabolic comparison principle ensures that

lim
t→∞ sup

|ξ |≤R
Vn(t, ξ) = ∞,

which contradicts the boundedness of the function V . This completes the proof of
Lemma 4.3. ��

Now to complete the proof of Proposition 4.1, we turn to our second step which
corresponds to the following lemma.

Lemma 4.5 The function v = v(t, ξ ; τ) defined in (4.3) satisfies

inf
t≥1
τ∈R

v (t, 0; τ) > 0.

Remark 4.6 Note that Proposition 4.1 follows directly from the above lemma by recall-
ing the definition of the function v in (4.3).

Proof Assume by contradiction that there exists two sequences {ln}n≥0 ⊂ R and
{τn}n≥0 ⊂ R such that ln ≥ 1 for all n ≥ 0 and

v(ln, 0; τn) ≤ 1

n + 1
, ∀n ≥ 0.

Recalling the definition of the function v in (4.3) and noticing (see (4.2)) that

inf
τ∈R v(0, 0; τ) = inf

τ∈R V (τ, 0) := σ > 0,
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for each n ≥ 0 there exists sn ∈ [0, ln) such that for all n large enough one has

⎧⎪⎨
⎪⎩

v(sn, 0; τn) = σ0 := 1
2 min (σ, ε) ,

v(t + sn, 0; τn) ≤ σ0 for t ∈ [0, ln − sn],
v(ln, 0; τn) ≤ 1

n+1 .

In the condition above, namely in the definition of σ0, ε > 0 corresponds to the
constant provided by Lemma 4.3.

First, it is easy to check that �n := ln − sn → ∞ as n → ∞. To see this, consider
the sequence of functions {(un, vn)(t, ξ)} := {(u, v) (sn + t, ξ ; τn)} and recall that it
is a bounded solution of Problem

(
Pθn

)
for a suitable sequence {θn} ∈ �. It further

satisfies

vn(0, 0) = σ0 and vn(ln − sn, 0) ≤ 1

n + 1
for any nlarge enough.

Hence, because of parabolic regularity, one may assume that (un, vn) → (u∞, v∞)

as n → ∞ locally uniformly for (t, ξ) ∈ R × R. And the function pair (u∞, v∞) is
a bounded solution of

(
Pθ∞

)
for a suitable θ∞ ∈ � while the function v∞ satisfies

v∞(0, 0) = σ0 > 0. Hence, if the sequence {ln − sn} were bounded then the function
v∞ furthermore satisfies v∞(�, 0) = 0, where � ≥ 0 denotes a limit point of the
bounded sequence {�n} = {ln − sn}. This contradicts the maximum principle and
ensures that �n → ∞.

Equippedwith this remark, consider once again the sequence of functions {(un, vn)}
defined above. Then possibly along a sub-sequence, one has

(un, vn) (t, ξ) → (ũ, ṽ) (t, ξ) in C0
loc(R)2,

where (ũ, ṽ) is a bounded solution of
(
Pθ̃

)
for some θ̃ ∈ � with ṽ(0, 0) = σ0 > 0.

And, since �n → ∞, the function ṽ satisfies

ṽ(t, 0) ≤ σ0 < ε for t ∈ [0,∞).

Thus (ũ, ṽ) ∈ S and ṽ �≡ 0 and Lemma 4.3 applies and implies that

lim sup
t→∞

ṽ(t, 0) ≥ ε,

which contradicts ṽ(t, 0) ≤ σ0 < ε for all t ≥ 0. This completes the proof of
Lemma 4.5 and also that of Proposition 4.1. ��

Equipped with Proposition 4.1 we are now able to complete the proofs of Theo-
rems 2.1 and 2.2.

Proof of Theorem 2.1 Fix a ∈ W 1,∞(R) and let λ ∈ (0,
√
T ) be given. Set c(t) =

λ + λ−1δ(t) + a′(t). Let (U , V ) be the solution of (1.8) provided by Theorem 3.1
associated to the wave speed function c = c(t). To complete the proof of Theorem 2.1
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it remains to verify that the function pair (U , V ) satisfies (1.6). This latter property
follows from Proposition 4.1.

To see this, note that applying Proposition 4.1, by choosing τ = t − s, yields the
existence of ε > 0 and T > 0 large enough such that

V (s,−γ (t, s)t) ≥ ε, ∀s ∈ R, t ≥ T ,

wherein we have set

γ (t, s) = 1

t

∫ t

0
c(l − t + s)dl, ∀(t, s) ∈ R × R.

Next note that

γ (t, s) ≥ inf
s∈R

1

t

∫ t

0
c(l + s)dl,

so that we obtain

lim inf
t→∞ inf

s∈R γ (t, s) ≥ M−(c) ≥ 2
√
T > 0.

This ensures that there exists ε > 0 and X > 0 large enough such that

V (s, ξ) ≥ ε, ∀s ∈ R, ∀ξ ≤ −X ,

and this completes the proof of (1.6) for the V -component.
To complete the proof of this theorem it remains to check that (1.6) for the U -

component also holds. This follows directly from the parabolic maximum principle
due to the persistence property of V and the upper estimate U (t, ξ) ≤ u∗(t) for all
(t, ξ) ∈ R × R. The proof of Theorem 2.1 is completed. ��

We shall now complete the proof of Theorem 2.2.

Proof of Theorem 2.2 In order to prove this result, we argue by contradiction by assum-
ing that (1.1)–(1.2) possesess a generalized traveling wave according to Definition 1.1,
denoted by (U , V , c), and such that

M−(c) < 2
√
T . (4.8)

Now fix c in between, namely

M−(c) < c < 2
√
T , (4.9)

and let γ = γ (t, s) the function be defined by

γ (t, s) = 1

t

∫ t

0
c(l − t + s)dl − c, ∀(t, s) ∈ R × R.
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Next due to (4.9) there exist two sequences {tn}n≥0 and {sn}n≥0 with tn → ∞ and
such that

lim sup
n→∞

γ (tn, sn) < 0.

Hence, up to a subsequence, still denoted by n, one has

lim
n→∞ −γ (tn, sn)tn = ∞.

On the other hand, Proposition 4.1 implies that

lim inf
n→∞ V (sn,−γ (tn, sn)tn) > 0.

The above two properties contradict the definition of a generalized traveling wave as
stated in Definition 1.1 and in particular the property of the V -component arising in
(1.6). This completes the proof of Theorem 2.2. ��
Acknowledgements We are very grateful to two anonymous referees for their careful reading and helpful
comments.
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