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Abstract

We study a mathematical model describing the dynamics of a pluripotent stem cell population
involved in the blood production process in the bone marrow. This model is a differential equation
with a time delay. The delay describes the cell cycle duration and is uniformly distributed on an
interval. We obtain stability conditions independent of the delay and show that the distributed delay
can destabilize the entire system. In particular, it is shown that a Hopf bifurcation can occur.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The blood production process, called hematopoiesis, is one of the major biological phe-
nomena occurring in human body. It takes place in the bone marrow where pluripotent stem
cells give birth to mature cells. After ejecting their nuclei, these cells enter the bloodstream
and become blood cells.

According to the study of Burns and Tannddk, the population of pluripotent stem cells
can be divided into two distinct groups: quiescent cells and proliferating cells. Mathematical
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models describing the dynamics of this cell population have been proposed since the end of
the 1970s, in particularly by Mackd9,10]. We refer to the review articles by Haurie et al.

[8] and Mackey et a[12] for further study and more references on this topic. More recently,
Pujo-Menjouet et al[14] and Pujo-Menjouet and Mackg$5] proved the existence of a

Hopf bifurcation for the hematopoiesis model proposd@jnin all these works, the authors
assumed that the proliferating phase duration is constant. Mathematically, this means that
the delay in these models is a discrete delay. However, experimental dafa]{sedicate

that cells do not spend the same time in the proliferating phase.

In this paper, taking into account this assumption, we assume that the delay (or prolif-
erating phase duration) is uniformly distributed on an interval. The main objective is to
investigate the effect of time delay on the dynamical solutions. It is shown that there ex-
ist some critical values of the time delay such that a local Hopf bifurcation occurs at the
nontrivial equilibrium.

The paper is organized as follows. In Section 2, we present our model, which is given in
Eqg. (1). In Section 3, we derive stability conditions for the two equilibria of Eq. (1) which
do not depend on the delay. We show the existence of a Hopf bifurcation at the nontrivial
equilibrium in Section 4. A brief discussion is given in Section 5.

2. The model

Pluripotent stem cells can be either in a resting phase, also kno@g-phase, or in a
proliferating phase. In the resting phase, they can die at a constadt&ewhich also
includes the cellular differentiation, or be introduced in the proliferating phase at A.rate
According to the work of Sacl$6], f is assumed to depend on the resting phase population.

In the proliferating phase, which is in fact the so-called cell cycle, pluripotent stem cells
are committed to divide and give birth to two daughter cells at the end of this phase. The
two daughter cells enter directly the resting phase and complete the cycle. We assume
that proliferating cells divide according to a uniform ldven an interval[tmin, t] with
0< Tmin < T <+ 00. This assumption comes from the fact that, even if only a little is known
about phenomena involved in hematopoiesis, there are strong evidend@$)(seticating
that cells do not divide at the same age. The fundtisrthen defined by

1

fr) = W if 7 € [Tmin, 7,

otherwise

Let x(z) denote the pluripotent stem cell population density (cells/kg) at tipa8. It
satisfies the nonlinear delay differential equation

X'(t)=—0+ Bx@))x () + f px(t —r))x( —r)dr. Q)

T — Tmin min

The first term in the right-hand side of Eq. (1) accounts for the cellular loss due to mor-
tality and cellular differentiationdx(z), and introduction in the cell cyclgi(x(z))x ().

The second term is for the division of proliferating cells into two daughter cells during

mitosis. Proliferating cells are in fact resting cells introduced in the proliferating phase one
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generation earlier, so that the quaniftyx (r — r))x (¢ — r) appears with a time delay. The
factor 2 is, of course, for the division of each proliferating cell into two daughter cells.

In the following, the rate of reintroduction in the proliferating compartnjkisttaken to
be a monotone and decreasing Hill function, given by

71

0
px) ﬂo@" g for x>0

The coefficien{y > 0 is the maximum rate of reintroductiafz> 0 is theGo-phase popula-
tion density for which the rate of re-entfyattains its maximum rate of change with respect
to the resting phase population, angt 0 describes the sensitivity gfwith changes in the
population. This function was first used in hematopoiesis models by Md8kay 1978.

In [9,11], Mackey gave values of the above parameters for a normal human body pro-
duction. These values are

0=005d"1, py=177d"! and n=3. 2)

The value of) is usuallyd=1.62x 10Bcells/kg. However, since we shall study the qualitative
behavior of the pluripotent stem cells population, the valugisfnot really important and
could be normalized without loss of generality.

Now if we consider an initial continuous nonnegative funcijodefined orf—z, 0], then
Eq. (1) has a unigue continuous and nonnegative solutf@n), defined forr > — t, such
that

x?(s)=q(s) forse[-1,0].

This can be obtained by using the result§ih

Notice that Eq. (1) has at most two equilibria, the trivial equilibriusz 0 and a nontrivial
positive equilibriumx = x*. The trivial equilibrium always exists and corresponds to the
extinction of the population.

Proposition 2.1. Eq. (1) has a nontrivial positive equilibrium = x* if and only if
Bo> 0> 0. 3)

In this casex™ is explicitly given by

v oo - )l/".

Proof. Let x* be an equilibrium of Eqg. (1). Then* satisfiesx* = 0 or f(x*) — 6 = 0.
Consequently, Eg. (1) has a nontrivial equilibrium if and only if the equafiori) = 6
has a nontrivial solution. Since the functifns decreasing and positive wiff(0) = f,
Eq. (1) has a nontrivial equilibrium if and only if condition (3) holdd]

In the next section, we shall study the stability of the two equilibria of Eq. (1).
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3. Stability

Throughout this section, we are interested in the stability of the equilibria of Eq. (1), in
particularly the stability of the nontrivial equilibrium = x*. We start by giving a result
on the global stability of the trivial equilibrium of (1).

Theorem 3.1. The trivial equilibriumx = 0 of Eq.(1) is globally stable if

Proof. The proof uses a similar technique employed by Adimy and Crdlist# is based
on the construction of a Lyapunov functional.

Denote byC* the space of all continuous nonnegative functiong-en, 0]. Consider
the mapping/ : C* — [0, +00) defined, forp € C*, by

1 L
: / (B(p(a))p(a))?dadr.
Tmin Tmin Y —r

¢(0)
J(p) =/ B(ryrdr +
0

.
Then,

T (@) = p(0)B(¢(0)p(0)
[ " (Bp©)p(0))? — <ﬁ<<p<—r>)<p(—r>)2] dr.

Tmin

+

T — Tmin

Since

T

Blo(=r))p(=r)dr,

P(0) = —(0 + B(¢(0))(0) +

T = Tmin Jtmin
we obtain that
T
_ (B(@(0)p(0))* dr
T— Tmin Jtmin

(B(@(0)p(0) — Blp(—r)p(—r))?dr.

T—Tmin J1tmin

J(@) = — 3+ B(@(0))f(0(0)p?(0) +

Hence,
J(9)< = (6 = B(@(0)) B((0) p(0)°.
Let « be the function defined, for>0, by
o(x) = (6 — B(x)) Bx)x*.

Assume thafy < 6. Sincef is a decreasing function, it follows that the functien—

0 — P(x) is positive forx >0. Hencex is nonnegative ofi0, +o0) anda(x) = 0 if and
only if x =0. Consequently, the mappidgs a Lyapunov functional whefly < 6. We then
deduce that the trivial equilibrium of (1) is globally stable.]
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The result in Theorem 3.1 describes the fact that whenO is the only equilibrium of
(1), the population is doomed to extinction except wifige= 6.

Now we focus on the stability of the positive equilibrium= x* of Eq. (1). To ensure the
existence of the equilibrium = x*, we assume that condition (3) holds; thafig> ¢ > 0.
We do not expect to obtain conditions for the global stabilityof x*. However, local
stability results can be obtained by linearizing equation (1) abbuset

L) @

The linearization of Eq. (1) at* is

.« d
p = dx(ﬁ(x)x)

X()=—0+ pfHx@) + 2ﬁf x(t —r)dr.

T — Tmin min
The characteristic equation of (1) is given by

A% :=A+5+ﬁ*—L/T e dr =0. (5)

T — Tmin Jtmin

We now state and prove our first result on the stability & x*.

Theorem 3.2. Assume that
Bo—0
Bo

Then the nontrivial equilibrium = x* of Eq.(1) is locally asymptotically stable.

n <1 (6)

Proof. Assume that (6) holds, which is equivalent, by using (43t 0.
We first assume thal (1), given by (5), is a real function. Thew,(1) is continuously
differentiable and its first derivative is given by

d4 2p* T ;
—(A) =1+ P / re " dr. @
di T— Tmin J1min
One can see thattyd/. is positive ford € R as soon ag* > 0. Moreover,
lim A4(1)=-o00 and lim A1) = +cc.
A—>—00

A—>—+00

ConsequentlyA(A) has a unique real rodp. Since

A(O):é—ﬁ*:né(l— i) >0,

Bo
we deduce thatg < 0.

Now, we show thatif.is a characteristic root of EQ. (5), then®e< 4o. By contradiction,
we assume that there exists a characteristicteoj + iw of Eq. (5) such that > Ag. By
considering the real part of(1), we obtain that

. 2B -
U+o+p*— / e " cogwr)dr =0.
T

T— Tmin Jtmin
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Consequently,

2B* T :
w— o= / (e " coqwr) — e ") dr <O0.
T— Tmin J1tmin
This yields a contradiction. We conclude that every characteristicirobt5) is such that

Re(1) < 4o. Hence, all characteristic roots of (5) have negative real parts and the equilibrium

x = x* is locally asymptotically stable. ]

Whenp* <0, that is, when

o, Po— 5’
Bo
the stability cannot occur for all values of;, andz. In particularly, we shall show that a
Hopf bifurcation can occur (see Theorem 4.5). However, we can still have the stability of
the nontrivial equilibriumy = x* for values ofn, iy ando if n(fy — d)/f; is not too large.
This will be considered in the next theorem.
To present the results, without loss of generality, we assume that

1<

Tmin = 0.

We want to point out that the results we are going to show remain true whes 0, but
the proof is more complicated.
Define a functiorK, for x >0, by

K(x) = . (8)

and letx1 be the unique solution of the equation

3n
x1=tanxy), x1¢€ (n, 7) .

Set
ug := cogx1) € (-1, 0).
ThenK’(x1) =0 and

uo=K(x1) = min K (x). 9)
We have the following local stability theorem.

Theorem 3.3. Assume that

nﬁo—5<2(l—uo)
ﬁo 1—2140

Then the nontrivial equilibrium = x* of Eq.(1) is locally asymptotically stable.

1< (10)
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Proof. Let us assume that (10) holds. Thg¢h< 0, 6 + * > 0 and
o+ p*
2*
By contradiction, assume that there exists a characteristicra@t+ iw of (5) with i > 0.
Then,

<ug. (11)

Zﬁ* wt
p=—@+pH+"— / e Wor cogr)dr
Wt Jo

and

2 * wT .
P e WOr sin(r) dr.
wT Jo

Integrating by parts, we obtain that
2u=—+ f*) + 2 e " K(w7).
Consequently,
u<— 0+ pH+ 2 e K (wr).
If wr is such that sifwr) >0, then K (wt) <0 and
p<—(0+p"H<0.

So we obtain a contradiction.
Similarly, if wrt is such that sitwt) < 0, then, from (9) and (11), we deduce that

o+ p*
2p*

It implies that

<K (w7).

0+ B =2f" K (wr) > 2f e " K (w1).
Therefore,
p<— 0+ B+ 2 K(wr)<0.

Again we obtain a contradiction. Hence, all characteristic rdots#f (5) are such that
Re(2) <0.

Now, we assume that (5) has a purely imaginary characteristiclredty. Thenw and
7 satisfy

o+ p*
2p°
Using (9) and (11), we obtain a contradiction. Consequently, (12) has no solution and Eg.

(5) does not have purely imaginary roots. We conclude that all characteristic roots of (5)
have negative real parts and= x* is locally asymptotically stable.

K(w1) = (12)
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From Theorems 3.2 and 3.3, it follows that the nontrivial equilibriuez x* of Eq. (1)
is locally asymptotically stable when

ﬁo — 5 2(1 — MO)
n < .
ﬂo 1-— ZMO
We are going to show that as soon as condition (13) does not hold, then the equilibrium can

be destabilized. In the next section, we shall show that if condition (11) does not hold, then
a Hopf bifurcation indeed occurs at= x*.

0< (13)

4. Hopf bifurcation

In this section, we are going to show that the nontrivial equilibriuss x* of Eq. (1)
can be destabilizedia a Hopf bifurcation. The time delaywill be used as a bifurcation
parameter. This result is obtained in Theorem 4.5.

Recall that the nontrivial equilibriuna = x* of Eq. (1) exists if and only ifig > 6 > 0.
In the following, without loss of generality, we assume that

Tmin = 0.

Again the results still hold whetin, > 0, but the proof is easier to understand whgp =0.
We look for purely imaginary roots of (1). Of course, we assume thit < 0, otherwise
x = x* is locally asymptotically stable. Let = iw, with ® € R, be a purely imaginary
characteristic root of Eq. (5). Thenandw satisfy the following system:
0+ f*(1—-2C(t, ) =0,
{ o+ 2B"S(t, w) =0, (14)
where

T

C(t,w) = % AT coqwr)dr, S(t,w)= % /0 sin(awr) dr.

First, one can see that= 0 cannot be a solution of (14). Otherwise- f* < 0. Moreover,
if w is a solution of system (14), thenw is also a solution of (14). Hence, we only look
for positive solutiongy.
One can check that (z, w) andS(t, w) are given, forr > 0 andw > 0, by
_sin(wr) 1— coSwr)

=K(wr), S, w)= ot

C(t, w)

where the functio is defined by (8). Consequently, system (14) can be rewritten as

_i+F
K(wr) = 2 , (15)
cowrt) —1 _ 1 (16)

(wr)?>  2fT
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Consider the sequence
{Xkhren = {x 20; x =tan(x)}
with
O=xp<Xx]<-"<Xp<--- .
In fact, one can check that
{xilken = (x=0; K'(x) =0},
Moreover, for allk € N*,
T
X € (kn, km + E) .
Define two sequencds;} and{v;}, fork € N, by
ug := CoSxr41) <0, v :=coLxx) > 0.
Using the definition of;, one can see that

up=K(xz1) and v = K (x).

659

(17)

Thus, the sequende iy IS increasing with—1 < uy <0 and the sequendey}icn iS

decreasing withip = 1 and O< v; < 1/2 for k > 1 (seeFig. 1).

Moreover,
lim Uy = lim v =0.
k—+00 k—+o00

Furthermore, one can check that, as soofi*as 0,
o+ p*

Z—ﬁ* < 1 = V0.
Finally, define a functiom, for x € [—-1, 1/2), by
2(1—x)
h(x) = T2
and set

h(vg) = +o0.

We have the following results about the properties of the fundtion

Lemma 4.1. Suppose that

h(uo)gnﬂoﬁ_é and 6+ f* #0.
0

(i) If 0 + p* > 0,then there exists € N such that

h(ur) <n Po=0 < h(ugi1).
Bo
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v0=1

0.8

0.6

K(x)

0 2 4 6 8 10 12 14 16 18

Fig. 1. The graph oK (x).

(i) If 6 + B* <0, then there existé € N such that

h(ver1) <n fo=0 < h(wy).
Po

Proof. Since the functioi is increasing on the intervél-1, 1/2), we can see that

Po—9
Bo

h(ui) <n

<h(urs1)

is equivalent to
>k

Up < ——— < Ups].

Also,

h(ver1) <n Po—0 <h(vp)

Po

is equivalent to

o+ B
25

The lemma now follows. [

Vk+1 < < Ug.



M. Adimy et al. / Nonlinear Analysis: Real World Applications 6 (2005) 651-670 661

Proposition 4.2. If

Bo—
0

0
<h(ugsn), keN,

h(uy) <n

then systen(il5)—(16)has exacth2(k + 1) solutions(ty 1, @1.1), - . . , (Tk+1.1, ®k+1,1) and

(11,2, W1,2), - .., (Tkt1,2, W41,2) With

wpat1 € (2 —Dm,xyq—1) fori=1,...,k+1,
w1.271,2 € (xg-12lT) fori=1,...,k+1

and
O<t11< <Tg411 <Tht12<'-- <T12.

(ii) If

-0
n ﬁO = h(Mk), k e N,
Bo
then systen(15)—(16)has exactly2k + 1 solutions(z1,1, w1.1),
(11,2, ©1,2), - - - » (Tk,2, Wk 2) With

w2712 € (x2-1, 2IT) fori=1,... k,

{wl,l‘tl’l € (2 —Dm,xpy_1) forl=1,... k,
Wf+1,1Tk+1,1 = X2k+1

and
O<ti1< " <T411<Th2<---<T12.
(i) If

<h(v), keN¥,

h(vk+1) <n
then systen(15)—(16)has exactly2k + 1 solutions(z1,1, w1.1),
(t1,2, W1.2), .. ., (Tk, 2, Wi, 2) With

11711 € (T/2, M),
w;at1 € (41, (+2)m) forli=2,...,k+1,
o212 € ((I+Dm, x41) fori=1,...,k

and
O<ti1< " <Tp411<Tg2<-+-<T12.
(iv) If

n Po—o _ h(vp), ke N*,

Bo

ooy (Tk41,1, Wk41,1) and

ooy (Tk+1.1, Wk4+1.1) and
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then systen{15)—(16) has exactly2k solutions(t1,1, ®1.1), ..., (Tk.1, @k.1) and (t1.2,
01.2), ..., (Tk,2, Wk,2), With

11711 € (1/2, ),

w171 € (x, (I + Dm) foril=2,...,k,

W] 2712 € 4+ Dr, x141) fori=1,...,k—1,
OF,2Tk,2 = X2k

and
O<t11< " <Th1<Thk2<-+-<T12.

) If

h(vy) <n oo _ h(vo),

then systenil5)—(16)has a unique solutiofiy, w1) such thatr; > 0 and
w171 € (0, m).

Proof. We only prove (i) wherk = 0. The other cases can be deduced similarly. Assume
that

h(ug) <n < h(uq).

0
This is equivalent to
ot p
2p*
The functionK is strictly negative and decreasing om, x1) with K(y) € (uo,0) (see
Fig. 1. So the equation

ug < <uj.

o+ p*
K = —F
has a unique solutiop on the intervalz, x1). Set
B (y1)?
T1,1=

2p*(cosgy1) — 1)

andw1,1 = y1/7t1.1- Then,(t1,1, w1,1) is the unique solution of system (15)—(16) satisfying
1,171,1 € (7, X1).

Moreover, the functiorK is strictly negative and increasing @y, 2n) with K(y) €
(10, 0), so the equatiork (y) = (6 + *)/2* has a unique solution, on the interval
(x1, 27). Set

(v2)?

2= 2% (cosyz) — 1)
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and w12 = y2/t1,2. Then,(t1,2, 1,2) is the unique solution of system (15)—(16) which
satisfieany 2112 € (x1, 2m).
Furthermore, the functiol is nonnegative of0, =] and

=K = min K(x).
ui (x3) xrglgr (x)
Therefore, system (15)—(16) has two solutiofig,1, w1,1) and(t1,2, w1.2).

Finally, using the fact that cog;) < coSy2), we obtain that 1 < 71, 2. This completes
the proof. [J

Lemma 4.1 and Proposition 4.2 give conditions for the existence of pairs of purely
imaginary roots of Eq. (5). In the next proposition, we study the properties of the purely
imaginary roots of (5).

Proposition 4.3. Assume that there existsta> 0 such that Eq(5) has a pair of purely
imaginary rootstiw, for t = 7. with w, > 0. If

wcte # x; forall k e N,

where the sequendey }, . is defined by17), then+iw, are simple roots such that

d Re(A )

o) >0 if wete € (X2, x2441)s

dr — (18)
d Re(A

&) <0 if wete € (X241, X2k+2), ke N.

dr =1,

Proof. Assume that there existsta> 0 such that Eq. (5) has a pair of purely imaginary
rootstiw, for t = 7, with w, > 0. Then,w,z. satisfies system (15)—(16).

Assume thato.t. # x; for all k € N. Let us show that-iw, are simple characteristic
roots of (5). Using (7), one can see thato. are simple roots of (5) if

1+ Zﬁ*a—S(Tc, w:) #0 or a—c(rc, we) #0.
ow ow
We wiill show that
0
9€ 2. ) £ 0.
ow

A simple computation shows that

€ w):g(wcrc)
da= ¢ w21,

where the functiony is defined by
g(x) =x cogx) — sin(x) for x>0.
One can check that(x) =0 if and only if there exists &y € N such that = x;,. Moreover,

g(x)>0 if and only if x € (xgkt1, X2k+2), k€ N.
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This yields that
oC .
—(te, we) <0 if wete € (X2, X2441) (19)
ow
and
C .
_w(TCa w:) >0 if wete € (X2k 41, X2k 42)- (20)

Hence fiw, are simple characteristic roots of (5).
LetA(t)=pu(r)+iw(t) be acharacteristic root of (5) such thiat. ) =+iw,.. By separating
the real and imaginary parts, we obtain that

w(r) + 0+ p* — % /0 e “9" cogw(t)r) dr =0,

(1) + Zf / e HOr sin(w(t)r) dr = 0.
0

We denote by (7) (respectivelyw’ (1)) the first derivative ofi(t) (respectivelyw(t)) with
respect ta. Fort = 7., we obtain that

©(Te) [1 + 2/3 0 35 7 wt)}

= Zﬁ*%(l’c’ w)w' (te) + 2 (coswte) — C(Te, W) (21)
and
oS
o' () [1 + 25 5 (e, wc)}
= _zﬂ*%(fc’ wc)ﬂ/(fc) + (S(te, w¢) — sin(w,te)). (22)

c

We consider two cases. First, assume that

1+ 26" os 5o, (e 00) = (23)
One can verify that

1—{—2/3 (Tc,a)L)—2+(5+/3)rc

Consequently, (23) is equivalent to
2

o+ p

Then, it follows from Eq. (22) that

Te=—

(24)

¢ —si c
_C(‘L'c, wC):u/(Tc) — S(te, we) — SIN(W(T¢) ‘
) -
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Moreover, by using (15) and (16), we have

S(te, ) — sin(wete) 1 — (COSW Te) + WcTe SN Te))
T, a .12
o+ p*
— 4—ﬁ*wc.

Hence, (24) implies that

oC , We¢
%(Tc, W)U (Te) = m <0.
Since(0C/0w)(t., w.) # 0, we have

:u/(fc) # 0.

Furthermore, the sign qf (z..) is the same as the sign ef(0C /0w)(t., w.).
We now assume that

oS
1+ 2B*$(rc, w) # 0.
Then, by using (21) and (22), we obtain thétz.) satisfies

2 2
/J/(Tc) |:<1 + Zﬂ*a_S(TCv wc)) + <2ﬂ*2_g(707 wc)) ]

Zﬁ

[2[3 = (T, W) (S(T¢, ) — SiN(wcTc))
+ (1 + Zﬁ*%(rc, wc)) (cogw,te) — C(te, wc))} :
Using the definitions o€ andS, one can check that

oC . oS
—(Te, W) (S (e, W) — SIN(WeTe)) + = (T¢, W) (COL W Te) — C (T, @¢)) =0.

ow ow
Hence,
2 2
0
weo | (1428 S o0) + (2L e 00
ow ow
2p*
= (cos ) — C(Te, ).
Notice that

cow.tc) — C(t¢, Wc) _ g(a)CTC) = & a_C(TLv W) # 0.

T, T2 Te




666 M. Adimy et al. / Nonlinear Analysis: Real World Applications 6 (2005) 651-670

Since 1+ 2*(0S/0w) (1., w.) # 0, it follows that
2 2
1+ Zﬂ*a—S(TC, o) | + Zﬁ*a—c(rc, w:) | >0.
ow ow

Consequentlyy/(z.) # 0,andthe signaf’(z.) is the same as the signefoC /0w) (1., w.).
In summary, by using (19) and (20), we have obtained that; for., Eq. (5) has a pair
of simple purely imaginary root&iw, satisfying (18). This completes the proofl]

Remark 4.4. If there exists & € N* such thato.t. = x, then eithetkiw, are not simple
roots of (5) or

dRe(2)

=0.
dt

T=T¢

Using a similar argument as in the proof of Proposition 4.2, we obtain that

C
%(Tm W) = 0.
Thus, ift. = —2/(0 + %), thentiw, are not simple roots of (5) and,df # —2/(5 + %),
then
dRe/)

=0.
dt

T=Tc¢

In the next theorem, we show that there exists a Hopf bifurcation at the nontrivial equi-
librium x = x™* of Eq. (1).

Theorem 4.5. Assume that

h(uo) <n bo=0 4 5+ p* #£0.
Bo
Then the equilibriumx = x™* is locally asymptotically stable whéh<t < 7, Wherezg :=
min{z.; w.t. # xx, k € N}, with (7., w.) solutions of(15)—(16),and unstable when
10 < T< 17, Wherer; is the largest value of, such thatw.7. € (x2¢, x2¢+1), kK € N. When
T = 19, @ Hopf bifurcation occurs at = x*.

Proof. We first check thatt = x™* is locally asymptotically stable when € [0, tp).
Notice that whernr € [0, 7p), Eq. (5) does not have purely imaginary roots. két- 0
be small enough and fixed. Assume that, foe (0, t*), Eq. (5) has a characteristic root
A(t) = u(t) + iw(r) with u(r) > 0. Separating the real and imaginary parts, we obtain

W) =—@0+ 5+ % / i e MO cogw(t)r) dr
0

and

2p*

T

w(t) =—

T
/ e O sin(w(t)r) dr.
0
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We deduce that, for € (0, t*),

H@I<I6+ 1= 26" and o)< — 26"
Consequently,

TIiLnO tu(t)y=0 and Tirrg tw(t) = 0.
Integrating by parts, we obtain

2u(t) = — (0 + f*) + 2 e O K (to(1)).
Sinceu(t) > 0, we have for € (0, t*) that

— (04 f*) + 2p e DK (tw(1)) > 0.
Whenrt tends to zero, we obtain

p*—0=0.

However,* — d < 0. This is a contradiction. Therefore, fok (0, t*), u(r) < 0. Applying
Rouché’s Theorer{b, p. 248] we obtain that all characteristic roots of (5) have negative
real parts when € [0, 1g). Thereforex = x* is locally asymptotically stable.

Using Lemma 4.1, Propositions 4.2 and 4.3, we conclude to the existengeTdfis
concludes the proof.

We illustrate the results of Theorem 4.5 in the next corollary.

Corollary 4.6. Assume that the paramete¥sfy and n are given by2). Then there exists
a unique value, > 0 such that the equilibrium = x* is locally asymptotically stable when
T < 7. and becomes unstable when t.. Moreover whent =z, a Hopf bifurcation occurs
atx = x* and Eq.(1) has a periodic solution with a period close 46 days(see Fig.2).
The value of;. is approximately given by

7. >~ 18 days

Proof. With the values given by (2), we obtain

-
pPo=9 L 5o153s h(v1) ~ 2.3455

Bo
Hence, Proposition 4.2 implies that system (15)—(16) has a unique solatian,.) with
7. >0 andw.t, € (0, n). From Theorem 4.5, we know that the nontrivial equilibrium
is locally asymptotically stable when< z., becomes unstable whern> ., and a Hopf
bifurcation occurs at = x* for t = 7.. Consequently, fot = 7., Eq. (1) has a periodic
solution with a period close torg .. One can check that

7. ~ 18 days and w, >~ 0.138

Computer simulations confirm our analysis (&g 2). O
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Fig. 2. With the values given by (2) aril= 1.62 x 108 cells/kg, Eq. (1) has a periodic solution for= 18.2 days.
This solution has a period about 50 days (see (a)). The plottpfversusx (r — 1) (see (b)).
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As mentioned earlier, the results in Theorem 4.5 still hold whgp > 0. However, in
this case, the computations in the proof of Theorem 4.5 are much more complicated.

5. Discussion

Hematological diseases have attracted a significant amount of modeling attention because
a number of them are periodic in naty83. Some of these diseases involve only one blood
cell type and are due to the destabilization of peripheral control mechanisms, e.g., peri-
odic auto-immune hemolytic anenia, 13]. Such periodic hematological diseases involve
periods between two and four times the bone marrow production/maturation delay. Other
periodic hematological diseases, such as cyclical neutrofniavolve oscillations in all
of the blood cells and very long period dynamics on the order of weeks to mfihig
and are thought to be due to a destabilization of the pluripotent stem cell compartment from
which all types of mature blood cells are derived.

We have studied a scalar delay model that describes the dynamics of a pluripotent stem
cell population involved in the blood production process in the bone marrow. The distributed
delay describes the cell cycle duration. We established stability conditions for the model
independent of the delay. We have also observed oscillations in the pluripotent stem cell
population through Hopf bifurcations. With parameter values given by Majg&], our
calculations indicate that the oscillatory pluripotent stem cell population involves a period
of 46 days.

It will be very interesting to study the dynamics of the two-dimensional systems
[9,10,12,14Jmodeling the proliferating phase cells and resting phase cells with distributed
delays. We leave this for future consideration.
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