Atypical Hodge Loci

Phillip Griffiths*

Outline

- Introduction
- II. Two examples
- III. Statement of the main result
- IV. Proof of the main result
- V. Motivic Hodge structures

References

^{*}Talk based on the paper [BKU] and related works given in the references in that work, and on extensive discussions with Mark Green and Colleen Robles.

I. Introduction

Q: What can one say about Hodge loci?

- B is a smooth, connected quasi-projective variety;
- $\mathbb{V} \to B$ is the local system underlying a variation of polarized Hodge structure of weight n;
- geometric case; smooth projective family $\mathfrak{X} \xrightarrow{\pi} B$ and

$$\mathbb{V}_b = H^n(X_b, \mathbb{Q})_{\text{prim}};$$

- $\mathrm{HL}(B) = \mathrm{set}$ of $b \in B$ with more Hodge classes in $\mathbb{V}_b^{\otimes} := \overset{k}{\oplus} (\overset{k}{\otimes} \mathbb{V}_b)$ than at a very general point of b;
- Cattani-Deligne-Kaplan: HL(B) is a countable union of proper algebraic subvarieties;
- in geometric case assuming the Hodge conjecture there are extra classes of algebraic cycles in $X \times \cdots \times X$'s.

Q: What can we say about HL(B)?

- very informally stated the main result in [BKU] is
 - (I.1) For $n \ge 3$ and aside from exceptional degenerate cases, every irreducible component of $\mathrm{HL}(B)_{\mathrm{pos}}$ has strictly larger than the expected codimension;
- know of no conceptual reason why in the non-classical case there should be more than the expected amount of algebraic cycles;
- proof uses integrability conditions for the differential constraint imposed by transversality in the non-classical case;
- sufficient condition for result is

$$\mathfrak{g}^{-k,k} \neq 0$$
, some $k \geq 3$;

- notation and criterion for this given below.
- implied by coupling length ≥ 3

II. Two examples

- $X = X_b$, $T = T_b B$ and $T \to H^1(T_X) = T \operatorname{Def}(X)$;
- $V^{p,q} = H^q(\Omega_X^p)$ and $T \to \bigoplus \operatorname{Hom}(V^{p,q}, V^{p-1,q+1})$ is Kodaira-Spencer mapping giving first variation of Hodge decomposition of a class in $H^n(X)$;
- for X a surface, $\theta \in T$, $\lambda \in \mathrm{Hg}^1(X)$ and $\theta \cdot \lambda \in H^{0,2}(X)$ gives the first order deviation from λ remaining a Hodge class in the direction θ ;
- $NL_{\lambda} \subset B$ is the Noether-Lefschetz locus where λ remains a Hodge class; assume reduced and define $T_{\lambda} \subset T = \ker\{\theta \to \theta \cdot \lambda\};$
- for $X \subset \mathbb{P}^3$ of degree $d \ge 4$ in the estimate

$$d-3 \leqq \operatorname{codim}_{\mathcal{B}} \operatorname{NL}_{\lambda} \leqq \binom{d-1}{3} = h^{2,0}(X)$$

both bounds are achieved (Green; lower bound $\iff X$ contains a line);

• now let dim X= 4, $\lambda\in\mathrm{Hg}^2(X)_{\mathrm{prim}};$ in first approximation

$$\operatorname{codim} NL_{\lambda} \le h^{1,3}(X) + h^{0,4}(X);$$

• but $\theta \cdot \lambda \in H^{1,3}(X)$ so this estimate must be refined to

(*)
$$\operatorname{codim}_{B} \operatorname{NL}_{\lambda} \leq h^{1,3}(X).$$

Definition: The right-hand side of (*) is the *expected* codimension of NL_{λ} in B.

• Integrability: With $T_{\lambda} \subset T$ as above set

$$\sigma_{\lambda} = \operatorname{Image} \{ T_{\lambda} \otimes H^{4,0}(X) \to H^{3,1}(X) \}.$$

Observation:

$$\operatorname{codim}_{B} \operatorname{NL}_{\lambda} \leq h^{1,3}(X) - \dim \sigma(\lambda).$$

Proof: For $\theta \in T_{\lambda}$, $\theta' \in T$, $\omega \in H^{4,0}(X)$

$$\begin{split} \langle \theta \omega, \theta' \lambda \rangle &= \langle \omega, \theta \theta' \lambda \rangle \\ &= \langle \omega, \theta' \theta \lambda \rangle \quad \text{(integrability)} \\ &= 0. \end{split}$$

Thus the number of conditions on $\theta' \in T$ to be in T_{λ} is $\leq h^{1,3} - \dim \sigma(\lambda)$.

• **Note:** For the first example of $X \subset \mathbb{P}^3$ the expected codimension drops for geometric reasons: if $L \subset X$ is a line with Hodge class λ and if $\omega \in H^0(\Omega^2_Y) \cong H^0(\mathcal{O}_X(d-4))$, then if $L \subset (\omega)$,

$$\langle \theta \lambda, \omega \rangle = \langle \lambda, \theta \cdot \omega \rangle = \int_L \theta \rfloor \omega = 0$$

for all $\theta \in H^1(T_X)$; thus such ω 's do not contribute to the equations defining NL_{λ} . In the second example the drop by σ_{λ} in the expected codimension is for Hodge theoretic reasons.

III. Statement of main result

- Polarized Hodge structure (V, Q, F^{\bullet}) of weight n
 - non-degenerate $Q: V \otimes V \to \mathbb{Q}$, $Q(u,v) = (-1)^n Q(v,u)$;
 - $-F^n \subset F^{n-1} \subset \cdots \subset F^0 = V_{\mathbb{C}}, \ F^p \oplus \overline{F}^{n-p+1} \xrightarrow{\sim} V_{\mathbb{C}} \text{ for } 0 \leq p \leq n;$
 - $-V^{p,q}=F^p\cap \overline{F}^q$, $V_{\mathbb C}=\oplus V^{p,q}$ with $\overline{V^{p,q}}=V^{q,p}$;
 - Hodge-Riemann bilinear relations;
 - -n=2m, $\operatorname{Hg}^m(V)=V^{m,m}\cap V$.
 - Lie algebra $\mathfrak{g}\subset \mathrm{End}(V,Q)$ and $\mathfrak{g}_\mathbb{C}=\oplus \mathfrak{g}^{-k,k}$ where

$$\mathfrak{g}^{-k,k} := \mathfrak{g}^{-k} = \{ A \in \mathfrak{g}_{\mathbb{C}} : A(V^{p,q}) \subset V^{p-k,q+k} \}$$

$$\ell(\mathfrak{g}) = \min\{ k : \mathfrak{g}^{-k} \neq (0) \};$$

$$-\ell(\mathfrak{g}) \geq 3 \implies n \geq 3.$$

Mumford-Tate group

- $-V^{\otimes}:=\overset{k}{\oplus}(\otimes^kV);$
- Hodge tensors $\operatorname{Hg}^{\bullet}(V) = \bigoplus^{k} \operatorname{Hg}^{kn/2}(V)$;
- MT(V) ⊂ Aut(V, Q) is $Fix(Hg^{\bullet}(V))$;
- is a reductive \mathbb{Q} -algebraic group H;
- finite cover of H is $\mathbb{C}^{*k} \times H_0$ where H_0 is semi-simple; for simplicity of exposition we will assume H is semi-simple; essential ideas appear in this case;

Example: Assume λ , Q generate the algebra of Hodge tensors, $MT(V) = H_{\lambda} = Fix \ \lambda \subset Aut(V, Q)$.

- Variation of Hodge structure $(V, \mathcal{F}^{\bullet}; B)$
 - B and $\mathbb{V} \to B$ as above;
 - \mathfrak{F}^{\bullet} is a filtration of $\mathcal{V} := \mathbb{V}_{\mathbb{C}^{\otimes}\mathbb{C}} \mathcal{O}_{B}$ inducing a polarized Hodge structure on each \mathbb{V}_{b} (understood there is $Q : \mathbb{V} \otimes \mathbb{V} \to \mathbb{Q}$);
 - $\nabla \mathfrak{F}^p \subset \mathfrak{F}^{p-1} \otimes \Omega^1_B$ (transversality);
 - for $b_0 \in B$ and $V = V_{b_0}$ we have the monodromy group $\Gamma \subset \operatorname{Aut}(V,Q)$;
 - the \mathbb{Q} -Zariski closure $\overline{\Gamma\mathbb{Q}}=$ semi-simple \mathbb{Q} -algebraic group that is a factor of the MT-group of $(V,\mathbb{Q},F_b^{\bullet})$ at a very general point of B.

Period mappings

- G = semi-simple \mathbb{Q} -algebraic group and D = period domain of polarized Hodge structures of a given type and with generic Mumford-Tate group G;
- $D = G(\mathbb{R})/G_0$, G_0 compact;
- period mapping Φ : B → $\Gamma \setminus D$;
- for simplicity of exposition we will assume that $\overline{\Gamma}^{\mathbb{Q}} := G = Mumford$ -Tate group of the polarized Hodge structure at a very general point of B;

This is justified because the image $\Phi(B)$ of the period mapping is contained in a translate of a $\overline{\Gamma^{\mathbb{Q}}}(\mathbb{R})$ -orbit.

$$\begin{array}{c} - \ T_{F_0}D \cong \mathfrak{g}_{\mathbb{C}}/F^0\mathfrak{g}_{\mathbb{C}} \cong \overset{k>0}{\oplus} \mathfrak{g}^{-k,k} \text{ where } \mathfrak{g}_{\mathbb{C}} \subset \operatorname{End}(V_{\mathbb{C}}) \text{ and } \\ \theta \in \mathfrak{g}^{-k,k} \text{ satisfies } \theta(F^p) \subset F^{p-k}; \end{array}$$

- $\Phi_*: T_b B \to \mathfrak{g}^{-1,1}$ (transversality);
- image is an abelian subalgebra $\mathfrak{a} \subset \mathfrak{g}^{-1,1}$ (integrability);
- notation: $\Phi(B) = P \subset \Gamma \backslash D$, $\widetilde{P} \subset D$ inverse image of P.

- Hodge loci
 - if λ , Q generate $\mathrm{Hg}^{\bullet}(V_{h}^{\otimes})$, then

$$\operatorname{NL}^0_{\lambda} = \Phi^{-1}(\Phi(B) \cap \mathcal{G}_{\lambda}(\mathbb{R}) \cdot o)^0 \qquad \text{$(^0 = \text{identity component})$;}$$

- thus Noether-Lefschetz loci are (translates of) orbits of particular Mumford-Tate subgroups of G;
- this is the crucial conceptual point; Hodge loci are intersections with translates of Mumford-Tate sub-domains.

Definition: If $H \subset G$ is a Mumford-Tate group and

$$D_H = H(\mathbb{R}) \cdot o, \qquad \Gamma_H = \Gamma \cap H$$

- $\Phi^{-1}(\Phi(B) \cap (\Gamma_H \setminus D_H))^0$ is a special subvariety of B.
 - thus special subvarieties of B are those $b \in B$ where the algebra of Hodge tensors is strictly larger than at a general point of B.

• set $P_H = P \cap (\Gamma_H \setminus D_H)$, then the standard codimension of an intersection inequality is

(
$$\sharp$$
) $\operatorname{codim}_{\Gamma \setminus D} P_H \leq \operatorname{codim}_{\Gamma \setminus D} P + \operatorname{codim}_{\Gamma \setminus D} (\Gamma_H \setminus D_H);$

Definition: Special subvariety is **atypical** if we have strict inequality in (\natural) .

 Thus atypical means we have more Hodge tensors than predicted by the usual expected dimension count formula.

Example: Notations as in the second example above

$$\begin{split} \operatorname{codim}_{\Gamma \setminus D}(\Phi(B) \cap (\Gamma_{\lambda} \setminus D_{\lambda})) &= \operatorname{codim}_{\Gamma \setminus D} \Phi(B) \\ &+ \operatorname{codim}_{\Gamma \setminus D}(\Gamma_{\lambda} \setminus D_{\lambda}) - \dim \sigma(\lambda). \end{split}$$

Theorem ([BKU]): If $\ell(\mathfrak{g}) \ge 3$, then **every** special subvariety of B is atypical.

Example: For smooth $X \subset \mathbb{P}^{n+1}$, $n \geq 3$ and $\deg(X) \geq 6$ every special subvariety is atypical.

Reason for result: M is a manifold and I', I'' distributions in TM given by $\{\omega_i'\}$, $\{\omega_\alpha''\}$; N', N'' variable integral manifolds of $I', I''|_{N'}$'s; want to estimate codimension of the $N' \cap N''$'s; integrability conditions given by $d\omega_i'$ may impose linear relations on the $\omega_\alpha''|_{N'}$; leads to more than expected number of $N' \cap N''$'s.

IV. Proof of the main result

Assume equality holds in (1) and will arrive at a

contraction to the assumption
$$\mathfrak{g}^{-k} \neq 0$$
;

• pass to tangent spaces and use
$$\dim T_0 D = \mathfrak{g}^-,$$

$$\dim T_0 D = \mathfrak{g}^-,$$

$$\dim T_0 D = \mathfrak{g} ,$$

$$\dim T_0 D_H = \mathfrak{h}^-,$$

$$T_0 \widetilde{P} \subset \mathfrak{g}^{-1},$$

$$T_0 (\widetilde{P} \cap D_H) = T_0 \widetilde{P} \cap \mathfrak{h}^{-1}$$

$$\sum_{k\geq 2} \dim \mathfrak{h}^{-k} + \operatorname{codim}_{\mathfrak{h}^{-1}} (T_0 \widetilde{P} \cap \mathfrak{h}^{-1}) = \sum_{k\geq 2} \dim \mathfrak{g}^{-k} + \operatorname{codim}_{\mathfrak{g}^{-1}} T_0 \widetilde{P}$$

$$\dim \mathfrak{h}^{-k} \leq \dim \mathfrak{g}^{-k}$$

$$\operatorname{codim}_{\mathfrak{h}^{-1}} (T_0 \widetilde{P} \cap \mathfrak{h}^{-1}) \leq \operatorname{codim}_{\mathfrak{g}^{-1}} T_0 \widetilde{P}$$

 $\implies \begin{cases} \mathfrak{h}^{-k} = \mathfrak{g}^{-k}, & k \geq 2\\ \operatorname{codim}_{\mathfrak{h}^{-1}} T_0 \widetilde{P} \cap \mathfrak{h}^{-1} = \operatorname{codim}_{\mathfrak{g}^{-1}} T_0 \widetilde{P}. \end{cases}$

$$\mathsf{dim}\ T_0D_H=\mathfrak{h}^-, \ T_0\widetilde{P}\subset\mathfrak{g}^{-1}, \ T_0(\widetilde{P}\cap D_H)=T_0\widetilde{P}\cap\mathfrak{h}^{-1}$$

We want to conclude

$$\begin{array}{ccc} \mathfrak{h}^{-1} &=& \mathfrak{g}^{-1} \\ & & & \downarrow \\ & & & T_0 D_H &=& T_0 D \implies D_H = D. \end{array}$$

- Basic idea
 - \mathfrak{h} , \mathfrak{g} are reductive Lie algebras in which \mathfrak{h}^- , \mathfrak{g}^- are parabolic sub-algebras;
 - there is maximal torus $\mathfrak{t}_{\mathbb{R}} \subset \mathfrak{g}_{\mathbb{R}}$ relative to which $\mathfrak{h}^-, \mathfrak{g}^-$ are direct sums of negative root spaces;
 - the root space and Hodge decomposition of $\mathfrak{h}^-,\mathfrak{g}^-$ align in the sense that each of $\mathfrak{h}^{-k},\mathfrak{g}^{-k}$ are direct sums of negative root spaces;
 - this is the first key point where the Lie theory and Hodge theory interact; the complex structure on $T_0D\cong \mathfrak{g}_\mathbb{R}/\mathfrak{g}_\mathbb{R}^0$ is given by an $E\in \mathfrak{t}_\mathbb{R}$ whose centralizer is $\mathfrak{g}_\mathbb{R}^0$ and whose eigenspace decomposition on $\mathfrak{g}_\mathbb{R}/\mathfrak{g}_\mathbb{R}^0$ is a direct sum of non-trivial conjugate root subspaces (cf. [R] for details);

- let β_i , $i \in I$, be the simple positive roots whith corresponding root space $\mathfrak{g}_{\beta_i} \subset \mathfrak{g}^+$; denote by $J \subset I$ the subset, possibly empty, where $\mathfrak{g}_{\beta_i} \subset \mathfrak{h}^+$; since every positive root is a sum of the β_i , it will suffice to show that

J = I:

$$(\flat) \qquad \qquad J =$$

- in this case we will have (\$\bar{b});
- note that \mathfrak{g}^- is generated by $\mathfrak{g}^{-1} \iff \operatorname{all} \mathfrak{g}_{-\beta} \subset \mathfrak{g}^{-1}$.

Second key point

- this is where integrability comes in; $\widetilde{P} \subset D$ is an integral manifold of the $G(\mathbb{R})$ -invariant distribution of T(D)given by $\mathfrak{g}^{-1} \subset \mathfrak{g}^- = T_0 D$; the real Lie algebra generated by the brackets in $\mathfrak{g}^{\pm 1}$ corresponds to a reductive subgroup $G_{\mathbb{P}}' \subset G(\mathbb{R})$ and $\widetilde{P} \subset G_{\mathbb{P}}' \cdot o$; thus we may assume

$$\mathfrak{g}^{-1}$$
 bracket generates \mathfrak{g}^{-}

- suitably interpreted the previous considerations apply also to $\widetilde{P} \cap D_H$; the upshot is that in effect we may assume this bracket generating property also for \mathfrak{h}^{-1} and \mathfrak{h}^- ;
- we now assume (b) also does not hold, and from this note that

$$(\flat\flat) \qquad [\mathfrak{g}_{\beta_i} \cdot \mathfrak{g}_{\beta_i}] = 0, \quad j \in J \text{ and } i \in I \backslash J.$$

Indeed, if this bracket is non-zero, then since $\mathfrak{h}^{-2}=\mathfrak{g}^{-2}$ it belongs to \mathfrak{h}^2 and the non-zero root space

$$\mathfrak{g}_{eta_i} = [[\mathfrak{g}_{eta_i}, \mathfrak{g}_{eta_i}], \mathfrak{g}_{-eta_i}] \in \mathfrak{h}^1$$

which is a contradiction;

- for the final step, if $\mathfrak{g}^3 \neq 0$, we have $\beta_1, \beta_2, \beta_3$ such that $\beta_1 + \beta_2 + \beta_3$ is a root. Then

$$[\mathfrak{g}_{\beta_1+\beta_2+\beta_3},\mathfrak{g}_{-\beta_1-\beta_2}]=\mathfrak{g}_{-\beta_3}\in\mathfrak{h}^1;$$

thus

$$J \neq \emptyset$$
.

If $J \neq I$, then $(\flat \flat)$ gives a contradiction to the fact that the highest root is $\sum_{i \in I} n_i \beta_i$ with all $n_i > 0$.

- If n=2, the argument works all the way up to the last step where, as in the first example, we do have $J=\emptyset$ (and $\mathfrak{g}^{-2}\neq 0 \iff h^{2,0}>0$ for $G=\mathrm{SO}(2a,b)$).

• Examples: $X \subset \mathbb{P}^{n+1}$ smooth degree d hypersurface

$$F(x) = 0$$

where F(x) homogeneous of degree d. For

$$\begin{cases} S^{\bullet} = \mathbb{C}[x_0, \cdots, x_{n+1}], \\ J^{\bullet} = \text{Jacobian ideal } \{F_{x_0}, \cdots, F_{x_{n+1}}\}, \\ R^{\bullet} = S^{\bullet}/J_F^{\bullet} \end{cases}$$

there is an isomorphism

$$H^{p,n-p}(X)_{\text{prim}} \cong R^{(n-p)d+n-2};$$

tangent space family of X's is

$$T \cong R^d$$

and

$$(\sharp\sharp) \qquad T\otimes H^{p,n-p}(X)_{\mathrm{prim}}\to H^{p-1,n-p+1}(X)_{\mathrm{prim}}$$

given by multiplication of polynomials

$$R^d \otimes R^{(n-p)d+n-2} \rightarrow R^{(n-p+1)d+n-2}$$
.

X non-singular gives (Macauly's theorem) that

the mappings (##) are non-zero whenever both sides are non-zero.

G is Mumford-Tate group for the period mapping of X's, then

$$R^d \to \mathfrak{g}^{-1,1} \subset F^{-1} \operatorname{End}(V, Q).$$

Image is an *abelian* sub-algebra $\mathfrak{a} \subset \mathfrak{g}^{-1.1} \subset \mathfrak{g}_{\mathbb{C}}$, induces

$$\operatorname{Sym}^k \mathfrak{a} \to \mathfrak{q}^{-k,k}$$

giving

$$\operatorname{Sym}^k\mathfrak{a}\to\mathfrak{g}^{-k,k}\subset\oplus\operatorname{Hom}\left(H^{p,n-p}(X)_{\operatorname{prim}},H^{p-k,n-p+k}(X)_{\operatorname{prim}}\right)$$

which is a subspace of

$$\operatorname{Sym}^k R^d \otimes R^{(n-p)d+n-2} \to R^{(n-p+k)d+n-2}$$

given by multiplication of polynomials. Conclude that map is non-zero whenever both sides are non-zero, which gives $\mathfrak{g}^{-3,3} \neq 0$ for $n \geq 3$, $d \geq 6$.

- In the second example at the beginning

$$\sigma(\lambda) = 0 \iff \mathfrak{g}^{-3} = (0).$$

• in general coupling length defined by

$$\zeta(\mathfrak{a}) = \max\{m : \operatorname{Sym}^m \mathfrak{a} \to \operatorname{Hom}(\mathbb{V}_b^{n,0}, \mathbb{V}_b^{n-m,m}) \neq 0\}$$

at a general point of B. Then

$$\zeta(\mathfrak{a}) \geqq \ell(\mathfrak{g}).$$

There are many examples where $\zeta(\mathfrak{a}) \geq 3$; e.g., hypersurfaces as above, CY's of dimension ≥ 3 whose Yukaya coupling is $\neq 0$.

V. Motivic Hodge structures

- Recent posting arXiv.org/abs/2308.16164 by Tobias Kreutz gives an interesting application of the method in [BKU].
- Idea is nice; statement of the result is not complete because it does not use integrability of transversality; following is an amended version.
- Polarized Hodge structure (PHS) $(V, F^{\bullet}, Q) := H$ comes from geometry if
 - (first approximation) $H = H^n(X)$ for a smooth projective variety X,
 - actual definition is motivic; basically H is made up of sub-quotients of the above.
- These objects have Mumford-Tate groups G and corresponding Mumford-Tate domains D with compact dual $D = G(\mathbb{C})/P$; this is a homogenous algebraic variety defined over $\overline{\mathbb{Q}}$.

- If *D* is non-classical then most points of *D* do not come from geometry; intuitive reason is that because of the differential constraint the image of a period mapping does *not* contain an open set; the set of points of coming from geometry is the complement of a countable union of proper analytic subvarieties.
- Nobody has exhibited an explicit H not coming from geometry; assuming the generalized Hodge conjecture (GHC) and the version due to André of Grothendieck's generalized period conjecture (GPC), Kreutz gives a necessary condition that H come from geometry.
- With terms to be explained the result is

$$\operatorname{tr} \operatorname{deg}(H) < L(\mathfrak{g}) \implies H \text{ does not come from geometry.}$$

• *H* is defined over a field *k* if equivalently

-
$$F^p \subset V \otimes_{\mathbb{Q}} k$$
,

$$-F^{\bullet}\in \check{D}(k).$$

Then the definition

$$\operatorname{tr} \operatorname{deg}(H) := \min \operatorname{tr} \operatorname{deg}(k)$$

makes sense.

• As above $H \in \widecheck{D} = G(\mathbb{C})/P$ where G = Mumford-Tate group of H, and we define

$$\mathit{L}(\mathfrak{g}) := \min \left\{ \operatorname{codim}_{\mathfrak{g}/\mathfrak{g}^0} \mathfrak{a} : \mathfrak{a} \subset \mathfrak{g}^{-1,1} \text{ is abelian}
ight\}.$$

Then

$$\begin{cases} L(\mathfrak{g}) = 0 \iff D \text{ is a Hermitian symmetric domain} \\ L(\mathfrak{g}) > 0 \iff D \text{ is non-classical.} \end{cases}$$

Theorem: Assuming (GHC) and (GPC), if

$$\mathrm{tr}\,\mathsf{deg}(H) < L(\mathfrak{g})$$

the H does not come from geometry.

Equivalently,

H comes from geometry
$$\implies \operatorname{tr} \operatorname{deg}(H) \geqq L(\mathfrak{g}).$$

- For X defined over $\overline{\mathbb{Q}}$ the GPC roughly says that the relations over $\overline{\mathbb{Q}}$ satisfied by the period matrix are reflected in the Mumford-Tate group of the PHS. The extension of the GHC to a general X is due to André is essential for the proof.
- The argument also gives for $H = H^n(X)$ with Mumford-Tate domain D and assuming GPC

 $\operatorname{tr} \operatorname{deg} H < \operatorname{dim} D \implies X \text{ is not defined over } \mathbb{Q}.$

Example: n=2 and H has Hodge numbers (2,b,2)

$$\operatorname{tr} \operatorname{\mathsf{deg}}(H) \leqq b \implies \left\{ egin{aligned} H & \operatorname{\mathsf{does}} & \operatorname{\mathsf{not}} & \operatorname{\mathsf{come}} \\ & \operatorname{\mathsf{from}} & \operatorname{\mathsf{geometry}} \end{aligned} \right\}.$$

n=3 and H has Hodge numbers (1,1,1,1)

$$\operatorname{tr} \operatorname{\mathsf{deg}}(H) \leqq 2 \implies \left\{ egin{aligned} H & \operatorname{\mathsf{does}} & \operatorname{\mathsf{not}} & \operatorname{\mathsf{come}} \\ & \operatorname{\mathsf{from}} & \operatorname{\mathsf{geometry}} \end{aligned}
ight\}.$$

References

[BKU] G. Baldi, B. Klingler, and E. Ullmo, On the distribution of the Hodge locus, arXiv:2107.08838, 2021.

[R] C. Robles, Schubert varieties as variations of Hodge structure, *Selecta Math.* (N.S.) **20**(3) (2014), 719–768.