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A MATHEMATICAL STUDY OF THE HEMATOPOIESIS PROCESS
WITH APPLICATIONS TO CHRONIC MYELOGENOUS LEUKEMIA∗
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Abstract. This paper is devoted to the analysis of a mathematical model of blood cell production
in the bone marrow (hematopoiesis). The model is a system of two age-structured partial differential
equations. Integrating these equations over the age, we obtain a system of two nonlinear differential
equations with distributed time delay corresponding to the cell cycle duration. This system describes
the evolution of the total cell populations. By constructing a Lyapunov functional, it is shown that
the trivial equilibrium is globally asymptotically stable if it is the only equilibrium. It is also shown
that the nontrivial equilibrium, the most biologically meaningful one, can become unstable via a Hopf
bifurcation. Numerical simulations are carried out to illustrate the analytical results. The study may
be helpful in understanding the connection between the relatively short cell cycle durations and the
relatively long periods of peripheral cell oscillations in some periodic hematological diseases.
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1. Introduction. Cellular population models have been investigated intensively
since the 1960s (see, for example, Trucco [33, 34], Nooney [25], Rubinow [28], and
Rubinow and Lebowitz [29]) and still interest a lot of researchers. This interest is
greatly motivated, on one hand, by medical applications and, on the other hand, by
the biological phenomena (such as oscillations, bifurcations, traveling waves, or chaos)
observed in these models and, generally speaking, in the living world (Mackey and
Glass [19], Mackey and Milton [20]).

Hematopoiesis is the process by which primitive stem cells proliferate and differ-
entiate to produce mature blood cells. It is driven by highly coordinated patterns of
gene expression under the influence of growth factors and hormones. The regulation
of hematopoiesis is about the formation of blood cell elements in the body. White
and red blood cells and platelets are produced in the bone marrow, from where they
enter the blood stream. The principal factor stimulating red blood cell production is
a hormone produced in the kidney, called erythropoietin. About 90% of the erythro-
poietin is secreted by renal tubular epithelial cells when blood is unable to deliver
sufficient oxygen. A decrease in the level of oxygen in the blood leads to a release of a
substance, which in turn causes an increase in the release of the blood elements from
the marrow. There is feedback from the blood to the bone marrow. Abnormalities
in the feedback are considered as major suspects in causing periodic hematological
diseases, such as autoimmune hemolytic anemia (Bélair, Mackey, and Mahaffy [4] and
Mahaffy, Bélair, and Mackey [23]), cyclical neutropenia (Haurie, Dale, and Mackey
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[14]), and chronic myelogenous leukemia (Fowler and Mackey [12] and Pujo-Menjouet,
Bernard, and Mackey [26]).

Cell biologists classify stem cells as proliferating cells and resting cells (also called
G0-cells) (see Mackey [16, 17]). Proliferating cells are committed to undergo mitosis
a certain time after their entrance into the proliferating phase. Mackey supposed
that this time of cytokinesis is constant, that is, it is the same for all cells. Most of
committed stem cells are in the proliferating phase. The G0-phase, whose existence
is known due to the works of Burns and Tannock [8], is a quiescent stage in the
cellular development. However, it is usually believed that 95% of pluripotent stem
cells are in the resting phase. Resting cells can exit randomly to either enter into
the proliferating phase or be irremediably lost. Proliferating cells can also be lost by
apoptosis (programmed cell death).

The model of Mackey [16] has been numerically studied by Mackey and Rey [21]
and Crabb, Losson, and Mackey [9]. Computer simulations showed strange behaviors
of the stem cell population, such as oscillations and bifurcations. Recently, Pujo-
Menjouet and Mackey [27] proved the existence of a Hopf bifurcation which causes
periodic chronic myelogenous leukemia and showed the great dependence of the model
on the parameters.

In this paper, based on the model of Mackey [16], we propose a more general
model of hematopoiesis. We take into account the fact that a cell cycle has two
phases, that is, stem cells in process are either in a resting phase or actively prolifer-
ating. However, we do not suppose that all cells divide at the same age, because this
hypothesis is not biologically reasonable. For example, it is believed that pluripotent
stem cells divide faster than committed stem cells, which are more mature cells. There
is strong evidence (see Bradford et al. [7]) that indicate that the age of cytokinesis
τ is distributed on an interval [τ , τ ] with τ ≥ 0. Hence, we shall assume that τ is
distributed with a density f supported on an interval [τ , τ ] with 0 ≤ τ < τ < +∞.
The resulting model is a system of two differential equations with distributed delay. A
simpler model, dealing with the pluripotent stem cell population behavior, has been
studied by Adimy, Crauste, and Ruan [1].

Some results about stability of differential equations with distributed delay can be
mentioned. In [6], Boese studied the stability of a differential equation with gamma-
distributed delay. Gamma distributions have the property to simplify the nature of
the delay and this situation is close to the one with discrete delay. Anderson [2, 3]
showed stability results linked to the different moments (especially the expectation
and the variance) of the distribution. Kuang [15] also obtained general stability results
for systems of delay differential equations. More recently, sufficient conditions for the
stability of delay differential equations with distributed delay have been obtained by
Bernard, Bélair, and Mackey [5]. They used some properties of the distribution to
prove these results. However, in all these works, the authors focused on sufficient
conditions for the stability, there is no necessary condition in these studies, and these
results are not applicable directly to the model considered in this paper.

This paper is organized as follows. In section 2, we present the model and estab-
lish boundedness properties of the solutions. In section 3, we study the asymptotic
stability of the equilibria. We give conditions for the trivial equilibrium to be glob-
ally asymptotically stable in section 3.1 and investigate the stability of the nontrivial
equilibrium in section 3.2. In section 4, we show that a local Hopf bifurcation occurs
in our model. In section 5, numerical simulations are performed to demonstrate that
our results can be used to explain the long period oscillations observed in chronic
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myelogenous leukemia.

2. The hematopoiesis process: Presentation of the model. Denote by
r(t, a) and p(t, a) the population densities of resting an proliferating cells, respectively,
which have spent a time a ≥ 0 in their phase at time t ≥ 0. Resting cells can either
be lost randomly at a rate δ ≥ 0, which takes into account the cellular differentiation,
or enter into the proliferating phase at a rate β. Proliferating cells can be lost by
apoptosis (a programmed cell death) at a rate γ ≥ 0 and, at mitosis, cells with age a
divide in two daughter cells (which immediately enter the G0-phase) with a rate g(a).

The function g : [0, τ) → R
+ satisfies g(a) = 0 if a < τ with 0 ≤ τ < τ < +∞.

Moreover, it is assumed to be piecewise continuous such that
∫ τ

τ
g(a)da = +∞. The

later assumption describes the fact that cells which did not die have to divide before
they reach the maximal age τ .

The nature of the trigger signal for introduction in the proliferating phase is not
clear. However, the work of Sachs [30] shows that we can reasonably think that it
strongly depends on the entire resting cell population, that is, β = β(x(t)), with

x(t) =

∫ +∞

0

r(t, a)da, t ≥ 0.

The function β is supposed to be continuous and positive. Furthermore, from a reason-
able biological point of view, we assume that β is decreasing with limx→+∞ β(x) = 0.
This describes the fact that the rate of reentry into the proliferating compartment is
a decreasing function of the G0-phase population.

Usually, it is believed that the function β is a monotone decreasing Hill function
(see Mackey [16]), given by

β(x) = β0
θn

θn + xn
, x ≥ 0,(2.1)

with β0 > 0, θ ≥ 0, and n > 0. β0 is the maximal rate of reentry in the proliferating
phase, θ is the number of resting cells at which β has its maximum rate of change
with respect to the resting phase population, and n describes the sensitivity of the
reintroduction rate with changes in the population.

The above parameters values are usually chosen (see Mackey [16]) to be

δ = 0.05 day−1, γ = 0.2 day−1, β0 = 1.77 day−1, and n = 3.(2.2)

Although a usual value of θ is θ = 1.62 × 108 cells/kg, it can be normalized without
loss of generality when one makes a qualitative analysis of the population.

Then r(t, a) and p(t, a) satisfy the system of partial differential equations

∂r

∂t
+

∂r

∂a
= −

(
δ + β(x(t))

)
r, a > 0, t > 0,(2.3)

∂p

∂t
+

∂p

∂a
= −

(
γ + g(a)

)
p, 0 < a < τ, t > 0,(2.4)

with

r(0, a) = ν(a), a ≥ 0, p(0, a) = Γ(a), a ∈ [0, τ ].
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The functions ν = ν(a) and Γ = Γ(a) give the population densities of cells which have
spent a time a in the resting and proliferating phase, respectively, at time t = 0, that
is, the initial populations of cells with age a in each phase.

The boundary conditions of system (2.3)–(2.4), which describe the cellular flux
between the two phases, are given by

⎧⎪⎪⎨⎪⎪⎩
r(t, 0) = 2

∫ τ

τ

g(τ)p(t, τ)dτ,

p(t, 0) = β(x(t))x(t).

Moreover, we suppose that lima→+∞ r(t, a) = 0 and lima→τ p(t, a) = 0.

Let y(t) denote the total population density of proliferating cells at time t; then

y(t) =

∫ τ

0

p(t, a)da, t ≥ 0.

Thus, integrating (2.3) and (2.4) with respect to the age variable, we obtain

dx

dt
= −

(
δ + β(x(t))

)
x(t) + 2

∫ τ

τ

g(τ)p(t, τ)dτ,(2.5)

dy

dt
= −γy(t) + β(x(t))x(t) −

∫ τ

τ

g(τ)p(t, τ)dτ.(2.6)

We define a function G by

G(t, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g(a) exp

(
−
∫ a

a−t

g(s)ds

)
if t < a,

g(a) exp

(
−
∫ a

0

g(s)ds

)
if a < t.

Set

f(τ) := g(τ) exp

(
−
∫ τ

0

g(s)ds

)
, τ > 0.

One can check that f is a density function, supported on [τ , τ ], and f represents the

density of division of proliferating cells. In particular,
∫ τ

τ
f(τ)dτ = 1.

Using the method of characteristics to determine p(t, a), we deduce, from (2.5)–
(2.6), that the process of hematopoiesis is described by the following system:
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dx

dt
= −

(
δ + β(x(t))

)
x(t)

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2e−γt

∫ τ

τ

G(t, τ)Γ(τ − t)dτ, 0 ≤ t ≤ τ ,

2

∫ t

τ

e−γτf(τ)β(x(t− τ))x(t− τ)dτ

+ 2e−γt

∫ τ

t

G(t, τ)Γ(τ − t)dτ, τ ≤ t ≤ τ ,

2

∫ τ

τ

e−γτf(τ)β(x(t− τ))x(t− τ)dτ, τ ≤ t,

dy

dt
= −γy(t) + β(x(t))x(t)

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−γt

∫ τ

τ

G(t, τ)Γ(τ − t)dτ, 0 ≤ t ≤ τ ,∫ t

τ

e−γτf(τ)β(x(t− τ))x(t− τ)dτ

+ e−γt

∫ τ

t

G(t, τ)Γ(τ − t)dτ, τ ≤ t ≤ τ ,∫ τ

τ

e−γτf(τ)β(x(t− τ))x(t− τ)dτ, τ ≤ t.

(2.7)

One can give a direct biological explanation of system (2.7).
In the equation for the resting cells x(t), the first term in the right-hand side

accounts for G0-cell loss due to either mortality and cellular differentiation (δ) or
introduction in the proliferating phase (β). The second term represents a cellular
gain due to the movement of proliferating cells one generation earlier. It requires
some explanation. First, we recall that all cells divide according to the density f ,
supported on [τ , τ ]. We shall call, in the following, new proliferating cells, the resting
cells introduced in the proliferating phase at the considered time t. When t ≤ τ , no
new proliferating cell is mature enough to divide, because cells cannot divide before
they have spent time τ in the proliferating phase. Therefore, the cellular gain can
proceed only from cells initially in the proliferating phase. When t ∈ [τ , τ ], the cellular
increase is obtained by division of new proliferating cells and by division of the initial
population. Finally, when t ≥ τ , all initial proliferating cells have divided or died,
and the cellular gain is obtained by division of new proliferating cells introduced one
generation earlier. The factor 2 always accounts for the division of each cell into two
daughter cells at mitosis. The term e−γt, with t ∈ [0, τ ], describes the attenuation of
the population, in the proliferating phase, due to apoptosis.

In the equation for the proliferating cells y(t), the first term in the right-hand
side accounts for cellular loss by apoptosis and the second term is for cellular entry
from the G0-phase. The last term accounts for the flux of proliferating cells to the
resting compartment.

We set μ :=
∫∞
0

ν(a)da. Then, initially, the populations in the two phases are
given by

x(0) = μ and y(0) =

∫ τ

0

Γ(a)da.
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At this point, one can make a remark. Since resting cells are introduced in the
proliferating phase with a rate β, then Γ(0), which represents the population of cells
introduced at time t = 0 in the cycle, must satisfy

Γ(0) = β(μ)μ.

Taking into account the inevitable loss of proliferating cells by apoptosis and by
division, we suppose that Γ(a) is given by

Γ(a) =

⎧⎪⎨⎪⎩
e−γaβ(μ)μ if a ∈ [0, τ),

e−γa exp

(
−
∫ a

τ

g(s)ds

)
β(μ)μ if a ∈ [τ , τ).

(2.8)

This simply describes that Γ satisfies (2.4) (see Webb [35, p. 8]). With (2.8) and
integrating by parts, the initial conditions of system (2.7) become

x(0) = μ, y(0) = β(μ)μ

∫ τ

τ

f(τ)

(
1 − e−γτ

γ

)
dτ.(2.9)

When γ = 0, we have

y(0) = β(μ)μ

∫ τ

τ

τf(τ)dτ.

Assume that the function x �→ xβ(x) is Lipschitz continuous. It is immediate to
show by steps that, for all μ ≥ 0, the system (2.7) under condition (2.9) has a unique
nonnegative continuous solution (x(t), y(t)) defined on [0,+∞).

One can notice that problem (2.7) reduces to a system of two delay differential
equations, with initial conditions solutions of a system of ordinary differential equa-
tions. On [0, τ ], the first equation for x(t) in system (2.7) reduces to the ordinary
differential equation⎧⎨⎩

dϕ̃

dt
= −

(
δ + β(ϕ̃(t))

)
ϕ̃(t) + 2β(μ)μ

∫ τ

τ

e−γτf(τ)dτ, 0 ≤ t ≤ τ ,

ϕ̃(0) = μ,

(2.10)

and, on [τ , τ ], the second equation reduces to the nonautonomous delay differential
equation ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dϕ

dt
= −

(
δ + β(ϕ(t))

)
ϕ(t) + 2β(μ)μ

∫ τ

t

e−γτf(τ)dτ

+ 2

∫ t

τ

e−γτf(τ)β(ϕ(t− τ))ϕ(t− τ)dτ, t ∈ [τ , τ ],

ϕ(t) = ϕ̃(t), t ∈ [0, τ ],

(2.11)

where ϕ̃(t) is the unique solution of (2.10) for the initial condition μ.

In the same way, the solution y(t) of the second equation in (2.7), denoted ψ(t), is
given in terms of the unique solution ϕ̃(t) of (2.10), associated with μ, and the unique
solution ϕ(t) of (2.11), for t ∈ [0, τ ].
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Then, system (2.7) can be written as an autonomous system of delay differential
equations, for t ≥ τ ,

dx

dt
= −

(
δ + β(x(t))

)
x(t) + 2

∫ τ

τ

e−γτf(τ)β(x(t− τ))x(t− τ)dτ,(2.12a)

dy

dt
= −γy(t) + β(x(t))x(t) −

∫ τ

τ

e−γτf(τ)β(x(t− τ))x(t− τ)dτ,(2.12b)

with, for t ∈ [0, τ ],

x(t) = ϕ(t), y(t) = ψ(t).(2.13)

The solutions of (2.12b) are given explicitly by

y(t) =

∫ τ

τ

f(τ)

(∫ t

t−τ

e−γ(t−s)β(x(s))x(s) ds

)
dτ for t ≥ τ .(2.14)

One can notice that y(t) no longer depends on the initial population Γ(a) after one
generation, that is, when t ≥ τ . This can be explained as follows. Cells initially in
the proliferating phase have divided or died after one generation; hence, new cells in
the proliferating phase can come only from resting cells x(t).

On the other hand, one may have already noticed that the solutions of (2.12a)
do not depend on the solutions of (2.12b), whereas the converse is not true. The
expression of y(t) in (2.14) gives more precise information on the influence of the
behavior of x(t) on the stability of the solutions y(t). These results are proved in the
following lemma.

Lemma 2.1. Let (x(t), y(t)) be a solution of (2.12). If limt→+∞ x(t) exists and
equals C ≥ 0, then

lim
t→+∞

y(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β(C)C

∫ τ

τ

f(τ)

(
1 − e−γτ

γ

)
dτ if γ > 0,

β(C)C

∫ τ

τ

τf(τ)dτ if γ = 0.

(2.15)

If x(t) is P -periodic, then y(t) is also P -periodic.
Proof. By using (2.14), we obtain that

y(t) =

∫ τ

τ

f(τ)

(∫ τ

0

e−γsβ(x(t− s))x(t− s) ds

)
dτ for t ≥ τ .(2.16)

Hence,

lim
t→+∞

y(t) = β(C)C

∫ τ

τ

f(τ)

(∫ τ

0

e−γs ds

)
dτ,

and (2.15) follows immediately.
When x(t) is P -periodic, then using (2.16) it is obvious to see that y(t) is also

periodic with the same period.
Lemma 2.1 shows the influence of (2.12a) on the stability of the entire system,

since the stability of solutions of (2.12a) leads to stability of the solutions of (2.12b).
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Before studying the stability of (2.12a), we prove a boundedness result for the
solutions of this equation. The proof is based on the one given by Mackey and
Rudnicki [22] for a differential equation with a discrete delay.

Proposition 2.2. Assume that δ > 0. Then the solutions of (2.12a) are
bounded.

Proof. Assume that δ > 0 and 2(
∫ τ

τ
e−γτf(τ)dτ)β(0) ≥ δ. Since β is decreasing

and limx→+∞ β(x) = 0, there exists a unique x0 ≥ 0 such that

2

(∫ τ

τ

e−γτf(τ)dτ

)
β(x0) = δ

and

2

(∫ τ

τ

e−γτf(τ)dτ

)
β(x) ≤ δ for x ≥ x0.(2.17)

If 2(
∫ τ

τ
e−γτf(τ)dτ)β(0) < δ, then (2.17) holds with x0 = 0. Set

x1 := 2

(∫ τ

τ

e−γτf(τ)dτ

)
β(0)x0

δ
≥ 0.

One can check that

2

(∫ τ

τ

e−γτf(τ)dτ

)
max

0≤y≤x

(
β(y)y

)
≤ δx for x ≥ x1.(2.18)

Indeed, let y ∈ [0, x). If y ≤ x0, then

2

(∫ τ

τ

e−γτf(τ)dτ

)
β(y)y ≤ 2

(∫ τ

τ

e−γτf(τ)dτ

)
β(0)x0 = δx1 ≤ δx,

and, if y > x0, then

2

(∫ τ

τ

e−γτf(τ)dτ

)
β(y)y ≤ δy ≤ δx.

Hence, (2.18) holds.
Assume, by contradiction, that lim supt→+∞ x(t) = +∞, where x(t) is a solution

of (2.12a). Then, there exists t0 > τ such that

x(t) ≤ x(t0) for t ∈ [t0 − τ , t0] and x(t0) > x1.

With (2.18), we obtain that

2

∫ τ

τ

e−γτf(τ)β(x(t0 − τ))x(t0 − τ)dτ ≤ δx(t0).

This yields, with (2.12a), that

dx

dt
(t0) ≤ −β(x(t0))

)
x(t0) < 0,
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which gives a contradiction. Hence, lim supt→+∞ x(t) < +∞.
When δ = 0, the solutions of (2.12a) may not be bounded. We show, in the next

proposition, that these solutions may explode under some conditions. However, one
can notice, using (2.16), that the solutions of (2.12b) may still be stable in this case.

Proposition 2.3. Assume that δ = 0 and∫ τ

τ

e−γτf(τ)dτ >
1

2
.(2.19)

In addition, assume that there exists x ≥ 0 such that the function x �→ xβ(x) is
decreasing for x ≥ x. If μ ≥ x, then the unique solution x(t) of (2.12a) satisfies

lim
t→+∞

x(t) = +∞.

Proof. One can notice that, if limt→+∞ x(t) = C exists, then (2.12a) leads to(
2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(C)C = 0.

It follows that C = 0.
Let μ ≥ x be given. Consider the equation

ϕ̃′(t) = 2β(μ)μ

∫ τ

τ

e−γτf(τ)dτ − β(ϕ̃(t))ϕ̃(t) for 0 ≤ t ≤ τ(2.20)

with ϕ̃(0) = μ. Since the function x �→ xβ(x) is decreasing for x ≥ x, it is immediate
that every solution ϕ̃(t) of (2.20) satisfies, for t ∈ [0, τ ],

ϕ̃′(t) ≥
(

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(μ)μ > 0.

Consider now the problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ′(t) = −β(ϕ(t))ϕ(t) + 2β(μ)μ

∫ τ

t

e−γτf(τ)dτ

+ 2

∫ t

τ

e−γτf(τ)β(ϕ(t− τ))ϕ(t− τ)dτ, t ∈ [τ , τ ],

ϕ(t) = ϕ̃(t), t ∈ [0, τ ],

(2.21)

where ϕ̃(t) is the unique solution of (2.20) for the initial condition μ. Then,

ϕ′(τ) ≥
(

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(μ)μ > 0.

So, there exists ε > 0 such that τ + ε ≤ τ and ϕ′(t) > 0 for t ∈ [τ , τ + ε). Since
μ ≤ ϕ(τ) ≤ ϕ(τ) ≤ ϕ(τ + ε), for τ ∈ [τ , τ + ε], we have

ϕ′(τ + ε) ≥
(

2

∫ τ

τ+ε

e−γτf(τ)dτ − 1

)
β(ϕ(τ + ε))ϕ(τ + ε)

+ 2

(∫ τ+ε

τ

e−γτf(τ)dτ

)
β(ϕ(τ + ε))ϕ(τ + ε)

≥
(

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(ϕ(τ + ε))ϕ(τ + ε).
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Condition (2.19) leads to ϕ′(τ + ε) > 0. Using a similar argument, we obtain that

ϕ′(t) > 0 for t ∈ [τ , τ ].

To conclude, consider the delay differential equation

x′(t) = 2

∫ τ

τ

e−γτf(τ)β(x(t− τ))x(t− τ)dτ − β(x(t))x(t)(2.22)

with an initial condition given on [τ , τ ] by the solution ϕ(t) of (2.21). Using the same
reasoning as in the previous cases, we obtain that

x′(τ) > 0.

We thus deduce that

x′(t) > 0 for t ≥ 0.

This completes the proof.
The assumption on the function x �→ xβ(x) in Proposition 2.3 is satisfied for ex-

ample when β is given by (2.1), with n > 1. In this case, we can take x = θ/(n− 1)1/n.
We now turn our attention to the stability of (2.12). Problem (2.12) has at most

two equilibria. The first, E0 = (0, 0), always exists: it corresponds to the extinction
of the population. The second describes the expected equilibrium of the population;
it is a nontrivial equilibrium E∗ = (x∗, y∗), where x∗ is the unique solution of(

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(x∗) = δ(2.23)

and, from (2.7) and (2.9),

y∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β(x∗)x∗

∫ τ

τ

f(τ)

(
1 − e−γτ

γ

)
dτ if γ > 0,

δx∗
∫ τ

τ

τf(τ)dτ, if γ = 0.

(2.24)

Since β is a positive decreasing function and limx→+∞ β(x) = 0, then the equilibrium
E∗ exists if and only if

0 < δ <

(
2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(0).(2.25)

We shall study in section 3 the stability of the two equilibria E0 and E∗. From
Lemma 2.1, we only need to focus on the behavior of the equilibria of (2.12a), that
is, x ≡ 0 and x ≡ x∗, to obtain information on the behavior of the entire population.

3. Asymptotic stability. We first show that E0 is globally asymptotically sta-
ble when it is the only equilibrium and that it becomes unstable when the nontrivial
equilibrium E∗ appears: a transcritical bifurcation occurs then. In a second part, we
determine conditions for the nontrivial equilibrium E∗ to be asymptotically stable.
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3.1. Stability of the trivial equilibrium. In the next theorem, we give a
necessary and sufficient condition for the trivial equilibrium of (2.12a) to be globally
asymptotically stable using a Lyapunov functional. For a definition of and information
about Lyapunov functionals for delay differential equations, see [13].

Theorem 3.1. The trivial equilibrium of the system (2.12) is globally asymptot-
ically stable if (

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(0) < δ(3.1)

and unstable if

δ <

(
2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(0).(3.2)

Proof. We first assume that (3.1) holds. Denote by C+ the set of continuous
nonnegative functions on [0, τ ] and define the mapping J : C+ → [0,+∞) by

J(ϕ) = B(ϕ(τ)) +

∫ τ

τ

e−γτf(τ)

(∫ τ

τ−τ

(
β
(
ϕ(θ)

)
ϕ(θ)

)2

dθ

)
dτ

for all ϕ ∈ C+, where

B(x) =

∫ x

0

β(s)s ds for all x ≥ 0.

We set (see [13])

J̇(ϕ) = lim sup
t→0+

J(xϕ
t ) − J(ϕ)

t
for ϕ ∈ C+,

where xϕ is the unique solution of (2.12a) associated with the initial condition ϕ ∈ C+

and xϕ
t (θ) = xϕ(t + θ) for θ ∈ [0, τ ]. Then,

J̇(ϕ) =
dϕ

dt
(τ)β

(
ϕ(τ)

)
ϕ(τ)

+

∫ τ

τ

e−γτf(τ)((β
(
ϕ(τ)

)
ϕ(τ))2 − (β

(
ϕ(τ − τ)

)
ϕ(τ − τ))2)dτ.

(3.3)

Using (2.12a), we have

dϕ

dt
(τ) = −

(
δ + β

(
ϕ(τ)

))
ϕ(τ) + 2

∫ τ

τ

e−γτf(τ)β
(
ϕ(τ − τ)

)
ϕ(τ − τ)dτ.

Therefore, (3.3) becomes

J̇(ϕ) = −
(
δ + β

(
ϕ(τ)

))
β
(
ϕ(τ)

)
ϕ2(τ) +

∫ τ

τ

e−γτf(τ)

[(
β
(
ϕ(τ)

)
ϕ(τ)

)2

+ 2β
(
ϕ(τ)

)
ϕ(τ)β

(
ϕ(τ − τ)

)
ϕ(τ − τ) −

(
β
(
ϕ(τ − τ)

)
ϕ(τ − τ)

)2
]
dτ

= −
(
δ + β

(
ϕ(τ)

))
β
(
ϕ(τ)

)
ϕ2(τ) + 2

(
β
(
ϕ(τ)

)
ϕ(τ)

)2
∫ τ

τ

e−γτf(τ)dτ

−
∫ τ

τ

e−γτf(τ)
[
β
(
ϕ(τ)

)
ϕ(τ) − β

(
ϕ(τ − τ)

)
ϕ(τ − τ)

]2
dτ.
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Hence,

J̇(ϕ) ≤ −u(ϕ(τ)),

where the function u is defined, for x ≥ 0, by

u(x) = r(x)β(x)x2(3.4)

with

r(x) = δ −
(

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(x).

Since β is decreasing, r is a monotone function. Moreover, (3.1) leads to r(0) > 0,
and limx→∞ r(x) = δ ≥ 0. Therefore, r is positive on [0,+∞).

Consequently, the function u defined by (3.4) is nonnegative on [0,+∞) and
u(x) = 0 if and only if x = 0. We deduce that every solution of (2.12a), with ϕ ∈ C+,
tends to zero as t tends to +∞.

We suppose now that (3.2) holds. The linearization of (2.12a) around x ≡ 0 leads
to the characteristic equation

Δ0(λ) := λ + δ + β(0) − 2β(0)

∫ τ

τ

e−(λ+γ)τf(τ)dτ = 0.(3.5)

We consider Δ0 as a real function. Since

dΔ0

dλ
= 1 + 2β(0)

∫ τ

τ

τe−(λ+γ)τf(τ)dτ > 0,

it follows that Δ0 is an increasing function. Moreover, (3.5) yields

lim
λ→−∞

Δ0(λ) = −∞, lim
λ→+∞

Δ0(λ) = +∞,

and (3.2) implies that

Δ0(0) = δ −
(

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(0) < 0.

Hence, Δ0(λ) has a unique real root which is positive. Consequently, (3.5) has at
least one characteristic root with positive real part. Therefore, the equilibrium x ≡ 0
of (2.12a) is not stable. This completes the proof.

The inequality (3.1) is satisfied when δ or γ (the mortality rates) is large or when
β(0) is small. Biologically, these conditions correspond to a population which cannot
survive, because the mortality rates are too large or, simply, because not enough cells
are introduced in the proliferating phase and, then, the population renewal is not
supplied.

Remark 1. One can notice that when∫ τ

τ

e−γτf(τ)dτ <
1

2
,
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the trivial equilibrium E0 is the only equilibrium of (2.12) and is globally asymptoti-
cally stable. When ∫ τ

τ

e−γτf(τ)dτ =
1

2
,

then E0 is globally asymptotically stable if δ > 0. When the equality(
2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(0) = δ

holds, one can check that λ = 0 is a characteristic root of (3.5) and all other charac-
teristic roots have negative real parts. Hence, we cannot conclude on the stability or
instability of the trivial equilibrium E0 of (2.12) without further analysis. However,
this is not the subject of this paper.

3.2. Stability of the nontrivial equilibrium. We concentrate, in this section,
on the equilibrium E∗ = (x∗, y∗) defined by (2.23)–(2.24). Hence, throughout this
section, we assume that (2.25) holds, that is,

0 < δ <

(
2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(0).

Since δ > 0 and β(0) > 0, (2.25) implies, in particular, that∫ τ

τ

e−γτf(τ)dτ >
1

2
.(3.6)

From Lemma 2.1, we only need to focus on the stability of the nontrivial equilibrium
x ≡ x∗ of (2.12a). To that aim, we linearize (2.12a) around x∗. Denote by β∗ ∈ R

the quantity

β∗ :=
d

dx

(
xβ(x)

)∣∣∣
x=x∗

= β(x∗) + x∗β′(x∗)(3.7)

and set u(t) = x(t) − x∗. The linearization of (2.12a) is given by

du

dt
= −(δ + β∗)u(t) + 2β∗

∫ τ

τ

e−γτf(τ)u(t− τ)dτ.

Then, the characteristic equation is

Δ(λ) := λ + δ + β∗ − 2β∗
∫ τ

τ

e−(λ+γ)τf(τ)dτ = 0.(3.8)

One can notice that the function x �→ xβ(x) is usually not monotone. For ex-
ample, if β is given by (2.1) with n > 1, the function x �→ xβ(x) is increasing for
x ≤ θ/(n− 1)1/n and decreasing for x > θ/(n− 1)1/n. In this case, β∗ is nonnegative
when x∗ is close to zero and negative when x∗ is large enough.

The following theorem deals with the asymptotic stability of E∗.
Theorem 3.2. Assume that (2.25) holds. If

β∗ ≥ − δ

2

∫ τ

τ

e−γτf(τ)dτ + 1

,(3.9)

then E∗ is locally asymptotically stable.
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Proof. We first prove that the equilibrium x ≡ x∗ is locally asymptotically stable
when β∗ ≥ 0. We consider the mapping Δ(λ), given by (3.8), as a real function of λ.
Then Δ(λ) is continuously differentiable on R and its first derivative is given by

dΔ

dλ
= 1 + 2β∗

∫ τ

τ

τe−(λ+γ)τf(τ)dτ > 0.(3.10)

Hence, Δ(λ) is an increasing function of λ satisfying

lim
λ→−∞

Δ(λ) = −∞ and lim
λ→+∞

Δ(λ) = +∞.

Then, there exists a unique λ0 ∈ R such that Δ(λ0) = 0. Moreover, since

Δ(0) = δ −
(

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β∗,

we deduce, by using (2.23), (3.6), and (3.7), that

Δ(0) = −
(

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
x∗β′(x∗) > 0.

Consequently, λ0 < 0.
Let λ = μ + iω be a characteristic root of (3.8) such that μ > λ0. Considering

the real part of (3.8), we obtain that

μ = −(δ + β∗) + 2β∗
∫ τ

τ

e−(μ+γ)τf(τ) cos(ωτ)dτ.(3.11)

Using (3.8), with λ = λ0, together with (3.11), we then obtain

μ− λ0 = 2β∗
∫ τ

τ

e−γτf(τ)
[
e−μτ cos(ωτ) − e−λ0τ

]
dτ.

However,

e−μτ cos(ωτ) − e−λ0τ < 0

for all τ ∈ [τ , τ ]. So we obtain that μ− λ0 < 0, which leads to a contradiction. This
implies that all characteristic roots of (3.8) have negative real part and the equilibrium
x ≡ x∗ of (2.12a) is locally asymptotically stable.

Now, assume that β∗ < 0 and

β∗ > − δ

2

∫ τ

τ

e−γτf(τ)dτ + 1

.(3.12)

Let λ = μ + iω be a characteristic root of (3.8) such that μ > 0. Since∫ τ

τ

e−γτf(τ)
(
e−μτ cos(ωτ) + 1

)
dτ ≥ 0,
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we have

2β∗
∫ τ

τ

e−(μ+γ)τf(τ) cos(ωτ)dτ ≤ −2β∗
∫ τ

τ

e−γτf(τ)dτ.

So, (3.11) and (3.12) lead to

μ ≤ −(δ + β∗) − 2β∗
∫ τ

τ

e−γτf(τ)dτ < 0,

a contradiction. Therefore, μ ≤ 0.
Suppose now that (3.8) has a purely imaginary characteristic root iω, with ω ∈ R.

Then, (3.11) leads to ∫ τ

τ

e−γτf(τ) cos(ωτ)dτ =
δ + β∗

2β∗ .

However, ∣∣∣∣ ∫ τ

τ

e−γτf(τ) cos(ωτ)dτ

∣∣∣∣ ≤ ∫ τ

τ

e−γτf(τ)dτ

and (3.12) yields

δ + β∗

2β∗ < −
∫ τ

τ

e−γτf(τ)dτ.

Hence, (3.8) has no purely imaginary root. Consequently, all characteristic roots of
(3.8) have negative real part and the nontrivial equilibrium x ≡ x∗ of (2.12a) is locally
asymptotically stable.

Finally, assume that

β∗ = − δ

2

∫ τ

τ

e−γτf(τ)dτ + 1

.(3.13)

Consider a characteristic root λ = μ + iω of (3.8), which reduces, with (3.13), to

λ− 2β∗
∫ τ

τ

e−γτf(τ)(1 + e−λτ )dτ = 0.(3.14)

Suppose, by contradiction, that μ > 0. By considering the real part of (3.14), we have

μ = 2β∗
∫ τ

τ

e−γτf(τ)(1 + e−μτ cos(ωτ))dτ < 0.

We obtain a contradiction; therefore μ ≤ 0. If we suppose now that μ = 0, then we
easily obtain that

cos(ωτ) = −1 for all τ ∈ [τ , τ ],

which is impossible. It follows that all characteristic roots of (3.8) have negative real
parts when (3.13) holds and the equilibrium x ≡ x∗ is locally asymptotically stable.
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Fig. 3.1. The solutions x(t) (solid curve) and y(t) (dashed curve) of system (2.12) are drawn
for values of the parameters β0, δ, and γ given by (2.2), n = 2.42, τ = 0, and τ = 7 days. In this
case, the nontrivial equilibrium E∗ is locally asymptotically stable, although the solutions oscillate
transiently.

From Lemma 2.1, we conclude that E∗ is locally asymptotically stable when (3.9)
holds.

The asymptotic stability of E∗ is shown in Figure 3.1. Values of the parameters
are given by (2.2), except n = 2.42, τ = 0 and τ = 7 days. The function f is defined
by

f(τ) =

⎧⎨⎩
1

τ − τ
if τ ∈ [τ , τ ],

0 otherwise.
(3.15)

The MATLAB solver for delay differential equations, dde23 [32], is used to obtain
Figure 3.1, as well as illustrations in sections 4 and 5.

When (3.9) does not hold, we have necessarily β∗ < 0. In this case, we cannot
obtain the stability of E∗ for all values of β∗. In fact, in the next section we are
going to show that the equilibrium E∗ can be destabilized, in this case, via a Hopf
bifurcation.

4. Hopf bifurcation and periodic solutions. In this section, we show that
the equilibrium x ≡ x∗ of (2.12a) can become unstable when (3.9) does not hold
anymore. Throughout this section, we assume that

τ = 0

and (2.25) holds, that is,

0 < δ <

(
2

∫ τ

0

e−γτf(τ)dτ − 1

)
β(0).
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From Proposition 2.2, the solutions of (2.12a) are bounded. Consequently, instability
in (2.12a) occurs only via oscillatory solutions.

We assume that

β∗ < − δ

2

∫ τ

0

e−γτf(τ)dτ + 1

:= δ̃.(4.1)

Otherwise, the nontrivial equilibrium x ≡ x∗ of (2.12a) is locally asymptotically stable
(see Theorem 3.2).

If instability occurs for a particular value β∗ < δ̃, a characteristic root of (3.8)
must intersect the imaginary axis. Hence, we look for purely imaginary characteristic
roots iω, ω ∈ R, of (3.8). If iω is a characteristic root of (3.8), then ω is a solution of
the system {

δ + β∗(1 − 2C(ω)) = 0,
ω + 2β∗S(ω) = 0,

(4.2)

where

C(ω) :=

∫ τ

0

e−γτf(τ) cos(ωτ)dτ and S(ω) :=

∫ τ

0

e−γτf(τ) sin(ωτ)dτ.

One can notice that ω = 0 is not a solution of (4.2). Otherwise,

δ =

(
2

∫ τ

0

e−γτf(τ)dτ − 1

)
β∗ < 0,

which gives a contradiction. Moreover, if ω is a solution of (4.2), then −iω is also a
characteristic root. Thus, we look only for positive solutions ω.

Lemma 4.1. Assume that the function τ �→ e−γτf(τ) is decreasing. Then, for

each δ such that (2.25) is satisfied, (4.2) has at least one solution (β∗
c , ωc) with β∗

c < δ̃
and ωc > 0. It follows that (3.8) has at least one pair of purely imaginary roots ±iωc

for β∗ = β∗
c . Moreover, ±iωc are simple characteristic roots of (3.8). Consider the

branch of characteristic roots λ(−β∗) such that λ(−β∗
c ) = iωc. Then

dRe(λ)

d(−β∗)

∣∣∣∣
β∗=β∗

c

> 0 if and only if − δ

(
S(ωc)

ωc

)′
> C ′(ωc).(4.3)

Proof. First, we show by induction that S(ω) > 0 for ω > 0. It is clear that
S(ω) > 0 if ωτ ∈ (0, π]. Suppose that ωτ ∈ (π, 2π]. Then

S(ω) =
1

ω

∫ ωτ

0

e−γ τ
ω f
( τ
ω

)
sin(τ)dτ

=
1

ω

∫ π

0

e−γ τ
ω f
( τ
ω

)
sin(τ)dτ +

1

ω

∫ ωτ

π

e−γ τ
ω f
( τ
ω

)
sin(τ)dτ.

Since f is supported on the interval [0, τ ], it follows that∫ 2π

ωτ

e−γ τ
ω f
( τ
ω

)
sin(τ)dτ = 0.
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So, we obtain

S(ω) =
1

ω

∫ π

0

e−γ τ
ω f
( τ
ω

)
sin(τ)dτ +

1

ω

∫ 2π

π

e−γ τ
ω f
( τ
ω

)
sin(τ)dτ

=
1

ω

∫ π

0

(
e−γ τ

ω f
( τ
ω

)
− e−γ τ+π

ω f
(τ + π

ω

))
sin(τ)dτ.

Since the function τ �→ e−γτf(τ) is decreasing, we finally get S(ω) > 0. Using a
similar argument for ωτ ∈ (kπ, (k+1)π], with k ∈ N, k ≥ 2, we deduce that S(ω) > 0
for all ω > 0.

Consider the equation

g(ω) :=
ω
(
1 − 2C(ω)

)
2S(ω)

= δ, ω > 0.(4.4)

The function g is continuous with

lim
ω→0

g(ω) =
1 − 2C(0)

2

∫ τ

0

τe−γτf(τ)dτ

< 0(4.5)

because (2.25) leads to 1 − 2C(0) < 0. Moreover, the Riemann–Lebesgue lemma
implies that

lim
ω→+∞

C(ω) = lim
ω→+∞

S(ω) = 0.

This yields

lim
ω→+∞

g(ω) = +∞.

We conclude that there exists a solution ωc > 0 of (4.4). Since S(ωc) > 0 and
g(ωc) = δ > 0, we obtain 1 − 2C(ωc) > 0. Set

β∗
c = − δ

1 − 2C(ωc)
< 0.(4.6)

Since |C(ωc)| < C(0), it follows that

β∗
c < − δ

2C(0) + 1
= δ̃.

One can check that (β∗
c , ωc) is a solution of (4.2). It follows that ±iωc are characteristic

roots of (3.8) for β∗ = β∗
c .

Define a branch of characteristic roots λ(−β∗) of (3.8) such that λ(−β∗
c ) = iωc.

We use the parameter −β∗ because β∗ < δ̃ < 0.
Using (3.8), we obtain[

1 + 2β∗
∫ τ

0

τe−(λ+γ)τf(τ)dτ

]
dλ

d(−β∗)
= 1 − 2

∫ τ

0

e−(λ+γ)τf(τ)dτ.(4.7)

If we assume, by contradiction, that iωc is not a simple root of (3.8), then (4.7) leads
to

C(ωc) =
1

2
and S(ωc) = 0.



1346 MOSTAFA ADIMY, FABIEN CRAUSTE, AND SHIGUI RUAN

Since S(ωc) > 0, we obtain a contradiction. Thus, iωc is a simple root of (3.8).
Moreover, using (4.7), we have

(
dλ

d(−β∗)

)−1

=

1 + 2β∗
∫ τ

0

τe−(λ+γ)τf(τ)dτ

1 − 2

∫ τ

0

e−(λ+γ)τf(τ)dτ

.

Since λ is a characteristic root of (3.8), we also have

1 − 2

∫ τ

0

e−(λ+γ)τf(τ)dτ = −λ + δ

β∗ .

So, we deduce

(
dλ

d(−β∗)

)−1

= −β∗
1 + 2β∗

∫ τ

0

τe−(λ+γ)τf(τ)dτ

λ + δ
.

Then,

sign

{
dRe(λ)

d(−β∗)

}∣∣∣∣
β∗=β∗

c

= sign

{
Re

(
dλ

d(−β∗)

)−1}∣∣∣∣
β∗=β∗

c

= sign

⎧⎪⎪⎪⎨⎪⎪⎪⎩Re

⎛⎜⎜⎜⎝−β∗
1 + 2β∗

∫ τ

0

τe−(λ+γ)τf(τ)dτ

λ + δ

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭
∣∣∣∣∣∣∣∣∣
β∗=β∗

c

= sign

{
− β∗

c

δ(1 + 2β∗
cS

′(ωc)) + 2β∗
cωcC

′(ωc)

δ2 + ω2
c

}
= sign

{
δ(1 + 2β∗

cS
′(ωc)) + 2β∗

cωcC
′(ωc)

}
.

From (4.6) and the fact that 1 − 2C(ωc) > 0, this leads to

sign

{
dRe(λ)

d(−β∗)

}∣∣∣∣
β∗=β∗

c

= sign

{
1 − 2C(ωc) − 2δS′(ωc) − 2ωcC

′(ωc)

}

= sign

{
2ωc

(
− C ′(ωc) − δ

(
S(ωc)

ωc

)′)}
= sign

{
− C ′(ωc) − δ

(
S(ωc)

ωc

)′}
.

This concludes the proof.
Remark 2. Consider the function g defined by (4.4) and denote by α the quantity

α :=

(
2

∫ τ

0

e−γτf(τ)dτ − 1

)
β(0).

Define the sets

Ω := {ω > 0; 0 < g(ω) < α and g′(ω) = 0} and Λ := g(Ω).
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One can notice that Λ is finite (or empty). If δ ∈ (0, α) \ Λ, then

dRe(λ)

d(−β∗)

∣∣∣∣
β∗=β∗

c

	= 0.

Indeed, we have

g′(ω) = − ω

S(ω)

(
g(ω)

(
S(ω)

ω

)′
+ C ′(ω)

)
, ω > 0.

Since δ /∈ Λ, we have g′(ωc) 	= 0. Moreover, g(ωc) = δ. Thus

C ′(ωc) 	= −δ

(
S(ωc)

ωc

)′
.

We conclude by using (4.3).
Lemma 4.1, together with Remark 2, allows us to state and prove the following

theorem.
Theorem 4.2. Assume that the function τ �→ e−γτf(τ) is decreasing. Then, for

each δ /∈ Λ satisfying (2.25), there exists β∗
c < δ̃ such that the equilibrium x ≡ x∗

is locally asymptotically stable when β∗
c < β∗ ≤ δ̃ and a Hopf bifurcation occurs at

x ≡ x∗ when β∗ = β∗
c .

Proof. First, recall that x ≡ x∗ is locally asymptotically stable when β∗ = δ̃ (see
Theorem 3.2). We recall that, from the properties of the function g, (4.4) has a finite
number of solutions (see Lemma 4.1). We set

β∗
c = − δ

1 − 2C(ω∗
c )

,

where ω∗
c is the smaller positive real such that

C(ω∗
c ) = min{C(ω); ω is a solution of (4.4)}.

Then, β∗
c is the maximum value of β∗ (as defined in Lemma 4.1) which gives a solution

of (4.2). From Lemma 4.1, (3.8) has no purely imaginary roots while β∗
c < β∗ ≤ δ̃.

Consequently, Rouché’s theorem [10, p. 248] leads to the local asymptotic stability of
x ≡ x∗.

When β∗ = β∗
c , (3.8) has a pair of purely imaginary roots ±iωc, ωc > 0 (see

Lemma 4.1). Moreover, since δ /∈ Λ, Remark 2 implies that

dRe(λ)

d(−β∗)

∣∣∣∣
β∗=β∗

c

	= 0.

Assume, by contradiction, that

dRe(λ)

d(−β∗)
< 0

for β∗ > β∗
c , β∗ close to β∗

c . Then there exists a characteristic root λ(−β∗) such that
Reλ(−β∗) > 0. This contradicts the fact that x ≡ x∗ is locally asymptotically stable
when β∗ > β∗

c . Thus, we obtain

dRe(λ)

d(−β∗)

∣∣∣∣
β∗=β∗

c

> 0.

This implies the existence of a Hopf bifurcation at x ≡ x∗ for β∗ = β∗
c .
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With the values of δ, γ and β0 given by (2.2), and τ = 7 days, (2.12) has periodic
solutions for β∗

c = −0.3881 with a period about 33 days. This value of β∗
c corresponds

to n = 2.53 (see Figures 4.1 and 4.2). The function f is given by (3.15).
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Fig. 4.1. The solutions of system (2.12), x(t) (solid curve) and y(t) (dashed curve), are drawn
when the Hopf bifurcation occurs. This corresponds to n = 2.53 with the other parameters given by
(2.2) and τ = 7 days. Periodic solutions appear with period of the oscillations about 33 days.
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Fig. 4.2. For the values used in Figure 4.1, the solutions are shown in the (x, y)-plane: the
trajectories reach a limit cycle, surrounding the equilibrium.
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The bifurcation parameter was chosen to be β∗ in this study, and the values of β∗

depend strongly on the sensitivity n of the function β(x), since all other parameters are
fixed by (2.25). In this model, the sensitivity n plays a crucial role in the appearance
of periodic solutions. Pujo-Menjouet and Mackey [27] already noticed the influence
of this parameter on system (2.12) when the delay is constant (or equivalently, when
f is a Dirac measure). The sensitivity n describes the way the rate of introduction
in the proliferating phase reacts to changes in the resting phase population produced
by external stimuli: a release of erythropoietin, for example, or the action of some
growth factors.

Of course, the influence of other parameters (like mortality rates δ and γ, or the
minimum and maximum delays τ and τ) on the appearance of periodic solutions could
be studied. However, since periodic hematological diseases—defined and described in
section 5—are supposed to be due to hormonal control destabilization (see [11]), then
the parameter n, among other parameters, seems to be appropriate to identify causes
leading to periodic solutions in (2.12).

5. Discussion. Among the wide range of diseases affecting blood cells, peri-
odic hematological diseases (Haurie, Dale, and Mackey [14]) are of main importance
because of their intrinsic nature. These diseases are characterized by significant oscil-
lations in the number of circulating cells, with periods ranging from weeks (19 to 21
days for cyclical neutropenia [14]) to months (30 to 100 days for chronic myelogenous
leukemia [14]) and amplitudes varying from normal to low levels or normal to high
levels, depending on the cells types [14]. Because of their dynamic character, peri-
odic hematological diseases offer an opportunity to understand some of the regulating
processes involved in the production of hematopoietic cells, which are still not well
understood.

Some periodic hematological diseases involve only one type of blood cells, for
example, red blood cells in periodic autoimmune hemolytic anemia (Bélair, Mackey,
and Mahaffy [4]) or platelets in cyclical thrombocytopenia (Santillan et al. [31]).
In these cases, periods of the oscillations are usually between two and four times
the bone marrow production delay. However, other periodic hematological diseases,
such as cyclical neutropenia (Haurie, Dale, and Mackey [14]) or chronic myelogenous
leukemia (Fortin and Mackey [11]), show oscillations in all of the circulating blood
cells, i.e., white cells, red blood cells, and platelets. These diseases involve oscillations
with quite long periods (on the order of weeks to months). A destabilization of the
pluripotential stem cell population (from which all of the mature blood cells types are
derived) seems to be at the origin of these diseases.

We focus, in particular, on chronic myelogenous leukemia (CML), a cancer of the
white cells, resulting from the malignant transformation of a single pluripotential stem
cell in the bone marrow (Pujo-Menjouet, Bernard, and Mackey [26]). As described in
Morley, Baikie, and Galton [24], oscillations can be observed in patients with CML,
with the same period for white cells, red blood cells and platelets. This is called
periodic chronic myelogenous leukemia (PCML). The period of the oscillations in
PCML ranges from 30 to 100 days [14], [11] depending on patients. The difference
between these periods and the average pluripotential cell cycle duration (between 1
and 4 days, as observed in mice [18]) is still not well understood.

Recently, to understand the dynamics of periodic chronic myelogenous leukemia,
Pujo-Menjouet, Bernard, and Mackey [26] considered a model for the regulation of
stem cell dynamics and investigated the influence of parameters in this stem cell
model on the oscillations period when the model becomes unstable and starts to
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Fig. 5.1. Solutions x(t) (solid curve) and y(t) (dashed curve) of system (2.12) oscillate with
periods close to 45 days; the parameters are the same as in Figure 4.1, with n = 3. The amplitudes
of the oscillations range from low values to normal values.

oscillate. In this paper, taking into account the fact that a cell cycle has two phases,
that is, stem cells in process are either in a resting phase or actively proliferating,
and assuming that cells divide at different ages, we proposed a system of differential
equations with distributed delay to model the dynamics of hematopoietic stem cells.
By constructing a Lyapunov functional, we gave conditions for the trivial equilibrium
to be globally asymptotically stable. Local stability and Hopf bifurcation of the
nontrivial equilibrium were studied, the existence of a Hopf bifurcation leading to the
appearance of periodic solutions in this model, with a period around 30 days at the
bifurcation.

Numerical simulations show that periodic solutions occur after the bifurcation,
with periods increasing as the bifurcation parameter (the sensitivity n) increases.
In Figure 5.1, solutions oscillate around the equilibrium values with periods around
45 days. Moreover, amplitudes of the oscillations range from low values to normal
values. The sensitivity is equal to n = 3; that is, the parameters are given by (2.2).
This corresponds to values given by Mackey [16], values for which abnormal behavior
(periodic) is usually observed in all circulating blood cells types.

When n continues to increase, longer oscillations periods are observed with ampli-
tudes varying from low values to high values (see Figure 5.2). This situation charac-
terizes periodic chronic myelogenous leukemia, with periods in the order of 2 months
(70 days).

Moreover, the oscillations observed in Figures 5.1 and 5.2 look very much like
relaxation oscillations. Experimental data from patients with PCML suggest that the
shape of oscillations is of a relaxation oscillator type [11, 14]. Furthermore, Fowler
and Mackey [12] showed that a model for hematopoiesis with a discrete delay may
also exhibit relaxation oscillations. Therefore, it seems that not only periods and
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Fig. 5.2. Solutions x(t) (solid curve) and y(t) (dashed curve) of system (2.12) oscillate with
periods close to 70 days; the parameters are the same as in Figure 4.1, with n = 4. The amplitudes
of the oscillations range from low values to high values.

amplitudes of the oscillations correspond to the ones observed in PCML but also the
shape of the oscillations.

Numerical simulations demonstrated that long period oscillations in the circulat-
ing cells are possible in our model even with short duration cell cycles. Thus, we
are able to characterize some hematological diseases, especially those that exhibit a
periodic behavior of all the circulating blood cells.
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