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0. Introduction

0.A. General introduction. This work brings two of the major areas

in algebraic geometry, namely Hodge theory and moduli, to bear on

the study of a particular very beautiful algebraic surface. As will now

be explained, underlying the choice to focus on a particular surface

is that as an example it provides a means to experimentally explore

the general relationship between moduli and Hodge theory in a first

non-classical case. The surface we will study is an H-surface, which

is by definition a smooth minimal algebraic surface X of general type

satisfying {
K2
X = 2

pg(X) = 2, q(X) = 0.

The “H” stands for Hoikawa, who analyzed them in [Ho79]. For us

among the salient aspects of this surface are

• X is of general type, so its KSBA moduli space [Ko13] MH is

defined and is a projective variety.

It follows from [Ho79] that MH is reduced, irreducible and of dimension

equal to 26.

• The Hodge numbers are h2,0(X) = 2, h1,0(X) = 0, and con-

sequently the corresponding period domain D is non-classical;

i.e., it is not a Hermitian symmetric domain.

This latter property implies that the period mapping

Φ : MH → Γ\D

satisfies a differential constraint, the infinitesimal period relation (IPR).

In this case dimD = 55 and the IPR is a contact distribution, so the

maximal local integrals have dimension 27.

• The numbers K2
X and hp,q(X) are small and are close to ex-

tremal in terms of Noether’s inequality. Thus the geometry

of X is particularly rich, and one may explore the relation-

ship between moduli and Hodge theory without the technical

complications of a more general case.
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Although for general KSBA moduli spaces MKSBA the local singularity

structure of degenerate surfaces X0 corresponding to boundary points

in ∂MKSBA = M
KSBA\MKSBA is understood, to our knowledge there is

no example where the global structure of the components of ∂MKSBA

and structure of a general X0 corresponding to a particular boundary

component has been worked out.

In the cases of curves, abelian varieties and polarized K3’s, Hodge

theory serves as a guide to suggest the global structure of the singular

varieties corresponding to boundary points in the moduli space M. In

these cases the period domain is classical and one may use the Satake-

Bailey-Borel (SBB) compactification Γ\D∗ and extension of the period

map to

Φe : M→ Γ\D∗

together with known, Lie-theoretic structure of ∂(Γ\D) to infer prop-

erties of ∂M.

For general period domains D, from the works of Schmid [Sc72],

Cattani-Kaplan-Schmid [CKS86], Kato-Usui [KU08] and others, one

has an understanding of which Hodge-theoretic objects may be used

to provide toroidal-type extensions of Γ\D’s. More recently, using the

still developing theory of näıve or reduced limit period mappings, one

is gaining a picture of how the orbit GR-structure of D ⊂ Ď may lead

to a SBB-type completion Γ\D∗ of Γ\D’s. A guiding principle for this

work is

• the analogue of the SBB compactification may be expected to

be of significant use in analyzing the algebro-geometric aspects

of boundaries of moduli spaces.

Here we shall carry out this program for weight n = 2 period domains

and H-surfaces. One main new point is that the IPR forces several

phenomena in the boundary component structure of Γ\D∗ that are

not present in the classical HSD case. These include (terms to be

explained below)
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— non-linearity in the partial ordering of the boundary compo-

nents;

— non-convexity.

One of the main results in this paper, stated informally here, is

Theorem A: Let M be a KSBA-moduli space for algebraic surfaces

of general type. For the corresponding period domain D and global

monodromy group Γ, the completion Γ\D∗ may be constructed and the

period mapping Φ : M→ Γ\D extends to

Φe : M→ Γ\D∗.

The image Φe(M) is a projective algebraic variety.

The Hodge-theoretic description of the boundary components is some-

what subtle: Roughly speaking, in the classical case of the SBB com-

pactification, set-theoretically the boundary components consist of the

associated graded’s to the polarized limiting mixed Hodge structures

(PLMHS’s) that arise when a family of polarized Hodge structures

degenerates. [However, in our non-classical case the boundary compo-

nents have the information of the associated graded plus some extension

data, which is however constant on the images under Φe of the bound-

ary components of M. This will have to be modified pending

what will emerge from Colleen’s work.]

For H-surfaces the boundary component structure is described by

II
''

0 // I

88

&&

IV // V,

III

77

where the Roman numerals depict the boundary components and the

arrows signify “contained in the closure of ”(“0” corresponds to D

itself). We will let R run through the index set {0, I, II, III, IV, IV}
and will denote the corresponding boundary component of Γ\D∗ by

(Γ\D)R. Our second main result, again informally stated, is
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Theorem B: For each R there is a KSBA boundary component ∂MH,R

and a non-constant map

Φe : ∂MH,R → Γ\DR.

Moreover, the incidence relations among the Γ\DR are realized by in-

cidence relations among the ∂MH,R and the maps Φe.

Intuitively, all of the possible Hodge-theoretic degenerations of the

Hodge structure of an H-surface are realized algebro-geometrically. In

this way, Hodge theory serves as a guide to understand the global

geometry of degenerate H-surfaces that appear in the boundary of the

KSBA moduli space MH . In particular, the non-classical properties of

∂(Γ\D) will then have implication for the boundary structure of ∂M.

We shall actually show that there are two types of boundary compo-

nents of MH that map to each boundary component of Γ\D∗. One are

boundary components where the surfaces have as singularities double

curves with pinch points on degenerations of such. The other is where

the surfaces have isolated singularities.

0.B. Introduction to H-surfaces. An H-surface is a smooth mini-

mal algebraic surface of general type that satisfies

K2
X = 2

pg(X) = 2, q(X) = 0.

Using standard results from the theory of algebraic surfaces [BPVdV84],

the first condition is equivalent to giving the Hilbert polynomial
∑

m=0 χ(mKX).

The second of the above conditions are Hodge theoretic.

Among our reasons for choosing to focus on H-surfaces are

• H-surfaces are close to extremal in terms of Noether’s inequal-

ity (loc. cit.)

pg(X) 5
K2
X

2
+ 2;

• their polarized Hodge structure is the simplest of non-classical

type;
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• their structure was analyzed by Horikawa [Ho79], whence the

name we have given them.

Being of general type, H-surfaces have a KSBA moduli space MH

[Ko13], and from [Ho79] one sees that this moduli space fails to exhibit

the pathologies that frequently occur for algebraic surfaces [Va]. And

because the numbers h2,0(X) and K2
X are relatively small, the struc-

ture of the Hodge-theoretic boundary components of Γ\D is relatively

simple and the potential for the use of GIT methods is favorable.

Following some algebro-geometric and Hodge-theoretic preliminaries

in §I.A, in §I.B we shall reprove somewhat extended versions of the

results we need from [Ho79]. In particular, we determine the equa-

tions that define the bi-canonical model ϕ2KX (X) ⊂ P4 of a gen-

eral H-surface, as well as we also determine its pluri-canonical ring∑
m=0H

0(mKX).

The equations that define the bi-canonical model suggest an alter-

nate birational realization of X as a hypersurface X[ ∈ |OPE(4)| in PE
where E = OP1 ⊕ OP1 ⊕ OP1(2). Denoting by P2

t the fibre of PE → P1

over t ∈ P∗, for t 6= 0 the fibres Ct = X[ ∩ P2
t are the curves in the

canonical pencil |KX |; they have pa(Ct) = 3. Moreover, the hypersur-

face X[ is smooth outside of the intersection X[∩P 2
0 , which is a double

conic D0. This double conic has eight pinch points, and for a general

H-surface the corresponding branched cover C0 → D0 is the unique

hyperelliptic curve in the canonical pencil |KX |. The presence of C0 is

perhaps the distinguishing feature of the geometry of an H-surface.

A very pleasing feature of H-surfaces is that one may see them quite

explicitly. In fact, a number of the results about H-surfaces are in part

established by geometric arguments based on the pictures given in §I.D,

of both H- and H#-surfaces. An illustration of this is the following

Torelli-type result: As is the case for any pencil of curves on a smooth

surface, the canonical pencil |KX | defines a variation of polarized Hodge

structure (VHS) (V,F) over P1 (the notations are explained in §I.D).

Theorem: (V,F) determines the H-surface X.
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The realization of X as X[ ⊂ PE suggests the consideration of

smooth membersX# ∈ |OPE(4)| of the complete linear system PH0(PE,
OPE(4)). Then X# → X[ is a KSBA degeneration. Although the

H#-surfaces X# have a less interesting intrinsic geometry than do H-

surfaces, being smooth hypersurfaces implies that various cohomologi-

cal calculations are simpler than those for H-surfaces and help to sug-

gest the way that the latter should go. H#-surfaces and their properties

are discussed §I.E.

In §I.F in terms of the equation of X[ ⊂ PE we shall compute the

tangent space to moduli of a general H-surface as

TXMH
∼=
H0(PE, ξ4 ⊗ J)

aut(PE)
.

Here we have set ξ = OPE(1), and J ⊂ OPE is an ideal that contains the

information of both the double conic D0 and the pinch points. This

result exhibits clearly the singular role that the unique hyperelliptic

curve C0 ∈ |KX | plays in the geometry of H-surfaces.

In §I.G we shall establish the generic local Torelli theorem for both

H#- and H-surfaces. The method is to express in cohomological terms

the differential

Φ∗ : TXMH → TΦ(X)D

of the period mapping and carry out a cohomological computation to

verify the injectivity of Φ∗. Although this is done classically in gener-

ality for varieties that are sections of sufficiently ample line bundles in

an ambient variety, the situation here is quite a bit more subtle and we

are only able to verify the injectivity of Φ∗ for particular “Fermat-like”

H#- and H-surfaces. We note that for H-surfaces this differential is

the natural map

H0(PE, ξ4 ⊗ J)

aut(PE)
⊗H0(PE, ξ ⊗ h−1)→ H0(PE, ξ5 ⊗ h−1 ⊗ J)

aut(PE)
.

Here, ξ⊗h−1 restricts to the canonical bundle on X[, the h−1 reflecting

the adjunction conditions imposed by a double curve on the canonical

series. The term on the RHS is a subspace of H1(Ω1
X)prim, and one
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notes the interesting point that whereas the pinch points do not impose

conditions on H0(Ω2
X), they do impose them on H1(Ω1

X).

In §I.G we show that the global monodromy representation

π1(MH)→ Aut(H2(X,Z)prim)

has as image an arithmetic group Γ. The method here is to first use

Lefschetz-style geometric arguments ([Le24]) to produce generators for

Γ, and to show that the cycles giving the Picard-Lefschetz transforma-

tion for the generators of Γ span H2(X,Q)prim. Here the issues are (i)

the line bundle ξ → PE is not very ample, so that the dual variety Q̌0

of the image Q0 of PE under |ξ4| will have singularities in codimension

1, and (ii) X[ is not a general member of |ξ4|, but rather has singu-

larities arising from the unique hyperelliptic curve C0 ∈ |KX |. Once

again, it is this C0 that plays a central role in the geometry of an H-

surface. In any case, by using the pictures of an H-surface from §I.D
we are able to analyze the effect of both issues (i) and (ii) which, when

coupled with purely group-theoretic considerations of the type given

in [Be84], allows us to give an argument, if not a modern proof, of the

arithmeticity of Γ.

To conclude this part of the introduction we note a little interesting

numerology:

• dimMH = 26;

• the period mapping is Φ : MH → Γ\D where dim = 55;

• the image Φ(MH) is an integral variety of dimension 26 (by

generic local Torelli) of the infinitesimal period relation (IPR);

• in the situation when h2,0 = 2 the IPR is a constant distribu-

tion whose maximal integrals have dimension 27.

Thus the image Φ(MH) is of codimension 1 in a maximal integral of

the IPR, and history suggests one may expect some as yet undiscovered

geometry as a result.
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I. H-surfaces

I.A. Algebro-geometric and Hodge-theoretic preliminaries. We

shall generally follow the terminology and notation in [BPVdV84] for

the theory of algebraic surfaces. Our algebraic surfaces X will either

be smooth or will have singularities of KSBA type [Ko13]. In case X

is smooth and C ⊂ X is a reduced curve, we denote by ωC the dual-

izing sheaf. Locally, if C is given by an equation f(x, y) = 0, then the

sections of ωC are Poincaré residues

Res

(
g(x, y)dx ∧ dy

f(x, y)

)
=
g(x, y)dx

fy(x, y)
.

We also use the standard notation pa(C) for the arithmetic genus of a

curve on a surface.

The surfaces we consider will either be smooth, have hypersurface

singularities or will be quotients of the latter by a finite group. If

the hypersurface is locally f(x, y, z) = 0 where all factors of f have

multiplicity one, then adjunction conditions will mean those conditions

on g(x, y, z) that the the Poincaré residue

Res

(
g(x, y, z)dx ∧ dy ∧ dz

f(x, y, z)

)
=
g(x, y, z)dx ∧ dy

fz(x, y, z)

∣∣∣∣
f=0

pull back to a holomorphic form on one, and hence on any, resolution

of singularities of f(x, y, z) = 0. For an H-surface X with birational

model X[ as above, these adjunction conditions are given by the van-

ishing of g(x, y, z) on D0.

The vanishing theorems we shall use will also be the standard ones

from [BPVdV84]. Specifically, if X is a surface that is minimal and of

general type, then

hq(mKX) = 0 for q > 0,m = 2.

We shall use the terminology and notations from the classical theory

of linear systems. Thus if L→ Y is a holomorphic line bundle over an

irreducible variety Y , then

|L| = PH0(Y, L)
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will denote the projective space of divisors of non-zero sections of L. We

will think of complete linear systems |L| as defining a rational mapping

|L| : Y 99K PH0(Y, L)∗.

The notations

mL = Lm = L⊗m

will be used interchangeably. For line bundles L,L′ we will set |mL +

m′L′| = |Lm ⊗ L′m′|.
We shall identify the group Pic of line bundles with the group divisors

modulo linear equivalence. In case Y is regular (h1,0(Y ) = 0) via the

Lefschetz (1,1) theorem we shall also identify PicY with the group of

Hodge classes Hg1(Y,Z) = H2(Y,Z) ∩H1,1(Y ).

Among the specific algebro-geometric notations we shall use are

• X = H-surface (§I.B);

• |mKX | = PH0(Km
X ) are the pluri-canonical systems (§I.B);

• ϕmKX : X 99K PH0(mKX)∗ are the pluri-canonical maps;

• MH = KSBA moduli space for H-surfaces [Ko13];

• MH = canonical compactification of MH and ∂MH = MH\MH ;

• E = OP1 ⊕OP1 ⊕OP1(2) and PE π−→ P1 is the corresponding projec-

tive bundle with fibres (PE)t = PE∗t over t ∈ P1 (§I.C);

• ξ = OPE(1) and h = π∗OP1(1) (§I.C);

• f : PE → P4 is the map given by |ξ| = PH0(PE, ξ) ∼= PH0(P1, E)

(§I.C);

• Q0 = {x0x2 = x2
1} ⊂ P4 is the image f(PE) (§I.C);

• P(1, 1, 2, 2) is the weighted projective space (§I.C);

• X# ∈ |ξ4| is an H#-surfaces (§I.E);

• X̂ = blow up of X at the base points of |KX |;
• g : X̂ → PE is the canonical map with image X[ = g(X̂) ∈ |ξ4|

(§I.C).

We shall now briefly review some of the definitions and notations from

Hodge theory that will be used.
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Definition: A polarized Hodge structure (PHS) (V,Q, F ) of weight n

is given by

• a Q-vector space V and a non-degenerate bilinear form

Q : V ⊗ V → Q, Q(u, v) = (−1)nQ(v, u);

• a decreasing Hodge filtration F n ⊂ F n−1 ⊂ · · · ⊂ F 0 = VC that

satisfies

F p ⊕ F n−p+1 ∼−→ VC, 1 5 p 5 n;

and where the two Hodge-Riemann bilinear relations HRI and

HRII given below are satisfied.

Given a PHS, if we set

V p,q = F p ∩ F q

then we have the usual Hodge decomposition

VC = ⊕
p+q=m

V p,q, V q,p = V p,q.

Conversely, given such a Hodge decomposition we may define a Hodge

filtration by

F p = ⊕
p′=p

V p′,n−p′ .

The Hodge numbers are defined by hp,q = dimV p,q, and we set fp =∑
p′=p h

p′,n−p′ . The Weil operator

C : VR → VR

is defined by

C(v) = ip−qv, v ∈ V p,q.

In terms of it, HRI and HRII are given by

(HRI) Q(F p, F n+p+1) = 0

(HRII) Q(v, Cv) > 0 for v 6= 0.

We remark that in all the geometric situations that will arise in this

work there will be a lattice VZ ⊂ V ; the bilinear form Q
∣∣
VZ

will in

general be Q, but not Z, valued.

Example: Let C be a smooth, connected algebraic curve. Then taking
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• VZ = H1(C,Z);

• Q = cup-product;

• F 1 = H0(Ω1
C)

gives a PHS of weight n = 1.

Example: Let X be a smooth algebraic surface of general type. Then

taking

• V = {v ∈ H2(X,Q) : Q(v, c1(KX)) = 0};
• Q = cup-product restricted to V ;

• F 2 = H0(Ω2
X)

gives a PHS of weight n = 2.

We note that for weight n = 2, F 2 determines F 1 by F 1 = F 2⊥.

In practice, we will sometimes describe HS’s by classical period ma-

trices and Hodge norms by

‖ω‖2 =

(
i

2

)n(n−1)
2
∫
Y

ω ∧ ω, ω ∈ H0(Ωn
Y ).

This will be especially the case when we discuss the curvature of the

Hodge bundles along boundary components in moduli.

When only F(V, F ) is given satisfying the second property VC =

⊕
p+q=n

V p,q, V q,p = V p,q in the definition of a PHS, we speak of a pure

Hodge structure of weight n.

Definition: (i) A period domain D is the set of PHS’s (V,Q, F ) with

given Hodge numbers hp,q. (ii) The compact dual Ď is the set of filtra-

tions F with given fp = dimF p and satisfying HRI.

Setting G = Aut(V,Q), it is known (see §II below) that

Ď = GC/P where P ⊂ GC is a parabolic subgroup
∪
D = GR/H , where H = P ∩GR and D is an open GR-orbit in Ď.

Examples: For weights n = 1, 2 we have

• n = 1, D = Sp(2g,R)/U(g) ∼= Hg (Siegel’s generalized upper-

half-plane) where h1,0 = g;

• n = 2, D = SO(2a, b)/U(a)× SO(b) where h2,0 = a, h1,1 = b.
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We note that in the n = 1 case D is classical, and that in the n = 2

case D is classical if, and only if, a = 1. The main interest in this work

is the first non-classical case

n = 2, h2,0 = 2.

Definition: We define the infinitesimal period relation (IPR) to be

the GC-invariant distribution I ⊂ TĎ given by

I = {
�
F ,

�
F
p ⊆ F p−1}.

Here we are thinking of a tangent vector
�
F to a curve {F p

t } in Ď to be

what one gets by

�
F
p =

{
dF p

t

dt

∣∣∣∣
t=0

mod F p
0

}
.

Example: When n = 2 and h2,0 = 2, dimD = 2h1,1 + 1 and I is

a contact distribution whose maximal local integral manifolds have

dimension h1,1.

In the following definition we will have a complex manifold S and a

monodromy representation

ρ : π1(S)→ GZ

with image Γ.

Definition: A variation of Hodge structure (VHS) (V,F) is given by

a locally liftable, holomorphic mapping

Φ : S → Γ\D

that satisfies the IPR

Φ∗ : TsS → IΦ(s).

The notation suggests that we may think of a VHS as equivalently

given by a local system V→ S together with a filtration F on V⊗QOS

which at each point gives a PHS that satisfies

dF p
s ⊆ F p−1

s .

We observe that the usual notation is to give a flat connection

∇ : F → F ⊗ Ω1
S
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that preserves Q and that satisfies

∇(Fp) ⊆ Fp−1 ⊗ Ω1
S.

Always assumed to exist is the form

Q : V⊗ V→ Q

that induces the polarization at each fibre.

Example: Let Y be a smooth algebraic surface with a fibering Y
π−→ P1

by curves Ct = π−1(t). Then all but finitely many Cti are smooth, and

for S = P1\{ti} we obtain a VHS whose general fibre is the PHS on

H1(Ct).

For us the most important case will be when the Cti are nodal. Then

a canonical extension of F to all of P1 is given by the direct image

π∗ωY/P1 of the relative dualizing sheaf [BPVdV84].

Given a VHS there are defined the Hodge filtration bundles Fp → S

and Hodge bundles

Vp,q = Fp/Fp+1.

Of particular importance is Fn, and what is generally referred to as the

Hodge bundle

λ =: detFn.

By abuse of notation we shall not distinguish between the Hodge bundle

and its degree when the latter is defined.

The polarizing forms induce metrics in the Hodge bundles, and the

associated curvatures have special properties [CM-SP]. For us the most

important is the positivity of the Hodge bundle, as expressed by

Ωλ(v) = ‖Φ∗(v)‖2, v ∈ TsS.

In §IV.C we will give a general discussion of the curvature properties

of Fn, which have the positivity of the Hodge bundle as a particular

consequence.

Definition: A mixed Hodge structure (MHS) (V,W, F ) is given by

• a Q vector space;
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• an increasing weight filtration W0 ⊂ · · · ⊂ Wm = V defined

over Q; and

• a decreasing Hodge filtration Fn ⊂ Fn ⊂ · · · ⊂ F0 = VC

such that the induced filtration

F p(GrWm ) =
F p ∩Wm +Wm−1

Wm−1

defines a pure Hodge structure of weight m on the associated graded’s.

A mixed Hodge structure is a special kind of successive extensions

of pure Hodge structures. These extensions are generally not split.

However, over R there is a canonical Ip,q-decomposition of VC that is

as close as possible to giving an R-splitting. It is characterized by

• VC = ⊕Ip,q;
• Wm = ⊕

p+q5m
Ip,q;

• F p = ⊕
p′=p

Ip
′,q;

• Ip,q ≡ Iq,p mod Wp+q−2.

In this work we shall be especially interested in the Ip,0 terms associ-

ated to the PLMHS (defined below) arising from a KSBA degeneration

of a smooth surface of general type. In examples these spaces will gen-

erally be fairly easily describable by residues, as is of course the case

for algebraic curves and where again in the surface case the involution

on double curves with pinch points will play a central role.

Example: IfX0 is a possibly singular algebraic surface, thenH2(X0,Q)

has a MHS where the weights are W0 ⊂ W1 ⊂ W2.

For the next definition we recall that a nilpotent endomorphism N =

End(V ), Nm+1 = 0 but Nm 6= 0, defines a unique weight filtration

Wm(N)

Wm(N) ⊂ · · · ⊂ W0(N) ⊂ · · · ⊂ Wm(N)

characterized by{
N : Wk(N)→ Wk−2(N)

Nk : Gr
W (N)
k V

∼−→ Gr
W (N)
−k V, k = 0.
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For k = 0 we set

Gr
W (N)
k,prim V = ker{Nk+1 : Gr

W (N)
k V → Gr

W (N)
−k−2 V }.

In practice we will have Q : V ⊗ V → Q and N ∈ EndQ(V ). Then

Wk(N) = Wm−k+1(N)⊥,

and using Q the spaces Gr
W (N)
k V and Gr

W (N)
m−k V are in duality.

Definition: A limiting mixed Hodge structure (LMHS) is a mixed

Hodge structure (V,W (N), Flim).

Again we will always have a Q : V ⊗ V → Q, and it will be assumed

that for k = 0 the bilinear forms

Q̃k : Gr
W (N)
k,prim V ⊗Gr

W (N)
k,prim → Q

Q̃k(u, v) = Q(u,Nkv)

polarize Gr
W (N)
k,prim V . This structure is referred to as a polarized limiting

mixed Hodge structure (PLMHS).

Example: Let X∗
π−→ ∆∗ be a family of smooth, projective varieties

Xt = π−1(t). This means that X∗ is smooth, we have X∗ ⊂ PN and π

has everywhere maximal rank. Then it is known that the monodromy

T : Hm(Xt0)prim → Hm(Xt0)prim

is quasi-unipotent; i.e., (T `− I)m+1 = 0 for some ` > 0. Replacing t by

t
′` and pulling back (base change), we may assume that T is unipotent

with logarithm

N = (T − I)− (T − I)2

2
+

(T − I)3

3
− · · · .

Then in a manner that will be made precise below, for V = Hm(Xt0)prim

lim
t→0

Hm(Xt)prim = (V,W (N), Flim)

defines a PLMHS ([Sc72], [CKS86], [PS08]).

I.B. Definition of H-surfaces; the canonical series and bicanon-

ical map.

Definition: An H-surface is a smooth, minimal algebraic surface X

that satisfies the conditions
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• X is of general type,

• pg(X) = q(X) = 0,

• K2
X = 2.

The “H” stands for Horikawa, in whose paper [Ho79] these surfaces

were introduced and described. Our interest in them is that they are

in a sense the first surfaces that one encounters whose Hodge structure

is not of classical type; i.e., the corresponding period domain is not a

Hermitian symmetric domain.

Theorem [Ho79]: For a general H-surface X,

(i) the bicanonical map

ϕ2KX : X → X ′ ⊂ P4

is a birational morphism whose image is given by the equations{
x0x2 = x2

1

x0G(x) = F (x)2

where G(x), F (x) are a general cubic and quadric respectively;

(ii) a general C ∈ |KX | is a smooth, non-hyperelliptic curve of

genus g(C) = 3;

(iii) there exists exactly one hyperelliptic curve C0 ∈ |KX |;
(iv) the singular locus X ′sing is a double conic D0 given by{

x0 = x1 = x2 = 0

F (x)2 = 0.

There are eight pinch points given by {x0 = x1 = x2 = 0},
F (x) = 0, G(x) = 0 together with the image of the base points

of the canonical pencil |KX |, and the restriction ϕ2KX : C0 →
D0 is the corresponding branched cover;

(v) X is the normalization of X ′, and for any X ′ given by the

equations in (i) where F and G are general the normalization

is an H-surface.

The definition of what it means for X to be general will be given during

the course of the proof below.
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Elsewhere in this work we shall need to extend this result to logH-

surfaces, and with this in mind we shall give a proof of the above

theorem beginning with a heuristic geometric argument that suggests

where the particular form of the equations comes from.

Proof. We will begin with showing that for a general H-surface X

(a) the bicanonical map ϕ2KX : X → P4 is regular and birational

with image a surface X ′ lying on the singular quadric Q0 =

{x0x2 = x2
1};

(b) for C ∈ |KX | the restriction

ϕ2KX

∣∣
C

= ϕKC

is the canonical map, and there is exactly one hyperelliptic

C0 ∈ |KX | for which ϕKC0
is a 2:1 branched covering over a

double conic.

Taking the double conic to lie in the plane x0 = x1 = x2 = 0, it follows

that the equations of X ′ ⊂ Q0 may be taken to be x0G = F 2.

Since pg(X) = 2 the canonical series |KX | is a pencil, and one of the

conditions that X be general is

|KX | has no fixed component.

Then the canonical pencil has two base points, and by Bertini’s theorem

a general C ∈ |KX | will be smooth away from them. Since K2
X = 2, a

general C ∈ |KX | cannot be singular at a base point, and it is therefore

a smooth curve of genus

g(C) =
1

2
(KC · C + C2) + 1 = 3.

Letting t0 ∈ H0(KX) define C, the condition q(X) = h1(KX) = 0 of

regularity together with the exact cohomology sequence of

0→ KX
t0−→ 2KX → KC → 0

gives h0(2KX) = 5. In fact, this remains true for any C ∈ |KX | and

with ωC replacing KC . The reasons for this are that C has no multiple

components, pa(C) = 3, and due to the assumption that X be minimal

C has no exceptional −1 curves as components.
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It follows that ϕ2KX has no base points, and our second generality

assumption is

ϕ2KX : X → X ′ ⊂ P4 is birational.1

If t0, t1 ∈ H0(KX) are a basis, then from the cohomology sequence

0→ H0(KX)
t0−→ H0(2KX)→ H0(KC)→ 0

we will have a basis t20, t0t1, t
2
1, x3, x4 for H0(2KX). It follows that X ′

lies in the quadric Q0 defined by x0x2 = x2
1, and since (2KX)2 = 8

X ′ = Q0 ∩ Y

where Y is a surface of degree 4. Since ϕ2KX is birational, this surface

is reduced.

This completes the proof of (a), and we now turn to (b) which will ini-

tially be a heuristic enumerative argument whose steps will be justified

later. The key point is to show that there is exactly one hyperelliptic

curve C0 ∈ |KX |, and for this we shall use Esteves formula [Est13]

h = 9λ− δ0 − 3δ1,

where

h = # hyperelliptics in |KX |

λ = degree of the Hodge bundle

δ1 = # of nodal reducible curves Ci with g(C̃i) = 3

δ0 = # of nodal irreducible curves (which for a general X will turn

out to have one node, and therefore g(C̃i) = 2)

to compute that h = 1. Along the way we shall derive several formulas

that will be used later.

We denote by X̂ the blow up of X at the base points of |KX |, so

that we have a fibration

X̂
π−→ P1

1In [Ho79] the H-surfaces for which |KX | has a fixed component or ϕ2KX
fails

to be birational are classified. They give proper sub-varieties in the KSBA moduli
space MH .
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with fibres the curves in the canonical pencil. We then use

χ(OX̂) =
1

12

(
K2
X̂

+ χ(X̂)
)

(Noether’s formula)

pg(X̂) = 2, q(X̂) = 0

K2
X = 2⇒ K2

X̂
= 0

to give for the topological Euler characteristic

χ(X̂) = 30.

We now use that the singular fibres Ci of X̂ → P1 are nodal with no

node being a base point of |KX | (to be justified in Section H below),

together with the general topological formula

χ(X̂) = χ(P1)χ(C) + #(nodal Ci)

to infer that

δ1 + δ0 = 44.

Next, we shall use that if one of Ci were a compact curve, i.e., where

g(C̃i) = 3, then the canonical series would have a base point at the node

(the residues of H0(ωCi) there would be zero). We shall see later that a

general X has two distinct base points, which rules out the possibility

that a base point can be a singular point of any C ∈ |KX |.
Finally, we shall see below that

π∗ωX̂/P1
∼= OP1(1)⊕ OP1(1)⊕ OP1(3),

which gives λ = 5. Plugging this into Esteves formula gives h = 1.

We now turn to the proof of (i) in the theorem. SettingK
X

∣∣C = K
1/2
C ,

from the exact cohomology sequences of

0→ mKX → (m+ 1)KX → K
(m+1

2 )
C → 0, m = 0

and h1(mKX) = 0 for m = 0, we have for the plurigenera

Pm = h0(mKX) = m(m− 1) + 3, m = 2.

Since ϕ2KX is birational, a general C ∈ |KX | is non-hyperelliptic so that

the canonical curve ϕKC (C) ⊂ PH1(OC) is a smooth plane quartic and
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we have {
S2H0(KC) ↪→ H0(2KC) (actually an ∼=)

S3H0(KC) ↪→ H0(3KC) (actually an ∼=).

From this and the exact cohomology sequences

0→ H0(mKX)
t0−→ H0((m+ 1)KX)→ H0

(
K

(m+1
2 )

C

)
→ 0

we may inductively build up generators and relations for the pluri-

canonical ring of X. Recalling our notation

• t0, t1 = basis for H0(KX),

• t20, t0t1, t21, x3, x4 = basis for H0(2KX), where t21, x3, x4 is a basis

for H0(KC),

what is suggested is that we use weighted homogeneous polynomials

P (t0, t1, x3, x4) where t0, t1 have weight 1 and x3, x4 have weight 2. We

shall use the following two lemmas:

Lemma: If P (t0, t1, x3, x4) has weighted degree 2m, then only terms

containing ta1t
b
2 with a+ b ≡ 0(2) can occur.

From weight considerations, this lemma is clear.

Lemma: If degP = m 5 6, then P (t0, t1, x3, x4) 6= 0.

Proof. The notation means that if we substitute t0, t1, x3, x4 as sections

of line bundles in a non-zero P , then the result is non-zero. Indeed, if

P (t0, t1, x3, x4) = 0, then the restriction

P
∣∣
C

= P (0, t1, x3, x4) = 0,

and by the above properties S`H0(KC) ↪→ H0(`KC) for ` 5 3, we have

P = t0R

where R has weighted degree m−1. Inductively we then have R=0. �

In the following table we shall give the steps used to inductively build

up the canonical ring. With each step we shall give the assumptions on
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X which, together with the formulas for the plurigenera and the above

two lemmas, justify that step.

H0(KX); dim = 2
because pg(X) = 2

t0, t1

H0(2KX); dim = 5
because q(X) = 0

quadratic polynomials in t0, t1 plus two
new weight 2 generators x3, x4

H0(3KX); dim = 9
and X is minimal
of general type

weighted cubic polynomials in t0, t1, x3, x4

(dimension = 8), plus one new generator Φ
of weighted degree 3; we note that Φ

∣∣
C
∈

H0(K
3/2
C ) is non-zero

H0(4KX); dim = 15
and ϕ2KX is birational

weighted quartic polynomials in
t0, t1, x3, x4 (dimension = 14), which when
we add in t0Φ, t1Φ leads to one linear
relation of these modulo P (t0, t1, x2, x4)’s.
We may take this relation to be

t1Φ = F,

where F = F (t20, t0, t1, t
2
1, x3, x4) is qua-

dratic in these variables (1st lemma)

H0(6K3); dim = 33
and ϕ2KX birational

weighted sextic polynomials in t0, t1, x3,
x4,Φ where we use t1Φ = F ; by di-
mension count there is one linear rela-
tion among t30Φ, t0x3Φ, t0x4Φ,Φ2 modulo
P (t0, t1, x3, x4)’s.

If the coefficient of Φ2 is zero, then we have a linear relation among

t30Φ, t0x3Φ, t0x4Φ modulo P (t0, t1, x3, x4)’s. Restricting to t0 = 0 gives

that ϕKC (C) lies on a cubic curve which is a contradiction. Thus the

coefficient of Φ2 is non-zero, from which we obtain a relation

Φ2 = G,

where G = G(t20, t0t1, t
2
3, x3, x4) is a cubic curve in the indicated vari-

ables.

Relabelling by replacing t1 by t0 and squaring t0Φ = F we conclude

the proofs of (i), (ii), (iii) in the theorem. The proofs of (iv), (v) will
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be given in the following section, where we shall give an alternate way

of looking at an H surface. �

Here we note the following

Corollary: The canonical ring R(X) of a general H-surface is

R(X) ∼= C[t0, t1, x3, x4,Φ]/(t0Φ− F,Φ2 −G)

where t0, t1, x3, x4,Φ have weights 1, 1, 2, 2, 3, and where

F = F (t20, t0t1, t
2
2, x3, x4) has total weight 4

G = G(t20, t0t1, t
2
2, x3, x4) has total weight 6.

We also note that for the hyperelliptic fibre C0 → D0 viewed as a

2:1 covering of the double conic D0, we have

Φ ∈ H0(K
3/2
C0

)−

where the − refers to the (−1)-eigenspace under the sheet interchange

involution on C0.

I.C. Alternate realizations of H-surfaces. There are three related

ways of realizing H-surfaces X:

(i) as the normalization of its bicanonical image X ′ ⊂ P4 where

the equations are given in the theorem in the preceding section;

(ii) in terms of the fibration X̂ → P1 obtained by blowing up the

base points of the canonical pencil |KX |;
(iii) as the normalization of the image g(X̂) = X[ in PE, where

E = OP1 ⊕ OP1 ⊕ OP1(2) and the map g : X̂ → PE will be

described below.

Each of these will provide a different perspective; it is (ii) that will

provide the most useful computational framework. The three realiza-

tions will be related via the commutative diagram, which also will be
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defined below

X
ϕ2KX

((
X̂

OO

g //

��

PE
f //

��

P4, f = |OPE(1)|.

P1 // P1

Definition and properties of PE.

The motivation for the construction in (iii) is the observation that

the bicanonical map is most naturally described by the factorization

X → P(1, 1, 2, 2) ↪→ P4.

Here P(1, 1, 2, 2) is the weighted projective space described by

P(1, 1, 2, 2) = C4\{0}/C∗

where λ ∈ C∗ acts by

λ(t0, t1, x3, x4) = (λt0, λt1, λ
2x3, λ

2x4).

The inclusion P1(1, 1, 2, 2) ↪→ P4 is defined by

(t0, t1, x3, x4)→ (t20, t0t1, t
2
1, x3, x4).

Its image is the singular quadric

Q0 = {x0x2 = x2
1} ⊂ P4,

and as described in the preceding section we have the above factoriza-

tion of the bicanonical map ϕ2KX : X → P4.

Proposition: (i) The desingularization P( ˜1, 1, 2, 2) of P(1, 1, 2, 2) is

canonically isomorphic to PE where E = OP1 ⊕ OP1 ⊕ OP1(2);

(ii) There is a commutative diagram of maps

X̂
g //

��

PE
f // Q0 ⊂ P4

X

ϕ2KX

55

where f = |OPE(1)| and, setting X[ = g(X̂), X̂
g−→ X[ is the normal-

ization.
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Proof. We are using the Grothendieck convention

(PE)t = PE∗t

for the fibre of PE π−→ P1 over t ∈ P1. Setting

ξ = OPE(1), h = π∗OP1(1)

we have

π∗(mξ + `h) = SmE ⊗ OP1(`) =: SmE(`).

In particular this gives

H0(PE, ξ) ∼= H0(P1, E) = H0(OP1(2)⊕ OP1 ⊕ OP1) ∼= C5

H0(PE, ξ − 2h) ∼= H0(P1, (E(−2))) = H0(OP1) ∼= C.

Let x be a generator of H0(PE, ξ − 2h). Then the divisor

(x) =: S ∼= P1 × P1.

Denoting by t0, t1 a basis for H0(OP1(1)), a basis for H0(PE, ξ) is

given by

xt20, xt0t1, xt
2
1︸ ︷︷ ︸

H0(OP1 (2))

, x3, x4︸ ︷︷ ︸
H0(OP1⊕OP1 )

where the brackets refer to the terms on the right in the above iden-

tification of H0(PE, ξ). The mapping f : PE → P4 is given by taking

this basis as homogeneous coordinates. We note that

• f(PE) = Q0 ⊂ P4;

• f(S) = Q0,sing = {x0 = x1 = x2 = 0},

where S = (x) as above. Denoting by Q̃0 the proper transform of the

blow up of P4 along Q0,sing, it follows that we have the identification

Q0 under

Q̃0 = PE;

in particular, f : PE → Q0 is the standard resolution of the singulari-

ties of Q0.

Turning to (ii) and identifying Q0 with P(1, 1, 2, 2), the rational map

P(1, 1, 2, 2) 99K P1
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given by [t0, t1, x3, x4] → [t0, t1] is undefined exactly along Q0,sing. Re-

solving this indetermination by blowing up leads to PE → P1. If we

then take the inverse image Γ(g) of the graph Γ(ϕ2KX ) of ϕ2KX in the

diagram

Γ(g)

��

⊂ X̂ × PE

��
Γ(ϕ2KX ) ⊂ X ×Q0

we may define g : X̂ → PE by the condition that Γ(g) be its graph. �

We remark that in the diagram

X̂
g //

π
��

PE
π
��

P1 P1

for a general H-surface X, the mapping g is an isomorphism outside

of the unique hyperelliptic curve C0 ⊂ X̂, and

g : C0 → D0

is a 2:1 covering of the double conic. This will be verified below.

At this point we have described the spaces and maps in the diagram

at the beginning of this section.

Some further properties of PE

Proposition: The group Aut(PE) acts on P1 and there are two orbits

for this action:

• the closed orbit S,

• the open orbit PE\S.

Proof. We may see this geometrically as follows: The group AutQ0 ⊂
Aut(P4) has two orbits; namely, the singular locus Q0,sing is a closed

orbit, and the complement Q0\Q0,sing is an open orbit. The group

AutQ0 also acts on the proper transform Q̃0
∼= PE of Q0 under the

blowup of P4 along the singular locus {x0 = x1 = x2 = 0}, and the

induced action on PE is equal to that of AutPE. On Q0\Q0,sing
∼=

PE\S the action of AutQ0 is transitive and gives an open orbit of the
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action of Aut(PE) on PE. The fibres of Q̃0 → Q0 over points p of

Q0,sing are plane conics Cp, and the induced action of Aut(Q0) that

fixes p acts transitively on Cp. �

The picture is easier to visualize one dimension down for a singular

quadric Q′0 ⊂ P3

P

.

This is a cone with vertex P over a conic CP in P2. Then Q′0,sing = P ,

and the sub-group of Aut(Q′0) that fixes P acts transitively on the

fibre over P of the proper transform Q̃′0 → Q′0. This fibre is isomorphic

to CP .

For later use we shall determine the Lie algebra H0(End(E)) of the

group Aut(E) of fibre preserving automorphisms of E → P1. From

h0(E(−2)) = 1, h0(E(−k)) = 0 for k > 2

we infer that Aut(E) preserves the exact sequence

0→ OP2(2)→ E → OP1 ⊕ OP1 → 0.

(The last term really should be OP1 ⊗ C2.) Denoting by Sym2(t) the

homogeneous polynomials of degree 2 in t0 and t1, we then have

H0(End(E)) ∼=

C C Sym2(t)
C C Sym2(t)
0 0 C

 .

More intrinsically

H0(End(E)) ∼=
(

gl(2,C) U

0 gl(1,C)

)
where U ∼= C2 ⊕ Sym2(t) is the unipotent radical of the Lie algebra

H0(End(E)).

Further properties of the basic diagram and the equation that defines

X[ ⊂ PE.
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We recall the part

X̂
g //

π
��

PE
f //

π
��

Q0 ⊂ P4, f = |ξ|

P1 P1

of the basic diagram. As noted above we have on PE a unique up to

scaling section x ∈ |ξ − 2h| with divisor

(x) = S ∼= P1 × P1,

where π
∣∣
S

is the projection on the first factor. In fact, we may identify

S = P(OP1 ⊕ OP1) ⊂ P(OP1 ⊕ OP1 ⊕ OP1(2)).

Below in §I.D we will use the picture below of Q0 as a quadratic pencil

of P2
t ’s in P4 rotating about fixed line L = Q0,sing. Then we have the

picture of f
∣∣
S

S = L

t

P2
t

where f maps each vertical P1 isomorphically to L.

It follows from the theorem in Section B that the equation of X[ =

|4ξ| is

xt20G = F 2

where G ∈ |3ξ|, F ∈ |2ξ| are the pullbacks under f of a general cu-

bic, quadric in P4. From this equation we infer that for the blowups
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E1, E2 ⊂ X̂ of the base points of |KX | we have the picture

S =

•

•

•
t

g(E1)

g(E2)

What this means is the divisor (F ) meets S in two horizontal P1’s,

which are then the images under g of E1, E2. When we intersect S

with the fibres of X[ → P1, which are the curves Ct ∈ |KXt |, then

the intersections are the two marked points, which are the base points.

Using this we shall show

Proposition: In Pic X̂ we have g∗(ξ)− 2h = 2(E1 + E2).

Proof. We have noted that g(E1), g(E2) lie in S ∈ |ξ − 2h|, and from

this we may infer the above relation, where the 2 is there because of

the F 2 in the equation of X[. �

Remark: One important reason for the proposition is this: For the

map X̂
p−→ X contracting the Ei, we have

H2(X̂,Z) = p∗H2(X,Z)⊕ ZE1 + ZE2︸ ︷︷ ︸ .
If g∗(ξ), h, E1, E2 were independent in Pic X̂, this would imply that for

a general X

dim Hg1(X) = 2.

Thus locally the period mapping would not be to D where the Hodge

numbers are (2, 27, 2), but to a sub-domain D′ ⊂ D where the Hodge

numbers are (2, 26, 2). In this case, using local Torelli from Section I.G

and the fact that the IPR for weight n = 2 period domains is a contact

distribution, from

dimD′ = 53

dim(H1,1(X)/Hg1(X)) 5 2



HODGE THEORY AND MODULI OF H-SURFACES (12/2/15) 31

we would conclude that equality holds in the second relation and that

the image of the period mapping is a maximal integral manifold of a

contact distribution. This would certainly be interesting, but it is not

what happens.

Proof that there are 8 = 6 + 2 pinch points along the double conic D0.

We will describe PE as the proper transform of the singular quadric

Q0 under the blow up P ˜(1, 1, 2, 2) of the singular locus x0 = x1 = x2 = 0

of P(1, 1, 2, 2) realized as the singular quadric Q0 ⊂ P4.2 For this we use

the classical description of a quadratic transform given by introducing

s0, s1, s2 with

sixj = sjxi,

which then gives

(x0, x1, x2) = λ(s0, s1, s2).

Since we are taking the proper transform Q̃0 of Q0 = {x0x2 = x2
1}, we

have

s0s2 = s2
1,

from which it follows that we have r0, r1 with

s0 = r2
0, s1 = r0r1, s2 = r2

1,

which gives

x0 = λr2
0, x1 = λr0r1, x2 = λr2

1.

Then up on P ˜(1, 1, 2, 2) the equation x0G = F 2 of ϕ2KX (X) ⊂ P4

becomes

λr2
0G = F 2.

The pinch points of the double conic under the proper transform of

ϕ2KX (X) are

r0 = G = F = 0 6 pinch points

and

r0 = λ = F = 0 2 pinch points.

2This is also the locus where the rational map P(1, 1, 2, 2) ↪→ P1 given by
[t0, t1, x3, x4]→ [t0, t1] fails to be well defined.
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The latter are the base points of the canonical pencil |KX | mapped to

the proper transform of ϕ2KX (X). �

Note: We have given the computation in coordinates for later purposes

where similar, but more complicated ones will be given. In terms of

the equation

xt20G = F 2

of X[ ⊂ PE, t0 = 0 is the fibre P2
t0

of PE → P1 and x = 0 is the

S ′ ∼= P1 × P1 introduced above. The pinch points are

• t0 = G = F = 0;

• t0 = x = F = 0.

Proof that a general H-surface X contains a unique hyperelliptic curve

C0 ∈ |KX |.
In PE we consider the pencil |X[

λ| defined by

xt20(λ0G0 + λ1G1) = (λ0 + λ1)F 2

where each of F = |2ξ| and G0, G1 ∈ |3ξ| are general and λ = [λ0, λ1] ∈
P1. By a slight extension of Bertini’s theorem to be given below, the

general member of this pencil is smooth outside the base locus

xt20 = 0, F = 0.

As noted above these equations separate into the parts

t20 = 0 = F, x 6= 0

which are the points of the double conic outside of the base points of

|KX |, and a second part

x = 0 = F

which are the blown up base points of the canonical pencil. Since the

fibres of g(X[
λ) → P1 are just the canonical images in P2

t = π−1(t) of

the curves in the pencil |KXλ |, we may conclude that for a general λ

only the fibre over t0 = 0 is hyperelliptic. �

The role of the hyperelliptic curve in the basic diagram.
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From the basic diagram we have

X̂
g // X[ ⊂ PE

∪ ∪
C0

// D0

where D0 is the double conic and

g : C0 → D0

is the 2:1 map branched over D0. The following formulas will be used

below:

(i) KC0 =
(
g
∣∣
C0

)∗
(ξ);

(ii) g∗OC0
∼= OD0 ⊕ OD0(L) where L2 = OD0(B0) with B0 ⊂ D0

being the branch points;

(iii) g∗OC0
∼= ker {OX[ ⊗ h→ OC0 ⊗ h)}.

Proof. The first follows from KX̂ = g∗(ξ−h) and adjunction for C0 ⊂ X̂

using that h
∣∣
C0

∼= OC0 . The second is the standard relation for a

branched double covering. For the third we have the exact sequence

0→ OX[ → g∗(OX̂)→ OD0(L)→ 0

which fits in the diagram

0

OD0

OO

0

0 // OX[

OO

// g∗OX̂
// OD0(L)

OO

// 0

0 // g∗OX̂ ⊗ h−1 //

OO

g∗OX̂
// OD0 ⊗ OD0(L) //

OO

0

0

OO

OD0

OO

0

OO

which leads to (iii). �
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This relation will allow us to compute the Hq(X̂, g∗(ξa)⊗ hb) for all

q, a, b.

Further comments on H-surfaces as degenerations of H#-surfaces.

In this work there are basically two types of surface degenerations

we shall consider:

(i) KSBA degenerations Y → Y0;

(ii) semi-stable-reduction (SSR) degenerations Y → Ỹ0.

It is (i) that arises in the construction of KSBA moduli spaces, while it

is (ii) that is the most useful traditionally in analyzing the LMHS asso-

ciated to a degeneration. We have observed that the birational model

X[ ⊂ PE of an H-surface may be considered as a KSBA degeneration

of a smooth H#-surface X#. Here we want to describe a special case

of the corresponding SSR family (ii).

More precisely, we will start by discussing a general family of surfaces

Y
π−→ ∆

where the total space is smooth, the fibres Yt = π−1(t) are smooth for

t 6= 0, and where over the origin in the disc π is locally given by

x2z − y2 = t.

We will describe the corresponding family

Ŷ→ ∆

obtained by SSR from the previous family. In this case no base change

will be necessary. For this we denote by

C̃
p−→ C

the double cover with branch locus B associated to the double curve

with pinch points on Y0. It is standard that there is a line bundle

L→ C with L2 = OC(B). If sB ∈ H0(OC(B)) is a section with divisor

B, then

C̃ = {x ∈ C, ` ∈ Lx with `2 = sB(x)} ⊂ L.
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Proposition: The fibre Ŷ0 in the SSR reduction family is

Ŷ0 = Ỹ0 ∪ Z

where Ỹ0 is the normalization of Y0,

Z = P(OC ⊕ L−1)

and Ỹ0 ∩ Z = C̃.

Proof. Each x ∈ C̃ gives an evaluation map

ex : p∗OC̃ → C

which then defines a map

C̃ → P(p∗OC̃).

The action of the involution on C̃ decomposes p∗OC̃ into OC ⊕ L−1

where L−1 is the −1 eigenspace. Recalling the convention that P(OC⊕
L−1) is given by the 1-dimensional quotients of OC ⊕ L, we have C̃ ⊂
L ⊂ P(OC ⊕ L−1). In fact, C̃ ∈ |OP(OC⊕L−1)(2)|, since H0(C, p∗OC) ∼=
H0(C,OC ⊕ L⊕ L2) and C̃ corresponds to 1⊕ 0⊕ SB.

Then the Ŷ0 in the statement of the proposition gives a normal

crossing divisor Ỹ0 ∪ Z with Ỹ0 ∩ Z = C̃ and that maps to Y0 where

Z → C. �

We note that

p∗KỸ0
∼= KY0 ⊕KY0(L).

The way to check the signs here is that making L more ample increases

H0(KỸ0
).

We shall use the sheaf KỸ0,log where the sections of KỸ0,log are by

definition given by forms on

Ỹ0 q Z

that have log poles with opposite residues along C̃.

Example: For the degeneration X# → X[ we have

C = P1, degB = 8, g(C̃) = 3.3



36 HODGE THEORY AND MODULI OF H-SURFACES (12/2/15)

Turning to the canonical bundles, we have in general the

Proposition: There is an exact sequence

0→ H0(KỸ0
)→ H0

(
KŶ0,log

)
→ H0(KC̃)− → 0

where KỸ0,log
are the logarithmic 2-forms on the NCD Ŷ0 and H0(KC̃)−

is the −1 eigenspace of action on H0(KC̃) of the involution C̃ → C̃.

Proof. We will note below that the pullback to Ỹ0 of the Poincaré

residues of top degree forms with simple poles on the double curve

with pinch points are anti-symmetric under the action of the involu-

tion. The result follows from this on H0(KZ) = 0. �

Example: For the degeneration X# → X[ where X̃[ = X̂ we have

H0(KỸ0
) ∼= H0(KX̂) (dimension = 2)

H0(KC̃)− ∼= H0(KC̃) (dimension = 3).

Remark: Given a family of smooth surfaces Y∗ → ∆∗ over the punc-

tured disc, there are (i) a well-defined LMHS, and (ii) a well-defined

central fibre Y0 such that we have a KSBA degeneration. One may ask:

Can one compute the LMHS from Y0?

According to [Shah] one may compute the Ip,0 and I0,p terms from

Y0. For a double curve with pinch points the exact sequence in the

proposition gives the result. Namely

• I2,0 = H0(KỸ0
);

• I1,0 = H0(KC̃)−.

The proof follows from the description of the LMHS in terms of the

cohomology of log-complexes on the normalization of the central fibre in

a SSR [PS08]. In the case at hand that prescription reduces essentially

to the exact sequence in the proposition so far as the Ip,0-terms in the

LMHS are concerned.

3In our earlier notation, C was the double conic D0 and C̃ was the hyperelliptic
curve C0 in the pencil |KX |.
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In [Ko13] Kollár lists the singularities that may arise from KSBA

degenerations of surfaces of general type. Following his notation, the

singularities in 3.2 and (3.3.1)–(3.3.3) are the basic cases from which

the general situation (3.3.4) is built by taking several cases of the basic

cases and gluing them according to certain rules.

In Hodge theory one frequently works modulo the finite automor-

phism groups of a PHS. For example for a degenerating family of PHS’s

Φ : ∆∗ → Γ\D, Γ = {T k}

one generally replaces the quasi-unipotent monodromy transformation

T by a power so as to be able to take the logarithm N of a unipo-

tent operator. Doing this does not effect the boundary component of

Γ\D∗ to which the origin maps. With this understood, we note that

in Kollár’s list

Only simple elliptic singularities (3.2.4a) and cusps

(3.2.4b) effect the LMHS.

If p ∈ X0 is the isolated singularity, then if p is a base point KX0 the

LMHS is not affected. Otherwise the LMHS’s have

dim


I2,0 = 1

I1,0 = 1

I0,0 = 0

for the simple elliptic case

dim


I2,0 = 1

I1,0 = 0

I0,0 = 1

for the cusp case.

In the case of several isolated singularities pi of these types, the LMHS

is determined by the extent to which the pi impose independent con-

ditions on KX0 . The situation is analogous to that for curves with ωX0

replacing KX0 , but where there are the two possibilities dim I1,0 6= 0,

dim I0,0 6= 0 depending on whether we are in the isolated elliptic or

cusp cases.

Some numerical properties of PE.
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We first note that

Pic(PE) ∼= Zξ ⊕ Zh.

Identifying line bundles with their Chern classes, from Grothendieck’s

general formula for a rank r vector bundle E → P1

r∑
i=0

(−1)ici(E)ξr−i = 0

we obtain

ξ3 = 2ξ2h = 2.

Next, we note that X[ ∈ |4ξ|, and we shall show that

KX̂ = g∗(ξ − h).

Assuming this and for notational simplicity dropping the g∗’s, we have

K2
X̂

= (ξ − h)2 · 4ξ = 4ξ3 − 8ξ2h = 0,

as should be the case since X̂ is obtained from X by blowing up two

points and K2
X = 2.

Proof that KX̂ = g∗(ξ − h). A double curve with pinch points is given

locally by

zx2 = y2.

The normalization of this singularity is

(u, v)→ (u, uv, v2).

The pullback of the Poincaré residue of ω = dx∧ dy ∧ dz/(zx2 − y2) is

Resω =
du ∧ dv

u
,

which shows that the adjunction conditions given by the singularity

are just the vanishing on the double curve.

The fibres of X̂ → P1 are canonical divisors. On X[ ⊂ PE the

fibre of X[ → PE over t0 = 0 is the divisor (xt0) ∈ |ξ − h|. Since g

is biregular outside the fibre over t0 = 0, using the above adjunction

argument we see that the pinch points do not effect KX̂ , which implies

the result. �
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We will see in Section G that although the pinch points do not ef-

fect H0(Ω2
X), they do effect H1(Ω1

X). Some sort of “global adjunction

conditions” on H1(Ω1) imposed by the pinch points is occurring.

Some cohomological computations.

For later use we shall give conditions under which the groups Hq(PE,
aξ+bξ) can be non-zero. These are established using the Leray spectral

sequence and

Ω2
PE/P1

∼= det(π∗E)⊗ ξ−3 = ξ−3 ⊗ h2.

They are

H0(PE, aξ + bh) 6= 0 ⇐⇒ a = 0, b = −2a

H1(PE, aξ + bh) = 0 ⇐⇒ a = 0, b 5 −2

H2(PE, aξ + bh) 6= 0 ⇐⇒ a 5 −3, b = 2a+ 8

H3(PE, aξ + bh) 6= 0 ⇐⇒ a 5 −3, b 5 −2a− 6.

Hodge bundles.

For a general H-surface X we have the fibration

X̂
π−→ P1

whose fibres are nodal curves. Thus π∗ωX/P1 is a rank 3 vector bundle

over P1.

Proposition: π∗ωX̂/P1
∼= OP1(1)⊕ OP1(1)⊕ OP1(3) = E(1).

Proof. By the theorem of Birkhoff-Grothendieck

π∗ωX̂/P1
∼=

3⊕
i=1

OP1(ki).

We shall use two general results from Hodge theory:

(i) We have

ki = 0

(non-negativity of the Hodge bundles);
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(ii) the trivial sub-bundle ⊕
ki=0

OP1(ki) of π∗ωX̂/P1 corresponds to

the image of the injective map

H0(Ω1
X̂

)→ H0(P1, π∗ωX̂/P1).

The second result pertains to a pencil of at most nodal curves on any

surface X where X̂ is the blow up of the base points of the pencil. In

our case this implies that all

ki > 0.

Both of these results are classical; a reference is [BPVdV84].

Since X̂ → P1 is locally given by t = xy and ωX̂/P1 is generated by
dx
x

= −dy
dy

, we infer from dx
x
∧ dt = dx ∧ dy that

KX̂
∼= ωX̂/P1 ⊗ π∗KP1 ,

which gives

π∗KX̂
∼= π∗ωX̂/P1(−2) ∼=

3⊕
i=1

OP1(ki − 2).

From

H0(KX̂) ∼= H0(P1, π∗ωX̂/P1(−2)) ∼=
3⊕
i=1

H0 (OP1(ki − 2))

and p[X = 2, ki > 0 we have

3∑
i=1

(ki − 1) = 2.

The possibilities for (k1, k2, k3) are

(1, 1, 3) and (1, 2, 2).

Since the divisors in |KX̂ | consist of the fibres of X̂ → P1, so that in

particular sections of KX will have a zero, the second possibility cannot

occur. �

Remark: The space H0(Ω2
X) enters in two ways:

• via Hodge theory using H0(Ω2
X) = H2,0(X);
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• via the geometry of |KX |, which leads to the vector bundle

E → P1 and the bicanonical map as the composition

X̂
g−→ PE f−→ P4, f = |OPE(1)|,

which induces the canonical map on the fibres of X̂ → P1.

I.D. Pictures, and a Torelli-type result. It is convenient to have

pictures to describe H-surfaces.4 We shall use the following ones:

Q0

L

P2
t

Q0 is a quadratic pencil of
P2’s in P4 rotating about the
fixed line L = Q0,sing (we are
only able to draw the picture
in 3-space)

Ct

p q

P2
t

A general Ct is a genus 3
curve canonically embedded
in the P2

t of the quadric pen-
cil giving Q0; here p, q are
the base points of the pencil
|KX |, and they all have L as
a common bi-tangent where

K
1/2
Ct

= [p+ q].

Cti

P2
ti There are finitely many sin-

gular Cti ∈ |KX |, which for
general H-surfaces are irre-
ducible plane quartics with
a node away from L

4We are here dropping the notation ϕKCt
(Ct) for the canonical curve, and are

simply using Ct ⊂ P2
t .
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C0

P2
ti The unique hyperelliptic C0

in |KX | has as canonical im-
age a 2:1 branched cover-
ing C0 → D0 over a double
conic.

The eight branch points of C0 → D0 are given by the two base points

(the dots) of the pencil |KX | together with the six points of intersection

(the x’s)

{x0 = x1 = x2 = 0} ∩ {G(x) = 0} ∩ {F (x) = 0}

where x0G(x) = F (x)2 is the equation of ϕ2KX (X) = X ′ ⊂ P4.

Putting everything together gives a picture of X as being something

like

P2
ti

P2
t

X ′

where we have not drawn in P2
0 and D0. These pictures will be useful on

several occasions, especially when we discuss the generic degenerations

of H-surfaces that arise when X varies in moduli.

A Torelli-type theorem: Associated to a general H-surface X with X̂
π−→

P1 obtained by blowing up the base points of |KX | is a variation of

Hodge structure (V,F) where

• V is a direct summand of the local system R1
πZ, and

• F is a filtration of V =: V ⊗Z OP1 with

Ft ∼= π∗

(
ωX̂/P1

)
t
.
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In more detail, the general fibre of the local system is

Vt = H1(Ct)

where the fibres of V for the nodal Cti are filled in the usual way.5 Then

for a general t ∈ P1, F ⊂ V is given by

π∗

(
ωX̂/P1

)
t

∼= H0 (ωCt) ↪→ Vt ⊗ C.

Vti may be thought of as H1(C∗ti ,Z)∗ where C∗ti = Cti\{node}, and we

obtain the usual logarithmic differentials with opposite residues on the

two branches of the node.

Proposition: (i) The VHS (V,F) uniquely determines the polarized

Hodge structure on H2(X,Z)prim; (ii) this VHS also uniquely deter-

mines the bicanonical model ϕ2KX (X).

Proof of (i): We shall show that

(a) H2(X,Z)prim
∼= H1(R1

πZ) ∩ (E1 − E2)⊥;

(b) H0(Ω2
X) ∼= H0

(
π∗

(
ωX̂/P1

)
(−2)

)
;

(c) H2(OX) ∼= H1(R1
πOX̂).

In (a), we recall that E1 and E2 are the blow ups of the base points of

|KX |, and (E1 − E2)⊥ is the orthogonal of E1 − E2 ∈ H1(R1
πZ) under

the non-degenerate symmetric pairing

H1(R1
πZ)⊗H1(R1

πZ)→ H2(R2
πZ) ∼= Z.

This will be further explained below.

(a) In the diagram

X̂

π

��

β

��
P1 X

5In the standard notation,

V = R0
πωX̂/P1(logZ)

where Z is the union of the nodal fibres.
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we denote by C ⊂ X a general curve in |KX | and by Ĉ the correspond-

ing fibre in X̂ → P1. Then

β∗[C] = [Ĉ] + [E1] + [E2].

Note that although Ĉ
∼−→ C, we have Ĉ2 = 0 and (β∗[C])2 = 2, as

should be the case.

The Leray spectral sequence for X̂ → P1 gives a filtration onH2(X̂,Z)

with graded pieces

H0(R2
πZ) ∼= image{H2(X̂,Z)

r−→ H2(Ĉ,Z)}

H1(R1
πZ) ∼= ker r/image{π∗ : H2(P∗,Z)→ H2(X̂,Z)}

H2(R0
πZ) ∼= image{H2(P1,Z)→ H2(X̂,Z)}.

Then under the inclusion H2(X,Z)
β∗

↪→ H2(X̂,Z) and noting that E1−
E2 ∈ ker r, we have

H1(R1
πZ) = β∗H2(X,Z)prim ⊕ (E1 − E2)⊥,

which is (a).6

The identification (b) follows from KX̂
∼= ωX̂/P1 ⊗ π∗Ω1

P1 . In detail,

if ψ(t) is a section of π∗
(
ωX̂/P1

)
that vanishes to 2nd order at t = ∞,

then

Ψ = ψ(t) ∧ dt ∈ H0
(
Ω2
X

)
is holomorphic over t =∞ on P1, and the map ψ → Ψ gives (b).

For (c), by relative duality we have

R1
πOX̂

∼= π∗
(
ωX̂/P1

)∗ ∼= E∗(−1)

and

H1(R1
πOX̂) ∼= H2(OX) ∼= H0(Ω2

X)∗.

The map V→ H2(OX) is then given by the map on cohomology

H1(R1
πZ)→ H1(R1

πOX̂)

induced by the inclusion R1
πZ→ R1

πOX̂ .

6The expression for the cup product on H2(X̂,Z) in terms of the Leray filtration
will be discussed below.
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Remark: The dual of this map is

H0
(
π∗ωX̂/P1(−2)

)
→ H1(R1

πZ)∗ ∼= H1(R1
πZ)

as discussed just before the statement of the proposition.

The properties of the cup product in terms of the map β and the

Leray spectral sequence may be summarized as follows:

• Denoting by QX̂ and QX the cup product induced symmetric

bilinear forms on H2(X,Z) ⊂ H2(X̂,Z), under the inclusion

β∗H2(X,Z) ⊂ H2(X̂,Z) we have

QX̂ =

QX

−1
−1

 ;

• The expression for QX̂ in terms of the Leray filtration on

H2(X̂,Z) is more subtle (cf. [Le24], and for a treatment that

puts Lefschetz’s geometric reasoning in a modern setting [Ka]).

For us the basic fact is that the symmetric pairing

QP : H1(R1
πZ)⊗H1(R1

πZ)→ Z

induced by R1
πZ⊗R1

πZ→ Z is non-degenerate and restricts to

the pairing QX on H2(X,Z)prim.

• In homology we may describe H1(R1
πZ) as represented by a

quotient of the topological 2-cycles Γ in general position and

with Γ·Ĉ = 0. Since Ĉ2 = 0 it follows that with an appropriate

choice of a basis adapted to the Leray filtration we will have

QX̂ =

0 ∗ 1
∗ QP 0
1 0 0

 .

For our purposes this is all that is required.

Proof of (ii): The idea is that the VHS enables us to construct first the

quadric Q0 as pictured above, and then to describe the curves Ct ⊂ P2
t

which will trace out the bicanonical image X ′ of the H-surface X.

For the first step we have that from the VHS we may construct

E = π∗
(
ωX̂/P1

)
(−1)
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together with the map

PE f−→ Q0 ⊂ P4, f = |OPE(1)|.

Since for t ∈ P1

(PE)t = P(E∗t ) = P(R1
πOX̂)t

we see that P2
t is projectively the space where the canonical curves

ϕKCt (Ct) live. For simplicity of notation we shall again drop the ϕKCt ’s.

Next we have from the VHS

0→ R1
πZ→ R1

πOX̂ → J→ 0

where J is the sheaf of normal functions, viewed as holomorphic sections

of the family J(Ct) of Jacobian varieties of the C, with the generalized

Jacobian J(Cti) being inserted at the critical values [Zu76]. Using that

the pairing

R1
πZ⊗R1

πZ→ Z

induces principal polarizations on the J(Ct), since g = 3 and X is

general there is a unique plane quartic with Jacobian J(Ct). We then

have

Ct ⊂ PTeJ(Ct) = P2
t ⊂ Q0,

and in this way have reconstructed X ′ from the VHS (V,F). �

Remark: We have noted that

p, q are the base points of |KX |, and L is a common

bitangent to the Ct ⊂ P2
t .

In fact we may construct p, q directly from the VHS as follows: In the

family of Jacobians J(Ct), there is a unique J(C0) that is the Jacobian

of a hyperelliptic curve. Then the canonical mapping

ϕKC0
: C0 → P2

0

is a 2:1 covering over a conic D0 with eight branch points. Of these

branch points, exactly two, namely p and q, are on L.
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I.E. H#-surfaces.

Definition: An H#-surface is a general X# ∈ |ξ4|.

The motivation for introducing these surfaces is that they represent

natural smoothings of the birational model X[ ⊂ PE for a general H-

surface X. Remark that, as will be seen below, a general deformation

of an H#-surface as an abstract surface will not be an H#-surface,

in contrast to the analogous situation for H-surfaces. Equivalently, a

general deformation of X# as an abstract surface will not remain as a

hypersurface in PE.

Proposition: (i) A general X# is smooth. (ii) The canonical map-

ping is given by

ϕK
X#

= f : X# → P4.

The image is Q0 ∩ Y where Y ∈ |OP4(4)| is a general quartic hypersur-

face.

Proof. Since ξ = OPE(1) is not very ample, or even ample, applied to

X# ∈ |ξ4| we cannot apply the usual version of Bertini’s theorem. Here

the situation is that |ξ| gives the map

PE f−→ Q0 ⊂ P4

where PE = Q̃0 is the standard desingularization of Q0. In general,

if we have a very ample line L → Y over a singular variety Y and a

desingularization f : Ỹ → Y with L̃ = f ∗(L) and where H0(Ỹ , L̃) ∼=
H0(Y, L), then we have the following simple result whose proof will be

given below.

Extended Bertini I: A general Z ∈ |L| is smooth oustide of Ysing.

To prove the above proposition we shall examine the picture of

f(X#) = Q0 ∩ Y

where Y ⊂ |OP4(4)| is a general quartic. Setting

C#
t = f(X#) ∩ P2

t
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we have for C#
t the picture

L

P2
t

which is a smooth plane quartic. For finitely many ti the picture of

Cti is

where the node is away from L = Q0,sing. This is intuitively plausible,

and will be proved in Section H below. The common points pα ∈
f(X#) of intersections of all the C#

t with L are ordinary nodes, whose

resolution gives −2 curves Eα ⊂ X#. This last statement follows from

Q̃0 = PE.

This establishes (i) in the proposition, and for (ii) since on a surface

nodes do not impose adjunction conditions we have

KX# = ξ
∣∣
X# .

Then f
∣∣
X# = ϕK

X#
is biregular aside from contracting the −2 curves

Eα. �

We note that the argument also gives that

X# contains no −1 curves.

Thus X# is a minimal surface of general type.

Remark: Referring to (ii) in the theorem in Section I.B and whose

proof was begun in Section I.C, the argument may now be completed

by using the
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Extended Bertini II: In the situation of L → X described above,

for a general pencil |Zλ| ⊂ |L| the Zλ are smooth outside of Ysing ∪
(Base locus of the pencil).

Proof of the extended Bertini statements. Working in a neighborhood

of a smooth point of Y with local coordinates y1, . . . , yn, a 1-parameter

family of hypersurfaces Zλ ⊂ Y is given by

f(y0, . . . , yn, λ) = 0.

If p(λ) = (y1(λ), . . . , y(λ)) is a moving singular point of Zλ, then using

f(y1(λ), . . . , yn(λ), λ) = 0 and fyi(y1(λ), . . . , yn(λ), λ) = 0 we have from

the first equation∑
i

fyi(p(λ), λ)
∂yi(λ)

∂λ
+ fλ(p(λ), λ) = 0,

while the second equation gives

fλ(p(λ), λ) = 0.

It will suffice to consider the case of a pencil

f(y1, . . . , yn, λ) = g(y1, . . . , yn) + λh(y1, . . . , yn).

Then from f(p(λ), λ) = 0, fλ(p(λ), λ) = 0 we have

g(p(λ), λ) = 0 = h(p(λ), λ);

i.e., we are in the base locus of the pencil. �

The point is that the classical Bertini theorem is really a local result.

Returning to the geometry of H#-surfaces, we note that

A general H#-surface comes with a canonical, base-

point-free pencil |C#
t |.

These are the fibres of X# π−→ P1. The −2 curves Eα each give cross-

sections of the fibration and

C#
t − 2(E1 + · · ·+ E4) ∈ |KX# |.

This gives K2
X# = 8, which also follows from

KX# = ξ
∣∣
X#
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and X# ∈ |4ξ|, ξ2[X#] = 4ξ3 = 8ξ2h = 8.

We note that |KX# | has the divisor S ∩ X# = 2(C1 + · · ·C4) as a

fixed component.

H-surfaces as degenerations of H#-surfaces.

The main interest in this work is H-surfaces. However,

a general H-surfaces is canonically a degeneneration

of an H#-surface.

More precisely, a general H-surface X has for the birational model

X[ ⊂ |4ξ| an equation

xt20G− F 2 = 0

where G ∈ |3ξ|, F ∈ |2ξ|. Putting this equation in a general pencil in

|4ξ| gives a smoothing of X[ to an H#-surface. A consequence will be

The polarized Hodge structure on H2(X) appears as a sub-

quotient in the limiting mixed Hodge structure associated to the

degeneration X# → X[.

An example of this is the following: Under a general degeneration

X# → X[, the limit X[ = X0 acquires a double curve D0 with eight

pinch points, and a general ψ ∈ H0(Ω2
X#) will tend to a 2-form ψ0 ∈

H0(Ω2
X0

(logD0)) with logarithmic poles on D0 and with residue

Resψ0 ∈ H0
(
Ω1
D0

)−
belonging to the −1 eigenspace of the action of the sheet interchange

involution j ·D0 → D0 where C0 → D0 is the branched double cover.

This is a general property of the limits of holomorphic 2-forms on

a family of surfaces acquiring a double curve with pinch points;7 it

follows from the above local parametrization (u, v) → (u, uv, u2) and

Res
(
dx∧dy∧dz
zx2−y2

)
= du∧dv

u
where the sheet interchange is u→ −u, v → v.

In the case at hand, since D0
∼= P1

H0
(
Ω1
D0

)−
= H0

(
Ω1
D0

)
7Cf. the discussion in the subsection “Further comments on H-surfaces as de-

generations of H#-surfaces” in §I.D above.
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and g(D0) = 3. Choosing appropriately the h2,0(X#) = 5 linearly

independent forms in H0
(
Ω2
X#

)
, via residues these will give all of

H0
(
Ω1
D0

)
, and the remaining two with zero residues will give a basis

for H0
(
Ω2
X

) ∼= H0
(
ΩX̂

)
.

A further geometric point to note is

As X# → X[, the four −2 curves Eα tend pairwise to the two

−1 curves that arise from the base points of |KX |.

This is clear from the picture

−→

C#
t Ct

Finally, when we turn in a subsequent section to generic local Torelli

results, it will be convenient to do some of the calculations first for

X#-surfaces, where they are in some ways simpler, before turning to

the case of H-surfaces.

Further properties of H#-surfaces.

H#-surfaces were introduced as the natural smoothings of the bi-

rational model X[ of an H-surface X. Although not essential for the

rest of this work, here we shall explain some aspects of their intrinsic

structure. The outcome is that H#-surfaces are useful in the study

of H-surfaces, but in and of themselves are not as interesting as H-

surfaces.

Definition: An abstract H#-surface, or AH#-surface, is a smooth

minimal algebraic surface X# of general type that satisfies

K2
X# = 8

pg(X
#) = 5 and q(X#) = 0.
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Proposition: A general AH#-surface is biholomorphic to a complete

intersection

Q ∩ Y ⊂ P4

where Q, Y are a general quadric, quartic respectively.

Proof. We shall take general to mean that the canonical map

ϕK
X#

: X# → P4

is a biholomorphic morphism to its image.8 This implies that a gen-

eral C# ∈ |KX# | is a smooth curve, which by adjunction has genus

g(C#) = 9. From the exact cohomology sequence of

0→ KX# → 2KX# → KC# → 0

we obtain h0(2KX#) = 14. Since h0(OP4(2)) = 15 we conclude that the

birational image of X# lies on a quadric Q.

We now assume that Q is smooth; the remaining possibilities for Q

will be discussed below. Since degϕK
X#

(X#) = 8 and the hypersur-

faces in P4 cut out complete linear series on Q, it follows that

ϕK
X#

(X#) = Q ∩ V. �

Recall that an H#-surface is defined to be a smooth X# ∈ |ξ4| ⊂ PE.

Thus X# comes equipped with a mapping X# → P1 whose general

fibres are genus 3 curves. On the other hand a general AH#-surface

X# does not have such a map; one may in fact show that ρ(X#) = 1.

There is a natural class of AH#-surfaces that are not H#-surfaces but

that are intermediate between H#- and AH#-surfaces and which do

come equipped with a map to P1; these arise as follows:

From the split exact sequence

0→ OP1 ⊕ OP1 → E → OP1(2)→ 0,

we obtain a 2-parameter family of non-split exact sequences

0→ OP1 ⊕ OP1 → E ′ → OP2(2)→ 0.

8As usual the various degenerate cases can be explicitly analyzed, but for our
purposes we shall have no need for this.
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A non-split E ′ has

E ′ ∼= OP1 ⊕ OP1(1)⊕ OP1(1).

We may picture a 2-parameter family E→ ∆2 of bundles with fibre E

over the origin and E ′’s as fibres away from the origin. This is of course

a special case of jumping phenomena of Hirzebruch surfaces jacked up

one dimension. For ξ′ = OPE′(1) we have using H0(ξ′) a map

PE ′ f
′
−→ Q′ ⊂ P4

whose image is a quadric of rank 3 having a unique singular point

P ′ ∈ Q′. A smooth complete intersection

Q′ ∩ Y

where Y ∈ |OP4(4)| is an AH#-surface which is not an H#-surface.

This is the general situation where the quadric Q in the proposition is

not smooth.

Summary. There is a hierarchy

{H#-surfaces} ⊂
{

smooth members
of |ξ′4| ⊂ PE ′

}
⊂ AH#-surfaces.

Each of these spaces is of codimension 2 in the succeeding one. For the

general members in each space we have for the Picard numbers

ρ = 4, ρ = 2, ρ = 1

respectively.

A final comment is that what motivated this discussion was the issue

of proving the local Torelli theorem for H#-surfaces, the computations

here of it being similar on the face to but simpler than those for H-

surfaces. As the above discussion shows, what is really involved for

local Torelli for H#-surfaces is local Torelli for AH#-surfaces that are

constrained to have four −2 curves. Whereas local Torelli for general

AH#-surfaces is standard and classical, for H#-surfaces it is a more

complex question.
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I.F. Tangent space to moduli for H-surfaces. Let MH be the

KSBA moduli space for H-surfaces and X an H surface. We denote by

J ⊂ OPE

the Jacobian ideal (defined below) defined by the double curve and

pinch points of X[ ⊂ PE. In this section we will prove the

Theorem: TXMH
∼= H1(ΘX) ∼= H0(PE,ξ4⊗J)/C

aut(PE)
, and these spaces have

dimension 26.

The nominator in the term on the right is the quotient of H0(PE, ξ4⊗
J) by a scaling action; think of TPH0(OPN (k)) as the tangent space to

smooth hypersurfaces of degree k in PN .

Corollary [Ho79]: MH is smooth and connected.

The essential point in the proof of the theorem is to

express H1(ΘX) in terms of the equation of X[ ∈ |ξ4|.

Proof of the theorem. We shall use the following notations:

• X = smooth H-surface;

• X ′ ⊂ P4 is the image of ϕ2KX ;

• X̂ = blow up of X at the base points of |KX |;
• X[ = g(X) ⊂ PE, which we may also view as the proper

transform of X ′ under the map f : PE → Q0 that resolves the

singularities of Q0.

We note that even though PE is a smooth resolution of singularities of

Q0, X[ is not smooth but has a double curve with pinch points.

All of these surfaces are birationally equivalent, and although it

would be nice to be able to just denote them all by X we found that

this leads to confusion.

We write the equation of X[ ⊂ PE as

R =: L2G− F 2 = 0
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where 
L ∈ |h|
G ∈ |4ξ − 2h|
F ∈ |2ξ|.

Next we define J ⊂ OPE to be the sheaf of ideals generated by {LG,L2, F}.
Since a pinch point is locally given by

zx2 − y2 = 0

we see that away from the pinch points J is the ideal of the double curve,

and that at the pinch points J contains in addition the ideal sheaf of

the pinch points on X[.

Proposition: TX(space of X[ ∈ |ξ4| arising from H-surfaces) ∼=
H0(PE, ξ4 ⊗ J).

Proof. Differentiation of the above equation for X[ gives

Ṙ = 2LGL̇+ L2Ġ− 2FḞ ∈ H0(PE, ξ4 ⊗ J).

This gives the inclusion LHS ⊆ RHS. The dimension counts to be given

below will establish equality.

Remark: The pinch points are given by

L = G = F = 0.

Using h2 = 0 and ξ2h = 1, the number of these is h ·(4ξ−2h) ·(2h) = 8.

The previous computation identified these as the six points given in P4

by {x0 = x1 = x2 = 0} ∩ {G = 0} ∩ {F = 0}, plus the two base points

of the pencil |KX |. Up on PE this distinction is not readily apparent.

Assuming the equality in the above proposition and denoting by

aut(PE) the Lie algebra of Aut(PE), we have an identification

TXMH
∼=

H0(PE, ξ4 ⊗ J) subspace given by
the action of Aut(PE)

on R ∈ H0(PE, ξ4)


∼=
H0(PE, ξ4 ⊗ J)

aut(PE)
.

To justify the first identification we note that any vector field V on PE
preserves Pic(PE) and therefore acts on ξ = OPE(1) and h = π∗OP1(1).
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Assuming that action satisfies

V ·R = 0, V · J ⊆ J

the vector field induces one on X. This is because V induces a vector

field on X[, which in turn induces one on the normalization X̂ of X[.

On X̂ the two −1 curves E1, E2 are preserved, and therefore V induces

a vector field on X. Since X is of general type, H0(ΘX) = 0 and

this justifies the first indentification. The second is clear. The crucial

computation is given by the

Proposition: h0(PE, ξ4 ⊗ J) = 40.

Proof. {LG,L2, F •} is not a regular sequence, but it does have a rel-

atively simple free resolution (not a Koszul resolution, of course). We

may describe it by the table

LG L2 F

rel1 L −G 0

rel2 F 0 −LG

rel3 0 F −L2

meaning that each row is a relation among the generators at the top,

these relations generate the module of relations, and there is the single

generating syzygy

F rel1 − L rel2 +G rel3 = 0.

Pictorially, there is a resolution

0→ ξ−6

(
F
−L
G

)
−−−−→

ξ−4

⊕
ξ−6 ⊗ h
⊕

ξ−1 ⊗ h−2

(
L F 0
−G 0 F
0 −LG −L2

)
−−−−−−−−−−→

ξ−4 ⊗ h
⊕
h−2

⊕
ξ−2

(LG,L2,F )−−−−−−→ J
∩

OPE

→ 0.
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Here the matrices go the wrong way for multiplication; it is nicer to

write

0← J
(LG,L2,F )←−−−−−−

ξ−4 ⊗ h
⊕
h−2

⊕
ξ−2

(
L F 0
−G 0 F
0 −LG −L2

)
←−−−−−−−−−−

ξ−4

⊕
ξ−6 ⊗ h
⊕

ξ−1 ⊗ h−2

(
F
−L
G

)
←−−−− ξ−6 ← 0.

We now tensor the resolution of J with ξ4. Then using the cohomo-

logical computations in §I.C one may verify that the hypercohomology

spectral sequence degenerates and

h0(ξ4 ⊗ J) = h0(ξ2) + h0(ξ4 ⊗ h−2) + h0(h)− h0(ξ2 ⊗ h−2)− h0(OPE)

= 14 + 30 + 2− 5− 1 = 40. �

Proposition: dim aut(PE) = 13.

Proof. This follows from the remark “Some further properties of PE”

at the end of the section in §I.C. From there we have

h0(End(E)) = 5h0(OP1) + 2h0(OP1(2)) = 11.

We shall use this together with an alternate argument that will be used

in the next section to complete the proof of the earlier statement that

h0(PE, ξ4 ⊗ J) = 40.

The relative tangent bundle sequence of PE → P1 is

0→ ΘPE/P1 → ΘPE → π∗ΘP1 → 0

where ΘPE/P1 are the vertical vector fields. From the Leray spectral

sequence and

Rq
π(π∗ΘP1) = Rq

πOPE ⊗ΘP1 = 0 for q > 0

we have

H0(π∗ΘP1) ∼= H0(ΘP1).

Since E → P1 is a homogeneous vector bundle, H0(ΘP1) lifts to aut(PE)

giving

h0(ΘPE) = h0(ΘPE/P1) + h0(ΘP1) = h0(ΘPE/P1) + 3.
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We next use the relative Euler sequence

0→ OPE → π∗E∗ ⊗ ξ → ΘPE/P1 → 0

to infer that

h0(ΘPE/P1) = h0(π∗E∗ ⊗ ξ)− h0(OPE)

= h0(E∗ ⊗ E)− 1 = 10. �

Returning to the proof of the theorem, the two propositions give

TXMH =
H0(PE, ξ4 ⊗ J)/C

aut(PE)

dimTXMH = h0(ξ4 ⊗ J)− 1− h0(aut(PE))

= 40− 1− 13 = 26.

It remains to show that

h1(ΘX) = 26.

This is proved in [Ho79], and an argument given in §I.G below. An

almost precise argument is given by using the Riemann-Roch theorem

and h0(ΘX) = 0 to show that

h1(ΘX) = −χ(ΘX) + h2(ΘX)

= 26 + h2(ΘX)

which gives h1(ΘX) 5 26. If we know that the map

TXMH → H1(ΘX)

is injective, then we are done. This will be verified in the next section.

I.G. Generic local Torelli theorems for H# and H-surfaces.

This section will be in three parts:

(i) Generalities on the computation of H1(Ω1
Y )prim for a surface Y

with an ample line bundle L→ Y ; introduction and use of the

Atiyah class.

(ii) Generic local Torelli for H#-surfaces.

(iii) Generic local Torelli for H-surfaces.
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The structure of the discussion is: (i) will give a general formalism for

the computation of the differential of the period mapping, and (ii), (iii)

will respectively verify the injectivity of the differential for a Fermat

H#-surface and Fermat-like H-surface, both of these to be defined

below.

(i) Generalities on the computation of H1(Ω1
Y )prim when we have an

ample line bundle L → Y over a smooth surface Y ; introduction

and use of the Atiyah class.

Let Y be a compact, complex manifold and L→ Y a holomorphic line

bundle.

Definition: ΣY,L is the sheaf of C-linear, 1st-order differential opera-

tors OY (L)→ OY (L).

Later on we shall use the obvious extension of this to vector bundles

of arbitrary rank. We note the identifications

• H0(ΣY,L) = Lie algebra of the automorphisms of L→ Y ;

• H1(ΣY,L) = T (Def(Y, L)).

The ΣY,L’s and their extension to vector bundles arose in the original

work of Kodaira-Spencer.

Note: The theorem of Birkhoff-Grothendieck states that any holomor-

phic vector bundle F → P1 is uniquely a direct sum F = ⊕OP1(ki)

where k1 = k2 = · · · . The corresponding filtration given by lumping

together the OP1(ki) terms with equal ki’s is preserved by Aut(F ).

Proposition: For Y a surface and L → Y ample, there is a natural

identification

H1(Ω1
Y )prim

∼= H1(ΣY,L ⊗KY ).

Proof. We have

0→ OY → ΣY,L → ΘY → 0

with extension class, or intrinsic curvature, λ = c1(L) ∈ H1(Ω1
Y ). We

also have canonically

H1(ΣY,L ⊗KY ) ∼= H1(Σ∗Y,L)∗.
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Dualizing the above exact sheaf sequence and taking cohomology gives

0 // H0(OY ) // H1(Ω1
Y ) // H1(Σ∗Y,L) // H1(OY )

∼ // H2(Ω1
Y )

∈ ∈

1 // λ

where the isomorphism on the right results from “hard Lefschetz.” Thus

H1(Ω1
Y )/Cλ ∼= H1(Σ∗Y,L)

∼ =
H1(Ω1

Y )∗prim

from which the proposition follows. �

We note the result remains true under the assumption

H1(OY ) = 0,

which will be the case for H# and H-surfaces.

It is natural that Σ∗Y,L in

0→ Ω1
Y → Σ∗Y,L → OY → 0

should enter into H1(Ω1)prim, since the very definition of primitive in-

volves c1(L).

We now turn to the second topic. The above proposition and more

complex related computations will be used first when Y = X# ⊂ PE
and L = OX#(ξ), and then later for g(X) ⊂ PE. Then L is not very

ample and classical arguments based on vanishing theorems will not be

applicable. Rather than having vanishing of the relevant cohomology

groups, what we will need is these together with the vanishing of the

connecting map is zero in certain cohomology sequences. This is a more

subtle issue than just making L sufficiently ample to get vanishing.

These connecting maps will occur on X# and on PE, and for this we

will need to push the computations down to P1 using E = OP1 ⊕OP1 ⊕
OP1(2). The technique necessary to carry this out leads to the Atiyah

class a(E), which for a vector bundle

E → Z
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over a complex manifold Z is defined as follows: Identifying vector

bundles with locally free sheaves and denoting by J1(E) the bundle of

1-jets j1(s) of sections of E → Z, we have

0→ E ⊗ Ω1
Z → J1(E)→ E → 0.

The second map here is the involution

j1(s)→ s(z), z ∈ Z

while if s(z) = 0 then the first order term

j1(s)z ∈ Ez ⊗ T ∗z Z

is well defined and this leads to the first map. The extension class of

this sequence is by definition the Atiyah class

a(E) ∈ H1(Ω1
Y ⊗ End(E)).

Using a(E) as an extension class we may construct the exact sequence

0→ End(E)→ ΣZ,E → ΘZ → 0,

which for line bundles reduces to the one in the 1st bullet in the proof

of the above proposition. Also, the dimension count h0(aut(PE)) = 14

above is then a result of the following

Proposition: For Z = P1 and for any holomorphic vector bundle

E → P1 we have

0→ H0(π∗E∗ ⊗ ξ)→ H0(ΣPE)→ H0(π∗ΘP1)→ 0.

Proof. We first note that we have the exact sequence

0→ π∗E∗ ⊗ ξ → ΣPE,ξ → π∗ΘP1 → 0.

The right-hand map is the composition of

ΣPE,ξ → ΘPE → π∗ΘP1 → 0.

The kernel may then be identified with π∗E ⊗ ξ by the previous Euler

sequence argument.
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Using the Leray spectral sequence, the connecting map in the exact

cohomology sequence of the above exact sheaf sequence is

H0(PE, π∗ΘP1)
δ // H1(PE, π∗E∗ ⊗ ξ)

∼ = ∼ =

H0(P1,ΘP1)
a(E)

// H1(P1,EndE)

where the bottom arrow is cup product with the Atiyah class. This

map is in turn the connecting map in the exact cohomology sequence

associated to

0→ End(E)→ ΣP1,E → ΘP1 → 0.

What we are saying is that even though this sequence does not split

(far from it, as a(E) 6= 0) on the H0-level it is exact. The computation,

which serves as a model for the more intricate ones later, goes as follows:

Since E ∼= ⊕OP1(ki) is a direct sum of line bundles, the Atiyah class

a(E) = ⊕
i
a(OP1(ki))

is also a direct sum of Atiyah classes of the OP1(ki). Therefore, under

the image of a(E) in H1(P1,EndE) there are no cross-terms in the

terms H1(P1,Hom(OP1(ki),OP1(kj)))∼=H1(P1,OP1(kj−ki)) (i 6=j) that

appear. In other words, the potentially non-zero terms inH1(P1,EndE)

are not in the image of a(E), and thus δ = 0.

Note: The non-zero terms inH1(P1,EndE) inject intoH1(P1,ΣP1,E) =

TE Def(E). Such a deformation arises, e.g., when E = OP1 ⊕ OP1(2).

The non-zero term in H1(P1,EndE) reflects deforming the extension

class to be non-zero, which deforms OP1 ⊕ OP1(2) to OP1(1) ⊕ OP1(1).

This is the well-known “jump phenomenon,” where one has a family Et

over the disc where all the Et are isomorphic for t 6= 0 but the structure

jumps at t = 0 (e.g., limF2 = F0 = P1 × P1).

I.H. The generic local Torelli theorem for H#-surfaces. An H#-

surface is given by an equation R# = 0 where R# ∈ H0(PE, ξ4). There

is a natural map ΣPE,ξ ⊗ ξ4 → ξ4 which induces a map

H0(PE,ΣPE,ξ)
dS#

−−→ H0(PE, ξ4).
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We denote by M(H#,PE) the space of smooth H#-surfaces X# ⊂ PE,

modulo the action of Aut(PE). As will be explained below, the natural

map M(H#,PE) → MH# has image a proper subvariety, reflecting the

fact that a deformation of an H#-surface may not remain an H#-

surface.

Proposition: We have the identifications

(i) TX#M(H#,PE)
∼=

H0(PE, ξ4)

H0(PE,ΣPE,ξ)
;

(ii) H0(Ω2
X#) ∼= H0(PE, ξ);

and the inclusion

(iii) H1(Ω1
X#)prim ⊃

H0(PE, ξ5)

Im{H0(PE,ΣPE,ξ ⊗ ξ)
dS∗−−→ H0(PE, ξ5)}

.

Before giving the proof we want to discuss what is behind the propo-

sition.

Discussion: Suppose we are given the situation

• Z is a smooth (n+ 1)-dimensional compact, complex manifold

and L→ Z is a holomorphic line bundle with h1(OZ) = 0;

• Y ∈ |L| is a smooth hypersurface defined by s ∈ H0(Z,L) and

where h1(OY ) = 0.

We may define

M(Y,Z) =
{space of divisors of smooth sections of L→ Z}

{automorphisms of L→ Z}
where the denominator is the image of H0(ΣZ,L) under the map induced

by ΣZ,L
ds−−→ L where Y = (s). Thus M(Y,Z) has as tangent space

TYM(Y,Z) =
H0(Z,L)

Im{H0(ΣZ,L)→ H0(Z,L)}
.

With the case where dimY = 2 in mind, we are interested in how

the subspace H0(Ωn
Y ) varies in Hn(Y,C). From the exact cohomology

sequence of

0→ Ωn+1
Z → Ωn+1

Z (L)
Res−−→ Ωn

Y → 0

we have

0→ H0(Ωn+1
Z )→ H0(Ωn+1

Z (Y ))
Res−−→ H0(Ωn

Y )→ H1(Ωn+1
Z )→ · · · .
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The cokernel of Res is a piece of the fixed part of the VHS ofHn(Y,C)

as Y varies in M(Y,Z). Therefore, we are interested in the image of

Res : H0(Ωn+1
Z (Y ))→ H0(Ωn

Y ),

i.e., the VHS arising from residues of forms with simple poles along Y .

A natural question is

What is the differential of this part of the period map?

Cohomologically the natural pairing is

H0(Z,L)

Im{H0(ΣZ,L)→ H0(Z,L)}
⊗H0(Z,KZ⊗L)→ H0(Z,KZ ⊗ L2)

Im{H0(ΣZ,L ⊗ L)→ H0(KZ ⊗ L)}
.

Thus we expect a diagram

H0(Z,L)
H0(ΣZ,L)→H0(Z,L)

⊗H0(KZ ⊗ L)

ρ⊗Res

��

// H0(KZ⊗L2)
H0(ΣZ,L⊗L)→H0(KZ⊗L2)

Res2
��

H1(ΘY )⊗H0(Ωn
Y ) // H1(Ωn−1

Y )

where

ρ :
H0(Z,L)

H0(ΣZ,L)→ H0(Z,L)
→ H1(ΘY )

is the Kodaira-Spencer map, and where the map Res2 takes an (n+ 1)-

form with a 2nd order pole along Y to a class in H1(Ωn−1
Y ). The differ-

ential of that part of the period mapping we are interested in will be

injective if the three conditions

(i) ρ is injective;

(ii) Res2 is injective;

(iii) the mapping

H0(Z,L)

Im{H0(ΣZ,L)→ H0(Z,L)}
⊗H0(KZ , L)→ H0(KZ ⊗ L2)

Im{H0(ΣZ,L ⊗ L)→ H0(KZ ⊗ L2)}

is non-degenerate in the first factor

are satisfied.

Here we shall verify (i) and (ii) for smooth H#-surfaces and shall

check (iii) for a particular “Fermat” one.
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In the next sub-section we shall extend the above discussion to the

case of H-surfaces, the point here being that we have a normalization

map

Y → Y [ ∈ (L)

where Y [ will have a double curve with pinch points.

To do (i) for H#-surfaces we shall use the following general

Lemma: The mapping ρ is injective if

H1(ΣZ,L ⊗ L−1) = 0.

Proof. We shall use the exact sequence

0→ OY → ΣY,L → ΘY → 0

and the diagram

0 0

0 // ΣY,L
// ΣZ,L

∣∣
Y

OO

ds // OY (L)

OO

// 0

ΣZ,L

OO

// OZ(L)

OO

// 0

ΣZ,L ⊗ L−1

OO

// OZ

OO

// 0

0

OO

0

OO

From the cohomology sequence of the first exact sequence and h1(OY ) =

0 we have

(a) H1(ΣY,L) ↪→ H1(ΘY ).

From the cohomology sequence of the top row in the diagram we obtain

(b)
H0(Y, L)

H0
(
ΣZ,L

∣∣
Y

) ↪→ H1(ΣY,L).

Again from the cohomology of the diagram and h1(OZ) = 0 we have

(c)
H0(Z,L)

H0(ΣZ,L)
↪→ H0(Y, L)

H0
(
ΣZ,L

∣∣
Y

) .
Combining (a), (b), (c) gives the injectivity of ρ. �
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Application to H#-surfaces: Taking Z = PE and Y = X# ∈ |ξ4| we

have

H1(ΣZ ⊗ L−1) = H1(ΣPE ⊗ ξ−4).

From the Euler sequence

0→ E∗ ⊗ ξ−3 → ΣPE ⊗ ξ−4 → h2 ⊗ ξ−4 → 0,

noting that the restriction of ξ to a fibre of PE → P1 is O(1) we have{
Rq
πE
∗ ⊗ ξ−3 = 0

Rq
πh⊗ ξ−4 = 0

for q = 0, 1.

The desired vanishing then follows from the Leray spectral sequence.

Turning to (iii) above, we have

0→ ΣX#,ξ ⊗KX# → ΣPE,ξ
∣∣
X# ⊗KX# → ξ ⊗KX# → 0

which using KX# = ξ gives

H0(X#, ξ5)

H0(X#,ΣPE ⊗ ξ)
↪→ H1(Ω1

X#)prim.

Next we use the cohomology sequences associated to

0 // ΣPE,ξ ⊗ ξ−3 // ΣPE ⊗ ξ // ΣPE
∣∣
X# ⊗ ξ // 0

0 // E∗ ⊗ ξ−2 // ΣPE ⊗ ξ−3 // ξ−3 // 0

to conclude that we have

H0(PE, ξ5)

H0(PE,ΣPE ⊗R)
↪→ H0(X#, ξ5)

H0(X#,ΣPE ⊗ ξ)
which implies (iii).

An important point is that in all of these, the RHS’s take place on

PE.

Proof.

Using the proposition, the differential of the period map is

H0(ξ4)

H0(ΣPE,ξ)
→ Hom

(
H0(ξ),

H0(ξ5)

Im{H0(ΣPE,ξ ⊗ ξ)→ H0(ξ5)}

)
where all of the cohomology groups take place on PE.

Theorem: This map is injective for a general H#-surface.

Proof. It will suffice to choose one S# ∈ |ξ4| and show that
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• S# = 0 defines an H#-surface X# (i.e., X# is smooth);

• the above map is injective for S#.

Here, for notational convenience we shall use xt20, xt0t1, xt
2
1, r0, r1 as a

basis for H0(PE, ξ); i.e., we replace x3, x4 with r0, r1. For X# we take

the Fermat H#-surface where

S# = x4(t80 + t81) + r4
0 + r4

1.

We begin by showing that

X# is smooth.

For A ∈ |ξm| we shall use the weighted Euler’s formula

mA =
1

2

(
t0
∂A

∂t0
+ t1

∂A

∂t1

)
+ r0

∂A

∂r0

+ r1
∂A

∂r1

then

{A = 0} is smooth⇔
{
∂A

∂t0
=
∂A

∂t1
=
∂A

∂r0

=
∂A

∂r1

= 0

}
= ∅.

Away from x = 0 we can solve for ∂A/∂x in terms of ∂A/∂t0, ∂A/∂t1.

Now {x = 0} ∼= P1×P1 where the homogeneous coordinates are [t0, t1]

and [r0, r1]. Thus local coordinates on PE are x, [t0, t1], [r0, r1].

We have

h · h = 0⇒ {t0 = t1 = 0} = ∅

(ξ − ∂h) · ξ · ξ = ξ2 − 2ξ2h = 0⇒ {x = r0 = r1 = 0} = ∅.

For the S# above

∂S#

∂r0

=
∂S#

∂r1

= 0⇒ r0 = r1 = 0⇒ x 6= 0, which gives

∂S#

∂t0
=
∂S#

∂t1
= 0⇒ t0 = t1 = 0, which can’t happen. �

Proof that the differential of the period map is injective.

Definition: J# = Jacobian ideal generated by the partials of S#.

Recall the standard notation: For A = weighted homogeneous form

[J# : A] = {B : AB ∈ J#}.
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The injectivity of the differential of the period map is equivalent to

{A ∈ H0(ξ4) : A ·H0(ξ)} ⊆ Im{H0(ΣPE ⊗ ξ)
dS#

−−→ H0(ξ5)}

is equal to H0(ΣPE) ∩H0(ξ4).

The LHS of the above inclusion is

{A : xt20A, xt0t1A, xt
2
1A, r0A, r1A} ∈ J#.

Since

[J# : r0, r1, xt
2
0, xt0t1, xt

2
1] = [J# : r0] ∩ [J# : r1] ∩ [J# : xt20]

∩ [J# : t0t1] ∩ [J# : t21]

we have to show that

The LHS of the expression just above is equal to J#.

In other words, the injectivity of the period mapping becomes trans-

lated into a statement about divisibility of ideals in a weighted homo-

geneous coordinate ring.

We will compute the RHS of the above expression. For this

[J# : r0] = {x3(t80 + t81), x4t70, x
4t71, r

3
0, r

3
1]

[J# : r1] = {x3(t80 + t81), x4t70, x
4x2

1, r
3
0, r

2
1}

[J# : r0] ∩ [J# : r1] = {x3(t80 + t81), x4t70, x
4t71, r

3
0, r

2
0, r

2
1, r

3
1

[J# : xt20] = {x3(t20 + t81),————
x3t50, x

3t71, r
3
0, r

3
0}

[J# : xt0t2] = {x3(t80 + t81),————
x3t80, x

3t61, r
3
0, r

3
1}

[J# : xt21] = {x3(t80 + t81),————
x3t70, x

3t51, r
3
0, r

3
1}.

In |ξ4|

[J# : xt20] ∩ [J# : xt0t1] ∩ [J# : xt21] = {x3t70, x
3t70, r

3
0, r

3
1}.

The intersection of this with [J# : r1] ∩ [J# : r0] is in J#. �

(iii) Local Torelli for a generic H-surface

Theorem: (a) With the understanding that all of the following coho-

mology groups are computed on PE, for X a smooth H-surface, we

have
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(i)
H0(ξ ⊗ J)

H0(ΣPE,ξ)
↪→ H1(ΘX) ∼= TXMH ;

(ii) H0(Ω2
X) ∼= H0(ξ ⊗ h−1);

(iii) H1(Ω1
X)prim

∼=
H0(ξ5 ⊗ h−1 ⊗ J)

H0(ΣPE,ξ)
⊇ H1(Ω1

X)prim.

(b) For a generic X, the differential of the period mapping

TXMH → Hom

(
H0(ξ ⊗ h−1),

H0(ξ5 ⊗ h−1 ⊗ J)

H0(ΣPE,ξ)

)
is injective.

Proof of (a). The argument will parallel that for H#-surfaces: we shall

verify (i), (ii), (iii) in (a) for a general smooth H-surface X, and then

shall check (b) for a particular “Fermat-like” X.

Proof of (i) in (a). We begin with the well-known

Lemma: Let Ŷ be a smooth surface with h1(OŶ ) = 0 and E ⊂ Ŷ a −1

curve that contracts to a point p on a smooth surface Y . Then under

any deformation of Ŷ the curve E deforms to −1 curves. Thus the

natural map

H1(ΘŶ )→ H1(ΘY )

is an isomorphism.

Proof (sketch). We first show that the class ϕE =: [E] ∈ H1(Ω1
Ŷ

) sat-

isfies

θ · ϕE = 0 in H2(OŶ ), θ ∈ H1(ΘŶ ).

This is equivalent to

〈θ · ω̂, ϕE〉 = 0 for all ω̂ ∈ H0(Ω2
Ŷ

).

The point is that as a current

ϕE =

∫
E

,

while ω̂ is the pullback of a unique ω ∈ H0(Ω2
Y ) which gives that the

divisor

(ω̂) = E + (proper transform of (ω)).

This implies that
∫
E
θ · ω̂ = 0.
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We next note that the section of the line bundle [E] that defines E

moves with the line bundle. This follows from

H1(Ŷ , [E]) ∼= H1(Y, Ip) = 0,

the second equality resulting from the cohomology sequence of 0 →
Ip → OY → Cp → 0 and h1(OY ) = 0. �

As a consequence of the lemma, it will suffice to prove (i) in (a)

for the blow up X̂ of X at the base points of |KX |. With our usual

notation we have

0→ ΣX̂,ξ → g∗ΣPE,ξ → g∗(ξ4 ⊗ J)→ 0,

which together with H1(X̂,ΣX̂,ξ)
∼−→ H1(ΘX̂) gives an inclusion

H0(X̂, g∗(ξ4 ⊗ J))

H0(X̂, g∗ΣPE,ξ)
↪→ H1(ΘX̂).

From

0→ ΣPE,ξ ⊗ ξ−4 → ΣPE,ξ
g∗−→ g∗ΣPE,ξ → 0

and, as previously calculated, H1(PE,ΣPE,ξ ⊗ ξ−4) = 0 we obtain

H0(PE, ξ4 ⊗ J))

H0(PE,ΣPE,ξ)
↪→ H0(X̂, g∗(ξ4 ⊗ J))

H0(X̂, g∗ΣPE,ξ)
.

Combining the two inclusions gives (i).

We have already noted (ii), and for (iii) we use

0→ ΣX̂,ξ ⊗KX̂ → g∗(ΣPE ⊗ ξ ⊗ h−1)→ g∗(ξ5 ⊗ h−1 ⊗ J)→ 0

and

0→ KX̂ → ΣX̂,ξ ⊗KX̂ → Ω1
X̂
→ 0

to give

H0(X̂, g∗(ξ5 ⊗ h−1 ⊗ J))

H0(X̂, g∗(ΣPE,ξ ⊗ ξ ⊗ h−1))
↪→ H1(Ω1

X̂
)prim

where H1(Ω1
X̂

)prim = ξ⊥ ⊂ H1(Ω1
X̂

).

Next we use the cohomology sequence of

0→ ΣPE,ξ ⊗ ξ−3 ⊗ h−1 → ΣPE,ξ ⊗ ξ ⊗ h−1 → g∗(ΣPE,ξ ⊗ ξ ⊗ h−1)→ 0
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and

0→ E∗ ⊗ ξ−2 ⊗ h−1 → ΣPE,ξ ⊗ ξ−3 ⊗ h−1 ⊗ h→ 0

together with H1(PE,ΣPE,ξ ⊗ ξ−3 ⊗ h−1) = 0 to give (iii). �

Proof of (b). As for H#-surfaces we will verify the injectivity of the

differential of the period map for a particular H-surface. For this we

choose the Fermat-like H-surface with equation S = 0 where

S = xt20(x3(t60 + t61) + r3
0 + r3

1)− (r2
0 + r2

1)2.

Proof that S = 0 defines an H-surface. For H-surfaces we want an

equation of the form

S = xt20U− (r2
0 + r2

1)2 = 0.

The pinch points are

xU = 0, t0 = 0, r2
0 + r2

1 = 0,

so we need xU = 0 to be eight distinct points on t0 = 0, r2
1 + r2

2 = 0.

We have

∂S/∂x = t20U + xt20 ∂U/∂x

∂S/∂t0 = 2xt0U + xt20 ∂U/∂t0

∂S/∂t1 = xt20 ∂U/∂t1

∂S/∂r0 = xt20 ∂U/∂r0 − 4r0(r2
0 + r2

1)

∂S/∂r1 = xt20 ∂U/∂r1 − 4r1(r2
0 + r2

1).

When x = 0, the vanishing of the partials implies that

r2
0 + r2

1 = 0, U = 0.

We also need that for t0 6= 0

x = 0, r2
0 + r2

1 = 0, U = 0 is empty.

Now U = x ·B+ (homogeneous cubic in r0, r1), and we need that

U
∣∣
x=0

, r2
0 + r2

1 = 0 have no common zeroes.

We may take

U = r3
0 + r3

1 + x3(t60 + t61),
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which takes care of the x = 0 case.

If x 6= 0, t0 6= 0 the vanishing of the partials is

(1) U + x ∂U/∂x = 0

(2) 2U + ∂U/∂t0 = 0

(3) ∂U/∂t1 = 0

(4) 3xt20r
2
0 − 4r0(r2

0 + r2
1) = 0

(5) 3xt20r
2
1 − 4r1(r2

1 + r2
2) = 0.

Note that

∂U/∂t1 = 6x3t51 so (3) =⇒ t1 = 0.

Then

U + x ∂U/∂x = r3
0 + r3

1 + x3(t60 + t01——) + 3x3(t60 + t01——)

and thus

(1) =⇒ r3
0 + r3

1 + (xt20)3 = 0

(4) =⇒ r2
0xt

2
0 = (4/3)r0(r2

0 + r2
1)

(5) =⇒ r2
1xt

2
0 = (4/3)r1(r2

0 + r2
1)w�

(r2
0r1 − r0r

2
1)xt20 = 0w�

r0r1(r1 − r0) = 0.

Thus

r0 = 0, r1 = 0, or r0 = r1.

If r0 = r1 = 0 then r2
0 + r2

1 = 0. If r0 = 0, r1 6= 0 then

xt20 = (4/3)r3
1w�

(xt20)3 = (4/3)3r3
1.

But by (1), −r3
1 = xt20 =⇒ (xt20)3 = r9

1 =⇒ r1 = 0, and

by symmetry, r1 = 0 =⇒ r0 = 0.

If r0 = r1 6= 0, (4) =⇒ xt0 = (4/3)∂r0 =⇒ (xt20)3 = (8/3)3r3
0.
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But (1) =⇒ −2r3
0 = (xt20)3 =⇒ r0 = 0 and we get r0 = r1 = 0 =⇒

(xt20)3 = 0, contradicting x0 6= 0, t0 6= 0.

Conclusion: The singular locus of S = 0 is t0 = 0, r2
0 + r2 + 1.

This is a double curve. Now

{xU = 0}∩{t0 = 0}∩{r2
0 +r2

1 = 0} is

{
t0 = 0, r2/r0 = ±i on x = 0

x3t61 + r3
0 + r2

1 = 0.

The roots are distinct: On P1 × P1 we have [t0, t1] = [0, 1], r1 = ±ir0

and

−x3t61 = r3
0 + ir3

0w�
r3

0 =
−x3t61
1± i

.

Regarding xt21 as fixed we get six distinct solutions. Thus we have

2 + 6 = 8 distinct pinch points. �

Proof of generic local Torelli for H-surfaces. We want to show that the

map

H0(ξ4 ⊗ J)

H0(ΣPE)
→ Hom

(
H0(ξ ⊗ h−1),

H0(ξ5 ⊗ h−1 ⊗ J)

H0(ΣPE ⊗ ξ ⊗ h−1)

)
is injective. Here, all of these cohomology groups are computed on PE
and the image of H0(ΣPE) under the map A→ A dS, A ∈ H0(ΣPE)

has basis

∂S

∂x
= 4x3(t00 + t20t

6
1) + t20(r3

0 + r3
1) ∈ |ξ3h2|

∂S

∂t0
= 844t70 + 2x4t0t

6
1 + 2xt0(r3

0 + r3
1) ∈ |ξ4h−1|

∂S

∂t1
= 6x4t20t

5
1 ∈ |ξ4h−1|

∂S

∂r0

= 3xt20r
2
0 − 4r0(r2

0 + r2
1) ∈ |ξ3|

∂S

∂r1

= 3xt20r
2
1 − 4r1(r2

0 + r2
1) ∈ |ξ3|.
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Then H0(ΣPE ⊗ ξ ⊗ h−1) is the image of H0(ΣPE ⊗ ξ ⊗ h−1) under

this same map where now A ∈ H0(ΣPE ⊗ ξ ⊗ h−1). Since H0(ξ ⊗ h−1)

has basis xt0xt1 the ideal we want is

[J : (xt0, xt1)].

Initial efforts to verify by hand the injectivity of the differential of the

period mapping led to complicated impressions. Turning to Macaulay

turned up the following two generators, which were unlikely to have

been found by hand, of the above ideal:

I1 = x6t0t
10
1 r0 + x6t0t

10
1 r1 +

(
3
4

)
x4t30t

4
1r0r

2
1 =

(
3
4

)
x4t30t

4
1r

3
1 + 2x3t0t

4
1r1

I2 = x6t0t
10
1 r1 +

(
3
4

)
x4t30t

4
1r0r

2
1 −

(
3
4

)
x4t30t

4
1r

3
1 − x3t0t

4
1r0r

3
1 + x3t0t

4
1r

4
1.

By degree considerations this implies the injectivity of

H0(ξ4)

H0(ΣPE)
↪→ Hom

(
H0(ξ ⊗ h−1),

H0(ξ5 ⊗ h−1)

H0(ΣPE ⊗ ξ ⊗ h−1)

)
∪

H0(ξ4 ⊗ J)

H0(ΣPE)
.

In fact, it is only when one gets to

H0(ξ7 ⊗ h−1)

H0(ΣPE ⊗ ξ3 ⊗ h−1)
→ Hom

(
H0(ξ ⊗ h−1),

H0(ξ8 ⊗ h−2)

H0(ΣPE ⊗ ξ4 ⊗ h−2)

)
that injectivity fails. �

I.I. Global monodromy. Let MH be the KSBA moduli space for

smooth H-surfaces X. The object of this section is to prove the

Theorem: Let Φ : MH → Γ\D be the period mapping associated to

H2(X)prim. Then Γ is an arithmetic group.

The usual method to establish such results for a smooth variety Y

of general type is to realize a general Y as a smooth section of a very

ample line bundle L → Z over a smooth variety and use the classical

method of Lefschetz [Le24] to produce generators γi for Γ, followed

by a group theoretic argument [Be] to show that the γi generate an

arithmetic group. The idea here is to extend, in several significant

ways, this method.
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Recall that an H-surface is described by a diagram

X̂
g // PE

f // Q0 ⊂ P4

↓ ∪

X
ϕ2KX // X ′

where X[ ∈ |ξ4|, f is given by |ξ|, and X ′ = Q0 ∩ V is the bicanonical

image of X where V ∈ |OP4(4)|. The monodromy representations for

X and X̂ differ by an inessential factor, and we shall concentrate on

the one for X̂, noting for the purpose of arguments using pictures that

each has the same bicanonical model:

ϕ2KX̂
(X̂) = ϕ2KX (X) = X ′.

There are two issues in trying to apply the Lefschetz method, each of

interest in its own right:

(a) the line bundle ξ → PE is not very ample; it is generated by global

sections and the image

f(PE) = Q0 ⊂ P4

is the singular quadric x0x2 = x2
1;

(b) the normalization map X̂ → X[ ⊂ PE is not biregular but has

image singular along a double conic D0 ⊂ P2
0 with eight pinch

points, which divide into two monodromy invariant groups of six

plus two.

Each of (a) and (b) presents issues in seeking to extend the Lefschetz

method. The heuristic reason why one might hope to extend it is this:

The failure of g∗(ξ) → X̂ to be very ample is given by mon-

odromy invariant data along a monodromy invariant curve C0 ⊂
X. Thus one might hope that the Lefschetz method will apply

to H2(X\C0) and where the data along C0 will only contribute

a monodromy invariant subspace in Hg1(X).

This section will be divided into three subsections:
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(i) The analogue of the theorem for J-surfaces, these being defined as

complete intersections

Y = Q ∩ V

where Q is a smooth quadric in P4 and V ∈ |OQ(4)| is a general

quartic; here the Lefschetz method will apply. Here we are using

the complete linear system |OQ(4)| to embed Q ↪→ PN , so that

elements in P̌N give sections of Q ⊂ P4 by quartic threefolds.

(ii) The result for H#-surfaces X# ⊂ PE, which are a general member

X# ∈ |4ξ|; here only the first complication (a) will occur and the

above general principle will apply.

(iii) The result for H-surfaces, where both issues (a) and (b) are present.

Finally, a word about the arguments to be given. These will be

“pictorial” in the style of Lefschetz where in some ways the essential

geometric aspects of the problem can perhaps most readily be seen.

Presumably they can be recast in more modern language, as is the

case for the usual Lefschetz pencils in [Ka], these arise when L→ Z is

very ample and the pencil is constructed from general lines in the dual

projective space relative to a projective embedding Z ↪→ PH0(Z,L)∗.

Referring to the steps s1, s2, s3 and s4 below, the first three are geo-

metric and are carried out below for J,H# and H-surfaces. This brings

us to a situation

• Λ ∼= Zb a lattice with a non-degenerate form

Q : Λ⊗ Λ→ Z;

• a set ∆={δi} where δi ∈ Λ with δ2
i =−2 and where spanZ{δi}=Λ;

• Picard-Lefschetz transformations

Tδi(γ) = γ +Q(γ, δi)δi, δi ∈ ∆

that generate a subgroup Γ∆ ⊂ Aut(Λ, Q) and where Γ∆ acts

transitively on ∆.
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I had thought that under the conditions the results in Beauville would

give that

Γ∆ is arithmetic.

In fact, either Γ∆ = Aut(Λ, Q) or, in some special cases, the index [Γ∆ :

Aut(Λ, Q)] = 2. But it seems that for this strong result one needs that

Γ∆ contains an element T that would be generated by the monodromy

of a surface acquiring a particular type of du Val singularity ; viz., in

addition to the δi above we should have

•

T oo // • • • •

•
Thus it seems that we need a degeneration of an H-surface with an

equation (cf. Beauville, p. 10, line 14↓)

x3 + y3 + z4 +HOT.

I believe that Radu has such an example?

(i) Global monodromy for J-surfaces

Theorem: The global mondromy group acting on H2(Y )prim for J-

surfaces is an arithmetic group.9

Here there are four steps:

(s1): to use the Lefschetz pencil |Yλ| to produce generators γi for the

global monodromy group Γ;

(s2): by varying the Lefschetz pencil and using the irreducibility of the

dual variety Q̌ ⊂ PN show that monodromy acts simply transi-

tively on the γi;

(s3): show that the vanishing cycles associated to the γi generateH2(Y )prim;

(s1): For a Lefschetz pencil |Yλ| defined by a general line Λ ⊂ P̌n

we denote by Q̂ the blowup of Q at the base points of the pencil. We

then have Q̂ → P1 with fibres the Yλ; H2(Q̂) and H2(Q) differ only

9See the above note.
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by the subspace of H2(Q̂) generated by the fundamental classes of the

blownup base points. This is a subspace in Hg1(Q̂) which is invariant

when we vary the Lefschetz pencil. Effectively, it can be ignored in

what follows.

We now draw the classic Lefschetz picture

λ0

λi

λ2

λ1

of the λ-plane C ⊂ P1 with a reference point λ0 corresponding to a

smooth Yλ0 , and where the λi correspond to nodal Yλi ’s where the

line Λ ⊂ PN that defines the Lefschetz pencil meets the dual variety

Q̌ transversely. Corresponding to each λi there is a vanishing cycle

δi ∈ H2(Yλ0) which maps to zero under the collapsing map H2(Yλ0)→
H2(Yλi) along the path λ0λi. The Picard-Lefschetz transformation Tδi
given by the action on H2(Yλ0) induced by going around the path drawn

above is

Tδi(γ) = γ + (γ1δi)δi.

Since δ2
i = −2 we have

Tδi(δi) = −δi.

The surface Q̂0 =: Q̂\Y∞ retracts onto the part of Q̂ over the slits,

from which it follows by the classical Lefschetz arguments that

• the Tδi generate the action of monodromy on H2(Yλ0) for the

family of smooth surfaces

Q̂\
(⋃

i

Yλi

)
→ P1\{λ1, . . . , λm}

obtained by taking out the singular fibres in Q̂→ P1;

• there is a relation ∏
i

Tδi = I.
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Setting Λ∗ = Λ\{λ1, . . . , λm}, if U ⊂ P̌N parametrizes the smooth

surfaces Q ∩ V , the map

π1(Λ∗)→ π1(U)

is surjective, from which it follows that the Tδi generate the global

monodromy group for the action of π1(U) on H2(Yλ0).

s2: We now vary the Lefschetz pencil. In this case, since Q̌ is ir-

reducible, Q̌\Q̌sing is connected, from which we conclude that we may

choose a closed loop in the space of Lefschetz pencils which interchanges

any pair λi, λj of critical values corresponding to singular surfaces in

the Lefschetz pencil.

s3: Recalling the notation Q̂0 = Q̂\Y∞, in the commutative diagram

H3(Q̂0)
i0 //

��

H3(Q̂0, Yλ0)
∂0 //

��

H2(Yλ0)
j0 //

��

H2(Q̂0)

��

H3(Q̂)
i // H3(Q̂, Yλ0)

∂ // H2(Yλ0)
j // H2(Q̂) // 0

the essential points are:

• the locus of the vanishing cycle δi along each path λ0λi gener-

ates a 3-cycle ∆i with ∂0∆i = δi, and the ∆i generateH3(Q̂0, Y∞)

([Le24]);

• by definition, the vanishing cycles are given by ker j, which in

this case is H2(Yλ0)prim;

• the map H2(Q̂0) → H2(Q̂) is a morphism of mixed Hodge

structures which induces an injection on the Gr2-terms.

This last point implies that ker j = ker j0, which by the second bullet

establishes the desired result.

(s4): a variant of the group-theoretic argument [Be] will give that Γ is

arithmetic.

(ii) Global monodromy for H#-surfaces
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We recall that for an H#-surface, defined as X# ⊂ PE given by a

general member X# ∈ |ξ4|, the canonical map

ϕK
X#

: X# → P4

is given by the restriction of f : PE → Q0 ⊂ P4, and the fibres C#
t =

π−1(t) of X# → P1 are described pictorially below in terms of the

picture of Q0 as a quadratic pencil of P2
t ’s rotating about the line

L = Q0,sing

general C#
t L , here omitting ϕK

X#

nodal C#
ta

L

The base points of this pencil are the images of the four −2 curves

Cα that are contracted by the canonical mapping, and whose canonical

images are the dots on L. Recalling that ξ, h ∈ Pic(X#) we have the

Lemma: [C1], . . . , [C4], ξ are linearly independent in Pic(X#), and h ∈
spanQ([C1], . . . , [C4], ξ). Thus the Picard number is

ρ(X#) = 5.

Proof. Recalling that the divisor S ∼= P1 × P1 of x ∈ H0(PE,
ξ − 2h) ∼= C is contracted to L under the mapping f : PE → Q0,

we have in Pic(X#)

C1 + C2 + C3 + C4 = ξ − 2h.
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Then from ξ2 = −8 and

C2
α = −2

Cα · h = 1

Cα · ξ = 0

we obtain the lemma. �

The C#
ta are the nodal curves that appear as singular fibres in the

fibration X# → P1; the nodes on the C#
ta are a smooth points of X#.

Theorem: Setting H2(X#)prim = span{C1, . . . , C4, ξ}⊥, the global mon-

odromy group acts on H2(X#)prim and there it is an arithmetic group.

Proof. The idea is to parallel the above argument for J-surfaces with

the PE replacing Q and a general pencil |X#
λ | replacing |Yλ|. For this

we need first to determine what the degeneracies are for a general |X#
λ |.

They are of three types.

C#
ti(i)λi

Here a new nodal curve appears in a fibre of X#
λi
→ P1. This corre-

sponds on Q0 to a Yλi ∈ |OQ0(4)| becoming simply tangent at a point

of Q0,reg. Back up on PE the surface Xλi acquires an ordinary node,

as in the standard Lefschetz picture.

The second type is

L(ii)
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This corresponds to one of the nodes on a C#
ta moving onto L. Back up

on X#
λ this does not create a new singular fibre in the pencil. Here one

needs to distinguish between new singularities appearing in the family

of H#-surfaces as hypersurfaces in PE, as apposed to appearing in

their canonical images in P4, which may be thought of as singularities

of the target rather than as singularities of the source.

There remains the possibility that as we vary the pencil |X∗λ|, one of

the nodes on X∗λi moves onto the fixed component S ∩ X#
λi

of |KX#
λi

|
that maps to L = Q0,sing. The picture here is the same as for (ii); again

it reflects a singularity of the canonical map rather than a new one that

appears back up on X#
λi
⊂ PE.

The discussion of the steps s1 and s2 now proceeds exactly as for

J-surfaces. The point is that the dual variety Q̌0,reg is irreducible, and

adding points to its closure in P̌N does not affect the transitive action of

monodromy on the critical values λi in case (i) above. In other words,

nodes that appear on a X#
λi

as a result of the point of tangency of a

hyperplane moving onto Q0,sing are not monodromy invariant.

For s3 we denote by P̂E the blow up of the base locus of the general

pencil |X#
λ |. Setting P̂E

0
= P̂E\X#

∞ we consider the diagram

H3(P̂E
0
)

i0 //

��

H3(P̂E
0
, X#

λ0
)

∂0 //

k
��

H2(X#
λ0

)

��

j0 // H2(P̂E
0
)

��

H3(P̂E)
i // H3(P̂E,X#

λ0
)

∂ // H2(X#
λ0

)
j // H2(P̂E) // 0.

Here the difference between J-surfaces and H#-surfaces appears. Re-

ferring to the three bullets following the analogue for J-surfaces of the

diagram just above,

• as before the Lefschetz argument applies to show that ker j0 is

generated by the cones ∆i traced out by the vanishing cycles

δi along the segments λ0λi;

• by definition, ker j are the vanishing cycles for the map induced

on homology by the inclusion Yλ0 ↪→ PE;
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• however, since the map k is not injective on the Gr3-part of the

mixed Hodge structures on H3(P̂E
0
, X#

λ0
) and H3(P̂E,X#

λ0
), we

have

im ∂0 $ im ∂.

The discrepancy is generated in H2(X#
λ0

) by the differences Cα − Cβ

between pairs of the −2 curves that are contracted by the canonical

map. In cohomology the monodromy representation is reducible with

one summand being

span{ξ, h, C1, . . . , C4} ⊂ Hg1(X#
λ0

),

and the other summand being

H2(X#
λ0

)tr =: span{ξ, h, C1, . . . , C4}⊥.

For a generic X# the monodromy representation on Hg1(X#) is a fi-

nite group, while the above Lefschetz-type argument coupled with the

group theoretic result in s4 gives that the monodromy representation

on H2(X#)tr is arithmetic.

(iii) Global monodromy for H-surfaces

We begin with a few general observations.

• If U is a smooth, irreducible algebraic variety and U0 ⊂ U is a

Zariski open set, then the induced mapping

π1(U0)→ π1(U)

is surjective. Thus, to show that Γ is arithmetic we may restrict to

the monodromy representation to a Zariski open.

• In the situations we are concerned with, we will have

U
p−→MH

where U fibres over a Zariski open in MH and where

p∗ : π1(U)→ π1(p(U))

will be surjective.
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• We will use the equation of X[ ⊂ PE to describe the Zariski open

U in the preceding bullet, and here we will take the equation of X[

to be

xt20G = F 2

where G,F are general elements in |3ξ|, |2ξ| respectively.

• Finally, we recall that x ∈ |ξ − 2h| is a generating section with

divisor S ∼= P1 × P1 and where

OS(1, 0) = h, OS(0, 1) = ξ.

Then the restriction F
∣∣
S
H0(OS(0, 2)) has divisor P1

∐
P1, a disjoint

union of two P1’s, and

S ∩ {F = 0} = C1 + C2

where C1, C2 are disjoint curves on X[ that satisfy

– C2
1 = C2

2 = −1;

– C1, C2 map under f : PE → Q0 to the two base points of the

pencil ϕ2KX (Ct).

In the picture

of ϕ2KX (Ct) for a general t, C1 and C2 map to the two marked points.

Under the map

g : X̂ → X[ ⊂ PE

they are the images of the exceptional −1 curves obtained by blowing

up the base points of |KX |.
We shall choose a general P1 in the space of the above equations (it

doesn’t have to be a pencil), and shall examine the degeneracies that

occur among the X[
λ’s. In addition to those that occur for a general

pencil |X#
λ | of H#-surfaces, the new ones will involve those that occur
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along the double conic. We shall draw pictures of the degeneracies of

X[
λ = ϕ2KXλ

(Xλ), and we shall interperate those back up on the Xλ.

The things that can happen in the codimension 2 in the parameter

space for the X[’s are

d1 x = F = 0 is one P1 counted twice, instead of two distinct P1’s;

d2 t0 = F = 0 is a singular plane conic L1L2 = 0;

d3 the points of t0 = G = F = 0 are not distinct;

d4 F,G become tangent at a point not on t0 = 0;

d5 G
∣∣
t0=0

is a plane cubic that acquires a node.

d1: Here the two curves C1, C2 above come together and interchange.

The picture is

L

where L becomes a 4th-order flex-tangent to the curves in the pencil.

This is the limiting case of the picture

for H#-surfaces, and as was the case there the monodromy action takes

place in Hg1(X̂) for a generic H-surface X.
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d2: Here the unique hyperelliptic C0 on a general X becomes reducible

L1 = 0 L2 = 0

We now show that this doesn’t contribute to a singularity of X[
λi

. If

locally we take

u = t0, v =
√
xG

so that

(uv)2 = t20xG = L2
1L

2
2,

then after a choice of the square root above we obtain

uv = L1L2.

This map is 1:1 except when u = 0, where it is 2:1, including at L1 =

L2 = 0, and has branch points at the points of xG = 0. This does not

contribute to the computation of monodromy.

d3: This is the case where two of the branch points of C0 → D0 come

together, which means that C0 ∈ |KXλ| acquires a new node; namely,

one that it is not the limit of one of the nodal curves in |KXλ| for

a general λ. As was the situation for H#-surfaces, this is the case

where the quartic hypersurface in P4 is the limit of hypersurfaces that

are simply tangent to Q0,reg. As such, it falls in the general Lefschetz

pencil situation.

d4: This is the general Lefschetz pencil situation; the limiting case here

is d3 above.

d5: The node will not be on the double conic, and therefore it does not

affect the picture.
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At this juncture we see that the critical values in a general family

X[
λ that are not of types d3 and d4 will only affect the Hg1(X̂)-part of

global monodromy.

(s3): The situation for H-surfaces is in one way simpler than that for

H#-surfaces. Namely, the bicanonical map ϕ2KX : X → P3 does not

contract any curves. Rather it is the normalization map for the bi-

canonical image X ′ = ϕ2KX (X) ⊂ P4. Recall that for X̂ given by the

blowup of X at the base points of |KX |, the equation we are using to

describe a birational model of X is the one that describes the image of

X[ ⊂ PE; viz

t20xG = F 2

where G,F ∈ |ξ3|, |ξ2|. As was the case for H#-surfaces, we are con-

cerned with the monodromy representation of

H2(X)tr =: Hg1(X)⊥

where X is a very general H-surface. Noting that

H2(X)tr = H2(X̂)tr =: Hg1(X̂)⊥,

it will suffice to work with X̂. We then claim that using duality to

identify H2(X̂) and H2(X̂), we have

ker{HX(X̂)tr
g∗−→ H2(PE)} is generated by the vanish-

ing cones ∆i traced out by the locus of vanishing cycles

δi along the paths λ0λi.

The argument is similar to that for H#-surfaces, although it is simpler

in that to work from the pictures it is only the two −1 curves E1, E2

that are contracted by f ◦ gϕ2KX = ϕ2KX̂
.

(s4): In the case of J,H# and H-surfaces in the terminology of [Be] we

have a vanishing lattice (Λ,∆). In order to conclude the arithmeticity

of Γ∆, we need to know that there is additional degeneration of a spe-

cial sort. In [Be] the singularity is an isolated singularity of type U−

(12); this is what is needed to be able to apply the results of [ED]. In
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the case of H-surfaces we shall use an example of an isolated Dolga-

cov singularity of type D− (10) (or equivalently an Arnold exceptional

uninodal singularity). Such a singularity is given by an equation

to be continued
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III.C. Positivity of the Hodge bundle. Let M be a KSBA moduli

space for surfaces of general type and

Φe : M→ Γ\D∗

the extended period map. Assuming two technical extensions, stated

below, of the proof of the classical Kodaira embedding theorem we shall

prove the

Theorem: The Hodge bundle λ is ample relative to Φe in the sense

that

Φe(M) = Proj(λ).

For the argument we may replace Φe : M→ Γ\D∗ by the diagram

S
Φ // Γ\D

∩ ∩
S

Φe // Γ\D∗

where S is a smooth, compact complex manifold, Z =: S\S is a divisor

with normal crossings and Φ : S → Γ\D is a VHS whose local mon-

odromies around the branches of Z are unipotent. The reason we may

do this is that Φe(M) Φe(S), and these differ only by fixed subspaces in

Hg1 in the associated graded VHS’s along the boundary strata. Thus as

compact analytic varieties we have Φe(M) = Φe(S). With the technical

assumptions mentioned above, we shall show that

The image Φe(S) is a compact analytic variety and the Hodge

bundle λ→ Φ(S) is ample.

As noted above we will phrase this by saying that

λ is ample relative to Φe : S → Γ\D∗.

Since we are working in a complex analytic setting it is natural that

curvature methods will be used. Before presenting the argument, we

begin with a few remarks that are meant to explain its essential aspects.

(i) It is classical that with the Hodge metric, the Hodge bundle has

positive curvature on Φ(S).

This is one of the two basic “positive curvature” aspects of the result.
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We may assume that Z = ∪Zi is stratified in such a way that setting

Z0
i = Zi\Zi+1 the restriction

Φe : Z0
i → Γi\Di

maps to boundary components as descrbed in §II— above.

(ii) Since this mapping is étalè over a product of period domains, we

would like to apply (i).

There is a subtlety here in that even though the Hodge bundles ex-

tend homomorphically to Γ\D∗, the Hodge metrics do not. Rather, the

Hodge lengths of holomorphic sections of the extended Hodge bundles

will have logarithmic singularities of the type(
log

1

|t|

)k
.

Thus even when Φe(S) is a complex manifold, the natural metric in

the Hodge bundle λ has singularities.

(iii) We will see that the strength of the singularities, as measured by

the exponent k above, is in a precise sense proportional to the

size of the log of monodromy around the branches of Zi\Zi+1. In

particular, the stronger the monodromy the more positive in the

distributional sense are the Chern forms of λ.

This phenomenon, which was classical in the geometric case, is re-

lated to but not the same as that in [Sc72] and [CKS86] showing how

the monodromy weight filtration may be defined in terms of the Hodge

lengths of section of the corresponding local system. Another way of

expressing it is that for

Φe : Z0
i → (Γi\Di)

the positivity of the Hodge bundle of λ
∣∣
Di

is supplemented by a factor

contributed by the action of monodromy around Z0
i .

Before turning to the arguments we wish to make one more remark:

The above result and comments refer to the line bundle

λ = detF n
e .
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(iv) The vector bundle F n
e is semi-positive. The degeneracies of the

curvature form reflect the determinantal structure of the Kodaira-

Spencer mappings.

The terms in this remark will be defined below. The point is that there

is more geometry in the curvature of F n
e than just the positivity of its

associated determinant line bundle.

We will proceed with a general review of the general curvature prop-

erties of positive and semi-positive holomorphic vector bundles. The

applications to the above theorem will be given at the end, and the

two required extensions of the Kodaira embedding theorem will be

presented in the appendix to this section.

III.C.a. Positive vector bundles. A Hermitian vector bundle is given by

a holomorphic vector bundle S →M over a complex manifold together

with a Hermitian metric h = ( , ) in the fibres of S. Such a vector

bundle has a canonical connection with associated curvature

ΘS eA
1,1(Hom(S, S)),

a Hom(S, S)-valued (1, 1) form that satisfies tΘS = −ΘS. The Chern

forms cq(ΘS) representing the Chern classes cq(S) of S →M are given

by

det

(
I +

(
i

2π

)
ΘS

)
=
∑
q

cq(ΘS).

Upon choice of a frame eα for S and local coordinates zi on M , ΘS is

represented by a matrix10

Θαβ̄ij̄eα ⊗ e∗β ⊗ dzi ∧ dz̄j

where e∗β is dual to eβ using S ∼= S∗ via the metric.

Definition: The curvature form is defined for ξ ∈ TxS, e ∈ Ex by

ΘS(e, ξ) = 〈(ΘS(e), e), ξ ∧ ξ̄〉.

In matrices it is given for e = σαeα, ξ = ξi∂/∂zi by

ΘS(e, ξ) = Θαβ̄ij̄σ
ασ̄βξiξ̄j.

10We shall be using summation convention.
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Definition: S → M is positive if there exists a metric such that

ΘS(e, ξ) > 0. It is semi-positive if there exists a metric such that{
ΘS(e, ξ) = 0

Tr ΘS(e, ξ) > 0.

One geometric interpretation is this. Over PS∗ we have the tauto-

logical line bundle OPS(1).11 The Hermitian metric on S →M induces

one in the line bundle OPS(1) with curvature form ωS. At each point

[e∗] ∈ P the tangent space is a direct sum

T[e∗]PS = V[e∗] ⊕H[e∗]

of vertical and horizontal subspaces. Then

• ωS
∣∣
V
> 0;

• ωS
∣∣
H
= 0;

• ωS > 0 ⇐⇒ S →M is positive.

In particular, positive vector bundles are ample. It is an old question

whether the converse is true.

The last relation above results by identifying H ∼= TM and then at

(e, ξ) we have

ωS(ξ) = ‖ξ(e)‖2.

III.C.b. The universal bundle over the Grassmannian. Note on signs:

The Hodge bundle is a holomorphic sub-bundle of a flat vector bundle.

However, because of the sign properties in Hodge theory it will be

semi-positive whereas over the Grassmannian the standard sub-bundle

of the flat bundle is semi-negative; hence the signs in this section.

We begin with a general remark about the curvature of sub-bundles.

Let V →M be a holomorphic vector bundle with an Hermitian metric

11Recall that the fibre (PS)s at s ∈ S is PS∗
x. This convention gives for PS π−→M

that {
RoπOPS(k) = Symk S

RqπOPS(k) = 0, k = −rankS.
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and S ⊂ V a holomorphic sub-bundle. Then there is a canonical 2nd

fundamental form of S in V

A ∈ Ω1 ⊗ Hom(S, V )

such that the curvatures of V and S with the induced metric are related

by

ΘS(e, ξ) = ΘV (e, ξ)− (A(e), A(e)).

In matrix form

ΘS = ΘV

∣∣
S
− tĀ ∧ A.

This formula is usually expressed by: curvatures decrease on holomor-

phic sub-bundles. In particular

• ΘV = 0 =⇒ ΘS 5 0;

• Tr ΘS < 0 if A : T → Hom(S, V ) is injective.

We now let V be an Hermitian vector space and G(k, V ) the Grass-

mannian of k-planes F ⊂ V . With the standard identification

TFG(k, V ) = Hom(F, V ),

the above, A is the identity and we have over G(k, V ){
ΘS 5 0

Tr ΘS < 0.

An interesting question is For which (e, ξ) do we have

ΘS(e, ξ) = 0.

To give the answer we use the above identification and stratify PTG(k, V )

by

PTG(k, V )` = {ξ ∈ TFG(k, V ) : dim{ker ξ : F → V/F} = `}.

Geometrically, we think of ξ as infinitesimally displacing F to Fξ, and

then we have that

F ∩ Fξ = dim ker{ξ : F → V/F}

interpreted as what might be called the infinitesimal base locus of the

family Fξ.
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Noting that

S∗ is positive ⇐⇒ rank S = 1 ⇐⇒ G(k, V ) = PV

we see that the bundles S∗ → G(k, V ) are semi-positive but are not

ample. Geometrically

The curves in PS that prevent the ampleness of S∗ →
G(k, V ) are given by curves of (k−`)-planes [Ft] ⊂ PV
that contain a fixed k-plane for some ` = 1.

The Nakai criterion for the ampleness of OPS∗(1) fails exactly for such

curves.

For M ⊂ G(k, V ) a smooth subvariety, we have that

S∗ →M is ample ⇐⇒ all ξ ∈ TM ⊂ TG(k, V ) are injective.

Example: Suppose rank S = 2. Then the stratum PTG(2, V )1 of rank

one ξ’s is a bundle of rational normal scrolls over G(2, V ) whose fibres

are Pa−1 bundles over P1 (dimV = 2 + a).

III.C.c. Semi-positivity of F n →M for a PVHS. We consider a PVHS

(V,Q, F p,∇) over a complex manifold M . Since we are mainly con-

cerned with algebraic surfaces we will mainly be concerned with the

bundle

F 2 ⊂ V (think of F 2 = H2,0).

The polarization induces a metric in F 2 →M , and the sign conventions

work out to have for F = F 2

ΘF (e, ξ) = ‖∇̃ξ(e)‖2

where setting ∇̃ = ∇ mod F 2

∇̃ξ(e) = 〈∇̃e, ξ〉 ∈ F 1/F 2.

Main example: X
π−→M is a family of smooth algebraic surfaces Xt for

t ∈M . Then F = π∗ωX/M , and a section ϕ(t) of F →M is

ϕ(t) ∈ H0(Ω2
Xt)

‖ϕ(t)‖2 =

(
1

4

)∫
Xt

ω(t) ∧ ω(t)
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(note that
(

1
4

)
dz ∧ dw ∧ dz̄ ∧ dw̄ =

(
i
2

)
dz ∧ dz̄ ∧

(
i
2

)
dw ∧ dw̄).

The map ∇̃ is given by the Kodaira-Spencer map

ρ : TtM → Hom
(
H0(Ω2

Xt), H
1(Ω1

Xt)prim

)
.

Thus we have for ξ ∈ TtM , ϕ ∈ H0(Ω2
Xt

)

ΘF (ϕ, ξ) = ‖ρ(ξ)ϕ‖2

where ‖ ‖2 is the Hermitian length in H1(Ω1
Xt

)prim.

Conclusion: Under the assumption that the Kodaira-Spencer maps are

injective, the Hodge bundle F 2 →M is semi-positive (in the differential-

geometric sense), meaning

ΘF (ϕ, ξ) = 0 for ϕ ∈ F 2, ξ ∈ TM

ΘdetF (ξ) > 0 for ξ ∈ TM.

In practice, M will be a Zariski open in a smooth projective variety

M with M\M = a normal crossing divisor with stratification Zk and

with Z∗k = Zk\Zk+1. One may ask how the metrics, curvature and

Chern forms behave along the strata. This will be analyzed below, and

the conclusions are

• On each stratum Z∗k there is a PVMHS and the above curvature

results apply to the Hodge bundles I0,0, I1,0 and I2,0 in the

associated graded for Gr(PVMHS). Note that

rank I0,0 + rank I1,0 + rank I2,0 = rankF 2

and the VHS associated to I0,0 is constant.

• On Z∗0 as we approach Z1 as t→ 0, there is the weight filtration

F`, 0 < ` 5 2 on F and the Hodge metrics for the canonical

extensions satisfy
‖ ‖ ∼ C∞f n

‖ ‖ ∼ log(1/|t|)C∞f n on F1/F0

‖ ‖ ∼ log(1/|t|)2C∞f n on F2/F1.
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• In the normal direction
ΘF0(e, ξ) ∼ C∞

ΘF1/F0(e, ξ) ∼ PM(ξ) + C∞ > 0

ΘF2/F1(e, ξ) ∼ 2 PM(ξ) + C∞ > 0

where PM denotes the Poincaré metric.

In more detail, in the degenerations we consider we will have the

Hodge lengths of a canonical extension of the Hodge bundles. For

2-forms on surfaces we will have the local situation

ϕ(t) = Res

(
g(x, y, z)dx ∧ dy ∧ dz

xy − t

)
ψ(t) = Res

(
d(x, y, z)dx ∧ dy ∧ dz

xyz − t

)
.

The local contributions to the Hodge norms are as above

‖ϕ(t)‖2 =

∫
ϕ(t) ∧ ϕ(t) =

(
log

1

|t|

)
· C∞f n

‖ψ(t)‖2 =

∫
ψ(t) ∧ ψ(t) =

(
log

1

|t|

)2

· C∞f n.

The critical observation then is that

i∂∂

(
log

(
log

1

|t|

))
= PM .

Thus when we compute the Chern forms as a sum of the local contribu-

tions of the L2-norms of holomorphic 2-forms acquiring singularities as

above, the singular contributions are all proportional to a positive mul-

tiple of the Poincaré metric in the normal directions to the strata Zo
i .

Conclusion (singularities allowed): The same conclusions hold as

above, with the modification

• the inequalities are in the sense of currents;

• the Kodaira-Spencer map is injective in the normal directions

to the strata where the monodromy logarithm N = 0.
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Appendix to §III.C: The extended Kodaira embedding

theorem (EKET’s)

There are two types of results that are needed. For the first we let Y

be a compact analytic variety and L → Y a holomorphic line bundle.

We assume that L has a smooth Hermitian metric in the sense that

locally we may embed Y in an open set U ⊂ CN and there is over U

a holomorphic line bundle with smooth metric that restricts to that

on Y . The curvature form ΩL is then a C∞ form on Y that may be

evaluated in the Zariski tangent spaces to Y .

EKET I: If ΩL is positive then L→ Y is ample.

For the purposes of this work we may assume that there is a reso-

lution of singularities Ỹ
π−→ Y where Ỹ is a projective variety. Then

L̃ = π−1(L) has an Hermitian metric whose curvature ΩL̃ satisfies

ΩL̃(v) = 0, and ΩL̃(v) = 0 ⇐⇒ π∗(v) = 0

for v ∈ T Ỹ . If D ⊂ Ỹ is a divisor with normal crossings that is

partially contracted by π, then the normal bundles to the strata of D

are “negative” along the fibres of the contraction. In relatively simple

cases when Ỹ → Y is a succession of blowups with non-singular centers,

the methods of [Gri68] can be used to construct a metric in the line

bundle [D] over Ỹ such that

ΩkL̃−[D] > 0 for k � 0

and one may imagine that the classical arguments of Kodaira [Ko] can

be extended.

Application: Let Ỹ be a compact analytic variety and

Φ : Ỹ → Γ\D

a VHS. Then λ is ample relative to Φ : Ỹ → Γ\D.

Briefly, horizontal compact analytic subvarieties Y ⊂ Γ\D are projec-

tive algebraic.
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For the second extension of the KET, we assume given a smooth

projective variety Y and a reduced normal crossing divisor D ⊂ Y . For

simplicity we assume that D is locally given by t = 0 where t, y2, . . . yn

are local holomorphic coordinates on Y . We denote by

PM =
dt ∧ dt̄

|t|2
(

log
(

1
|t|

))2

the Poincaré metric in the normal directions to D.

Now assume given a holomorphic line bundle L → Y that has a

Hermitian metric h which is smooth on Y ∗ = Y \D and that locally

near a point of D has the form

h = log
1

|t|
· h∗

where h∗ is a smooth positive function.

EKET II: Assume that the Chern form ωL is a positive (1, 1) current.

Then L→ Y is ample.

We note that

ωL = PM +ωh∗

where ωh∗ = (i/2π)∂∂ log h∗. Thus, ωL is positive in the distributional

sense in the directions normal to D.
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III.D. Relationship between moduli-theoretic and Hodge-theoretic

boundary components. Given a KSBA moduli space M for surfaces

of general type with period mapping

Φ : M→ Γ\D,

we have seen that there is an extension

Φe : M→ Γ\D∗

from the canonical compactification M of M to the SBB-type comple-

tion Γ\D∗ of Γ\D constructed above. We may stratify the boundary

∂M by the condition that the deformations of the degenerate surfaces

parametrized by a given component be equisingular. The boundary

∂(Γ\D∗) is stratified by the type of limiting mixed Hodge structures

that appear. When this is done

Φe maps boundary components of M to boundary com-

ponents of Γ\D∗.

Natural questions that arise are

(i) Do all boundary components of Γ\D∗ have points that appear

in the image of boundary components of M?

If this is the case then we shall say that the boundary components of

Γ\D∗ are realized by boundary components of M.

(ii) Are the incidence relations among boundary components of

Γ\D∗ that are realized by boundary components of M also re-

alized?

What this means is the following: The boundary components of M

form a partially ordered set, where the ordering relation is “contained

in the closure of.” We shall also say that a point in a boundary com-

ponent specializes to one in its closure. The boundary components of

Γ\D∗ form a similar partially ordered set. Here, specialization means

that a given type of LMHS degenerates further, in the sense of VMHS,

to one in the closure. Realization of incidence relations means that
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every possible specialization relation among realized boundary compo-

nents of Γ\D∗ is itself realized by a specialization relation among the

components of ∂M. In other words, if a specialization realtion is Hodge-

theoretically possible, then there is an algebro-geometric specialization

that covers it via the extended pencil mapping Φe.

For H-surfaces we have seen that the boundary component structure

of Γ\D∗ may be pictured by

II

0 // I IV V

III

where 0 corresponds to the least degenerate PHS’s Γ\D and V to the

most degenerate PHS’s, which in this case are of Hodge-Tate type.

Theorem: For H-surfaces the boundary components of Γ\D∗ and the

incidence relations among them are all realized by boundary components

and their incidence relations for MH .

We will in fact show there are components of ∂MH corresponding

to degenerate H-surfaces having both singularities of the double curve

with pinch points type and of the isolated singularity type and that

realize the above diagram. The following discussion will be broken into

two parts corresponding to the two different singularity types.

Part 1: Double curves with pinch points

The simple basic idea is to degenerate the equation

xt20G = F 2

of the birational image X[ of a smooth H-surface X to an equation

such that the corresponding KSBA degeneration X0 realizes the Hodge-

theoretic boundary components and incidence relations in the above

diagram. The subtlety is that the above equation describes a KSBA

degeneration X#
0 of a smooth H#-surface X#, so that degenerating

the equation gives a further degeneration of X#
0 of X# rather than a
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degeneration of X. The upshot is that we will have to construct from

X#
0 a surface X0 that is a KSBA degeneration of X. Before getting

into the details we turn back to Hodge theory and shall give a heuristic

discussion of how Hodge theory provides a guide for where to look for

type I degenerations of a smooth H-surface X.

Hodge-theoretic interlude: Suppose that ω ∈ H0(Ω2
X) has divisor D =

(ω) and that we have a specialization X → X0 such that ω specializes

to a meromorphic differential ω0 on X0 and where D specializes to a

double curve D0 on X0. Whereas a general differential ϕ ∈ H0(Ω2
X) will

specialize to a ϕ0 having a log-pole on D0, because of the assumption

that (ω) = D specializes to D0 the differential ω0 will actually be

holomorphic on X0. For the specialization ϕ→ ϕ0 we will have

ResD0(ϕ0) ∈ H0(Ω1
D0

).

Thus for the LMHS we may hope that{
dim I2,0 = 1

dim I1,0 = 1.

If we are lucky, the double curve D0 will be an elliptic curve and the

normalization X̃0 will be a K3. This cannot be quite right, because then

(X̃0, D0) would be of log-general type, which by an easy argument may

be seen not to be the case. However the argument does point us in the

right direction.

To take the next step, we consider the picture

X̂ =
E2

E1

s s
t0 = 0 t1 = 0

g−→ ss
s

s s

D0 C1

= X[

��

⊂ PE

��
P1 = P1
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where X̂ is the blow up of X at the base points of |KX | and E1, E2

are the −1 curves. Here, D0 ⊂ X[ is the double curve t0 = 0 with the

eight pinch points (three of which are marked by dots)

• x = 0, F = 0 = two pinch points given by (E1 +E2) ·D0,

• x 6= 0 and F = G = 0, six pinch points.

We let ω in H0(Ω2
X) have divisor C1, so that the divisor of the pullback

ω̂ of ω to X̂ is

(ω̂) = C1 + 2(E1 + E2).

Note that

K2
X̂

= 4C1 · (E1 + E2) + 4(E2
1 + E2

1) = 8− 8 = 0,

as should be the case.

Now let X[
0 have the equation

xt20xt
2
1Q = F 2

where Q,F ∈ |2ξ| are general. In other words, on X[
0 we put another

double curve with pinch points by a similar equation that gave D0 on

X[. The degeneration

X[ → X[
0

exactly arises by X[ acquiring a double curve on the limit of the divisor

(ω̂), as was suggested by the Hodge-theoretic considerations above.

We now turn to the central question:

What degeneration of H-surfaces corresponds to the

above degeneration X[ → X[
0?

More precisely, for s 6= 0 let Xs be the H-surface given as the normal-

ization of the surface

X[
s : xt20(sG− xt21Q) = F 2

where G,Q, F are general elements in |3ξ|, |2ξ|, |2ξ| respectively.

Proposition: The family of smooth H-surfaces associated to X∗
π−→

∆∗ where π−1(s) = Xs uniquely extends to a KSBA family X → ∆,

and the extended period mapping Φe : ∆→ Γ\D∗ maps the origin to a
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type I degeneration. Moreover, the natural desingularization of X0 is a

K3 surface.

Proof. We write the equation of X[
0 as

x2t20t
2
1Q = F 2.

From this equation we see that X[
0 has double curve

{x = 0} ∪ {t0 = 0} ∪ {t1 = 0}.

We recall that the divisor S = (x) ⊂ PE is a P1 × P1 and F
∣∣
S
∈

|OP1×P1(0, 2)|. Thus

• S ∩X[ is a P1 q P1,

• S ∩X[
0 is a double curve 2(P1qP1), and this double curve has

no pinch points.

The other double curves on X[
0 are t = 0 and t1 = 0 with pinch points

given by

{t0 = 0} ∩ {Q = F = 0}

{t1 = 0} ∩ {Q = F = 0}.

More precisely,

• on x 6= 0, t0 = 0 they are given by F = Q = 0 on P2\P1, which

is four points;

• on x = 0 and t0 = 0, due to the x2 the equation is locally of

the form

u2v2 − w2 = 0,

which is (uv − w)(uv + w) = 0 giving locally a double curve

without pinch points;

• on x 6= 0 and t1 = 0 on x = 0, t1 = 0 the situation is similar.
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The normalization X̃[
0 of X[

0 has the picture

E12

E11

E21

E22

u u
t0 = 0 t1 = 0

where C0, C1 are elliptic curves with maps C0 → P1, C1 → P1 branched

at the four pinch points. The Eij are P1’s that arise from the normal-

ization of the 2(P1 q P1) above. There are involutions

i0 : C0 → C0, i1 : C1 → C1

that interchange the intersections E11 ∩ C0 and E12 ∩ C0, etc.

The issue is that X̃[
0 is not the normalization X̃0 of the degeneration

X → X0 of H-surfaces. The reason is that the double curve t0 = 0 on

X[ is a singularity of the bi-canonical map of X and not of X itself.

The correct interpretation is

X̃0 is a K3 surface. The limit of C0 as X → X0 is a

P1 on X̃0, while the limit of C1 is an elliptic curve on

X̃0 with a map C1 → P1 branched at the four pinch

points.

Put another way, the reverse construction is this: Start with a K3

surface having two elliptic curves C0, C1 meeting at four points in two

pairs where each curve has involution interchanging points in these
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pairs. Then blow up the four points to obtain a picture

C1C0

C0 C1

X̃[
0

where the horizontal lines are the P1’s obtained by blowing up C0∩C1.

Then identifying E11, E12 and E21, E22 to get a picture

where each of the curves has arithmetic genus 3 and 2 nodes

Now contract C0 to P1 using the involution. This is our desired surface

X0.

As X → X0 one holomorphic 2-form remains holomorphic in the

limit and generates H0(Ω2
X0

). The remaining 2-form acquires a log

pole on C1 and its residue generates H0(Ω1
C̃1

). Thus the LMHS is of

type I as desired. �

We now turn to degenerations of type II, which are described by

s
s

s
��	

�
�	

dim I2,0 = 1, dim I1,0 = 0, dim I0,0 = 1
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The idea is to degenerate the above equation

xt20 xt
2
1Q = F 2

of X[
0 by letting Q,F become special so that the elliptic curve C1

acquires a node. This is done by letting the conics Q = 0, F = 0 in

the P2 ⊂ PE given by t1 = 0 become simply tangent

If we think of the equation of C1 for a type I degeneration as a 2:1

branched covering of (t1 = 0)∩ (F = 0) given by y2 = (x− a1)(x− a2)

(x − a3)(x − a4), then the degeneration has an equation y2 = (x −
b1)2(x − b2)2, which is a reducible curve consisting of a pair of P1’s

meeting in two points

The holomorphic 2-form with a log-pole on C1 then specializes to one

whose residue is a 1-form with log poles at the double points of the

reducible curves above. Up to scaling there is a unique such form.

By a discussion similar to the one given above, we may describe the

further degenerations of the type I degeneration of an H-surface to the

one given above.

For type III degenerations with the description

s
s s s

s
��	

�
�	

dim I2,0 = 0, dim I1,0 = 2, dim I0,0 = 0
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we consider a surface in PE given by an equation

(xt20)(xt21)(x(t0 + t1)2)R = F 2

where R ∈ |ξ|, F ∈ |2ξ| are general. Writing the LHS as x3t20t
2
1(t0 +

t1)2R and recalling that S = {x = 0}meets a surface with this equation

in two disjoint P1’s, the singular curves over t1 = 0, t1 + t2 = 0 have

an equation

y2 = (x− a1)3(x− a2)3︸ ︷︷ ︸
x=0

(x− a3)(x− a4)︸ ︷︷ ︸
F=0

.

Using the birational transformation{
u = x

v = y/(x− a1)(x− a2)

with inverse x = u, y = v(u− a1)(u− a2), the above equation is trans-

ferred to one of the form

u2 = (v − b1)(v − b2)(v − b3)(v − b4).

Going through an analysis as before, we may see that the holomorphic

2-forms on the smooth H-surface acquire independent log-poles on the

elliptic curves that arise over t1 = 0, t1 + t2 = 0. This gives a type III

degeneration of an H-surface.

Turning to type a IV degeneration with the picture

r
r �
��	 r

r
r
r

�
��	

dim I2,0 = 0, dim I1,0 = 1, dim I0,0 = 1

�
��	

�
��	r

r
r

the idea is to further degenerate the above type III degeneration by

letting the line R = 0 and conic F = 0 in the plane t1 = 0 fail to meet

transversely. For example, for x3t20t
2
1(t0 + t1)2R = F 2 if we have the
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picture over t1 = 0

F = 0

R = x = 0

then the curve will have an equation of the form

y2 − (x− a1)4(x− a2)4 = 0,

which as above factors into y ± (x − a1)2(x − a2)1 = 0 and describes

the situation where an elliptic curve has acquired 2 nodes.

Finally, for degenerations of type V

s
s

s
�
�	

��	

dim I2,0 = 1, dim I1,0 = 0, dim I0,0 = 2

we may carry out the contruction for type IV degenerations over t1 = 0,

t1 + t2 = 0. We note that each of these imposes two conditions on R,

and since R = |ξ| where dim |ξ| = 4 such a construction is possible.

Summary: By using the equation

xt20G = F 2

of the birational model X[ ⊂ PE of a general H-surface, it is possible

to see that the Hodge-theoretic boundary structure is realized by the

algebro-geometric boundary structure. The key points are:

(i) the degeneration of the PHS’s may be seen by understanding

the residues of the limiting holomorphic 2-forms;

(ii) some care is required to understand the KSBA degeneration

of an H-surface that arises from degenerating the equation of

a particular birational model.
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