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What is complex algebraic geometry?
Outline

1. Origins; algebraic functions and their integrals (modern algebraic geometry began with a 
result in calculus)

2. Analytic methods; PDEs and differential geometry (most of the deepest results about 
complex algebraic varieties such as Kodiara vanishing and Hard Lefschetz require analysis for 
their proofs)

3. Topology and Hodge Theory (the basic invariant of a complex algebraic variety is the Hodge 
structure on its cohomology; from this flows the extraordinary properties of the topology of 
algebraic varieties)

4. What is the Hodge conjecture and why hasn't it been proved? (the Hodge conjecture has an 
arithmetic aspect that is not yet understood)
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Abstract

Algebraic geometry is the study of the geometry of algebraic
varieties, defined as the solutions of a system of polynomial
equations over a field k . When k = C the earliest deep results
in the subject were discovered using analysis, and analytic
methods (complex function theory, PDEs and differential
geometry) continue to play a central and pioneering role in
algebraic geometry. The objective of these talks is to present
an informal and illustrative account of some answers to the
question in the title. Every attempt will be made to have the
talks accessible to an audience of graduate students and post
docs.
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The purpose of these lectures is to discuss the question

What is complex algebraic geometry?

The question will be addressed mainly by illustrating how
different perspectives and techniques from complex and real
analysis, geometry and topology can be used to study
algebraic geometry.

Lecture I: calculus and classical complex analysis will be used
to study the integrals of algebraic functions of 1-variable —
this is where modern algebraic geometry began.

Lecture II: use of PDEs (the Cauchy-Riemann, or ∂-operator,
and differential geometry (curvature) will be utilized to prove
existence and uniqueness results — we will also illustrate
Hodge theory for algebraic functions of 1-variable (compact
Riemann surfaces))
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Lecture III: topology and some Hodge theory — in
significant part modern topology began in the study of single
and double integrals of algebraic functions of 2-variables
(algebraic surfaces, which are topological 4-manifolds) — the
way this happened and how Hodge theory and the beginnings
of the Hodge conjecture entered into the story will be
discussed from a historical perspective.

Lecture IV: in a return to classical complex analysis, this
time with a post-modern twist, we will illustrate how classical
geometric questions lead to arithmetic issues, this time
involving Chow groups and algebraic K -theory leading to an
extension of the necessary part of the classical Abel-Jacobi
theory — the sufficiency part involves constructing something
that has both a geometric and an arithmetic aspect and may
suggest part of what is lacking in attacking the Hodge
conjecture.
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Prerequisites:

These are mainly function theory in 1 complex variable,
especially integration theory — some familiarity with the
Cauchy-Riemann equations, elementary aspects of differential
forms in 1- and 2-variables (Stokes’ theorem) and elementary
topology will be useful — the subject will be presented from
an intuitive, largely historical perspective.
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I. Integrals of algebraic functions

Today’s lecture will basically be about calculus, specifically the
integrals of functions that are defined algebraically. This will
lead to

I the analytic definition of the genus of an algebraic curve
C (this is the basic algebro-geometric invariant)

I topological picture of C as a closed, oriented surface

One punch line will be

g(C ) =
1

2
b1(C )

which is the beginning of Hodge theory.
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Origins: elliptic integrals
Modern algebraic geometry began with the question

How does one evaluate
ˆ

q(x)dx√
p(x)

where p(x), q(x) are polynomials?

These integrals arose in geometry (arclength)ˆ
ds =

ˆ √
dx2 + dy 2

and in physics

ẏ(t)2 = p(t) 
ˆ √

p(t)dt

(e.g., motion of a pendulum)
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Books of tables have formulas for the integrals when
deg p(x) = 1, 2, but you were told that when deg p(x) = 3
they could not be evaluated. However, at a deep level they
can be understood, and this story is the beginning of modern
algebraic geometry. Today’s lecture will try to explain how
they can be understood.

<◦>

I
´
r(x)dx = ? where r(x) = p(x)/q(x) is a rational

function — use partial fractions

r(x) =
∑ bi

x − ai
+

n∑
j=−m

cjx
j , for simplicity c−1 = 0

 
ˆ

r(x)dx =
∑

bi log(x − ai) + s(x)

where s(x) = rational f n

= “elementary function”
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I an algebraic “function” is y(x) where

f (x , y(x)) = 0, f (x , y) = polynomial

y(x) not single-valued — our main example is

y 2 = p(x), y =
√

p(x)

where p(x) = polynomial with distinct roots.

Example
x2 + y 2 = 1, y =

√
1− x2

ˆ √
dx2 + dy 2 =

ˆ
dx

y(x)

because xdx + ydy = 0 gives

√
dx2 + dy 2 =

√
dx2

(
1 +

x2

y 2

)
=

√
dx2

y 2
=

dx

y(x)
.
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Example

x2

a2
+

y 2

b2
= 1 where a > b

 x = sin θ, y = cos θ, k2 = (a2 − b2)/a2

ˆ √
dx2 + dy 2 = a

ˆ
(1− k2x2)dx√

(1− x2)(1− k2x2)

= a

ˆ
q(x)dy

y(x)

where f (x , y) = y 2 − (1− x2)(1− k2x2) and q(x) =
polynomial.
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Example

lemniscate

(−a, 0) (a, 0)

d ′

d · d = const.

d

 
ˆ √

dx2 + dy 2 =

ˆ
dx√

1− x4

(where 2a2 = 1)
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I singularity of dx
y

at y = 0

y =
√
x
√

u(x) where u(x) 6= 0

=⇒
ˆ

dx

y
=

ˆ
d

x1/2
√

u(x)

∼
ˆ

dx

x1/2

I more interesting is the singularity of dx/y at x =∞.
I p(x) = x2g+2 + a1x

2g+1 + · · ·+ a2g+2, g = 0
I x = 1

x ′ =⇒ dx = − dx ′

(x ′)2

y(x) = 1
(x ′)g+1 · u(x ′), u(0) 6= 0

=⇒ dx
y(x)

= − (x ′)g−1dx ′√
u(x ′)

=⇒
´

dx
y(x)

converges for g = 1.
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I More generally

ˆ
q(x)dx

y(x)
<∞ for deg q(x) 5 g − 1

I deg p(x)
��

{
1, 2 =⇒ can evaluate but´

dx/y diverges as x →∞

HH

{
= 3 =⇒ cannot evaluate but´

dx/y converges everywhere
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Definition
f (x , y) = 0 is an algebraic curve C (assume f irreducible).

Definition
the dimension of the space of ω = r(x , y(x))dx such that´
ω <∞ is the genus g(C ) of the algebraic curve.

Example

y 2 = p(x) where deg p(x) =

{
2g + 2

2g + 1
has g(C ) = g .

<◦>
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Pictures

We will use the complex solutions to f (x , y) = 0 and will use
two types of pictures. The first is the real solutions

I x2 + (y − 1)2 = 1←→

I y 2 =
∏4

i=1(x − ai)←→
Later on we will use complex pictures.
Second are the points at infinity — one adds to the locus
f (x , y) = 0 in C2 the asymptotes

meets line at infinity in 2 points
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In coordinates set x = 1
x ′

, y = 1
y ′

and clear denominators in

f ( 1
x ′
, y
′

x ′
) = 0.

Example
y 2 = x3 + ax + b becomes

y ′ = x ′3 + ax ′y ′2 + by ′2

which taking, e.g., a = 0, b = −1 is

y ′ = x ′3 − y ′3

���

line at infinity
is a flex tangent

16 / 39



The real picture is

<◦>

How to understand

u =

ˆ
r(x , y(x))dx?

As a first clue: Why is the integral an elementary function
when deg f (x , y) 5 2? By a linear change of coordinates we
may assume that

f (x , y) = x2 + (y − 1)2 − 1
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so that the picture is

(x(t), y(t)) XXXXz

line with
coordinate t

t

Then {
x(t) = 4

(
t

t2+4

)
y(t) = 2t2

t2+4

so that ˆ
r(x , y(x))dx =

ˆ
s(t)dt

= elementary f n of t

rational function of t
���

<◦>
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Abel’s idea (c1820):

Consider the intersection of C with a rational family of other
curves

{f (x , y) = 0} ∩ {g(x , y , t) = 0} = {xi(t), yi(t)}

and the abelian sum

A(t) =
∑
i

ˆ (xi (t),yi (t))

(x0,y0)

r(x , y(x))dx .

Abel’s Theorem
The abelian sum is an elementary function of t; i.e.,

A′(t) = rational f n of t.
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Abel’s proof was an ingenious explicit computation. For the
case y 2 = p(x)

g(x)dx

y
, y = tx + c

one uses the Lagrange interpolation formula to get

A′(t) = −
{

x2g(x)

(tx + c)2 − p(x)

}
where the bracket is the constant term in the Laurent series
expansion at x =∞ (set x ′ = 1

x
and take the constant term).
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Example

x2 + y 2 = 1, g(x , y , t1, t2) = 0 is given by y = t1x − t2

&%
'$

��
��

��
��s s

(x1, y2)

(x2, y2)

Use the formulae for ∂tiA(t1, t2) to obtain∂t1A =
{

−2x2
f (x1t1x+t2)

}
= − 2

1+t22

∂t2A =
{

−2x
f (x1t2x+t2)

}
= 0

=⇒ u(t1, t2) = −2 arctan t2 = arcsin

(
−2t2

1 + t22

)
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Solving the equations for the intersection points leads to

−2t1
1 + t22

= x1y2 + x2y1.

In classical notation this gives

ˆ x1

0

dx√
1− x2

+

ˆ x2

0

dx√
1− x2

=

ˆ x1y2+x2y1 dx√
1− x2

Suppose now we define sin u, cos u by

u =

ˆ (sin u,cos u)

(1,0)

dx√
1− x2

.

Then Abel’s theorem yields the addition theorem

sin(u1 + u2) = sin u1 cos u2 + sin u2 cos u1.
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The one for cos is similar, or we can use the general relation

du =
x ′(u)

y(u)
du =⇒ y(u) = x ′(u).

The point here is not the specific formulas but rather it is the
conceptual principle given by the

Interpretation of Abel’s theorem:
Define x(u), y(u) by inversion of the integral; i.e.,

u =

ˆ (x(u),y(u))

(x0,y0)

r(x , y(x))dx .

Then the x(u), y(u) satisfy addition theorems.

<◦>
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What is meant by the expression
ˆ

r(x , y(x))dx ?

I integral takes place in complex plane

Example: Take two copies of C corresponding to
y = ±

√
1− x2

x2 + y 2 = 1, y =
√

1− x2, w =
dx

y

integral
depends on
choice of path

+

γ′
γ

γ′ γ, γ′ end
at different
points

−
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integral is
multi-valued

δ γ

for γ′ = γ + δ´
γ′
ω =
´
γ
ω +
´
δ
ω

=

2π

=⇒
´
ω ∈ C/2πZ ∼= C∗

As x →∞ the integral
´
→∞ so we don’t include the points

x =∞, y = ±∞.

From the relation

u =

ˆ (x(u),y(u))

(x0,y0)

dx

y
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since (x(u + 2π), y(u + 2π)) are the coordinates of the same
point we have {

x(u + 2π) = x(u)

y(u + 2π) = y(u).

Taking the derivative as above

du =
x ′(u)du

y(u)
=⇒ y(u) = x ′(u).

In this way one has

I defined (sin u, cos u) analytically

I shown they are periodic

I shown that sin′ u = cos u

I shown they have an addition theorem
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I the map
C/2πZ ∼ // C\{±∞}

∈ ∈

u // (x(u), y(u))

parametrizes the algebraic curve (minus 2 points) by
transcendental functions

Example y 2 =
∏

(x − ai), ω =
dx

y

r r r r r r
δ

γ+ −
two copies of C each with two slits
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γ λ λ

+ −

and combining and leaving out γ

+ −
δ

λ

(δ, λ) = 1

Same discussion applies to

y 2 = x3 + ax + b

where the right endpoints are ±∞.
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For the family of lines

(x1, y1) (x2, y2)

(x3, y3)

Abel’s theorem gives

ˆ (x1,y1)

(x0,y0)

ω +

ˆ (x2,y2)

(x0,y0)

ω +

ˆ (x3,y3)

(x0,y0)

ω = 0

where now (x0, y0) = flex point (∞,∞).
On the other hand{

x3 = R(x1, y1; x2, y2)

y3 = S(x1, y1; x2, y2)
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where R , S are rational functions of xi , yi , a, b. Setting{
π1 =

´
δ
ω

π2 =
´
λ
ω

and defining x(u), y(u) by

u =

ˆ (x(u),y(u))

(x0,y0)

ω

we have

I x(u + πi) = x(u), y(u + πi) = y(u) (doubly periodic)

I x ′(u) = y(u)

I

{
x(u1 + u2) = R(x(u1), y(u1), x(u2), y(u2))

y(u1 + u2) = S(x(u1), y(u1), x(u2), y(u2))
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I C
/
Zπ2 + Zπ2 // C

∈ ∈

u // (x(u), y(u))

parametrizes the algebraic curve C by transcendental
functions (these are the Weierstrass p, p′ functions)

What do we get topologically when we attach the
two sheets across the slits?
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Example
2-slits, one on each sheet

+

+

−

−

−+

+∞ −∞

+∞

−∞∼

open up

the slits

pull them

out

join them

together
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Example
4-slits, two on each sheet

δ
∼

λ

In general for y 2 =

2g+2∏
i=1

(x − ai) we obtain
g holes

· · ·
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Conclusions:

I topologically the algebraic curve is a surface of genus g

I but g is also equal to the dimension of the space H1,0(C )
of differentials ω = q(x , y(x))dx for which

´
ω is

everywhere finite.

Thus

dimH1,0(C ) =
1

2
dimH1(C ,Z)

This is the first connection between algebraic geometry and
topology, and it is also the beginning of Hodge theory.

34 / 39



I for g = 0 C ∼= P1 Riemann sphere
I for g = 1 choose

I canonical generator

δ1, . . . , δg ; γ1, . . . , γg for H1(C ,Z)

δ2

γ1 γ2

δ1

I basis ω1, . . . , ωg for H1,0(C ) and form the period matrix

Ω =


´
δ1
ω1 · · ·

´
δg
ω1

´
γ1
ω1 · · ·

´
γg
ω1

...
...

...´
δ1
ωg · · ·

´
δg
ωg

´
γ1
ω1 · · ·

´
γg
ωg


︸ ︷︷ ︸

A

︸ ︷︷ ︸
B

where A,B are g × g matrices.
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Lemma (to be proved in 2nd lecture)
The columns of Ω are linearly independent in Cg

=⇒ columns generate a lattice

Γ ⊂ Cg

∼ =

Z2g

Example

g = 1

Corollary
J(C ) = Cg/Λ is a compact complex torus of dimension g .
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For a base point p0 ∈ C define

AJ : C → J(C )

by

AJ(p) =


´ p
p0
ω1

...´ p
p0
ωg

mod Γ

where

p0 p

It can be proved that

I AJ is 1-1, so that C ⊂ J(C )

For g = 1 we have C ∼= C/Λ as above.
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I for C (g) = configurations of g points on C , written

D = p1 + · · ·+ pg ,

the map

C (g) // J(C )

∈ ∈

D //
∑

AJ(pi)

is generically 1-1 (birational)

I We will discuss the image of

C (g−1) // J(C )

in the next lecture.
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Next steps:

The surface C locally looks like open sets in C — it is a
compact, complex manifold1 on which one may use analysis
(PDEs and differential geometry) to study its properties — we
will discuss/illustrate this in the next lecture.

1This will be defined in the 2nd lecture.
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