Adjunction

Q: What is K_X for a singular variety?
Q: What is ω_X to have duality on a singular variety?

- Issue is local and we use the notation K_X for a line bundle and its sheaf of sections. Also we will only be concerned with case where X is locally a hypersurface

$$f(x_1, \ldots, x_m + z) = 0, \quad f(x) \text{ irreducible}$$

The basic idea is to use residues

* For some singularities only K^m_X is a line bundle for some $m > 0$ - we will only get into this if we have do later
From

\[0 = df \bigg|_{\mathcal{X}} = \sum f_{x_i}(x) \, dx_i = 0 \]

we have for any \(i \neq j \)

\[\left. \frac{dx_{i_1} \cdots dx_{i_k} \cdots dx_{n+1}}{f_{x_i}(x)} \right|_{\mathcal{X}} = \pm \left. \frac{dx_{j_1} \cdots dx_{j_l} \cdots dx_{n+1}}{f_{x_j}(x)} \right|_{\mathcal{X}} \]

(\(f_{x_1} \, dx_1 + f_{x_2} \, dx_2 = 0 \Rightarrow \frac{dx_i}{f_{x_2}} = -\frac{dx_i}{f_{x_2}} \), \ldots)

\[\Rightarrow \varphi = g(x) \left(-2 \right)^{k} \frac{dx_{i_1} \cdots dx_{i_k} \cdots dx_{n+1}}{f_{x_i}(x)} \left|_{\mathcal{X}} \right. \]

is well-defined

\[\text{Defn: } \varphi = \text{Res} \left. \frac{g(x) \, dx_{i_1} \cdots dx_{i_k} \cdots dx_{n+1}}{f(x)} \right|_{\mathcal{X}} = \text{Res} \left. \frac{g(x)}{f(x)} \right|_{\mathcal{X}} \]

For \(\tilde{\mathcal{X}} = \text{normalization of } \mathcal{X} \)

\[\text{Defn: } K_{\tilde{\mathcal{X}}} = \left\{ \varphi : \tilde{\varphi} \text{ holomorphic on } \tilde{\mathcal{X}} \right\} \]

\[= \left\{ \varphi : \tilde{\varphi} \text{ holomorphic on } \tilde{\mathcal{X}}_{\text{reg}} \right\} \]
Ex \[xy = 0 \] \[\frac{g(x,y)\,dx\,dy}{xy} \rightarrow g(0,y)\,dy \text{ on } x = 0 \]

\[K_{\mathcal{X}} = \text{Res} \left\{ \frac{g(x,y)\,dx\,dy}{xy} \right\} : g(0,0) = 0 \]

Ex \[x^2z = y^2 \quad \Rightarrow \quad (u, v) \rightarrow (u, uv, v^2) \]

\[\frac{g(x,y,z)\,dx\,dy\,dz}{x^2z - y^2} \rightarrow 2 g(u, uv, v^2)\,du\,dv \]

\[K_{\mathcal{X}} = \text{Res} \left\{ \frac{g(x,y,z)\,dx\,dy\,dz}{x^2z - y^2} \right\} , \quad g = 0 \text{ on the double curve } x = 0, y = 0 \]

\[\mathcal{X} \supset \mathcal{B} = \{ u = 0 \text{ in } (u,v) - \text{plane} \} \]

\[\downarrow \quad \downarrow \]

\[\mathcal{X} \supset \mathcal{D} \]

\[\mathcal{D} \rightarrow \mathcal{D} \text{ is 2:1 with involution } \]

\[\tau (u,v) = (u,v) \]
Note: \(\text{Res}_{D}(\phi) = \int_{(0,0,u^2)} du \) is holomorphic on \(\tilde{D} \) with \(\tau^* (\cdot) = (\cdot) \)

\(\rightarrow \) Double residue is in \(\Omega^1_{\tilde{D}} \)

Defn: \(\omega^{\times} = \text{all } \phi = \text{Res}_{x}(\tilde{E}) \text{ as above} \)

For this \(\omega^{\times} \) we have

\[H^0(E)^* \cong H^{n-8}(E^0, \omega^{\times}) \]

Ex: For algebraic curves

we have 1-forms with log poles upstairs and \(\pm \) residues at identified points.

Nother's inequality

\[p_2(x) \leq \frac{k_2^2}{2} + 2 \]

\[h^0(L_2) + h^0(L_1) - 1 \geq h^0(L_2 \otimes L_1) \geq h^0(L_2) + h^0(L_1) - 1 \]

If \(h^0(L_1) = d_1 + 2 \)

- \(q_{L_1} : X \rightarrow \mathbb{P}^{d_1} \), image spans \(\mathbb{P}^{d_1} \)

- \(\mathbb{P}^{d_1} \times \mathbb{P}^{d_2} \rightarrow \mathbb{P}^{d_1 + d_2 - 2} \) via \(V_1 \otimes V_2 \rightarrow V_2 \otimes V_2 \)

and image of independent points on each give spanning set in \(\mathbb{P}^{d_1 + d_2 - 2} \)

Corollary (Clifford): \(\deg L = g - 1, L^3 = K_C \)

\[\Rightarrow \dim \{ L \} \leq \frac{g - 1}{2} \]

- Suppose \(X \) regular and use (x) plus

\[0 \rightarrow K_X \rightarrow 2K_X \rightarrow K_C \rightarrow 0 \]

\[h^0(K_X) + h^0(K_X) - 1 \leq h^0(2K_X) = 0 \]

\[2g - 2 \leq g^2 + K_X^2 \]
Proof that for a general H-surface \(E \) there is a unique hyperelliptic curve \(C_0 \in \ker \chi \).

This will use concepts to be introduced later.

- Hodge bundle, given by \(\det \pi^* \varpi \otimes \tilde{\mathcal{F}} \), which has general fibre \(H^0(\Omega^2_C) \).

- Moduli \(C_0 \in \ker \chi \). These are the singular fibres in \(\ker \chi \) for a general \(E \). The pictures are:

- Reducible fibres

- Difference is \(- \) vanishing cycle \(S \neq 0 \)
- \(- \) vanishing cycle \(S = 0 \)
Estves formula

\[h = 9 \lambda - \delta_0 - 3 \delta_1 \]

number of hyperelliptic fibres

Will see that \(\lambda = 5 \)

Noether

\[\chi(X,\mathcal{O}_X) = \frac{1}{12} \left(K_X^2 + \chi_{\text{top}}(X) \right) \]

\[\frac{n}{3} \quad \frac{2}{2} \]

\[\Rightarrow \chi_{\text{top}}(X) = 34 \]

\[\Rightarrow b_2(X) = 32, \quad h^{2,1}(X) = 28 \]

\[\chi(X,\mathcal{O}_\hat{X}) = \frac{1}{12} \left(K_{\hat{X}}^2 + \chi_{\text{top}}(\hat{X}) \right) \]

\[\frac{n}{3} \quad \frac{0}{0} \]

\[\chi_{\text{top}}(\hat{X}) = 36 \]

\[\delta_2 = 0 \quad (\text{base point at node- but general } X \text{ has a distinct base points}) \]

\[\chi(\hat{X}) = \chi(\mathbb{P}^1) \chi(C) + \delta_0 \Rightarrow \delta_0 = 44 \]
Use of Bertini for H-surfaces

- equation of $\mathfrak{a}^2 \subset PE$ is
 \[x t_0^2 G = F^2 \]

Consider pencil
 \[x_0 t_0^2 (\lambda_0 G_0 + \lambda_2 G_2) = (\lambda_0 + \lambda_2) F^2 \]

By usual Bertini, generic member is smooth outside the base locus

\[
\begin{cases}
 x t_0^2 = 0 \\
 F = 0
\end{cases}
\]

These separate into

(i) $t_0^2 = 0 = F$, \(x \neq 0 \)

(ii) $x = 0 = F$

(i) = double conic (pinch points are (i) + $G = 0$)

(iii) = blown up base points of $|K_X|$

Note: This gives another proof of unique $HE C_0 \in |K_X|$
II.1

H. and I. Surfaces \(X\)

- \(X\) smooth, irreducible, minimal, general type \((\kappa(X) = 2)\)
- Numerical (Hilbert polynomial):
 \[K_X^a = 2, 1 \]

- Hodge-theoretic:
 - \(\varphi(X) = 0\) \(\Rightarrow h^2(O_X) = 0\)
 - \(\rho_g(X) = 2\) \(\Rightarrow h^2(O_X^2) = 2\)

Objective: Get good understanding of

\[X \xrightarrow{\text{geometrically}} \text{Specializations} \xrightarrow{\text{equations}} \]

- two pictures \(\Rightarrow\)
 - \(\varphi_K(X) = X' \subset P^4\)
 - \(X^b = \text{hypersurface in } P^4\)
 - where \(E = O_{P^2} \otimes O_{P^2} \otimes O_{P^2}\)
 - picture of \(\kappa_X\)
- ideas \(\Rightarrow\) build up \(\oplus H^0(mK_X)\) inductively
Theorem \mathcal{X} = general H-surface

(i) general $C \in |K_{\mathcal{X}}|$ smooth and $g(C) = 3$

(ii) $\varphi_{2k_{\mathcal{X}}}: \mathcal{X} \to \mathcal{X}' \subset \mathbb{P}^4$ birational with image

\[
\begin{cases}
 x_0x_2 = x_2^3 \\
 x_0G(x) = F(x)^2
\end{cases}
\]

F, G = quadric, cubic

(iii) there exists unique hyperelliptic $C_0 \in |K_{\mathcal{X}}|$.

(iv) \mathcal{X}' sing = double conic with 8 pinch points

\[
\varphi_{2k_{\mathcal{X}}}|_{C_0} = \varphi_{K_{C_0}}: C_0 \to \mathbb{P}^1
\]

(i) no fixed component in $|K_{\mathcal{X}}|$.

Bertini - will see two distinct base points where all C smooth.

(ii) idea: use $m \geq 2$

\[
0 \to (m-1)K_{\mathcal{X}} \to mK_{\mathcal{X}} \to K_C \to 0
\]

exact on $H^0(\cdot)$ level and know $h^0(mK_{\mathcal{X}}) = m(m-1) + 3$; also

$h^0(K_C^{m_{12}})$ since C = plane quartic curve.
\[P_1 = P_9 = 2, \quad P_2 = 5, \quad P_3 = 9, \quad P_4 = 15, \quad P_6 = 33 \]

- \(H^0(K_X) \quad t_0, t_2 \quad \text{weight 1} \)

- \(H^0(\omega_X) \quad t_0^a, t_0^b, t_3, t_2^3, x_3, x_4 \quad \text{weight 2} \)

- \(H^0(3K_X) \quad P_3(t_2, x_1) \), \(\Omega \) of weight 3
 \[
 \dim = 8
 \]
 \[\exists \{ c \in H^0(K^*_C) \} \neq 0 \]

- \(H^0(4K_X) \quad P_4(t_2, x_1), \quad t_0, t_2, t_4, \gamma \Rightarrow \text{one reaction} \]
 \[
 \dim = 14
 \]
 \[t_2 \gamma = F_4(t_0, t_0^* t_1, t_2^3, x_3, x_4) \]

- \(H^0(6K_X) \quad P_6(t_2, x_1, \gamma) - \text{then one relation} \)
 \[
 t_0^2, t_0^3 \gamma, t_0 x_1 \gamma, t_0 x_1 \gamma \quad \text{mod} \quad P(t_0, t_1, x_3, x_4) \]

 \[\exists \gamma^2 = G(t_0, t_0^* t_1, t_2^3, x_3, x_4) \]

 change notation to \(\gamma = F \) and square to have
 \[
 t_0^2 G = F^2, \quad x_0 G = F^2 \quad \text{in} \quad P^4 \]
- remainder of the argument to be completed later - some observations

- $P(1,1,1,1,2) = \mathbb{C}^4 \Rightarrow \mathbb{C}^*$

 where for $\lambda \in \mathbb{C}^*$, $\lambda \cdot (x_0, x_1, x_2, x_3, x_4) = (\lambda x_0, \lambda x_1, \lambda x_2, \lambda x_3, \lambda x_4)$

- $\text{image here is } \mathcal{Q}_0$

- $R(\mathcal{X}) \cong \mathbb{C} [x_0, x_1, x_2, x_3, x_4, \mathcal{Y}] / (\mathcal{X} - F, \mathcal{X}^3 - G)$

- will see that for F, G general

 the resulting $\hat{\mathcal{X}}' \subset \mathbb{P}^4$ has $\hat{\mathcal{X}}' = \mathcal{X}$

 smooth H-surface with the stated properties

- pictures of H-surface

 $\hat{\mathcal{X}} \subset \mathbb{P}^4$, $\hat{\mathcal{X}} \rightarrow \hat{\mathcal{X}}' \subset \mathbb{P}^4$
Recall: \(E = \mathcal{O}_{\mathbb{P}^2}(\alpha_1 \cdot \alpha_2 \cdot \alpha_3(2)) \), \(\mathcal{PE} \to \mathbb{P}^2 \)

- \((\mathcal{PE})_t = \mathcal{PE}_t^2 \)

- \(\mathcal{E} = \mathcal{O}_{\mathcal{PE}}(2) \), \(R^1_\mathcal{E} \mathcal{E} = \{ 0 \text{, } m \geq 0 \} \)

- \(\mathcal{H} = \mathcal{O}_{\mathcal{PE}}(2) \), \(\text{Pic} \mathcal{PE} \cong \mathbb{Z} \)

- \(\mathcal{E}^2 = 2 \mathcal{P}^2 \) \(\implies \mathcal{H} \in H^6(\mathcal{PE}, \mathbb{Z}) \)

- \(\mathcal{E}^2 = 2 \mathcal{P}^2 \) \(\implies \mathcal{H} \in H^6(\mathcal{PE}, \mathbb{Z}) \)

Theorem: (i) \(\mathcal{PE} \to \mathcal{Q}_x \subseteq \mathbb{P}^4 \) is the natural desingularization of \(\mathcal{P}(x, 1, 2, 2) \)

(ii) We have \(\begin{array}{c}
\begin{array}{c}
\mathcal{E} \xrightarrow{q_{2k+2}} \mathcal{H} \xrightarrow{f} \mathcal{PE} \to \mathbb{P}^4, \ f = 171 \\
\end{array}
\end{array} \)

\(\mathcal{P}^2 = \mathbb{P}^2 \)

- Proof of (i): \(\Pi_x(m \mathcal{H} + \mathcal{E}) \equiv S^m \mathcal{E}(2) \)

\(\to H^0(\mathcal{E} - 2 \mathcal{H}) = \mathbb{C} \cdot x \), \((x) = S \subseteq \mathcal{P}(\alpha_1 \alpha_2) \)

- \(\Pi_x \mathcal{E} \) has basis \([t_0, t_1, t_2, t_3, x_0, x_1, x_2, x_3, x_4] \)

\(\begin{array}{c}
\begin{array}{c}
\mathcal{PE} \to \mathbb{P}^4 \text{ with image } \mathcal{Q}_0, \ S \to \mathcal{Q}_0, \text{ sing}
\end{array}
\end{array} \)
- intrinsically, $\xi_\mathcal{E} \in H^0(\mathcal{PE}, \mathcal{E})$ so $x_{i,j} \xi_\mathcal{E} \in H^0(\mathcal{E})$

and map is

\[
\begin{aligned}
 x_0 &= x t_0^2 \\
 x_2 &= x t_0 t_2 \\
 x_3 &= x t_2 \\
 x_4 &= x_3 \\
 x_7 &= x_4
\end{aligned}
\]

- LHS = coordinates in \mathbb{P}^4
- RHS = sections of \mathcal{E}

- $S = (X) = \mathbb{P}(\mathcal{E}^2 \oplus \mathcal{E}^2) \cong \mathbb{P}^2 \times \mathbb{P}^2$ maps to $L = \mathbb{C}^* \times \mathbb{C}^*$

- Picture

\[
\begin{array}{c}
\mathbb{P}^2 \\
\downarrow \\
S \\
\downarrow \\
\mathbb{P}^2
\end{array}
\]

- Picture

\[
\begin{array}{c}
\text{fibres of } S \rightarrow \mathbb{P}^2 \\
\text{map isomorphically to } L
\end{array}
\]

Proof of (ii): Equation of $f^{-2}(X')$ is $X^2 \mathcal{E}^2$ PE

\[
x t_0 \mathcal{E}^2 G = F^2
\]

$F \in \mathcal{E}^2$, $G \in \mathcal{E}^2$

- for generic F, G this is smooth away from $t_0 = 0$
- writing as $t_0^3(xG) = F^3$ we see double curve $t_0 = 0$, $F = 0$ with pinch points

\[
\begin{aligned}
 x = 0, F = 0 & \text{ points in } t_0 = 0 \\
 G = F = 0 & \text{ is 6 } \quad \quad \quad \\
\end{aligned}
\]

- the first is because $\mathcal{X} \to H^0 (\varpi, 1^{2})$

and $F = 0 |_{t_0 = 0}$ is a conic

- picture of \mathcal{X}

- general C_x = smooth plane quartic

- special C_x's = nodal ones

- base points are 2 marked points = bitangent L to all C_x

- $C_{x_0} \to \{ F = 0 \} n \{ t_0 = 0 \}$ with $6 + 2 = 8$ branch points
- \(K_{\mathcal{X}} = g^*(\xi - \eta) \)

- \(K_{\mathcal{PE}} = \xi^3 \)

\[\text{Yamabe: } 0 \rightarrow V \rightarrow T_{\mathcal{PE}} \rightarrow \xi^2 TP^2 \rightarrow 0 \]

- \(\text{Euler: } PV^3 = P^{m-2}, \quad \dim V = n \)

\[0 \rightarrow \Omega_{P^{m-2}} \rightarrow V^2(1) \rightarrow TP^{m-2} \rightarrow 0 \]

\[1 \rightarrow \Sigma x_i \chi_{x_i} \]

\[\det T_{\mathcal{PE}} = h^2 \otimes \bigotimes E^0 \otimes \xi^3 = \xi^3 \]

\[h^{-2} \]

- Adjunction gives result

\[\mathbb{E}^b \circ 1 \mathcal{E}^{*} \]

\[K_{\mathcal{X}} = \xi^3 \circ K_{\mathcal{PE}} \otimes [D] \]

\[= \xi^3 - \eta \]

\[\text{Note: } H^0(K_{\mathcal{X}}) \cong H^0(\mathcal{X} \otimes \mbox{Ker} \eta^2) \cong H^0(P^2, \mathcal{E}(1)) \]

\[\cong H^0(\mathcal{O}_{P^2}(1)) \]