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Abstract

We study a mathematical model describing the dynamics of a pluripotent stem cell population
involved in the blood production process in the bone marrow. This model is a differential equation
with a time delay. The delay describes the cell cycle duration and is uniformly distributed on an
interval. We obtain stability conditions independent of the delay and show that the distributed delay
can destabilize the entire system. In particular, it is shown that a Hopf bifurcation can occur.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The blood production process, called hematopoiesis, is one of the major biological phe-
nomena occurring in human body. It takes place in the bone marrow where pluripotent stem
cells give birth to mature cells. After ejecting their nuclei, these cells enter the bloodstream
and become blood cells.

According to the study of Burns and Tannock[4], the population of pluripotent stem cells
can be divided into two distinct groups: quiescent cells and proliferating cells. Mathematical
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models describing the dynamics of this cell population have been proposed since the end of
the 1970s, in particularly by Mackey[9,10]. We refer to the review articles by Haurie et al.
[8] and Mackey et al.[12] for further study and more references on this topic. More recently,
Pujo-Menjouet et al.[14] and Pujo-Menjouet and Mackey[15] proved the existence of a
Hopf bifurcation for the hematopoiesis model proposed in[9]. In all these works, the authors
assumed that the proliferating phase duration is constant. Mathematically, this means that
the delay in these models is a discrete delay. However, experimental data (see[3]) indicate
that cells do not spend the same time in the proliferating phase.

In this paper, taking into account this assumption, we assume that the delay (or prolif-
erating phase duration) is uniformly distributed on an interval. The main objective is to
investigate the effect of time delay on the dynamical solutions. It is shown that there ex-
ist some critical values of the time delay such that a local Hopf bifurcation occurs at the
nontrivial equilibrium.

The paper is organized as follows. In Section 2, we present our model, which is given in
Eq. (1). In Section 3, we derive stability conditions for the two equilibria of Eq. (1) which
do not depend on the delay. We show the existence of a Hopf bifurcation at the nontrivial
equilibrium in Section 4. A brief discussion is given in Section 5.

2. The model

Pluripotent stem cells can be either in a resting phase, also known asG0-phase, or in a
proliferating phase. In the resting phase, they can die at a constant rate��0, which also
includes the cellular differentiation, or be introduced in the proliferating phase at a rate�.
According to the work of Sachs[16],� is assumed to depend on the resting phase population.

In the proliferating phase, which is in fact the so-called cell cycle, pluripotent stem cells
are committed to divide and give birth to two daughter cells at the end of this phase. The
two daughter cells enter directly the resting phase and complete the cycle. We assume
that proliferating cells divide according to a uniform lawf on an interval[�min, �] with
0��min < �<+∞. This assumption comes from the fact that, even if only a little is known
about phenomena involved in hematopoiesis, there are strong evidences (see[3]) indicating
that cells do not divide at the same age. The functionf is then defined by

f (r) =
{ 1

� − �min
if r ∈ [�min, �],

0 otherwise.

Let x(t) denote the pluripotent stem cell population density (cells/kg) at timet �0. It
satisfies the nonlinear delay differential equation

x′(t) = −(� + �(x(t)))x(t) + 2

� − �min

∫ �

�min

�(x(t − r))x(t − r) dr. (1)

The first term in the right-hand side of Eq. (1) accounts for the cellular loss due to mor-
tality and cellular differentiation,�x(t), and introduction in the cell cycle,�(x(t))x(t).
The second term is for the division of proliferating cells into two daughter cells during
mitosis. Proliferating cells are in fact resting cells introduced in the proliferating phase one
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generation earlier, so that the quantity�(x(t − r))x(t − r) appears with a time delay. The
factor 2 is, of course, for the division of each proliferating cell into two daughter cells.

In the following, the rate of reintroduction in the proliferating compartment� is taken to
be a monotone and decreasing Hill function, given by

�(x) = �0
�n

�n + xn
for x�0.

The coefficient�0 > 0 is the maximum rate of reintroduction,��0 is theG0-phase popula-
tion density for which the rate of re-entry� attains its maximum rate of change with respect
to the resting phase population, andn�0 describes the sensitivity of� with changes in the
population. This function was first used in hematopoiesis models by Mackey[9] in 1978.

In [9,11], Mackey gave values of the above parameters for a normal human body pro-
duction. These values are

� = 0.05d−1, �0 = 1.77d−1 and n = 3. (2)

The value of� is usually�=1.62×108cells/kg.However, since we shall study the qualitative
behavior of the pluripotent stem cells population, the value of� is not really important and
could be normalized without loss of generality.

Now if we consider an initial continuous nonnegative function� defined on[−�, 0], then
Eq. (1) has a unique continuous and nonnegative solutionx�(t), defined fort � − �, such
that

x�(s) = �(s) for s ∈ [−�, 0].
This can be obtained by using the results in[7].

Notice that Eq. (1) has at most two equilibria, the trivial equilibriumx ≡ 0 and a nontrivial
positive equilibriumx ≡ x∗. The trivial equilibrium always exists and corresponds to the
extinction of the population.

Proposition 2.1. Eq. (1) has a nontrivial positive equilibriumx ≡ x∗ if and only if

�0 > �> 0. (3)

In this case, x∗ is explicitly given by

x∗ = �
(

�0

�
− 1

)1/n

.

Proof. Let x∗ be an equilibrium of Eq. (1). Thenx∗ satisfiesx∗ = 0 or �(x∗) − � = 0.
Consequently, Eq. (1) has a nontrivial equilibrium if and only if the equation�(x∗) = �
has a nontrivial solution. Since the function� is decreasing and positive with�(0) = �0,
Eq. (1) has a nontrivial equilibrium if and only if condition (3) holds.�

In the next section, we shall study the stability of the two equilibria of Eq. (1).
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3. Stability

Throughout this section, we are interested in the stability of the equilibria of Eq. (1), in
particularly the stability of the nontrivial equilibriumx ≡ x∗. We start by giving a result
on the global stability of the trivial equilibrium of (1).

Theorem 3.1. The trivial equilibriumx ≡ 0 of Eq.(1) is globally stable if

�0 < �.

Proof. The proof uses a similar technique employed by Adimy and Crauste[1]. It is based
on the construction of a Lyapunov functional.

Denote byC+ the space of all continuous nonnegative functions on[−�, 0]. Consider
the mappingJ : C+ → [0, +∞) defined, for� ∈ C+, by

J (�) =
∫ �(0)

0
�(r)r dr + 1

� − �min

∫ �

�min

∫ 0

−r

(�(�(a))�(a))2 da dr.

Then,

J̇ (�) = �̇(0)�(�(0))�(0)

+ 1

� − �min

[∫ �

�min

(�(�(0))�(0))2 − (�(�(−r))�(−r))2
]

dr.

Since

�̇(0) = −(� + �(�(0)))�(0) + 2

� − �min

∫ �

�min

�(�(−r))�(−r) dr,

we obtain that

J̇ (�) = − (� + �(�(0)))�(�(0))�2(0) + 2

� − �min

∫ �

�min

(�(�(0))�(0))2 dr

− 1

� − �min

∫ �

�min

(�(�(0))�(0) − �(�(−r))�(−r))2 dr.

Hence,

J̇ (�)� − (� − �(�(0)))�(�(0))�(0)2.

Let � be the function defined, forx�0, by

�(x) = (� − �(x))�(x)x2.

Assume that�0 < �. Since� is a decreasing function, it follows that the functionx �→
� − �(x) is positive forx�0. Hence,� is nonnegative on[0, +∞) and�(x) = 0 if and
only if x = 0. Consequently, the mappingJ is a Lyapunov functional when�0 < �. We then
deduce that the trivial equilibrium of (1) is globally stable.�
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The result in Theorem 3.1 describes the fact that whenx ≡ 0 is the only equilibrium of
(1), the population is doomed to extinction except when�0 = �.

Now we focus on the stability of the positive equilibriumx ≡ x∗ of Eq. (1). To ensure the
existence of the equilibriumx ≡ x∗, we assume that condition (3) holds; that is,�0 > �> 0.
We do not expect to obtain conditions for the global stability ofx ≡ x∗. However, local
stability results can be obtained by linearizing equation (1) aboutx∗. Set

�∗ := d

dx
(�(x)x)

∣∣∣∣
x=x∗

= �
(

1 − n
�0 − �

�0

)
. (4)

The linearization of Eq. (1) atx∗ is

x′(t) = −(� + �∗)x(t) + 2�∗

� − �min

∫ �

�min

x(t − r) dr.

The characteristic equation of (1) is given by

�(�) := � + � + �∗ − 2�∗

� − �min

∫ �

�min

e−�r dr = 0. (5)

We now state and prove our first result on the stability ofx ≡ x∗.

Theorem 3.2. Assume that

n
�0 − �

�0
�1. (6)

Then the nontrivial equilibriumx ≡ x∗ of Eq.(1) is locally asymptotically stable.

Proof. Assume that (6) holds, which is equivalent, by using (4), to�∗ �0.
We first assume that�(�), given by (5), is a real function. Then,�(�) is continuously

differentiable and its first derivative is given by

d�
d�

(�) = 1 + 2�∗

� − �min

∫ �

�min

re−�r dr. (7)

One can see that d�/d� is positive for� ∈ R as soon as�∗ �0. Moreover,

lim
�→−∞

�(�) = −∞ and lim
�→+∞

�(�) = +∞.

Consequently,�(�) has a unique real root�0. Since

�(0) = � − �∗ = n�
(

1 − �
�0

)
> 0,

we deduce that�0 < 0.
Now, we show that if� is a characteristic root of Eq. (5), then Re(�)��0. By contradiction,

we assume that there exists a characteristic root� = 	 + i
 of Eq. (5) such that	> �0. By
considering the real part of�(�), we obtain that

	 + � + �∗ − 2�∗

� − �min

∫ �

�min

e−	r cos(
r) dr = 0.
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Consequently,

	 − �0 = 2�∗

� − �min

∫ �

�min

(e−	r cos(
r) − e−�0r ) dr < 0.

This yields a contradiction. We conclude that every characteristic root� of (5) is such that
Re(�)��0. Hence, all characteristic roots of (5) have negative real parts and the equilibrium
x ≡ x∗ is locally asymptotically stable.�

When�∗ < 0, that is, when

1< n
�0 − �

�0
,

the stability cannot occur for all values of�min and�. In particularly, we shall show that a
Hopf bifurcation can occur (see Theorem 4.5). However, we can still have the stability of
the nontrivial equilibriumx ≡ x∗ for values ofn, �0 and� if n(�0 − �)/�0 is not too large.
This will be considered in the next theorem.

To present the results, without loss of generality, we assume that

�min = 0.

We want to point out that the results we are going to show remain true when�min > 0, but
the proof is more complicated.

Define a functionK, for x�0, by

K(x) = sin(x)

x
(8)

and letx1 be the unique solution of the equation

x1 = tan(x1), x1 ∈
(
�,

3�
2

)
.

Set

u0 := cos(x1) ∈ (−1, 0).

ThenK ′(x1) = 0 and

u0 = K(x1) = min
x �0

K(x). (9)

We have the following local stability theorem.

Theorem 3.3. Assume that

1< n
�0 − �

�0
<

2(1 − u0)

1 − 2u0
. (10)

Then the nontrivial equilibriumx ≡ x∗ of Eq.(1) is locally asymptotically stable.
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Proof. Let us assume that (10) holds. Then�∗ < 0, � + �∗ > 0 and

� + �∗

2�∗ < u0. (11)

By contradiction, assume that there exists a characteristic root�=	+ i
 of (5) with	> 0.
Then,

	 = −(� + �∗) + 2�∗


�

∫ 
�

0
e−(	/
)r cos(r) dr

and


 = −2�∗


�

∫ 
�

0
e−(	/
)r sin(r) dr.

Integrating by parts, we obtain that

2	 = −(� + �∗) + 2�∗e−	�K(
�).

Consequently,

	< − (� + �∗) + 2�∗e−	�K(
�).

If 
� is such that sin(
�)�0, then 2�∗K(
�) < 0 and

	< − (� + �∗)�0.

So we obtain a contradiction.
Similarly, if 
� is such that sin(
�) < 0, then, from (9) and (11), we deduce that

� + �∗

2�∗ �K(
�).

It implies that

� + �∗ �2�∗K(
�) > 2�∗e−	�K(
�).

Therefore,

	< − (� + �∗) + 2�∗K(
�)�0.

Again we obtain a contradiction. Hence, all characteristic roots� of (5) are such that
Re(�)�0.

Now, we assume that (5) has a purely imaginary characteristic root� = i
. Then
 and
� satisfy

K(
�) = � + �∗

2�∗ . (12)

Using (9) and (11), we obtain a contradiction. Consequently, (12) has no solution and Eq.
(5) does not have purely imaginary roots. We conclude that all characteristic roots of (5)
have negative real parts andx ≡ x∗ is locally asymptotically stable.�
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From Theorems 3.2 and 3.3, it follows that the nontrivial equilibriumx ≡ x∗ of Eq. (1)
is locally asymptotically stable when

0�n
�0 − �

�0
<

2(1 − u0)

1 − 2u0
. (13)

We are going to show that as soon as condition (13) does not hold, then the equilibrium can
be destabilized. In the next section, we shall show that if condition (11) does not hold, then
a Hopf bifurcation indeed occurs atx ≡ x∗.

4. Hopf bifurcation

In this section, we are going to show that the nontrivial equilibriumx ≡ x∗ of Eq. (1)
can be destabilizedvia a Hopf bifurcation. The time delay� will be used as a bifurcation
parameter. This result is obtained in Theorem 4.5.

Recall that the nontrivial equilibriumx ≡ x∗ of Eq. (1) exists if and only if�0 > �> 0.

In the following, without loss of generality, we assume that

�min = 0.

Again the results still hold when�min > 0, but the proof is easier to understand when�min=0.
We look for purely imaginary roots of�(�). Of course, we assume that�∗ < 0, otherwise

x ≡ x∗ is locally asymptotically stable. Let� = i
, with 
 ∈ R, be a purely imaginary
characteristic root of Eq. (5). Then,� and
 satisfy the following system:{

� + �∗(1 − 2C(�,
)) = 0,


 + 2�∗S(�,
) = 0,
(14)

where

C(�,
) = 1

�

∫ �

0
cos(
r) dr, S(�,
) = 1

�

∫ �

0
sin(
r) dr.

First, one can see that
 = 0 cannot be a solution of (14). Otherwise� = �∗ < 0. Moreover,
if 
 is a solution of system (14), then−
 is also a solution of (14). Hence, we only look
for positive solutions
.

One can check thatC(�,
) andS(�,
) are given, for�> 0 and
> 0, by

C(�,
) = sin(
�)

�

= K(
�), S(�,
) = 1 − cos(
�)

�

,

where the functionK is defined by (8). Consequently, system (14) can be rewritten as

K(
�) = � + �∗

2�∗ , (15)

cos(
�) − 1

(
�)2 = 1

2�∗�
. (16)
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Consider the sequence

{xk}k∈N := {x�0; x = tan(x)} (17)

with

0 = x0 < x1 < · · · < xk < · · · .

In fact, one can check that

{xk}k∈N = {x�0; K ′(x) = 0}.
Moreover, for allk ∈ N∗,

xk ∈
(
k�, k� + �

2

)
.

Define two sequences{uk} and{vk}, for k ∈ N, by

uk := cos(x2k+1) < 0, vk := cos(x2k) > 0.

Using the definition ofxk, one can see that

uk = K(x2k+1) and vk = K(x2k).

Thus, the sequence{uk}k∈N is increasing with−1< uk < 0 and the sequence{vk}k∈N is
decreasing withv0 = 1 and 0< vk < 1/2 for k�1 (seeFig. 1).

Moreover,

lim
k→+∞ uk = lim

k→+∞ vk = 0.

Furthermore, one can check that, as soon as�∗ < 0,

� + �∗

2�∗ < 1 = v0.

Finally, define a functionh, for x ∈ [−1, 1/2), by

h(x) = 2(1 − x)

1 − 2x

and set

h(v0) = +∞.

We have the following results about the properties of the functionh.

Lemma 4.1. Suppose that

h(u0)�n
�0 − �

�0
and � + �∗ �= 0.

(i) If � + �∗ > 0, then there existsk ∈ N such that

h(uk)�n
�0 − �

�0
< h(uk+1).
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Fig. 1. The graph ofK(x).

(ii) If � + �∗ < 0, then there existsk ∈ N such that

h(vk+1)�n
�0 − �

�0
< h(vk).

Proof. Since the functionh is increasing on the interval[−1, 1/2), we can see that

h(uk)�n
�0 − �

�0
< h(uk+1)

is equivalent to

uk � � + �∗

2�∗ < uk+1.

Also,

h(vk+1)�n
�0 − �

�0
< h(vk)

is equivalent to

vk+1� � + �∗

2�∗ < vk.

The lemma now follows. �
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Proposition 4.2. If

h(uk) < n
�0 − �

�0
< h(uk+1), k ∈ N,

then system(15)–(16)has exactly2(k + 1) solutions(�1,1,
1,1), . . . , (�k+1,1,
k+1,1) and
(�1,2,
1,2), . . . , (�k+1,2,
k+1,2) with{


l,1�l,1 ∈ ((2l − 1)�, x2l−1) for l = 1, . . . , k + 1,


l,2�l,2 ∈ (x2l−12l�) for l = 1, . . . , k + 1

and

0< �1,1 < · · · < �k+1,1 < �k+1,2 < · · · < �1,2.

(ii) If

n
�0 − �

�0
= h(uk), k ∈ N,

then system(15)–(16)has exactly2k + 1 solutions(�1,1,
1,1), . . . , (�k+1,1,
k+1,1) and
(�1,2,
1,2), . . . , (�k,2,
k,2) with{
l,1�l,1 ∈ ((2l − 1)�, x2l−1) for l = 1, . . . , k,


l,2�l,2 ∈ (x2l−1, 2l�) for l = 1, . . . , k,


k+1,1�k+1,1 = x2k+1

and

0< �1,1 < · · · < �k+1,1 < �k,2 < · · · < �1,2.

(iii) If

h(vk+1) < n
�0 − �

�0
< h(vk), k ∈ N∗,

then system(15)–(16)has exactly2k + 1 solutions(�1,1,
1,1), . . . , (�k+1,1,
k+1,1) and
(�1,2,
1,2), . . . , (�k,2,
k,2) with{
1,1�1,1 ∈ (�/2,�),


l,1�l,1 ∈ (xl+1, (l + 2)�) for l = 2, . . . , k + 1,


l,2�l,2 ∈ ((l + 1)�, xl+1) for l = 1, . . . , k

and

0< �1,1 < · · · < �k+1,1 < �k,2 < · · · < �1,2.

(iv) If

n
�0 − �

�0
= h(vk), k ∈ N∗,
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then system(15)–(16)has exactly2k solutions(�1,1, 
1,1), . . . , (�k,1,
k,1) and (�1,2,

1,2), . . . , (�k,2,
k,2), with



1,1�1,1 ∈ (�/2,�),


l,1�l,1 ∈ (xl, (l + 1)�) for l = 2, . . . , k,


l,2�l,2 ∈ ((l + 1)�, xl+1) for l = 1, . . . , k − 1,


k,2�k,2 = x2k

and

0< �1,1 < · · · < �k,1 < �k,2 < · · · < �1,2.

(v) If

h(v1) < n
�0 − �

�0
< h(v0),

then system(15)–(16)has a unique solution(�1,
1) such that�1 > 0 and


1�1 ∈ (0,�).

Proof. We only prove (i) whenk = 0. The other cases can be deduced similarly. Assume
that

h(u0) < n
�0 − �

�0
< h(u1).

This is equivalent to

u0 <
� + �∗

2�∗ < u1.

The functionK is strictly negative and decreasing on(�, x1) with K(y) ∈ (u0, 0) (see
Fig. 1). So the equation

K(y) = � + �∗

2�∗

has a unique solutiony1 on the interval(�, x1). Set

�1,1 = (y1)
2

2�∗(cos(y1) − 1)

and
1,1 = y1/�1,1. Then,(�1,1,
1,1) is the unique solution of system (15)–(16) satisfying

1,1�1,1 ∈ (�, x1).

Moreover, the functionK is strictly negative and increasing on(x1, 2�) with K(y) ∈
(u0, 0), so the equationK(y) = (� + �∗)/2�∗ has a unique solutiony2 on the interval
(x1, 2�). Set

�1,2 = (y2)
2

2�∗(cos(y2) − 1)
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and
1,2 = y2/�1,2. Then,(�1,2,
1,2) is the unique solution of system (15)–(16) which
satisfies
1,2�1,2 ∈ (x1, 2�).

Furthermore, the functionK is nonnegative on[0,�] and

u1 = K(x3) = min
x �2�

K(x).

Therefore, system (15)–(16) has two solutions,(�1,1,
1,1) and(�1,2,
1,2).
Finally, using the fact that cos(y1)� cos(y2), we obtain that�1,1 < �1,2. This completes

the proof. �

Lemma 4.1 and Proposition 4.2 give conditions for the existence of pairs of purely
imaginary roots of Eq. (5). In the next proposition, we study the properties of the purely
imaginary roots of (5).

Proposition 4.3. Assume that there exists a�c > 0 such that Eq.(5) has a pair of purely
imaginary roots±i
c for � = �c with
c > 0. If


c�c �= xk for all k ∈ N,

where the sequence{xk}k∈N is defined by(17), then±i
c are simple roots such that


d Re(�)

d�

∣∣∣∣
�=�c

> 0 if 
c�c ∈ (x2k, x2k+1),

d Re(�)

d�

∣∣∣∣
�=�c

< 0 if 
c�c ∈ (x2k+1, x2k+2), k ∈ N.

(18)

Proof. Assume that there exists a�c > 0 such that Eq. (5) has a pair of purely imaginary
roots±i
c for � = �c with 
c > 0. Then,
c�c satisfies system (15)–(16).

Assume that
c�c �= xk for all k ∈ N. Let us show that±i
c are simple characteristic
roots of (5). Using (7), one can see that±i
c are simple roots of (5) if

1 + 2�∗ �S

�

(�c,
c) �= 0 or

�C

�

(�c,
c) �= 0.

We will show that

�C

�

(�c,
c) �= 0.

A simple computation shows that

�C

�

(�c,
c) = g(
c�c)


2
c�c

,

where the functiong is defined by

g(x) = x cos(x) − sin(x) for x�0.

One can check thatg(x)=0 if and only if there exists ak0 ∈ N such thatx =xk0. Moreover,

g(x) > 0 if and only if x ∈ (x2k+1, x2k+2), k ∈ N.
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This yields that

�C

�

(�c,
c) < 0 if 
c�c ∈ (x2k, x2k+1) (19)

and

�C

�

(�c,
c) > 0 if 
c�c ∈ (x2k+1, x2k+2). (20)

Hence,±i
c are simple characteristic roots of (5).
Let�(�)=	(�)+i
(�) be a characteristic root of (5) such that�(�c)=±i
c. By separating

the real and imaginary parts, we obtain that


	(�) + � + �∗ − 2�∗

�

∫ �

0
e−	(�)r cos(
(�)r) dr = 0,


(�) + 2�∗

�

∫ �

0
e−	(�)r sin(
(�)r) dr = 0.

We denote by	′(�) (respectively
′(�)) the first derivative of	(�) (respectively
(�)) with
respect to�. For� = �c, we obtain that

	′(�c)

[
1 + 2�∗ �S

�

(�c,
c)

]

= 2�∗ �C

�

(�c,
c)
′(�c) + 2�∗

�c

(cos(
c�c) − C(�c,
c)) (21)

and


′(�c)

[
1 + 2�∗ �S

�

(�c,
c)

]

= −2�∗ �C

�

(�c,
c)	′(�c) + 2�∗

�c

(S(�c,
c) − sin(
c�c)). (22)

We consider two cases. First, assume that

1 + 2�∗ �S

�

(�c,
c) = 0. (23)

One can verify that

1 + 2�∗ �S

�

(�c,
c) = 2 + (� + �∗)�c.

Consequently, (23) is equivalent to

�c = − 2

� + �∗ . (24)

Then, it follows from Eq. (22) that

�C

�

(�c,
c)	′(�c) = S(�c,
c) − sin(
c�c)

�c

.
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Moreover, by using (15) and (16), we have

S(�c,
c) − sin(
c�c)

�c

= 1 − (cos(
c�c) + 
c�c sin(
c�c))


c�2
c

= − � + �∗

4�∗ 
c.

Hence, (24) implies that

�C

�

(�c,
c)	′(�c) = 
c

2�∗�c

< 0.

Since(�C/�
)(�c,
c) �= 0, we have

	′(�c) �= 0.

Furthermore, the sign of	′(�c) is the same as the sign of−(�C/�
)(�c,
c).

We now assume that

1 + 2�∗ �S

�

(�c,
c) �= 0.

Then, by using (21) and (22), we obtain that	′(�c) satisfies

	′(�c)

[(
1 + 2�∗ �S

�

(�c,
c)

)2

+
(

2�∗ �C

�

(�c,
c)

)2
]

= 2�∗

�c

[
2�∗ �C

�

(�c,
c)(S(�c,
c) − sin(
c�c))

+
(

1 + 2�∗ �S

�

(�c,
c)

)
(cos(
c�c) − C(�c,
c))

]
.

Using the definitions ofC andS, one can check that

�C

�

(�c,
c)(S(�c,
c) − sin(
c�c)) + �S

�

(�c,
c)(cos(
c�c) − C(�c,
c)) = 0.

Hence,

	′(�c)

[(
1 + 2�∗ �S

�

(�c,
c)

)2

+
(

2�∗ �C

�

(�c,
c)

)2
]

= 2�∗

�c

(cos(
c�c) − C(�c,
c)).

Notice that

cos(
c�c) − C(�c,
c)

�c

= g(
c�c)


c�2
c

= 
c

�c

�C

�

(�c,
c) �= 0.
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Since 1+ 2�∗(�S/�
)(�c,
c) �= 0, it follows that(
1 + 2�∗ �S

�

(�c,
c)

)2

+
(

2�∗ �C

�

(�c,
c)

)2

> 0.

Consequently,	′(�c) �= 0, and the sign of	′(�c) is the same as the sign of−(�C/�
)(�c,
c).

In summary, by using (19) and (20), we have obtained that, for� = �c, Eq. (5) has a pair
of simple purely imaginary roots±i
c satisfying (18). This completes the proof.�

Remark 4.4. If there exists ak ∈ N∗ such that
c�c = xk, then either±i
c are not simple
roots of (5) or

d Re(�)

d�

∣∣∣∣
�=�c

= 0.

Using a similar argument as in the proof of Proposition 4.2, we obtain that

�C

�

(�c,
c) = 0.

Thus, if�c =−2/(�+�∗), then±i
c are not simple roots of (5) and, if�c �= −2/(�+�∗),
then

d Re(�)

d�

∣∣∣∣
�=�c

= 0.

In the next theorem, we show that there exists a Hopf bifurcation at the nontrivial equi-
librium x ≡ x∗ of Eq. (1).

Theorem 4.5. Assume that

h(u0)�n
�0 − �

�0
and � + �∗ �= 0.

Then the equilibriumx = x∗ is locally asymptotically stable when0��< �0, where�0 :=
min{�c; 
c�c �= xk, k ∈ N}, with (�c,
c) solutions of(15)–(16),and unstable when
�0����l , where�l is the largest value of�c such that
c�c ∈ (x2k, x2k+1), k ∈ N.When
� = �0, a Hopf bifurcation occurs atx ≡ x∗.

Proof. We first check thatx ≡ x∗ is locally asymptotically stable when� ∈ [0, �0).
Notice that when� ∈ [0, �0), Eq. (5) does not have purely imaginary roots. Let�∗ > 0
be small enough and fixed. Assume that, for� ∈ (0, �∗), Eq. (5) has a characteristic root
�(�) = 	(�) + i
(�) with 	(�) > 0. Separating the real and imaginary parts, we obtain

	(�) = −(� + �∗) + 2�∗

�

∫ �

0
e−	(�)r cos(
(�)r) dr

and


(�) = −2�∗

�

∫ �

0
e−	(�)r sin(
(�)r) dr.
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We deduce that, for� ∈ (0, �∗),

|	(�)|� |� + �∗| − 2�∗ and |
(�)|� − 2�∗.

Consequently,

lim
�→0

�	(�) = 0 and lim
�→0

�
(�) = 0.

Integrating by parts, we obtain

2	(�) = −(� + �∗) + 2�∗e−�	(�)K(�
(�)).

Since	(�) > 0, we have for� ∈ (0, �∗) that

−(� + �∗) + 2�∗e−�	(�)K(�
(�)) > 0.

When� tends to zero, we obtain

�∗ − ��0.

However,�∗ −�< 0. This is a contradiction. Therefore, for� ∈ (0, �∗), 	(�) < 0. Applying
Rouché’s Theorem[5, p. 248], we obtain that all characteristic roots of (5) have negative
real parts when� ∈ [0, �0). Therefore,x ≡ x∗ is locally asymptotically stable.

Using Lemma 4.1, Propositions 4.2 and 4.3, we conclude to the existence of�l . This
concludes the proof. �

We illustrate the results of Theorem 4.5 in the next corollary.

Corollary 4.6. Assume that the parameters�, �0 and n are given by(2).Then there exists
a unique value�c > 0such that the equilibriumx =x∗ is locally asymptotically stable when
�< �c and becomes unstable when���c.Moreover,when�=�c,aHopf bifurcation occurs
at x ≡ x∗ and Eq.(1) has a periodic solution with a period close to46days(see Fig.2).
The value of�c is approximately given by

�c � 18 days.

Proof. With the values given by (2), we obtain

n
�0 − �

�0
� 2.9153> h(v1) � 2.3455.

Hence, Proposition 4.2 implies that system (15)–(16) has a unique solution(�c,
c) with
�c > 0 and
c�c ∈ (0,�). From Theorem 4.5, we know that the nontrivial equilibrium
is locally asymptotically stable when�< �c, becomes unstable when���c, and a Hopf
bifurcation occurs atx ≡ x∗ for � = �c. Consequently, for� = �c, Eq. (1) has a periodic
solution with a period close to 2�/
c. One can check that

�c � 18 days and 
c � 0.138.

Computer simulations confirm our analysis (seeFig. 2). �
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Fig. 2. With the values given by (2) and� = 1.62× 108 cells/kg, Eq. (1) has a periodic solution for� = 18.2 days.
This solution has a period about 50 days (see (a)). The plot ofx(t) versusx(t − �) (see (b)).
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As mentioned earlier, the results in Theorem 4.5 still hold when�min > 0. However, in
this case, the computations in the proof of Theorem 4.5 are much more complicated.

5. Discussion

Hematological diseases have attracted a significant amount of modeling attention because
a number of them are periodic in nature[8]. Some of these diseases involve only one blood
cell type and are due to the destabilization of peripheral control mechanisms, e.g., peri-
odic auto-immune hemolytic anemia[2,13]. Such periodic hematological diseases involve
periods between two and four times the bone marrow production/maturation delay. Other
periodic hematological diseases, such as cyclical neutropenia[8], involve oscillations in all
of the blood cells and very long period dynamics on the order of weeks to months[6,14]
and are thought to be due to a destabilization of the pluripotent stem cell compartment from
which all types of mature blood cells are derived.

We have studied a scalar delay model that describes the dynamics of a pluripotent stem
cell population involved in the blood production process in the bone marrow. The distributed
delay describes the cell cycle duration. We established stability conditions for the model
independent of the delay. We have also observed oscillations in the pluripotent stem cell
population through Hopf bifurcations. With parameter values given by Mackey[9,10], our
calculations indicate that the oscillatory pluripotent stem cell population involves a period
of 46 days.

It will be very interesting to study the dynamics of the two-dimensional systems
[9,10,12,14]modeling the proliferating phase cells and resting phase cells with distributed
delays. We leave this for future consideration.
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