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Period mappings for anti-canonical pairs ∗

Phillip Griffiths

∗Based on the works of Looijenga [L81], Friedman [F16],
Engel-Friedman [EF21], and Gross-Hacking-Keel [GHK15]. Presentation,
including notations, largely follows [F16].
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I. Introduction
• Y = smooth rational surface and D ∈ | − KY | is a

connected cycle (D1, . . . ,Dr ) of P1’s; r = r(D) is length,
cases r = 1, 2 require special treatment;

r = 2r = 1

• assume Y relatively minimal; i.e., E ∩ D 6= ∅ for any −1
curve E ⊂ Y ; recall that such an E satisfies
E 2 = E · KY = −1 =⇒ Y = Blp Y where Y = smooth
rational surface obtained by contracting E ∼= P1 to
p ∈ Y ; then (Y ,D) is an anti-canonical pair where
D ⊂ Y is the image of D;
• well known that (Y ,D) has a rich geometry; much of this

is captured by the mixed Hodge structure (period matrix)
on H2(Y − D); this is the main point we hope to
illustrate in these talks;
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• specific objective is to prove a global Torelli theorem; i.e.,
the pair (Y ,D) is determined by the marked (to be
defined) mixed Hodge structure on H2(Y − D); includes
both injectivity from a suitably defined moduli space, and
surjectivity onto a period domain, each of which is an
existence result;

• the proof of this theorem will illustrate how Hodge theory
may be used to help guide the study of the geometry of
(Y ,D);

• especially interested in the case when the intersection
matrix

(I.1) I := ‖Di · Dj‖ < 0

is negative definite; this is equivalent to

(I.2) − di := D2
i 5 −2 and some D2

j 5 −3;
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• in this case (Y ,D) can be contracted to a normal cusp
singularity (Y0, p), and the referenced works discuss the

(I.3) Q: When can (Y0, p) be smoothed?†

• for a simple elliptic singularity (Y ,C ) where C = elliptic
curve with C 2 < 0 the condition for smoothability is

(I.4) − C 2 < 9;

• for cusps Looijenga conjectured that the condition be
that the dual cycle D ′ ∈ | − KY ′| for a different rational
surface Y ′; he proved this for

m(D) := −D2 = multiplicity 5 5,

and in the references it is established in general; proofs
use ideas coming from mirror symmetry;

†This question really should be posed for a germ of isolated normal
surface singularity; it turns out that it can be globalized both for simple
elliptic singularities and for cusps.
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• references also address the question of adjacency; which
cusps can (Y0, p) be partially smoothed to shorter cusps,
simple elliptic singularities or to ordinary double points,
and in how many ways can this be done;

• we will discuss the proof of the following result (the terms
to be explained below).

Theorem
Let (Y ,D) and (Y ′,D ′) be labeled anti-canonical pairs with
r(D) = r(D ′) and

γ : H2(Y ′,Z)
∼−→ H2(Y ,Z)

an integral isometry with

(i) (γ[D ′i ]) = [Di ]

=⇒ γ : H2(Y ′ − D ′)
∼−→ H2(Y − D)

(ii) γ(Agen(Y ′)) = Agen(Y )

(iii) Φ(Y ,D) ◦ γ = Φ(Y ′,D ′) (Φ = period mapping).
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Then there exist

ρ : (Y ,D)
∼−→ (Y ′,D ′)

and w ∈ W (∆Y ), unique up to K (Y ′,D ′), with

ρ∗ = w ◦ γ.

We will also see that the period mapping
Φ : {pairs (Y ,D) as above} → {period domain} is surjective.

• here W (∆Y ) is a Weyl group and K (Y ′,D ′) is a finite
group related to det I in the I < 0 case;

• period mapping involves choices to be taken into account
in the global Torelli theorem; a basic issue is that in
contrast to a traditional period mapping there is no
intrinsic polarization corresponding to a natural ample
line bundle associated to Y ; anticipating what follows
there is a natural generic ample cone Agen(Y ) whose
closure Agen(Y ) in {x ∈ H2(Y ,R) : x2 > 0} appears in
the above statement of the Torelli theorem;
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• theme of this talk falls in the general topic of “Hodge
theory and moduli.” The Torelli theorem, as formulated
and proved in the references, provides a beautiful example
of the general theory. Typically simple elliptic singularities
and cusps occur on the boundary of the KSBA moduli
space of general type surfaces where they are normal
singular loci. The Torelli theorem sometimes provides a
suggestion on how to at least partially desingularize a
boundary component;

• a first step is to show that the differential of the period
mapping is an isomorphism, a result that might be hoped
for since (Y ,D) is a log-Calabi-Yau variety;

• further steps involve an analysis of the geometry of
anti-canonical pairs (Y ,D); this is an extensive subject
that involves birational geometry; we will emphasize the
part that has a Hodge-theoretic aspect.
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II. Hodge theory (A):

Mixed Hodge structure on H2(Y − D)

• D = (D1, . . . ,Dr ) is the labeled anti-canonical divisor;
D∗i = Di − {0i ,∞i} ∼= C∗;
• orientation is H1(D) ∼= Z ∼= H1(graph of D); generator γ

is the circuit around D; gives identifications ∞i = 0i+1;

• from the exact sequence of the pair (Y ,Y − D) using
H i(Y − D) ∼= Hi(Y ,D) and
χtop(Y ,D) = χtop(Y )− χtop(D) we have

(II.1) χtop(Y − D) = b2(Y ) + 2− r(D);
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• the exact cohomology sequence of the same pair and
Hodd(Y ) = 0 gives a short exact sequence

0→ Im{H2(Y ,Y − D)→ H2(Y )}︸ ︷︷ ︸
2

→ H2(Y − D)

→ H3(Y ,Y − D)︸ ︷︷ ︸
4

→ 0;

(II.2)

• using I < 0 the term over the first bracket has dimension
b2(Y )− r(D);

• end pieces of (II.2) are pure Hodge structures with the
weights written below; H2(Y − D) has a mixed Hodge
structure with the indicated weight graded quotients;

• the last term is isomorphic to Z(−2) and is dual to
H1(D) which has weight 0; it is generated by the
Poincaré-Lefschetz dual to the circuit γ;
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• since D ∈ | − KY | there exists a 2-form Ω having as
divisor a simple pole on D; normalize Ω by

(II.3) Res∞i

(
ResDi

((
1

2π
√
−1

)2

Ω

))
= 1;

• will describe the mixed Hodge structure on H2(Y − D) in
terms of periods ˆ

Σ

Ω

where Σ ∈ H2(Y − D,Z);

• the standard identification
H∗(Y − D,C) ∼= H∗(Ω•Y (logD)) gives

(II.4) F 2H2(Y − D) ∼= C · Ω;
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• for the Σ’s we use
(II.5)

H3(Y ,Y − D) // H2(Y − D) // H2(Y ) // H2(Y ,Y − D);

∼ = ∼ =

H1(D) H2(D)

for the dual γ̂ ∈ H1(D) of the circuit this leads to
describing H2(Y − D)/Zγ̂ in terms of the Σ ∈ H2(Y )
satisfying Σ · [Di ] = 0 for all i ;

• given Hodge structures A,B of weights a, b with a < b,
the mixed Hodge structures C with

0→ A→ C → B → 0

are classified by the elements in
(II.6)
Ext1

MHS(B ,A) ∼= HomC(B ,A)\F 0 HomC(B ,A)+HomZ(B ,A);
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• using (II.2), (II.4) and (II.5) we will use (II.6) to describe
the mixed Hodge structure on H2(Y − D).

• if

A ∼=
k
⊕Q(−1),

B ∼= Q(−2)

where Q(−1) is the Hodge-Tate structure of weight 2
with h2,0 = 0, h1,1 = 1 (Q(−1) ∼= H2(P1,Q)) and

Q(−2) =
2
⊗Q(−1), then

Ext1
MHS(B ,A) ∼= Ck/(2πiZ)k ∼= C∗k := (Gm)k .
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• Definition: Set Λ(Y ,D) = {span[Di ]}⊥ ∩ H2(Y ,Z).
The periods

(II.7) Φ(Y ,D) ∈ Hom(Λ(Y ,D),Gm)

of (Y ,D) are defined as follows: From
H2(Y ,Z) ∼= Pic(Y ) may represent classes in H2(Y ,Z) as
represented by algebraic 1-cycles Z . If Z represents a
class in Λ(Y ,D) may assume Z meets each D∗i in a
0-cycle of degree 0,

Z · D =
∑
i ,j

pij − qij

where pij , qij ∈ D∗i ; for σij a path in D∗i connecting qij to
pij we set

(II.8)

{
ω = ResD Ω

Φ(Y ,D)(Z ) = exp
(

2π
√
−1
∑

i ,j

´
σij
ω
)
.
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A standard construction (cf. §I.5 in [L81]) interprets
´
σij
ω

as
´∑

ij
Ω where

∑
ij ∈ H2(Y − D) is a 2-cycle in Y − D;

• in fact given any 2-cycle
∑
∈ Im{H2(Y − D)→ H2(Y )}

we note that
∑

maps to zero in H2(Y ,Y − D) ∼=
H2(U ,U − D) where U = tubular neighborhood of D in
Y ; thus

∑
∩U = ∂Γ where Γ = 3-chain in U and then∑

−∂Γ ⊂ Y − D and represents a cycle in Y − D that
gives the class of

∑
; i.e., in homology we may pull

∑
away from D.

Theorem II.9
The periods give the extension class in (II.6) that defines the
mixed Hodge structure on H2(Y − D).
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Proof.
Setting Λ = Λ(Y ,D) we use that

(II.10) Hom(Λ,Gm) ∼= Hom(Gm,Λ
∗)∗.

Here Λ is a sub-group of H2(Y ,Z) while Λ∗ is the quotient
group H2(Y ,Z)/ Im{H2(Y ,Y − D)→ H2(Y )} in (II.2). In
the recipe (II.6) we have

A ∼= Λ∗ ∼=
b2−r
⊕ Q(−1)

B ∼= Q(−2) with generator the Poincaré-Lefschetz dual

of the circuit γ.

Unwinding the dualities using that Poincaré duality is a
unimodular pairing gives the result.
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• here we are using that from Poincaré duality over Q we
have

0→ ⊕Q[Di ]→ H2(Y ,Q)→ Λ∗ ⊗Q→ 0;

also the pairing on H2(Y ,Z) induces one on Λ(Y ,D)
that is unimodular ⇐⇒ det I = ±1.
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III. Hodge theory (B): Pic(D)

• Periods of (Y ,D) involve the Abel-Jacobi map on D; for
this will give the Hodge-theoretic interpretation of
Pic(D);

• for a line bundle L→ D the multi-degree is(
deg(L

∣∣
D1

), . . . , deg(L
∣∣
Dr

)
)

;

• for ν : D̃ → D the normalization we have

1 // Gm
// Gr

m
// Gr

m
// Pic(D) // Pic(D̃) //

∼��

0

Zr

(III.1)
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where the vertical isomorphism is the multi-degree; (III.1)
is the cohomology sequence of

1 // O∗D
// ν∗O

∗
D̃

// ν∗O
∗
D̃
/O∗D

// 1

∼ =

(Gm)r

;

• for the kernel Pico(D) of the last map in (III.1) have

(III.2) AJD : Pico(D)
∼−→ C/Z.

Here for L ∈ Pico(D) the line bundle associated to a
divisor

∑
pij − qij as above

(III.3) AJD(L) =
∑ ˆ pij

qij

ω;
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• condition that L ∼= OD , i.e., that there exists a rational
function f on D with

f (∞i) = f (0i+1) ∈ C∗, and

with divisor
(f ) =

∑
pij − qij

is AJD(L) = 0 in C/Z;

• equivalently,

(III.4) exp

(
2π
√
−1
∑
i ,j

ˆ pij

qij

ω

)
= 1;

• in special case where the divisor is pi − qi on Di this is

CR(0i , pi , qi ,∞i) = 1

where CR is the cross ratio;
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• such divisors arise as Z · D’s in a picture

r r
��

E

p q Di

E ′

AA
(III.5)

where E ,E ′ are curves on Y and Z = E − E ′; we shall
see that such configurations where E ,E ′ are −1 curves
form the basic building blocks of generic (Y ,D)’s;

• since −1 curves are stable under deformations, such
configurations map to open sets in the moduli space of
(Y ,D)’s;

• since distinct −1 curves on Y do not intersect, (III.5) is
determined by the Abel-Jacobi image of
L = [p − q] ∈ Pico(D), hence by the period point

Φ(Y ,D)(Z ) ∈ Gm;
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• the other basic curves are −2-curves C defined by
C · KY = 0, C 2 = −2; by adjunction it follows that
C ∼= P1 and from D ∈ | − KY | that C ∩ D = ∅ so that
C ∈ Λ(Y ,D) and the period mapping does not “see”
them; as a consequence of both injectivity and surjectivity
of the period mapping we will find that such curves will
only occur over proper subvarieties in moduli;

• this is a vintage example of how the period mapping can
guide the geometry.
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IV. Hodge theory (C): Differential of the period

mapping
• From (III.3) see that if the algebraic 1-cycle Z with
Z · D =

∑
pij − qij moves non-trivially, then in general

AJ(Y ,D)(Z ) will vary; will make this precise;

• usual formulation of period mapping is

(IV.1) (Y ,D)→ H0(Ω2
Y (D)) ⊂ H2(Y − D,C)︸ ︷︷ ︸

line in a vector space

where the term over brackets is a projective space;

• the integrals
∑

j

´ pij
qij
ω for i = 1, . . . , r depend on

dim Λ(I ,D) = b2(Y )− r(D) parameters;

• thus we need to show that the deformation space
Def(Y ;D1, . . . ,Dr ) has dimension b2 − r and locally
maps 1-1 to the integrals (II.8);
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• since the Z ’s move freely subject only to Z · D = 0 this
seems plausible;
• to make this precise use the standard identificaiton

(IV.2) T Def(Y ;D1, . . . ,Dr ) ∼= H1(TY (− logD));

• importantly, since D ∈ | − KY |
Ω2

Y (D)⊗ TY (− logD)
∼−→ Ω1

Y (logD)

and using H0(Ω2
Y (D)) ∼= OD we have

(IV.3) T Def(Y ;D1, . . . ,Dr ) ∼= H1(Ω1
Y (logD));

• the cohomology sequence of

0→ Ω1
Y → Ω1

Y (logD)→
i
⊕ODi

→ 0

gives

0→
i
⊕H0(CDi

)→ H1(Ω1
Y )→ H1(Ω1

Y (logD))→ 0

where the first arrow uses that the [Di ] are linearly
independent in H2(Y );
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this gives

(IV.4) dimT Def(Y ;Z1, . . . ,Zr ) = b2 − r ;

• the differential of (IV.1) is
(IV.5)

T Def(Y ;D1, . . . ,Dr )→ Hom(Gr2
F H

2(Y−D),Gr1
F H

2(Y−D)).

We write this as

T Def(Y ;D1, . . . ,Dr )⊗Gr2
F H

2(Y − D) // Gr1
F H

2(Y − D)

∼ = ∼ = ∼ =

H1(TY (− logD)) ⊗ H0(Ω2
Y (D)) // Gr1

F GrW2 H2(Y − D)

(IV.6)

where

Gr2
F H

2(Y − D) = F 2H2(Y − D) ∼= H0(Ω2
Y (D)),

and where the vertical isomorphism on the right in (IV.6)
uses

F 1H2(Y − D)/F 2H2(Y − D) = Gr1
F GrW2 H2(Y − D).
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• the above is the usual formulation of the differential of a
period mapping. Here it is convenient to use the
polarization on GrW2 H2(Y − D) given by the form Q.
Using Q to identify Gr1

F GrW2 H2(Y − D) with its dual
(IV.6) dualizes to
(IV.7)
H1(TY (− logD))⊗Gr1

F GrW2 H2(Y −D)→ H0(Ω2
Y (D))∗.

We will show that

Gr1
F GrW2 H2(Y − D) ∼= H1(Ω1

Y (logD))(−D)(IV.8)

H0(Ω2
Y (D))∗ ∼= H2(OY (−D));(IV.9)

using these (IV.7) then becomes the pairing
(IV.10)
H1(TY (− logD))⊗H1(Ω1

Y (logD))(−D)→ H2(OY (−D)).
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The isomorphism (IV.9) is Kodaira-Serre duality, and
(IV.10) is a duality pairing using the isomorphism
H2(OY (−D)) ∼= C given by Ω.
• Thus we need to prove (IV.8).

For the normalization ν : D̃ → D a local coordinate
calculation gives

0→ Ω1
Y (logD)(−D)→ Ω1

Y → ν∗Ω
1
D̃
→ 0.

From H0(ν∗Ω
1
D̃

) = 0 and H1(ν∗Ω
1
D̃

) ∼=
i
⊕H1(Ω1

Di
) we

have
(IV.11)

0→ H1(Ω1
Y (logD))(−D)→ H1(Ω1

Y )→
i
⊕H1(Ω1

Di
)→ 0.

This gives

H1(Ω1
Y (logD))(−D) ∼= ker{F 1H2(Y )→ F 1H1(D)}

∼= Gr1
F GrW2 H2(Y − D)

as desired.
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V. Hodge theory (D): Surjectivity of the period

mapping

Theorem V.1
An anti-canonical pair (Y ,D) has a deformation parametrized
by some GN

m and for which the differential of the period
mapping on the parameter space is surjective at (Y ,D).

Corollary V.2
The period mapping is surjective.

Proof of the corollary
The proof of the theorem will show that the period mapping
Φ : GN

m → Gr
m induces a holomorphic algebraic mapping

between connected abelian algebraic groups whose differential
is surjective. This implies that Φ is a surjective homomorphism
followed by a translation.
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• for the proof of Theorem V.1 an argument similar to, but
simpler than, the one in Section IV gives

H2(TY (− logD)) ∼= H2(Ω1
Y (logD)) = 0;

thus H1(TY (− logD)) is unobstructed and is isomorphic
to the tangent space T Def(Y ;D1, . . . ,Dr );

• this is an existence theorem; there exist algebraic cycles Z
with deg Z · D = 0 that move with
rankΛ(Y ,D) = b2(Y )− r(Y ,D) parameters; will now
discuss what such cycles can be.



30/49

• Definition: An exceptional curve E ⊂ Y is an irreducible
curve with E 2 = −1, E · KY = −1.‡

Thus E is a P1 that can be contracted to a point p′ on a
smooth surface Y ′ such that Y = Blp′ Y

′. We are
assuming that any such E meets D; i.e., (Y ,D) is
relatively minimal;

• E is an interior exceptional curve if E 6= Di for any i ;
every exceptional curve is an interior one or a component
of D;

• for p ∈ D let Y = Blp Y with exceptional curve E and
D = proper transform of D;

– if p = smooth point of D; then r(D) = r(D) and Y has
a new interior exceptional curve;

– if p = Di−1 ∩Di , D = proper transform of D plus E with
multiplicity 1, r(D) = r(D) + 1 (this is a corner blowup);

‡Frequently called −1 curves.



31/49

– in general may blow up p ∈ D∗i to get

�
�
�
� E

p
D i

t
then blow up p to get

�
�
�
�@@

C

E
D i

C 2 = −2,E 2
= −1

etc. This leads to a generalized exceptional curve

C1 + · · ·+ Cb−1 + E , C 2
i = −2, E 2 = −1.

• Associated to any rational surface Y there is a minimal
one Y and Y → Y given by a sequence of blowdowns of
−1 curves;
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• associated to an anti-canonical pair (Y ,D) there is an
anti-canonical pair (Y ,D) given by a sequence of
blowdowns as described above; when we can go no
further Y = P2, P1 × P1 or a Hirzebruch surface FN and
there is a short list of possibilities for (Y ,D) (cf. [F16]);

• to each interior or generalized interior blowup there is a
Gm,α and a point pα ∈ Gm,α;

• thus if we start with (Y ,D) and serially contract interior
exceptional curves until there are none left the remaining
exceptional curves will be components of an
anti-canonical cycle;
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• as will be seen next such a (Y ,D) will have no moduli;
thus the moduli of (Y ,D) will arise from the interior
blowups;

• varying the centers of these interior blowups will thus
locally map onto the local moduli space of (Y ,D);

• moreover the parameter space for this process is a
product of Gm’s; this proves Theorem V.1;

• in summary Hodge theory plus deformation theory tells us
how many algebraic cycles Z to look for; algebraic
geometry then tells how to construct them.
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VI. Proof of Torelli: first steps
(VI.1) • Let (Y ,D) and (Y ′,D ′) be labeled anti-canonical
pairs with r(D) = r(D ′) and

γ : H2(Y ′,Z)→ H2(Y ,Z)

and integral isometry with

(i) γ([D ′i ]) = [Di ]

(ii) γ(Agen(Y ′)) = Agen(Y )

(iii) Φ(Y ,D) · γ = Φ(Y ′,D ′).

There exists an isomorphism

(VI.2) ρ : (Y ,D)→ (Y ′,D ′)

and w ∈ W (∆Y ) such that up to the action of K (Y ′,D ′)

(VI.3) ρ∗ ≡ w · γ.

Notations will be explained below.
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Basically we want to show that the data given in (i)–(iii)
enables us to construct enough of the geometry of (Y ,D) and
(Y ′,D ′) to produce the map ρ and Weyl group element w
satisfying (VI.3).
We begin with heuristic reasoning.

• Because of local Torelli, including the surjectivity part, it
should suffice to prove the result when (Y ,D) and
(Y ′,D ′) are generic (to be explained below);

• (Y ,D) is taut if D is determined by the intersection
sequence D2

i ; taut pairs are rigid; i.e.,
T Def(Y ;D1, . . . ,Dr ) = 0;

• any (Y ,D) may be constructed from a taut anti-canonical
pair by the blowing up process described above;

• if (Y ,D) and (Y ′,D ′) are taut, then the result is true;
may be done by checking the (short) list of cases (cf.
[F16]);
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• from the construction of (Y ,D) and (Y ′,D ′) from taut
anti-canonical pairs, since blowing up increases Pic(Y )
and Pic(Y ′), this suggests an inductive argument on the
rank of Pic(Y ) and focuses on the role of interior
exceptional curves;

• this is reinforced since by the local Torelli theorem the
moduli of anti-canonical pairs entirely arises from
algebraic curves that meet the anti-canonical divisor;
period mapping Φ(Y ,D) does not see curves C with
C ∩ D = ∅;
• Definition: A −2-curve is a curve C with KY · C = 0,
C 2 = −2 and C 6= Di for any i ; using adjunction

(VI.4) 2pa(C )− 2 = KY · C + C 2 = −D · C + C 2

gives that C ∼= P1 and C ∩ D = ∅; the period mapping
does not see −2-curves;
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(VI.5) • if C is an irreducible curve with C 2 < 0, then C is
smooth and is

a −2-curve,

an interior exceptional curve,

a component Di of D;

proof again uses adjunction (VI.4).

• Definition: (Y ,D) is generic if there are no −2-curves;

to justify the definition note that{
Φ(Y ,D)(C ) = 1 ∈ Gm for C a −2-curve;

Φ(Def(Y ,D)) = open set in Hom(Λ(Y ,D),Gm);

together using surjectivity of the period mapping these
imply that the (Y ,D)’s having −2-curves lie in the
complement of a proper subvariety in the deformation
space;
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• Note: As background, although we won’t use it we note
that in [EF21, Prop. 2.5] it is proved that if there are no
−2 curves, then any effective divisor is linearly equivalent
to
∑

aiDi +
∑

bαEα where the Eα are interior
exceptional curves.

• Set

C = {x ∈ H2(Y ,R) : x2 > 0}
∪
C+ = component of C containing the ample cone A(Y ),

∪
A(Y ) = closure of A(Y ) in C+ (not the closure in H2(Y ,R))

• Provisional definition: Agen(Y ) is A(Y ) for a generic
(Y ,D);

• this definition does not really tell us what Agen(Y ) is;
want a numerical description such as exists for usual
ample cones.
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VII. Proof of Torelli: next steps

• From the above want to show that for (Y ,D) generic we
can construct the interior exceptional curves from
Agen(Y );

• α ∈ H2(Y ,Z) is a numerical exceptional curve if{
α2 = −1

α · KY = −α · D = −1;

it is effective if α is the class of an effective divisor;

• α is an effective numerical exceptional curve if and only if
there exists a nef R-divisor x with{

x · [D] > 0

x · α = 0.
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Proof.
For Lα → Y with c1(Lα) = α, by Riemann-Roch

χ(Y , Lα) = 1.

Since h2(Y , Lα) = h0(Y ,−D − α) and x · (−D − α) < 0 this
group is zero and then h0(Y , Lα) > 0.

• Since a nef divisor has non-negative intersection number
with every effective divisor we have the

Corollary
If there are no −2-curves on Y ,
(VII.1)

A(Y ) =

{
x ∈ C+ : x · [Di ] = 0, x · α = 0 for all

effective numerical exceptional curves α

}
.
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This requires an argument (cf. [F16]); as motivation recall
that the ample cone is

{x ∈ H2(Y ,Q) : x2 > 0, x · C > 0 for all curves C ⊂ Y }.

Definition

Agen(Y ) =

{
set of x ∈ H2(Y ,R) defined by

the right-hand side of (VII.1)

}
;

• since the conditions for an effective numerical exceptional
curve are α2 = α · KY = −1 and α · H = 0 for any ample
H it follows that

(VII.2) Agen(Y ) is invariant under monodromy.

Thus this part of the criteria in the statement of the Torelli
theorem is well defined.
From (VII.1) we may infer that
(VII.3)
A(Y ) =

{
x ∈ Agen(Y ) : x · [C ] = 0 for all −2-curves D

}
.
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We now turn to the roots and the definition of W (∆Y ).

• Given β ∈ Λ(Y ,D) with β2 = −2 the map{
rβ : Λ→ Λ

rβ(α) = α− (α · β)β

satisfies
r 2
β = Id

and is called the reflection in the class β (or sometimes
the reflection in the wall Wβ);

• any −2 curve gives such a β; want to characterize
numerically which β’s are −2 curves; issue is subtle
because could have β = [E ]− [E ′] where E ,E ′ are
interior −1 curves.

(VII.4) • for C a −2-curve,

rC (Agen(Y )) = Agen(Y ).
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Proof.
Since

– rC (C+) = C+ (rC preserves the intersection form)

– rC ([Di ]) = [Di ]

it suffices to show that rC permutes the classes of effective
numerical exceptional curves. For α with α2 = −1,
α · KY = −1 using rC (KY ) = KY we see that rC (α) has these
properties. For H a big and nef divisor with H · C = 0, all
H · Di > 0 we have rC (H) = H . Thus
α · H = 0 ⇐⇒ rC (α) · H = 0 so that α is effective
⇐⇒ rC (α) is effective.

(VII.5) Definition: W (∆Y ) is the group generated by the
reflections in the classes from the set ∆Y of −2 curves on Y .

(VII.6) Fact: From (VII.3) it follows that A(Y ) is a
fundamental domain for the action of W (∆Y ) on Agen(Y ) (cf.
6.3 in [F16]).
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• Definition: β ∈ Λ with β2 = −2 is a root if

(VII.7) rβ(Agen(Y )) = Agen(Y );

• basic issue is to identify the −2-curves among the roots;
result is
(VII.8)
β ∈ Λ with

β2 = −2

is a root.

 ⇐⇒


there is a trivial monodromy deforma-
tion Y1 of Y with Φ(Y1,D1)(β) = 1,
Y1 generic with this condition, and
±β = [C ] for a −2-curve C

 .

This is an existence theorem that may be summarized by
(VII.9)
A root β satisfying (VII.7) may be deformed into a −2-curve.

A proof of (VII.8) is in [F16, Th. 6.6];
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• the final existence result is Theorem 6.12 in loc. cit.

(VII.10) Given an anti-canonical pair (Y ,D) and a root
β, with two exceptions given there for every very general
deformation (Y ′,D ′) of (Y ,D) there are disjoint
exceptional curves E ,E ′ meeting the same Di and such
that β = [E ]− [E ′].
In summary

(VII.11) −2-classes β satisfying rβ(Agen(Y )) = Agen(Y )
may be deformed into differences E − E ′ of exceptional
curves meeting the same Di .
This is the existence result that provides the first step in
the inductive proof of Torelli.
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VIII. Completion of the argument

• idea is to give an inductive argument on rank (Pic(Y )) by
showing there is a configuration

�
�

E

Di

E ′

A
A(VIII.1)

where E ,E ′ are interior exceptional curves meeting the
same Di and that may then be contracted to (Y ,D)
where rank(Pic(Y )) < rank(Pic(Y ));

• for this main step is to use that Agen(Y ) is a fundamental
domain for the action of W (∆Y ) on A(Y ) to produce a
−2 class β satisfying the condition (VII.11) above and
that may then be deformed into a configuration (VIII.1);
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• schematically the skeleton of the argument is

curves C with C 2 < 0

��
analysis of these gives

��

��
−1 curves E meeting a D∗i

HH
{ −2 curves C in Y − D

with C · E = 1

from these produce E − E ′ above;

• in statement of theorem we are given isometry
H2(Y ′,Z)→ H2(Y ,Z);

• setting Λ̂ = H2(Y ,Z), Λ = (span[Di ])
⊥ ∩ H2(Y ,Z) have

(VIII.2) 0→ Λ→ Λ̂
f−→ Zr → F → 0

where f (α) = (. . . , α · [Di ], . . .); det I = ±1 =⇒ F is
trivial, det 6= 0 =⇒ F is finite;
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• from (VIII.2) define K = K (Y ,D) by

K = ker{Aut+(Y ,D)→ Aut(Λ̂)};

then we have
(VIII.3)

0→ K → Aut0 D
f−→ Hom(Λ̂,Gm)→ Hom(Λ,Gm)→ 0;

using K ′ = K (Y ′,D ′) gives the non-uniqueness of ρ∗ for
map ρ : Y → Y ′ in the statement of the theorem.
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