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Introduction

The classification of algebraic varieties is a central part of
algebraic geometry. Among the common tools that are
employed are birational geometry, especially using the analysis
of singularities, and Hodge theory. The latter is frequently
used as a sort of “black box”: the cohomology of an algebraic
variety has a functorial mixed Hodge structure and the formal
properties of the corresponding category have very strong
consequences.

On the other hand, geometric structures arise naturally in
Hodge theory and one aspect of this will be the focus of these
lectures. This aspect originates from the fact that mixed
Hodge structures have extension data expressed by linear
algebra.
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However limiting mixed Hodge structures that arise when
singular varieties are smoothed are also constructed by linear
algebra but from this construction there is an associated
geometric structure, and it is this property and its uses,
illustrated by examples, that these lectures will mainly be
centered around. The first two lectures will be elementary,
mostly consisting of linear algebra constructions; in them we
will assume no knowledge of Hodge theory or algebraic
geometry, and the examples will be mostly given by pictures.

In the third lecture we will take up a related topic, namely
the differential of the period mapping at a singular variety.
This discussion will also be formulated by linear algebra but it
will use some background from sheaf cohomology as used in
the study of Hodge theory of algebraic varieties.
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I. Mixed Hodge structures and extension data
I A Hodge structure of weight n (V ,F ) is given by a

Q-vector space V and a decreasing Hodge filtration

F n ⊂ F n−1 ⊂ · · · ⊂ F 0 = VC

on the complexification that satisfies the conditions

F p ⊕ F
n−p ∼−→ VC 0 5 p 5 n

that F be opposite to F . Setting

V p,q = F p ∩ F
q

these conditions are equivalent to having a Hodge
decomposition

VC =
p+q=n
⊕ V p,q, V

p,q
= V q,p.
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The relation between the two is given by

F p =
p′=p

⊕ V p′,q.

Example: The Tate Hodge structure Q(−1) has V = Q and
is of weight 2 with V 1,1 = C.

I A polarized Hodge structure (V ,Q,F ) is given by a
Hodge structure (V ,F ) together with a polarizing form

Q : V ⊗ V → Q

with Q(u, v) = (−1)nQ(v , u) and satisying the two
Hodge-Riemann bilinear relations

(HRI) Q(V p,q,V p′,q′) = 0, p′ 6= n − p

(HRII) ip−qQ(V p,q,V
p,q

) > 0.

5 / 126



The first is equivalent to

Q(F p,F n−p+1) = 0;

this together with (HRII) gives F n−p+1 = (F p)⊥.

In practice the Hodge structures that arise in geometry
are almost always polarizable. For these lectures this will
be assumed but the notation will be suppressed.

Example: For X a smooth projective complex algebraic
variety the cohomology group Hn(X ,Q) = V has a polarizable
Hodge structure.

I Also in practice there will usually be a lattice VZ ⊂ V
with Q⊗Z VZ = V . This will also be assumed in these
lectures.
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I A mixed Hodge structure (V ,W ,F ) is given by a
Q-vector space V with two filtrations

W0 ⊂ W1 ⊂ · · · ⊂ Wm (weight filtration)

Fn ⊂ Fn−1 ⊂ · · · ⊂ F0 = VQ (Hodge filtration)

such that on the associated graded

GrWk (V ) = Wk/Wk−1

the Hodge filtration induces a Hodge structure of
weight k . Specifically

F p GrWk (V ) =
F p ∩Wk

F p ∩Wk−1
.

We really should use Wk,C = C⊗Q Wk etc., but to avoid
notational clutter we shall not do so.
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Example: The cohomology Hm(X ,Q) of a complex algebraic
variety has a mixed Hodge structure. For X complete the
weights are 0 5 k 5 m; for X affine they are m 5 k 5 2m.

Example: For complex algebraic varieties Y ⊂ X the
cohomology groups Hm(X ,Y ;Q) and Hm(X\Y ;Q) have
mixed Hodge structures.

I Mixed Hodge structures don’t have Hodge
decompositions but they do have canonical
Hodge-Deligne decompositionsVC = ⊕I p,q, I

p,q ≡ I q,p modulo Wp+q−2

Wk = ⊕
p+q5k

I p,q, I p,q
∼−→
(
GrWp+q(V )

)p,q
.
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The I p,q may be defined by

I p,q = (F p ∩Wp+q) ∩ (F
q ∩Wp+q)

+ F
q−1 ∩Wp+q−1 + F

q−2 ∩Wp+q−2 + · · · .

They are pictured by a Hodge-Deligne diagram, here
drawn for n = 2 and with hp,q = dim I p,q:

h2,2

•
h2,1

• • h1,2

h2,2• h1,1

• •h0,2

h1,0• •h0,1

•
h0,0
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I A morphism of weight 2r from (V ,W ,F ) to (V ′,W ′,F ′)
is given by Φ : V → V ′ satisfying{

Φ(Wk) ⊂ W ′
k+2r ,

Φ(F p) ⊂ F
′p+r .

This induces
Φ : I p,q → I

′p+r ,q+r ,

and conversely any Φ ∈ Hom(V ,V ′) satisfying this
condition is a morphism of weight r . In general morphisms
of mixed Hodge structures are strict in the sense that{

Φ(W ) ∩W ′
k+r = Φ(Wk),

Φ(V ) ∩ F
′p+r = Φ(F p).
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It is this strictness property together with the functoriality
of mixed Hodge structures on the cohomology of complex
algebraic varieties that underlies much of their use in
algebraic geometry. In particular it is used to show that a
sub-quotient of a mixed Hodge structure is itself a mixed
Hodge structure.

I Associated to a mixed Hodge structure (V ,W ,F ) is a set
of pure Hodge structures {H0, . . . ,Hm} on the associated
graded

GrWk (V ) = Wk/Wk−1 := Hk .

It is most frequently these, together with the above
mentioned functoriality and strictness, that are most
commonly used in algebro-geometric applications.†

†A notable exception is the variational theory of mixed Hodge
structures whose associated graded Hodge structures are of Hodge-Tate
type, meaning that Hk is isomorphic to a direct sum of Q(−k)’s.
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In these lectures it is the remaining extension data that is
encoded in a mixed Hodge structure that will be our
primary object of interest. For the special class of limiting
mixed Hodge structures we shall see that this extension
data has an intrinsic geometric structure not present for
general Hodge structures or mixed Hodge structures.

Informal Definition:‡ Given Hodge structures
{H0, . . . ,Hm} the set E = E (H0, . . . ,Hm) of mixed Hodge
structures (V ,W ,F ) with

GrW• (V ) ∼= {H0, . . . ,Hm}

will be called the extension data associated to {H0, . . . ,Hm}.

‡See [GGR] for the formal definition.
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In a standard way one may formalize this by using the obvious
notions of equivalence of mixed Hodge structures and of their
associated gradeds. More important for these lectures will be
the notion of extension data of level 5 k. Intuitively this is
just the set of k-fold iterated extensions of pure Hodge
structures taken from {H0, . . . ,Hm} in the category of mixed
Hodge structures. For our computational purposes we shall
deal with this in a very concrete fashion.

I Extensions of level 1: Let A,C be pure Hodge structures
of weights k − 1, k respectively, and

0→ A→ B → C → 0

an extension in the category of mixed Hodge structures.
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This exact sequence splits over Z and also splits as an
exact sequence of filtered complex vector spaces. But it
does not split over both simultaneously, and the
obstruction to doing is given by intrinsically interpreting
the difference of these two and lies in the group

(I.1) Ext1
MHS(C ,A) ∼=

HomC(C ,A)

F 0 HomC(C ,A) + HomZ(C ,A)
.

We note that
I Ext1

MHS(C ,A) is a compact, complex torus X whose
tangent space at the identity is the quotient of a pure
Hodge structure of weight −1 and with Hodge
decomposition
(I.2)︷ ︸︸ ︷
(k − 1,−k) + · · ·+ (0,−1) + (−1, 0)︸ ︷︷ ︸+ · · ·+ (−k , k−1)
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The part under the top bracket is F 0 End(A⊗ C∨), and

it is quotiented out to get TX ∼= End(A⊗C∨)
F 0 End(A⊗C∨)

. We will

denote by J ⊂ X the sub-torus whose tangent space is
the quotient of the maximal sub-Hodge structure of
End(A⊗ C∨) lying over the lower bracket term above.§

I the level 1 extension data of (V ,W ,F ) is naturally
isomorphic to
(I.3)
k
⊕Ext1

MHS(Wk/Wk−1,Wk−1/Wk−2) ∼=
k
⊕Ext1

MHS(Hk ,Hk−1).

§This maximal sub-Hodge structure is the largest sub-space of the
(−1, 0) + (0,−1) part that is defined over Q.
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I Extension data of level 5 2. First we remark that in the
category of mixed Hodge structures the higher Ext’s are
zero:

ExtqMHS(A,C ) = 0, q = 2.

Therefore we shall use a more geometric description.∗

Intuitively, level 5 2 extension data may be described
as first using the set of all extension data for a mixed
Hodge structure (V ′,W ′,F ′) whose weight filtration is
W ′

0 ⊂ W ′
1 ⊂ W ′

2 ⊂ W ′
3 = V . Then the observation that a

sub-quotient of a mixed Hodge structure is a mixed
Hodge structure may be used to describe the extension
data of level 5 2 for a general mixed Hodge structure.

∗In some ways the Lie-theoretic description is the most satisfactory;
cf. [GGR].
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For the use in geometry what is important is the
fibration{

extension data

of level 5 2

}
→

{
extension data

of level 1

}
where we shall refer to a typical fibre as extension data of
level 2. With this understood we have

the extension data of level 2 is isomorphic to
k
⊕Ext1

MHS(Hk ,Hk−2).
(I.4)

In more detail, the exact sequence

0→ Wk−2/Wk−3 → Wk/Wk−3 → Wk/Wk−1 → 0

gives a class

e ∈ Ext1
MHS(Wk/Wk−1,Wk−2/Wk−3).
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Using that in the category of MHS’s the higher Ext’s are
out and Ext0

MHS(Hk ,Hk−1) = 0 gives the exact sequence

0→ Ext1
MHS(Wk/Wk−1,Wk−2/Wk−3)

→ Ext1
MHS(Wk/Wk−2,Wk−2/Wk−3)

→ Ext1
MHS(Wk−1/Wk−2,Wk−2/Wk−3)→ 0

that represents the differential of the fibration E2 → E1

where the first term is the tangent space to a fibre.
I We note that

Ext1
MHS(Hk ,Hk−2) ∼=

HomC(Hk ,Hk−2)

F 0 HomC(Hk ,Hk−2) + HomZ(Hk ,Hk−1)

is a complex Lie group that is a quotient of a Cm by a
discrete subgroup that is a partial lattice, and whose
tangent space at the identity is again the quotient of a
pure Hodge structure of weight −2 with Hodge
decomposition
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︷ ︸︸ ︷
(k − 2,−k) + · · ·+ (0,−2)

+ (−1,−1)︸ ︷︷ ︸+(−2, 0) + · · ·+ (−k , k − 2).
(I.5)

Specifically the tangent space End(Hk−2⊗Ȟk )

F 0 End(Hk−2⊗Ȟk )
is obtained

by quotienting out the part under the top bracket.

I In general the fibres of the filtration{
extension data

of level 5 `

}
→

{
extension data

of level 5 `− 1

}

are isomorphic to
`
⊕Ext1

MHS(Hk ,Hk−`) and are complex
Lie groups that are quotients of Cm’s by partial lattices
and whose complex tangent spaces are quotients of
Hodge structures of weight −`.
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I The above gives a description of the successive tangent
spaces to the fibres of the tower of fibrations

(I.6) E = Em → Em−1 → · · · → E1

where Ek are the set of extensions of level 5 k of mixed
Hodge structures constructed from {H0, . . . ,Hm}. From
(I.6), for any complex manifold B and holomorphic
mapping from B to E we have a tower of holomorphic
mappings

E

��
Em−1

��

B

Φm

::

Φm−1

55

Φ2 ))
Φ1

$$

...

��
E2

��
E1
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We will show that in the situation arising from algebraic
geometry there are very strong constraints on these
mappings. Namely, arising naturally in algebraic geometry
is the situation of a holomorphic mapping

Φ : B → E

where B is a smooth, possibly non-complete algebraic
variety and where the differential of Φ satisfies the
differential constraint

(I.7) Ḟ p ⊆ F p−1 (IPR)

We may write this as dΦ ∈ F−1 End(V ).
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Theorem 1.8: (i) The differential of Φ1 maps TB to a
translate of the subspace given by the (−1, 0) part of the
tangent space to E1 as given in (I.2). Thus Φ1 maps B to a
translate of J.

(ii) On a fibre S1 of Φ1 the differential of Φ2 maps TS1 to a
translate of the subspace given by the (−1,−1) part in (I.5).
More specifically, it maps TS1 to a translate of the maximal
sub-Hodge structure in the term over the bracket in (I.5).

The proof results from the following points:
I the tangent spaces to complex manifolds are real vector

spaces that have a complex structure;
I the differential of a holomorphic map is a complex linear

mapping between real vector spaces that have complex
structures; and

I the differential constraint (I.7).
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In the situation at hand we are modding out the
complexified vector space End(C ⊗ A∨) by the part under
the brackets ︷︸︸︷ in (I.2) and (I.5) for extension data of
levels 1,2,︷ ︸︸ ︷
(k − 3,−k) + · · ·+ (1,−4) + (0,−3) +(−1,−2)+

· · ·+ (−k , k − 3)

for level 3 and so forth. Moreover, the differential
commutes with complex conjugation and satisfies the
differential constraint (I.7) and thus lands in the term
(−1,−2). Combining these properties leads to a proof of
the theorem.

Remark: The mapping Φ1 : B → J may be extended
holomorphically to any smooth completion B of B .
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Application: A holomorphic mapping Φ : B → E satisfying
(I.7) is determined up to integration constants by the mapping
to extension data of level 5 2.

By determined up to integration constants we mean that
the restriction of Φ to a fibre of Φk , k = 2, is constant on
connected components of that fibre.

Example I.9: X is a compact Riemann surface of genus
g = 1 and D =

∑
i nipi is a divisor of degree 0 and with

support |D| = ∪ni 6=0pi .

We may (non-uniquely) write
∑

α pα− qα where the pα, qα are
distinct points on X .
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We then have (Z-coefficients)

0→ H0(|D|)
H0(X )

→ H1(X , |D|)→ H1(X )→ 0.

The middle term has a mixed Hodge structure with weight
filtration W0 ⊂ W1, Hodge filtration F 1 ⊂ F 0 and with

GrW0
∼=

H0(|D|)
H0(X )

= H0

GrW1
∼= H1(X ) = H1.

Using the Hodge decomposition

H1(X ,C) = H1,0(X )⊕ H0,1(X )

25 / 126



where H1,0 ∼= H0(Ω1
X ) is the space of holomorphic 1-forms

on X

Ext1
MHS(H1,H0) =

HomC(H1,H0)

F 0 HomC(H1,H0) + HomZ(H1,H0)
∼=
(
H1,0(X )∗/H1(X ,Z)

)
⊗ H0

Z

= J(X )⊗ H0
Z

where J(X ) is the Jacobian variety of X . The extension class
e is the direct sum of the images

〈AJX (pα − qα), ω〉 =

ˆ pα

qα

ω, mod periods

where ω ∈ H0(Ω1
X ).
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Example I.10: X is a smooth algebraic surface, where for
the purposes of illustration we assume that H1(X ) = 0. Then
using Z-coefficients

H2(X ) = H2(X )tr ⊕ Pic(X )

where Pic(X ) = Hg1(X ) = H2(X ,Z) ∩ H1,1(X ) are the
cohomology classes of algebraic 1-cycles (linear combinations
of algebraic curves) and is called the algebraic part of H2(X ).
The other piece H2(X )tr = H2(X ,Z) ∩ Pic(X )⊥ is the
orthogonal under the cup-product (or intersection pairing) of
Pic(X ) and is referred to as the transcendental part of H2(X ).
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Let C ⊂ X be a smooth and irreducible algebraic curve. Then
we have

0→ H1(C )→ H2(X ,C )→ ker{H2(X )→ H2(C )} → 0.

The last term is H2(X )tr ⊕ C⊥ where C⊥ ⊂ Hg1(X ). The
middle term is a mixed Hodge structure and the above is the
sequence 0→ W1 → W2 → W2/W1 → 0. The Ext1 is a sum
of two terms corresponding to the direct sum decomposition of
GrW2 .

Tracing through the definition as in the previous example,
the term in the level 1 extension data corresponding to C⊥ is
in

Hom
(
C⊥, J(C )

)
.
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The extension class is described as follows: An element in C⊥

is represented by an algebraic 1-cycle D that intersects C
properly in a 0-cycle D · C of degree zero, and the extension is
given by

(I.11) D → AJX (D · C ).

The other term in the Ext1 is what is called a membrane
integral. To describe it, again tracing through the definition it
is determined by a mapping

F 1H2(X )tr ⊗ H1(C )∗ → C
given by

(I.12) ω ⊗ δ →
ˆ

∆

ω

where ω ∈ F 1H2(X )tr and δ ∈ H1(C ) is a boundary δ = ∂∆
of a 2-chain ∆ in X . The integral is considered modulo
periods

´
Γ
ω where Γ ∈ H2(X ). We will omit the argument

that this is well-defined.
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I Remark. For later use we consider the situation where
the surface X = X0 varies in a family Xt with the same
curve C embedded as a curve Ct ⊂ Xt . This implies that
the associated gradeds of the mixed Hodge structure on
the H2(Xt ,Ct) don’t vary. Then the level 1 extension
data varies with t in the fixed vector space
Ext1

MHS(H2,H1). Our assumptions imply that the
Pic(Xt) and subspace C⊥t ⊂ Pic(Xt) are constant rank
lattices. The extension class of the family of mixed Hodge
structures has the two parts, the part (I.4) given by

AJCt (Dt · Ct) ∈ J(Ct) = J(C ),

and the membrane integral part (I.12). As a consequence
of Theorem I.8 we may infer that

(I.13) The Abel-Jacobi part of the extension class may vary
with t but the membrane integral part is constant.
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I Variants of one of the above examples. These are
both examples of the mixed Hodge structure and level 1
extension for the relative cohomology of a smooth variety
and a smooth subvariety. However our real interest is in
singular varieties, and in preparation for this we will give a
variant of the first of the above examples.

Example: X̃ = smooth algebraic curve and we take d
distinct ordered pairs {pi , qi} of points and join them to points
Pi to obtain a singular curve X with d nodes

P1 P2

X X̃

p1

q1

p2

q2
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Then H1(X ) has a mixed Hodge structure with
associated graded {H0,H1} where H0 ∼= ⊕ZPi and

H1 ∼= H1(X̃ ). Using differential forms the Hodge
filtration is given by H0(Ω1

X̃
).† The level 1 extension data

is isomorphic to
d
⊕ J(X̃ ) and the extension class is given

by ⊕
α
AJX̃ (pα − qα).

†This means that it is the unique subspace F 1 ⊂ H1(X ,C) with

F 1 ∩ H0
C = (0) and F 1 ∼−→ H1,0(X̃ ) ⊂ H1

C.
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II. Limiting Mixed Hodge structures
I Given V and a nilpotent operator N ∈ End(V ) with

Nm+1 = 0, there exists a unique weight filtration

W0(N) ⊂ · · · ⊂ W2m(N)

satisfying

(II.1)

{
N : Wk(N)→ Wk−2(N)

Nk : Gr
W (N)
m+k (V )

∼−→ Gr
W (N)
m−k (V ).

A limiting mixed Hodge structure is a mixed Hodge
structure (V ,W (N),F ) such that

N : F p → F p−1,

or equivalently
N ∈ F−1 End(V ).
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In terms of the Deligne decomposition

N : I p,q → I p−1,q−1.

Using the second condition in (II.1)

(II.2) Hm+k ∼= Hm−k(−k);

we will frequently write the limiting mixed Hodge
structure as

{H0, . . . ,Hm−1,Hm,Hm−1(−1), . . . ,H0(−m)}.

Example: Let X∗ → ∆∗ be a smooth family of algebraic
varieties Xt over the punctured disc ∆∗ = {0 < |t| < 1}.
Then limt→0 H

n(Xt) may be defined and is a limiting mixed
Hodge structure.‡

‡More precisely, it is an equivalence class of such where
(V ,W (N),F ) ∼ (V ,W (N),F ′) if F ′ = exp(λN)F for some λ ∈ C.

34 / 126



The N arises from the monodromy T : Hn(Xt0)→ Hn(Xt0). It
is known (monodromy theorem) that T has a Jordan
decomposition

T = TsTu

where the unipotent part Tu = eN with Nm+1 = 0 for some
m 5 n. The semi-simple part Ts has all eigenvalues roots of
unity; i.e., T µ

s = Id for some µ. By a base change t̃ = tµ we
may assume that T = eN .

I Given a limiting mixed Hodge structure as above, the
action of N may be completed to the action of an sl2,
denoted {N ,H ,N+}, where

[H ,N] = 2N ,

[H ,N+] = −2N+,

[N+,N] = H .
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The induced action on GrW (N)
• (V ) is semi-simple. The

irreducible sl2-module of dimension ` + 1 is isomorphic to
the homogeneous polynomials in x , y of degree ` and
where

N = x∂x , N+ = y∂y , H(x iy `−i) = (2i − `)x iy `−i .
The sequence x `, x `−1y , . . . , y ` is called an N-string, and
the tops of the N-strings are called the primitive pieces
of V .

I Assuming that N ∈ End(V ,Q) we may choose the sl2 to
lie in End(V ,Q). Decomposing V into a direct sum of
irreducible sl2-modules, on the primitive pieces of
dimension ` + 1 the forms

Q`(v ,w) = Q(N`v ,w)

induce polarizations. In this way, GrW (N)
• (V ) becomes a

direct sum of polarized Hodge structures; this
construction is independent of the particular sl2
containing N . 36 / 126



I Let N1, . . . ,Nk ∈ End(V ,Q) be commuting nilpotent
endomorphisms and denote by

σ :=
{
Nλ =

k∑
i=1

λiNi , λi ∈ Q+
}

the positive cone they generate. We shall frequently refer
to σ as a monodromy cone.

Theorem (Cattani-Kaplan): If each (V ,Q,W (Nλ),F ) is
a limiting mixed Hodge structure, then W (Nλ) is independent
of the Nλ ∈ σ.

We shall write the limiting mixed Hodge structure as
(V ,W (σ),F ). This is a purely linear algebra result, one whose
only known proof is a Hodge theoretic argument that crucially
involves the first and second Hodge-Riemann bilinear relations.
We note that the primitive decomposition and polarizations on
those factors depend on the particular Nλ.
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Example: A smooth family X∗ → ∆∗k gives a monodromy
cone and limiting mixed Hodge structure as above.

Theorem 2.3: Let (V ,W (σ),F ) be a limiting mixed Hodge
structure with E1 the compact complex torus giving the level 1
extension data and J ⊂ E1 the sub-torus corresponding to the
maximal sub-Hodge structures in the part (0,−1) + (−1, 0) of
the Hodge structure End(H1,H0). Denote by Pic+(J) the
ample cone in Pic(J)/Pic0(J). Then there is an inclusion

σ̌ ↪→ Pic+(J)⊗Q.

In other words, limiting mixed Hodge structures with fixed
associated graded have the special geometric property that
there is a distinguished cone of ample line bundles over the
sub-torus of the level 1 extension data.
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This situation typically arises when we have a complete family
X→ B of projective varieties whose fibres over a Zariski open
B ⊂ B are smooth and where the varieties over a normal
crossing divisor Z := B\B are singular. Then the level 1
extension data of the limiting mixed Hodge structures over Z
have distinguished semi-ample line bundles. In [GGR] it is
proved that these line bundles are geometrically tied to the
normal bundles in B of the stratification of Z . As discussed in
loc. cit. they appear to be the main feature of the geometry of
the period mapping at infinity.

I Rather than discuss the details of the linear algebra
argument for the proof of Theorem II.3, we will discuss
how the relevant natural maps arise, in particular why the
dual of the monodromy cone appears. Restricting to the
case where we have just one N with W = W (N) the
steps are
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I H1(E1,Z) ∼= EndZ(H1,H0) ⊂ GrW−1 EndZ(V );
I using the duality induced by the form Q there is a

natural map

GrW+2 EndZ(V )→ H2(E1,Z);

I tracing through the linear algebra one sees that N+

maps to a class in H2(E1,Q);
I using the symmetries induced by Q and the first

Hodge-Riemann bilinear relation, a multiple of N+ gives
a class in H2(E1,Z) ∩H1,1(E1) and therefore defines (up
to translation) a holomorphic line bundle LN+ → E1;

I these last two steps use that for vector spaces A and B,
Λ2A⊗ S2B is a direct summand of Λ2(A⊗ B);

I the second Hodge-Riemann bilinear relation defines a
metric in this line bundle whose curvature form is
positive on TJ ⊂ TE1, and using Kodaira’s theorem this
gives the proof of Theorem 2.3.
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The details of this construction are in [GGR]. Below we shall
give a coordinate calculation that illustrates how these
bundles, which for reasons that will appear in the calculation
we shall call theta line bundles, arise.

Our first example will be about algebraic curves. It will be in
two parts, the first describing using pictures the limiting mixed
Hodge structure associated to a stable, irreducible curve, and
second being a period matrix calculation for this example that
illustrates how the line bundle in Theorem II.3 initially arose.

Example: We consider a family of smooth curves Xt , t ∈ ∆∗,
degenerating to a stable irreducible curve

Xt X0

γ1
γ2

δ2
δ1 P1 P2

δ3

γ3
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In this picture the vanishing cycles δ1, δ2 on Xt contract to the
nodes P1,P2 on X0. Using the Picard-Lefschetz formula, the
monodromy is given by

Nγi = δi , i = 1, 2.

The desingularization of X0 is

X̃0 X0

p1

q1

p2

q2

The limiting mixed Hodge structure has associated graded
{H0,H1,H0(−1)} where H0

Z = ZP1 ⊕ ZP2 and H1 = H1(X̃0).

42 / 126



We have previously described the associated graded to the
mixed Hodge structure on H1(X0). For the limiting mixed
Hodge structure H1

lim on V the Hodge-Deligne diagram and
weight and Hodge filtrations are

F 1

}W0

}
W1

W2

where the solid vertical arrow is N Here using previous
notations W0

∼= H0(X0,sing) = H0(|D|), W1
∼= H1(X̃0, |D|) and

W2/W0
∼= H1(X̃0\|D|). In terms of differential forms
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I F 1 ∼= H0(Ω1
X̃0

)︸ ︷︷ ︸
F 1∩W1

+Cηp1,q1 + Cηp2,q2︸ ︷︷ ︸
F 1∩W2/F 1∩W1

;

I N(ηpiqi ) = Respi ηpi ,qi ;

I The notation here is that the ηpi ,qi is a differential of the
third kind with poles at pi , qi where the residues are ±1;
such an ηpi ,qi is unique modulo H0(Ω1

X̃0
) and becomes

unique if we normalize it to have the B-periods (the
integrals over the γ’s) to be zero.

We recall that Ext1
MHS(H1,H0) ∼= J(X̃0) and the extension

class is given by AJX̃0
(
∑

pi − qi) =
´ p1

q1
ω +
´ p2

q2
mod periods,

where ω is a basis for H0(Ω1
X̃0

).
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As a special case of the general dualities, Ext1
MHS(H0(−1),H1)

is dual to Ext1
MHS(H1,H0) and contains equivalent

information. In this case tracing through the definition

Ext1
MHS(H1,H0(−1)) ∼= H0,1(X̃0)/H1(X̃0,Z)

and the extension class is given by(ˆ
λ1

ηp1,q1 + · · ·+
ˆ
λ2g

ηp1,q1

)
+

(ˆ
λ1

ηp2,q2 + · · ·+
ˆ
λ2g

ηp2,q2

)

where λ1, . . . , λ2g is a standard basis for H1(X̃0,Z) ∼=
H1(X̃0,Z) (g = 3 in the case under discussion). The
equivalence of these two expressions for the extension class is
a consequence of the bilinear relation between differentials of
the first and third kinds on a compact Reimann surface.
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I When we come to the level 2 extension data, without
going into the details we comment that in this example
we really should consider a 2-parameter family obtained
by independently smoothing the nodes. In this case we
have monodromies N1,N2 and a 2-dimensional
monodromy cone σ.

A fibre of the map from extension data of level 5 2 to
level 1 extension data is Ext1

MHS(H0(−1),H0). Here,
again without going into the details, the symmetries
arising from the bilinear form Q and from modding out by
passing to equivalence classes of limiting mixed Hodge
structures by rescaling the smoothing parameters t1, t2

should be taken into account. This will become clearer
when we next redo this example using period matrix
calculations. Thus although Ext1

MHS(Z2(−1),Z2)

∼=
4
⊗C/Z, what is left for the intrinsic part of the

definition of the level 2 extension data is a single C/Z,
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and the extension class e2 has the geometric
interpretation

e2 =

ˆ p2

q2

ηp1,q1 ≡
ˆ p1

q1

ηp2,q2 modZ.

The equality results from the bilinear relation between
differentials of the third kind. The integrals in e2 are well
defined modulo Z, so that the quantity exp(2πie2) ∈ C∗
is then well defined and gives a “cross-ratio” of the two
pairs of points (pi , qi).

I The normalized period matrix for the above family of
curves has the form

Ω =

(
I

M

)
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where

M =

 a1 a2 λ

b11 b12 a1

b21 b22 a2

 , b12 = b21 and Imλ > 0.

Here the basis for H1(Xt ,Z), t = (t1, t2), is

γ1

δ1

γ2

δ2

γ3

δ3

where Niγi = δi ,i = 1, 2. The basis ω1, ω2, ω3 for
H0(Ω1

Xt
) has limt→0 ωi = ηpi ,qi for i = 1, 2.
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At t1 = t2 = 0 the H1 in the limiting mixed Hodge
structure is H1(X̃0), which determines the elliptic curve
C/Z + Z · λ. At t1 = t2 = 0 the level 1 extension data is
given by (a1, a2); the first above interpretation of this is in
the third column on M , and the second dual
interpretation is in the top row.

Turning to the level 2 extension data, it is encoded in
the bij = bji . Setting `(t) =

(
1

2πi

)
log t one may show

that{
bii = `(ti) + (holomorphic function) i = 1, 2

b12 = b21 is holomorphic.

The well-defined part of the level 2 extension data is then
b12, and one may check that exp(b12) is the e2 given
above.
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I These considerations are local, and an interesting
question is: What global information is there?§ To discuss
this we shall take the notationally simpler case of a family
of g = 2 curves acquiring a node.

δ
γ

§A stratum in M2 consists of the irreducible curves with one node as

in the picture above, together with the curves that have two

nodes, and the reducible curves . The latter do not
significantly effect the period matrix.
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The period matrix is then

Ω =


1 0

0 1

a λ

b a


where b(t) = b(t) + (holomorphic). The global
monodromy acting on Ω is given by Ω→ TΩ where

T =


1 0 0 0

m1 1 0 0

m2 0 1 0

n m2 m1 1

 mi , n ∈ Z.
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Then

TΩ =


1 0

m1 1

a + m2 λ

n −m1a + b a + m2 −m1λ


which when the period matrix is renormalized is given by

1 0

0 1

a + m2 −m1λ λ

n − 2m1a −m1m2 + m2
1λ a + m2 −m1λ

 .

52 / 126



The a + m2 −m1λ term expresses that the level 1
extension data is globally well-defined in
Ext1

MHS(H1,H0) ∼= J(X̃0). The interesting term is the b,
which under the action of monodromy gives

b → b − 2m1a + m2
1λ modZ.

The classical theta function θ(a) satisfies(
1

2πi

)
log θ(a + λ) ≡

(
1

2πi

)
log θ(a)− a +

λ

2
modZ,

while from the above

b(a + λ) ≡ b(a)− 2a + λ modZ.

Thus
e2πib transforms like θ(a)2.

This is the origin of the theta line bundle constructed
above. It also says that the level 2 extension data is
intrinsically given as a section of the theta line bundle.
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I This brings up the question of what happens to the
extension data when we have a further degeneration? For
example, in the g = 3 example above suppose we have a
further degeneration

where the singular curves acquire an additional node
whose vanishing cycle is δ1 + δ2. Thus we have N1,N2,N3

where as a map from Zγ1 ⊕ Zγ2 to Zδ1 ⊕ Zδ2

N1 =

(
1 0

0 0

)
, N2 =

(
0 0

0 1

)
, N3 =

(
1 1

1 1

)
.
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Near t1 = t2 = 0 but keeping t3 6= 0 the B-part of the
period matrix is (here omitting the holomorphic terms)(

`(t1) + `(t3) `(t3)

`(t3) `(t2) + `(t3)

)
.

Then for the B-part of the period matrix we have
I exp(e2) = exp(`(t3) + · · · ) is a non-vanishing section of

the theta line bundle corresponding to N+
1 + N+

2 ;
I at t3 = 0 the section vanishes; in order to define it we

have to complete C∗ to C∗ ∪ {0}.
This is a harbinger of the general story of using the
extension data to canonically define toroidal completions
of period mappings. Basically the mechanism where the
level 2 extension data over open strata maps to a product
of C∗’s, and when we cross into lower dimensional strata
some of the C∗’s become C∗ ∪ {0}’s, will hold in general.
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Example: We let X1,X2 be two smooth surfaces each
containing a smooth curve C and

X = X1 ∪C X2

the surface with a double curve obtained by gluing X1 and X2

along C . Then H2(X ) has a mixed Hodge structure whose
weight filtration is obtained from the Mayer-Vietoris sequence
of {X ,X2 q X2,X1 ∩ X2 = C}. The Hodge filtration will be
described below.

However H2(X ) is generally not part of a limiting mixed
Hodge structure H2

lim. For this to happen there has to be a
smoothing of X , and in order for there to be such a smoothing
X

π−→ ∆ of X , where all spaces and maps are smooth and
X0 = X , a necessary condition due to Bob Friedman is that

(BF) NC/X1
∼= ŇC/X2

.
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If there is a smoothing, then dt
∣∣
X0

gives a nowhere vanishing

section of ŇC/X1
⊗ ŇC/X2

. Conversely, if (BF) is satisfied, then
there is a first order smoothing of X , and it is known that
having only this is sufficient to be able to construct the
limiting mixed Hodge structure that would arise from any
complete smoothing of X .

To construct the mixed Hodge structure H2(X ) we use the
Mayer-Vietoris sequence and set{

H1(C )0 := H1(C )/ {(image of H1(X1)⊕ H1(X2)}
H2(X )0 := ker{H2(X1)⊕ H2(X2)→ H2(C )}.

Then we have

0→ H1(C )0︸ ︷︷ ︸
W1

→ H2(X )

︸ ︷︷ ︸
W2

→ H2(X )0︸ ︷︷ ︸
GrW2

→ 0.
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The interpretation of the extension data in
Ext1

MHS(H2(X )0,H
1(C )0) is very much like that given above

for a smooth curve on a single smooth surface. Again we
separate H2(X )0 into an algebraic part arising from the kernel
of the map Pic(X1)⊕ Pic(X2)→ H2(C ) given by
D1 ⊕ D2 → D1 · C − D2 · C (note the ordering of 1,2), and a
transcendental part. If we deform X1,X2,C keeping the
GrWk H2(X ) fixed, then as above only the algebraic part will
vary.

The Hodge filtration is defined using the isomorphism

H2(X ,C) ∼= H2
(
Ω•X1qX2

→ Ω•C
)
,

where the map is the signed restriction, together with the
filtration induced by the bétè filtration on the Ω•’s. The
notation here is that H denotes hypercohomology and
Ω•X1qX2

→ Ω•C is a 2-term complex.

58 / 126



Turning to the level 2 extension data the fibre of the map from
level 5 2 extension data to level 1 extension data is
Ext1

MHS(H1(−1),H1). The tangent space here is a quotient of
EndC(H1)/F 0 EndC(H1). The variable part of this again
arises from the Hodge part EndQ(H1). For C general,
EndQ(H1) ∼= Q.

When we come to the case when X is to first order
smoothable, the (BF) condition comes into play. Writing
H2

lim = {H1,H2,H1(−1)} we have

H1 = coker

{
2
⊕
i=1

H1(Xi)→ H1(C)

}
H1(−1) = ker

{
H1(C )(−1)

G−→
2
⊕
i=1

H3(Xi)

}
where G is the Gysin map. The H2 is the cohomology at the
middle of

H0(C )(−1)
G−→

2
⊕
i=1

H2(Xi)
R−→ H2(C )
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with R being the signed restriction mapping. That this is a
complex is due to the topological consequence

deg(NC/X1
) + deg(NC/X2

) = 0

of BF.

Of interest is also how one may compute the Hodge
filtration on H2

lim. Using notations that anticipate Lecture III,
we set {

X [1] = X1 q X2

X [2] = X1 ∩ X2 = C .

From the (BF) condition we may think of the first order
smoothing as locally given by

t = x1x2

where t and dt have global meaning along X [2]. Then

dt

t
=

dx1

x1
+

dx2

x2
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from which we may infer that there is a well-defined map of
complexes

(II.4) Ω•X [1](logX [2])
Res∧ dt

t−−−−→ Ω•X [2]

where Res is the signed residue map.¶ A basic result is that

(II.5) H2
lim
∼= H2

(
Ω•X [2](logX [1])

Res∧ dt
t−−−−→ Ω•X [2]

)
,

and from this we may define the Hodge filtration on H2
lim from

the bétè filtration on the Ω•’s.

To actually describe the Hodge filtration on H2
lim we use

(II.5) and also set

Ω•X [1] ∪X [2] X [2] = ker

(
2
⊕
i=1

Ω•Xi

(
logX [2]

)
→ Ω•−1

X [2]

)
.

¶To be precise, we should let X(1) f−→ ∆(ε), ε2 = 0, be the first order
smoothing of X and use f∗

(
Ω•

X(1)/∆(ε)
(logX )

)
along ε = 0.
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Then using this notation the complexification of
0→ W1 → H2

lim → GrW3 → 0 is given by

0→
H1(Ω•

X [2])

H1
(
Ω•

X [1] ∪X [2] X [2]
)︸ ︷︷ ︸

W1

→ H2
lim → ker

{
H2
(
Ω•X [1] ∪X [2] X [2]

)
→ H2(Ω•X [2])

}︸ ︷︷ ︸
GrW2

∼=H2(X [1]\X [2])

→ 0.

It is the third term that is the analogue of the differentials of
the third kind that appeared in the previous example of
algebraic curves.

Finally a preview of some of what will be in Lecture III.
Suppose we vary Xi ,t , i = 1, 2, and Ct . In order to vary the
limiting mixed Hodge structure we must maintain the (BF)
condition above. Then this assumption must enter into any
cohomological calculation of the variation of the extension
data. This will be our next topic.
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Example: We will give an illustration of Theorem I.8.

I In order to have a LMHS H2
lim where there is extension

data of level = 3 we must have N2 6= 0;

I In the geometric situation where we have a family of
surfaces X→ ∆ that is in standard form; i.e., X is
smooth, the Xt are smooth for t 6= 0 and X0 is a reduced
normal crossing divisor Xi , setting

X [k] =
∐
I

(
∩
ij∈I

Xi1 ∩ · · · ∩ Xik

)
, I = (i1, . . . , ik),

we have
Nk 6= 0 =⇒ X [k+1] 6= ∅;

I In order to get non-trivial extension data for H2
lim in the

geometric case, we must have N2 6= 0, which gives
X [3] 6= ∅, i.e. we must have triple points;
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I The simplest H2
lim with N2 6= 0 are those of Hodge-Tate

type; i.e.,

H2
lim = {H0,H0(−1),H0(−2)};

I An example of smoothable X0 with this H2
lim is the union

∪mα=1Hα of m = 4 hyperplane P2’s in general position in
P3;

I If ωt ∈ H0(Ω2
Xt

) has a limit

ω0 ∈ H0
(
Ω2

X [1](logD)
)

where D is the normal crossing divisor induced from X [2],
then ω0 has log poles with opposite residue along the
double curve part of D. At the triple points
Pαβγ = Xα ∩ Xβ ∩ Xγ the form ω0 has double residues

Res
(2)
Pαβγ

(ω0);
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I Over C, H0(−2) is generated by the ω0’s, H0 is generated
by the Pαβγ’s, and

N(ω0) =
∑

Res
(2)
Pαβγ

(ω0).

This is the geometric side of the picture. When one extracts
from this the period matrix side the essential part, meaning
the part

{H0,H0(−1),H0(−2)}

of the limiting mixed Hodge structure where
H2 = H0(−1)⊕ H

′2 but the H
′2 is not part of the N-string,

the resulting period matrix will have the form

Ω =

 I

A

B

 , Q =

0 0 I

0 −I 0

I 0 0

 , N =

0 0 0

I 0 0

0 I 0


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where HRI and HRII are satisfied. Thus

Ω(t) =

 I

A = `(t)I + A0

B = `(t)2

2
I + `(t)B1 + B2


where A0,B1,B2 are holomorphic. The level 2 extension data
is given by A, and B gives the level 4 extension data.‖

‖As a side remark, in general the power of `(t) in level k extension
data is [k/2].
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Now we come to the main point. HRI gives

B + tB = tAA

so that the symmetric part of the level 4 extension data is
determined algebraically from the level 2 part. However the
IPR gives

dB = tAdA

from which we see that the full level 4 extension data is only
determined up to interpretation constants by the level 2 stuff.

Example: For configurations of d hyperplanes in general
position in P2,

I for d 5 5 the configuration is rigid; there are no
parameters in the limiting mixed Hodge structures;
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I for d = 6 there are parameters. For example, for d = 6 if
we pick two of the Hα’s and intersect them to get a P1,
then the remaining Hβ’s meet the P1 in four distinct
points and the level 2 extension data is the logarithm of
their cross ratio. For any d = 6 the level 2 extension data
is a collection of logarithms of cross ratios;

I the level 4 extension data may be expressed as Aamoto
integrals, which we will not go into here.

In general there is a vast literature on variations of mixed
Hodge structure whose associated graded are of Hodge-Tate
type. The arithmetic aspect of this subject is of particular
interest. The extension data is expressed explicitly in terms of
higher logarithms and the periods are special combinations of
values of multi-zeta functions. Some references are given in
[GRR].

We are not aware of literature about the special features of
variations of limiting mixed Hodge structures.
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III. First order variation of mixed Hodge structures

and the associated extension data

I We begin with some general remarks about the use of
Hodge theory in algebraic geometry. This was the topic
of the lectures given last year (see the references at the
end); there the applications of Hodge theory centered
around its role in the topology of algebraic varieties.
Among other things it was illustrated how just the
existence of a functorial Hodge structure on the
cohomology of a smooth variety leads to vanishing
theorems on cohomology and vice versa. Originally due to
Kodaira and Spencer in the 1950s, this technique has
been significantly refined over the years.
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Hodge theory may also be used directly in the study of
the geometry of algebraic varieties. The classic example
here is due to Riemann. Associated to the polarized
Hodge structure on H1(C ) for a smooth algebraic curve,
which is a linear algebraic object, Riemann constructed a
geometric object given by the theta divisor Θ ⊂ J(C ) in
the Jacobian variety of the curve. He then showed that
much of the geometry of C could be constructed from
the geometry of Θ. Among the penultimate results here
are the Torelli theorem (J(C ),Q) determines C ), and
Riemann’s singularity theorem relating the singularities of
Θ to the special divisors on C .
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However, because of the IPR the method of associating a
geometric object to the cohomology of a smooth
algebraic variety is only possible when the period domain
is Hermitian symmetric (the classical case), which only
occurs for very special varieties. Perhaps the central point
of these lectures is that to limiting mixed Hodge
structures, which arise in families of varieties whose
general member is smooth, one may associate geometric
objects arising from the extension data in the limiting
mixed Hodge structures. We feel that the geometric
applications of this construction are probably in their early
days.
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Another use of Hodge theory in the study of the geometry
of algebraic varieties is to extract geometric information
from the linear algebraic data given by the first variation
of a Hodge structure, a so-called infinitesimal variation of
Hodge structure. Among other things this method has
been used to derive Torelli-type results and to study the
Noether-Lefschetz loci, defined as the subvarieties of
parameter spaces of families of varieties that have special
geometric properties, such as the existence of algebraic
cycles not present in general members of the family.
What has yet to be explored is the use of infinitesimal
variations centered at singular varieties X0 in a family
{Xt} whose general member is smooth. Interestingly here
there are two rather different cases:
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(i) the limiting mixed Hodge structure Hn(Xt)lim is a pure
Hodge structure;

(ii) the limiting mixed Hodge structure is not a pure Hodge
structure.

Case (i) arises when the action of monodromy on Hn(Xt)
around t = 0 is finite; using the above notation T = Tse

N

we have N = 0. This does not necessarily mean that
Hn(X0) has a pure Hodge structure, at least over Z.∗∗

Roughly speaking case (ii) breaks into three sub-cases:

(iia) the study of the associated graded to the limiting mixed
Hodge structures when we have a smoothable
equisingular deformation of X0;

By a smoothable equisingular deformation we mean an
equisingular deformation X0,s of X0 such that the X0,s are
smoothable for all s. This case is similar to the study of
ordinary period mappings.

∗∗However for many varieties with quotient singularities, Hn(X0) has a
pure structure over Q.
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(iib) The study of the variation of the extension data when
we have an equisingular deformation of X0 whose
associated limiting mixed Hodge structures have
constant associated graded pure Hodge structures;

(iic) a smoothing deformation of X0.

Although there are well-developed cohomological
techniques for using variational methods centered around
a smooth variety, this is not the case when the variety is
singular. In order to be able to carry out calculations in
the singular case it is necessary to be able to compute the
limiting mixed Hodge structure. For this the traditional
method is to use semi-stable reduction (SSR).
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Given a family X′
π′−→ ∆′ that is smooth over ∆

′∗, SSR is
the process of using blowing up, base change and
normalization to arrive at a picture

X
π //

��

∆

��
X′

π′ // ∆′

3 t

3 t ′ = tµ

which is a cyclic unbranched curving over ∆∗ → ∆
′∗; X is

smooth and X0 = ∪Xi is a reduced normal crossing
divisor.
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Computation of limiting mixed Hodge structures:
We will give an algorithm that is useful in practice for
computation of limiting mixed Hodge structures. We use the
notations

X [1] =
∐
i

Xi = X̃ (normalization of X0)

X [2] =
∐
i<j

Xi ∩ Xj = X̃0,sing (normalization of X0,sing)

X [3] =
∐

i<j<k

Xi ∩ Xj ∩ Xk

...

and
D =

∑
i

Xi = divisor on X0.
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Given a normal crossing variety X0 as above, there is the (BF)
condition that X0 be smoothable to first order. This means
that there is a smooth scheme Xε → ∆(ε), ε2 = 0, and with
Xε,red = X0. Concretely it means that local smoothings

xi1 · · · xik = ε

of X0 can be patched together modulo ε2 to give a global
smoothing. The (BF) condition is:

I If a smoothing X→ ∆ exists, then dt gives a global
non-vanishing section of the co-normal bundle IX0/I

2
X0

;
thus

(III.1) OD(X0) =
(
IX0/I

2
X0

)∗ ⊗ OD
∼= OD .

I For any normal crossing variety X0 the infinitesimal
normal bundle OD(X0) may be defined, and (III.1) is the
necessary and sufficient condition that there exist a first
order smoothing of X0.
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I To define OD(X0), from the exact sequence

0→ IX0/I
2
X0
→ Ω1

X ⊗ OX0 → Ω1
X0
→ 0

where Ω1
X and Ω1

X0
are the Kähler differentials, one may

show that as OX0-modules

Ext1
OX0

(
Ω1

X0
,OX0

) ∼= (
IX0/I

2
X0

)∗ ⊗ OD .

We then define the infinitesimal normal bundle by

OD(X0) = Ext1
OX0

(
Ω1

X0
,OX0

)
,

and (III.1) is the condition for X0 to have a first order
smoothing.
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One part of the main computational techniques that will be
used is that if the condition (III.1) is satisfied, then in terms of
the groups Ha(X [b])(−c) one may compute what would be the
associated graded and extension data to the limiting mixed
Hodge structure if a smoothing exists. More precisely,

I if (III.1) is satisfied, then there exists a limiting mixed
Hodge structure whose associated graded may be
computed from the Ha(X [b])(−c)’s;

I this limiting mixed Hodge structure is well defined upon
the choice of a trivialization OD(X0) ∼= OD ; and it is the
limiting mixed Hodge structure associated to any
smoothing X→ ∆ if such exists;

I the fibres of the mappings Ek → Ek−1 constructed from
the extension data may also be computed from the
Ha(X [b])(−c)’s.
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If we have a semi-stable reduction X→ ∆, then there is an
equivalence class of limiting mixed Hodge structures at the
origin. The above asks for a description of this limiting mixed
Hodge structure in terms of cohomology groups computed
from the components Xi of the normal crossing divisor
X0 = ∪Xi . In brief outline this goes as follows.

(i) For the associated graded to the limiting mixed Hodge
structure we shall describe a pre-complex constructed
from the groups Hq(X [p])(−r) and where the differential
is given by a sum of mappings R + G where R is a signed
restriction mapping and G is a Gysin mapping. The
condition

(R + G )2 = 0

that the pre-complex be a complex is a consequence of
the condition (III.1) that X0 be to first order smoothable.
In (III.2) below for the case n = 2 we shall give a
schematic algorithm that describes how in practice one
may carry out this computation.
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(ii) The level 1 extension data can be described in terms of
the relative cohomology groups Hq(X [p],X [p+1])(−r). We
will not give the general formula but will describe how it
may be derived and then we shall use that description in
the special cases that arise later.

(iii) The level 2 extension data may also be described in terms
of relative cohomology groups arising from the
stratification given by the X [p]’s. Again we shall not give
the general formula but shall use special cases as the need
arises in the examples.

(iv) Finally, as has been seen in Lecture II, it will not be
necessary to consider extension data of levels k = 3.

Assuming the condition (III.1) we will give a diagram that
describes pictorially how in general one may compute the
associated graded to the limiting mixed Hodge structure H2

lim

for a family X→ ∆ of surfaces in which we have
semi-stable-reduction. Following that we will discuss a couple
of special cases that illustrate the general situation.
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(III.2)

GrW0 H0(X [1])︸ ︷︷ ︸→ H0(X [2])︸ ︷︷ ︸→ H0(X [3])︸ ︷︷ ︸
GrW1 H1(X [1])︸ ︷︷ ︸→ H1(X [2])︸ ︷︷ ︸
GrW2 H0(X [2])(−1)︸ ︷︷ ︸→ H2(X [1])⊕ H0(X [3])(−1)︸ ︷︷ ︸→ H2(X [2])︸ ︷︷ ︸
GrW3 H1(X [2])(−1)︸ ︷︷ ︸→ H3(X [1])︸ ︷︷ ︸
GrW4 H0(X [3])(−2)︸ ︷︷ ︸→ H2(X [2])(−1)︸ ︷︷ ︸→ H4(X [1])︸ ︷︷ ︸
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︸︷︷︸ = H0
lim

︸︷︷︸ = H3
lim︸︷︷︸ = H1

lim
︸︷︷︸ = H4

lim︸︷︷︸ = H2
lim

The N maps are given by all arrows
Ha(X [b])(−c − 1)→ Ha(X [b])(−c) that can be drawn and
that are between non-zero groups. The rules are

I the horizontal rows form complexes where the maps are
either “R = signed restriction” or “G = Gysin,”
whichever makes sense at a particular spot.

Example 1: The top row is all R ’s and the bottom row is
all G ’s.
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Example 2:

H2(X [1])

R

''
H0(X [2])(−1)

G
66

R ((

⊕ H2(X [2])

H0(X [3])(−1)

G

77
(III.3)

where

H0(X [2])(−1) 3 α→

(
Gα

Rα

)
and

H2(X [1])

⊕
H0(X [3])(−1)

3

(
β′

β′′

)
→ Rβ′ + Gβ′′.
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The cohomology of these complexes at the appropriate color
gives the associated gradeds of the corresponding Hq

lim’s.

Example 1:

GrW0 H0
lim = ker{H0(X [1])→ H0(X [2])},

GrW0 H1
lim = ker{H0(X [2])→ H0(X [3])}/im{H0(X [1])→ H0(X [2])},

GrW0 H2
lim = H0(X [3])/im{H0(X [2])→ H0(X [3])}.

Example 2: We will only illustrate the main case

GrW2 H2
lim = {cohomology at the middle spot of (III.3)}.

Special case: X = X1 ∪D X2 where X1,X2 are smooth
surfaces and D = X1 ∩ X2 is a smooth double curve. Then

GrW1 H2
lim
∼= H1(D)/ Im{H1(X1)⊕ H1(X2)},

GrW2 H2
lim
∼= cohomology of (III.3),

GrW3 H2
lim
∼= ker{H1(D)(−1)→ H3(X [1])}.
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I The final rule is that map N is given by the process
described above where all non-zero maps
Ha(X [b])(−c − 1)→ Ha(X [b])(−c) are used.

As a final note we remark that when X = X1 ∪ X2 ∪ X3 the
condition that (III.3) be a complex reduces to the triple point
formula.

Extensions of period mappings
Given a pair (B ,Z ) and a variation of Hodge structure
(V ,F,∇;B)††

(III.4) Φ : B → P ⊂ Γ\D

with unipotent monodromy generators around the branches Zi

of Z there is the canonical Deligne extension (Ve ,Fe ,∇e ;B)
of the variation of Hodge structure to B . We will be primarily
interested in the case where B is projective, so we assume this
to be the case.

††Notations are from [GGR].
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There are two canonical extensions

(III.5)

{
ΦT : B → P

T
(maximal extension)

Φ
S

: B → P
S

(minimal extension)

of (III.4). We will define these at the set-theoretic level. It is
conjectured, and proved in some special cases, that each of

P
T

and P
S

are projective algebraic varieties. This result is not

needed here; basically we will use P
T

and P
S

as guides as
what to expect for the boundary of moduli spaces and for
partial desingularizations of that boundary.

Definitions III.6: (i) P
T

is the set of equivalence classes of
limiting mixed Hodge structures arising from the canonical
extension (Ve ,Fe ,∇e ;B) of the variation of Hodge structure

over B . (ii) P
S

is the set of associated graded polarized
Hodge structures arising from the limiting mixed Hodge
structures arising from (Ve ,Fe ,∇e ;B).
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Remarks:
I Both P

T
and P

S
may be given the structure of compact

Hausdorff topological spaces in which P is a dense open

set. In [GGR] it is proved that the normalization P̂ T may
be defined and is a compact complex analytic variety

(conjecturally P̂ T = P
T

).

I By passing to the associated gradeds of the limiting
mixed Hodge structures there are period mappings

ΦI : Z ∗I → PI ⊂ ΓI\DI

such that P
S

= P ∪ (
⋃

I PI ) is a compact Hausdorff space
stratified by complex analytic varieties. In the classical
case and when Γ is an arithmetic group, by using Borel’s

extension theorem P
S

may be identified with the
Satake-Baily-Borel completion of P .
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We shall refer to P
S

as the Satake-Baily-Borel completion of

the image P ⊂ Γ\D of the period mapping, and to P
T

as the
toroidal-like completion of P .
I There is a diagram of set-theoretic maps

Pn

��

= P
T

Pn−1

��

B

ΦT =Φ2n

BB

Φ2n=1

99

Φ1

%%

Φ0=ΦS

��

...

��
P1

��
P0 = P

S

(III.7)
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where

Φm(b) =

{
set of extension data of level 5 m in the
limiting mixed Hodge structure at b ∈ Z

}
.

Then from Lecture II we have

The restriction of Φ1 to a fibre of Φ0 maps the clo-
sure of that fibre to an abelian variety;

(III.8)

The restriction of Φ2 to a fibre of Φ1 maps to a
product of C∗’s;

(III.9)

In the classical case n = 1. In general the map-
pings Φm, m = 3, are determined up to “integration
constants” by Φ0,Φ1,Φ2.

(III.10)
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Below we will give a schematic for computing the differential
of ΦT . More precisely, the differential maps to a filtered object
and the induced maps on the associated graded will be
described and illustrated in a geometric example.

Differential of the period mapping and deformation
theory
We recall the basic setup from (III.7) above:

P
T

��

B

ΦT

??

ΦS ��
P
S

(III.11)
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where (B ,Z ) is a pair where ΦT and ΦS are the canonical
extensions of a period mapping

(III.12) Φ : B → P ⊂ Γ\D

with B = B\Z . Typically B will be a Zariski open in a
desingularized KSBA moduli space M and B will be a
desingularization of the canonical completion M of M. A
significant method in the general study of period mappings
(III.12) has been the use of the differential of Φ. In the
geometric case when there is a family X→ B the differential
of the period mapping has a cohomological expression whose
geometric interpretation has been instrumental in many of the
applications of Hodge theory to algebraic geometry.
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It is natural to first seek to extend the definition of the
differential to the completed map in (III.11), and then in the
geometric case to express the extended differential map
cohomologically and use its geometric interpretations to derive
properties about the boundary structure of B and
subsequently about that of M. Here we shall summarize the
main points used in the study of the boundary structure of
moduli spaces of surfaces of general type.

Specifically, over B there are two equivalent approaches to
the study of a family of Hodge structures. One is via
variations of Hodge structure (and the associated Higgs
bundle construction), and the other is via period mappings.
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The first order information (differential) in each is equivalent.
Assuming unipotent monodromies around the branches of Z
when we extend the variation of Hodge structure to B there is
the canonical extension (Ve ,Fe ,∇e ,B) and corresponding
Higgs bundle construction, and there are the extended period
mappings (III.11). In the first order variation of each there is
an additional ingredient, namely the induced weight filtrations
on each.
For the purposes of these lectures we shall define the
differential at b ∈ B to be the mapping

(III.13) TB(− log Z )b
δ−→ F−1 End(Ee,b)

where Ee = GrFe (Ve). This formulation will be particularly
useful for computation of geometric examples.
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We shall summarize the resulting structure in the cases of
weights 1 and 2. At a point of the boundary Z = B\B the
differential of the mapping ΦT has a weight filtration. For
weight n the weights w of ΦT

∗ satisfy
−(n + 1) 5 w 5 +(n − 1). The associated graded to the
weight w part of the differential is given by maps

I p,q → I p−1,q+w+1

in the Deligne decomposition of the limiting mixed Hodge
structure at the point of Z . For the cases n = 1, 2 we shall
give a schematic depicting this structure. In the geometric
case the I p,q are interpreted cohomologically and this leads to
a Kodaira-Spencer type interpretation of the graded pieces of
the differential of the extended period mapping. An
application of this will be a cohomological expression for the
first order variation of the level k extension data when that
data of levels less than k are held constant.
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We note that for an ordinary period map to polarized Hodge
structures of weight n, the differential is determined by the
maps V (n−p,p) → V (n−p−1,p+1) for 0 5 p 5

(
n
2

)
. Here for the

cases of curves and surfaces the differential will be determined
by the maps

I n,q → I n−1,q+w+1, 0 5 q 5 n

and so we shall only depict those:

•

��

��
n = 1 •

��

// •

•

(III.14)
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The interpretations are

−→ is weight 0 and reflects the first order variation of the
associated graded to the limiting mixed Hodge structure;
thus the map ΦS

∗ is given by −→ in the above schematic.

−→ is weight −1 and reflects the first variation in the level 1
extension data whose associated graded to the limiting
mixed Hodge structures are held constant;

99K contains the same information, albeit in dual form, as ↘ ;

−→ is weight −2 and reflects the first variation in the level 2
extension data when the associated graded to the limiting
mixed Hodge structures and the level 1 extension data are
held constant.

We note that there are no elements of positive weight in
(III.14) and that the lowest weight is −2. These properties are
characteristic of the classical case. The differential of the map

P
T → P

S
is represented pictorially by mapping (III.14) to the

red arrow −→.
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We next turn to the n = 2 case

•

��





��

•

��

// •

•

44

//

��

• •

• // •

•

(III.15)

The interpretations are

−→ has weight +1. It is not present in the classical case, and
has the Lie-theoretic interpretation that to first order the
point ΦT (b) ∈ Ď moves out of the Schubert cycle in
which it lies.
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The arrows −→, −→ and −→ have the same interpretation as
in the n = 1 case. The −→ has weight −3 and reflects the
first order variation of the level 3 extension data when to first
order ΦT (b) remains in its Schubert cycle, and the associated
graded to the limiting mixed Hodge structure together with
the first two levels of extension data remain fixed. We have
seen that as a consequence of the IPR it is determined by the
arrows of lower weight.

The differential of the map P
T → P

S
at ΦT (b) is given

pictorially by

•

• // •

(III.15) −→ • //

55

• •

• // •

•
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In the geometric case the I p,q’s are given by the algorithm
represented pictorially in (III.2). The maps giving these arrows
will then be expressed by multiplication by Kodaira-Spencer
type cohomology classes, and we now illustrate one of these.

Example: We will cohomologically interpret the arrows −→,
−→ and −→ in (III.15) in the case when

X = X1 ∪C X2

consists of two smooth surfaces X1,X2 joined along a double
curve C . We use Ci ⊂ Xi for the curve C in the surface Xi

(i = 1, 2). The condition (III.1) is

NC1/X1
∼= ŇC2/X2

,

or equivalently

(III.16) OC (C1) ∼= OC (−C2).
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The relevant parts of (III.15) are

•

��

��

•

•

44

//

��

•

•

The dots are given by the prescription below (III.2). Using this
a part of the red arrow will be a mapping

(III.17) H0(Ω2
X1

)→ H1(OC )(−1)/H1(Ω1
X2

).

Note the exchange between X1 and X2; this will be a reflection
of (III.1).

101 / 126



To describe (III.17) we will use the cohomology mappings
arising from the commutative diagram

Ω2
X1

→ Ω2
X1

∣∣
C1

∼= Ω1
C1

(−C1)

0

↓ ∼ =

Ω1
X2

↓
0 → Ω1

X2
(logC2) → Ω1

X2
(C2) → Ω1

C2
(C2) → 0

↓
OC2(−1)

↓
0.
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The horizontal isomorphism on the top is adjunction, and the
vertical isomorphism on the right uses (III.1). The composition
of the maps on cohomology give the map

H0(Ω2
X1

) // ker
{
H1(OC2)(−1)→ H2(Ω1

X2
)
}

∈ ∈

I 2,0 I 1,2

An explicit example where this map is non-zero is given by an
I -surface having a simple elliptic singularity.

We next turn to the mapping −→. In general this mapping
is defined only if the mapping −→ is zero, which will be the
case if N = 0. Thus one may think of X as giving an
equi-singular deformation Xt = X1,t

⋃
Ct
X2,t . Then

−→ : H0(Ω2
X1

)→ H1(Ω1
X1

)
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is the usual derivative of a period mapping. We note that the
image of this mapping lies in

(C1)⊥ ⊂ H1(Ω1
X1

)

reflecting the assumption that C1 deforms along with X1.
For the mapping

(III.18) ↘ : I 2,1 → I 1,2

we first note that it is defined when both −→ and −→ are
zero. Geometrically we imagine a family

Xt = X1

⋃
t,C

X2

where X1,X2, C are constant but the gluing of X1 and X2

along C varies with t.
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Now

Ext1
MHS(H1(−1),H2) ∼=

H1

̂

(−1) ⊗H2

F 0(H1

̂

(−1) ⊗H2) + (H1

̂

(−1) ⊗H2)Z

.

This is a compact complex torus having a summand that is an
abelian variety J with tangent space

TJ ∼= Hom(I 0,1, I 2,2
Z ⊗ C).

Using the duality Ǐ 0,1 ∼= I 2,1 we shall give the geometric
interpretation of (III.18) under the simplifying assumption that
the H1(Xi) = 0 for i = 1, 2. Then J = J(C ) is the Jacobian
variety of C . We set

(PicX1 ⊕ PicX2)0 = (C1 ⊕ C2)⊥.
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For the family of embeddings jt : C ↪→ X1 × X2 there is a
mapping

αt : (PicX1 ⊕ PicX2)0 → J(C )

and unwinding the definitions the mapping −→ may be
identified with the derivative of αt . In words

Fixing X1,X2,C and mapping the gluing of X1,X2

along a family of different embeddings of C in these
surfaces, a part of the variation in the first order ex-
tension data is measured by the variation when the
Pic(Xi) map to J(C ).

From a different perspective this result was discussed in
Lecture II.
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To interpret the arrow ↘ we note that because we have a
limiting mixed Hodge structure there is a duality between
Ext1

MHS(H1(−1),H2) and Ext1
MHS(H2,H1). Thus this arrow

contains no new information beyond ↘.
That leaves the interpretation of ↓. Here we recall from
Lecture II that it is shown that for a variation of Hodge
structure on B\B the level 1 extension data gives a cone σ of
line bundles over a compact complex torus T and that the
fibres of ΦS map to a sub-torus J of T over which the line
bundles L ∈ σ are ample. The level 2 extension data then
maps the fibres of Φ1 to nowhere vanishing sections of these
line bundles.
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Derivative of the period mapping when the
monodromy is finite
The above has been concerned with the differential of the
period mapping when the monodromy is unipotent so that
there is a limiting mixed Hodge structure. In the uses of
Hodge theory to study moduli there are many interesting cases
where a family of smooth varieties acquires singularities with
finite, even perhaps trivial, monodromy. What can one say
about the period mapping and its differential in these cases?
Here we shall give a brief discussion and geometric illustration
of this question.
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The Hodge-theoretic situation is typically given by a period
mapping

(III.19) Φ : ∆∗ → Γ\D

where Γ is generated by a semi-simple T = Ts where
Tm = Id; i.e., the eigenvalues of T are mth roots of unity. In
the geometric case we might have a family of smooth surfaces
X∗ → ∆∗ that fills in to X→ ∆ where the central fibre X0 has
a canonical or a quotient singularity. In the first case X0 may
be considered as an interior point in a moduli space whereas in
the second case it may correspond to a boundary point.
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Given (III.19) there is a diagram

(III.20) ∆̃∗

��

Φ̃ // D

��
∆∗ Φ // Γ\D

where ∆̃∗ → ∆∗ is the finite cyclic covering given by t = t̃m.
As will be illustrated later, in the geometric case even if m = 1
it may be necessary to do a base change to have a semi-stable
reduction that is necessary in order to carry out the
calculations (e.g., a Wahl singularity).

Given (III.20) it is a classical result from Hodge theory that

the mapping Φ̃ : ∆̃∗ → D extends to

Φ̃ : ∆̃→ D.
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In other terms, Γ\D is what is sometimes referred to as a
V -manifold, and (III.19) extends to a holomorphic mapping
from the complete disc ∆ to this V -manifold.

(III.21) Provisional definition: The differential of (III.19)

at the origin is given by Φ̃∗ : T{0}∆̃→ TΦ̃(0)D.

We say provisional because the correct definition has not yet
been fully worked out. Perhaps it should use the framework
provided by the theory of stacks.
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Example: Suppose that X→ ∆ is a family of surfaces where
Xt is smooth for t 6= 0 while X0 has an ordinary double point
p (an A1-singularity). Then the monodromy is a
Picard-Lefschetz transformation and m = 2. In this case the
standard semi-stable reduction gives a family X̃

π̃−→ ∆̃ where X̃

is smooth and the central fibre

π̃−1(0) = X1

⋃
C

X2

where X1 is the standard desingularization of X0,X2 = P2 and
C ∼= P1. The curve C1 ⊂ X1 is a curve with C 2

1 = −2 and
C2 ⊂ P2 is a conic with C 2

2 = 2.
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Using methods similar to those in (III.17) above, the derivative
of the period mapping is computed from the cohomology of
the diagram

0 // KX1(−C ) // KX1
// KX1

∣∣
C1

// 0

∼ =

OC

∼ =

0 // Ω1
X2

// Ω1
X2

(logC2) // OC2(−1) // 0.

(III.22)

For the bottom row, if (x , y) are local coordinates in P2 such
that C2 = {y = 0}, then the first mapping is the inclusion and
the second map is

a(x , y)
dx

y
+ b(x , y)dy → a(x , 0).

113 / 126



The cohomology of (III.22) gives

H0(KX1)(−C1)→ H0(KX2)→ H0(OC2(−1))
δ−→ H1(Ω1

X2
)

where δ(1) = [C2] is the fundamental class of C2. The
composition

H0(KX1)→ [C2]

is the image of d/dt under Φ∗.

Application: We let X be a smooth surface of general type
with pg (X ) 6= 0. Let M be the corresponding KSBA moduli
space and suppose that a point x ∈M corresponds to a
surface X0 with an A1-singular point p. Then

If p is not a base point of the canonical series |KX0|, in
a neighborhood of x in M the locus of surfaces having
an A1-singularity is a reduced divisor.
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To complete the argument for this statement one has to show

(i) in the moduli space M the condition that the Chern class
of the line bundle L1 → X1 remain a Hodge class is a
reduced divisor in M; and

(ii) under a 1-parameter deformation L1,t → X1,t of L1 → X1,
the section s ∈ H0(OX1(L1)) that defines C1 deforms to a
section st ∈ H0(OX1,t (L1,t)).

It is the condition (i) that results from the above
cohomological calculation. The condition (ii) may be proved
by a standard argument.
The above is what one expects. The interest is not so much
the result itself but rather the method of proof that is much
more generally applicable.
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One intuition behind that above definition of the derivative of
the period mapping is this: In the above example if
δt ∈ H2(Xt ,Z) is the vanishing cycle and ωt ∈ H0(Ω2

Xt
), then

the period

ˆ
δt

ωt = ω0(p) · t1/2 + (higher order terms)

= ω0(p)t̃ + O(t̃2).

Thus the derivative at t = 0 is just ω0(p).

Example: Let X be an I -surface with a 1
4
(1, 1) singularity p.

Recall that there are several ways to construct (X , p). To
describe one of these we use the following notation:
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I P(1, 1, 2) has coordinates (x1, x2, y) and is embedded in
P3 as a quadric cone with vertex P

P

V

Y

I P(1, 1, 2, 5) has coordinates (x1, x2, y , z); any non-singular
Gorenstein I -surface Y has the equation

z2 = a0y
5 + a2(x1, x2)y 4 + · · ·+ a10(x1, x2)

where a2k(x1, x2) is homogeneous of degree 2k and
a0 6= 0. This is because for Gorenstein I -surfaces X the
pluricanonical ring R(X ) = ⊕H0(mKX ) has the
postulated form; i.e., generators and relations appear only
in places where they are forced to do so.

I Y → P(1, 1, 2) ⊂ P3 is branched over a quintic
V ∈ |OP3(5)| where P 6∈ V .
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I As a0 → 0 the quintic V passes through the vertex
P = (0, 0, 1, 0) and the limit surface X ceases to be
Gorenstein but acquires a 1

4
(1, 1) singularity over P .

I For a0 = 0 and (x1, x2) 6= (0, 0) over the fibre of
projection P(1, 1, 2)→ P1 we have a double cover of a
quartic intersection with the line over (x1, x2). The
discriminant of the quartic has terms like
a3

2a
3
10, a

2
4a

2
6a

2
0, . . . ,; they all have the same degree

3 · 2 + 3 · 10, 2 · 4 + 2 · 6 + 2 · 8, · · · = 36. Hence, when
a0 = 0 outside of what happens at P we have a 2:1
covering of P(1, 1, 2)\P with four branch points over the
intersection of V with the rulings of the quadric. In
general there are 36 such rulings where two of the branch
points come together; i.e., the corresponding curves
acquire nodes.
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I Over x1 = x2 = 0 we have z = 0 which gives the singular
point (0, 0, 1, 0) on X . Here P(1, 1, 2, 5) has a 1

2
(1, 1, 1)

singularity of index 2. A weighted blowup puts in a
Veronese surface X2 under the map

(x1, x2, 0, z)→ {all quadratic monomials in x1, x2, z};
the blown up surface X1 intersects the Veronese X2 in the
conic hyperplane section C given by z2 − a2(x1, x2) = 0.
Here we assume a2 is non-degenerate. The conic C maps
2:1 to the P1 coming from x1, x2; i.e., we have
z = ±

√
a2(x1, x2).

I Thus X
f−→ P1 is an elliptic surface having a bi-section

with branch points at the zeroes of a2(x1, x2).
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I For the numerology we have for CXi
= C ⊂ Xi

I

{
C 2

1 = −4

C 2
2 = 4

I KX1 · CX2 = 2 (thus KX1 · CX1 + C 2
X1

= −2)

I f∗ωX1/P1
∼= OPE (2).

We know that pg (X1) = 2 since the monodromy T = Id.
We now denote by C the P1 in either X1 or X2 and consider
the surface X0 = X1 ∪C X2. Then H2

lim is the cohomology of

H0(C )(−1)
G−→ H2(X1)⊕ H2(X2)

R−→ H2(C )

where G is the direct sum of Gysin maps and R is the sum of
signed restriction maps. Thus in the diagram (III.15) the
image of the dotted arrow is spanned by

[C ]⊥ ∈ H1(Ω1
X1

) ∼= H2(Veronese) ∼= C2.
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This has dimension 1, from which we may conclude
For the moduli of I -surfaces there is 1-condition to
have a 1

4
(1, 1) singularity. This condition is detected

Hodge theoretically by the presence of an additional
Hodge class in Φ(0) = H2

lim.

Note: There is an interesting dimension count going on here.
Namely,

I elliptic surfaces Y with q(Y ) = 0, pg (Y ) = 2 have
30 = 10 · χ(OY ) moduli. Specifically, in the case at hand
(here TX = tangent bundle)

h1(TY ) = 30 and h0(TY ) = 0;

121 / 126



I the “expected codimension”‡‡ in moduli for Y to have a
line bundle L→ Y with

L2 = −4, L · KY = 2

is pg (Y ) = 2;
I if h0(L) 6= 0, then h0(L) = 1 and there is a unique curve

C ∈ |L|; from

C 2 = −4, C · KY = 2

we infer that the arithmetic genus pa(C ) = 0, and one
expects that generically C = P1;

‡‡By “expected codimension” we mean that quantity given by a naive
dimension count (pg conditions in this case). In many interesting cases a
correction to the expected dimension count must be added. This is an
example of an improper intersection of the image of a period mapping
with a Mumford-Tate subdomain. (Actually we should refer to
“codimension counts,” where the naive one gives an upper bound on the
codimension of the subvariety in quotations.
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I for (Y ,C ) as above we may contract C to give an
I -surface with a 1

4
(1, 1) singularity.

With the details to be given elsewhere, one has

— dim{pairs (Y , L) as above} = 30− 2 = 28;

— among such pairs (Y , L) it is one condition to have
h0(L) 6= 0;

— the space of pairs (Y ,C ) has dimension 27;

— but dimMI = 28, so the above explains why imposing a
1
4
(1, 1) singularity is one condition in moduli of

I -surfaces.∗

∗This is an example where there is one condition that the Hodge class
remain effective under a deformation of the desingularization of an
I -surface where the Hodge class also deforms.
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Note: In general there is one condition on ω ∈ H0(KX1) that

(d/dt)(ω) = 0 in [C ]⊥ ⊂ Hg1(X2) ∼= Z2.

For I -surfaces with a 1
4
(1, 1) singularity, |KX | is in 1-1

correspondence with the rulings of the quadric, and the above
condition is equivalent to the corresponding ruling being
tangent to the quintic at the vertex.
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