Atypical Hodge Loci

Phillip Griffiths*

Outline

I. Introduction
II. Two examples
III. Statement of the main result
IV. Proof of the main result
V. Motivic Hodge structures

References

[^0]
I. Introduction

Q: What can one say about Hodge loci?

- B is a smooth, connected quasi-projective variety;
- $\mathbb{V} \rightarrow B$ is the local system underlying a variation of polarized Hodge structure of weight n;
- geometric case; smooth projective family $X \xrightarrow{\pi} B$ and

$$
\mathbb{V}_{b}=H^{n}\left(X_{b}, \mathbb{Q}\right)_{\text {prim }}
$$

- $\mathrm{HL}(B)=$ set of $b \in B$ with more Hodge classes in $\mathbb{V}_{b}^{\otimes}:=\stackrel{k}{\oplus}\left(\stackrel{k}{\otimes} \mathbb{V}_{b}\right)$ than at a very general point of $b ;$
- Cattani-Deligne-Kaplan: $\mathrm{HL}(B)$ is a countable union of proper algebraic subvarieties;
- in geometric case assuming the Hodge conjecture there are extra classes of algebraic cycles in $\underbrace{X \times \cdots \times X}_{k}$'s.

Q: What can we say about $\operatorname{HL}(B)$?

- very informally stated the main result in [BKU] is
(I.1) For $n \geqq 3$ and aside from exceptional degenerate cases, every irreducible component of $\mathrm{HL}(B)_{\text {pos }}$ has strictly larger than the expected codimension;
- know of no conceptual reason why in the non-classical case there should be more than the expected amount of algebraic cycles;
- proof uses integrability conditions for the differential constraint imposed by transversality in the non-classical case;
- sufficient condition for result is

$$
\mathfrak{g}^{-k, k} \neq 0, \quad \text { some } k \geqq 3
$$

- notation and criterion for this given below.
- implied by coupling length $\geqq 3$

II. Two examples

- $X=X_{b}, T=T_{b} B$ and $T \rightarrow H^{1}\left(T_{X}\right)=T \operatorname{Def}(X)$;
- $V^{p, q}=H^{q}\left(\Omega_{X}^{p}\right)$ and $T \rightarrow \oplus \operatorname{Hom}\left(V^{p, q}, V^{p-1, q+1}\right)$ is

Kodaira-Spencer mapping giving first variation of Hodge decomposition of a class in $H^{n}(X)$;

- for X a surface, $\theta \in T, \lambda \in \operatorname{Hg}^{1}(X)$ and $\theta \cdot \lambda \in H^{0,2}(X)$ gives the first order deviation from λ remaining a Hodge class in the direction θ;
- $\mathrm{NL}_{\lambda} \subset B$ is the Noether-Lefschetz locus where λ remains a Hodge class; assume reduced and define

$$
T_{\lambda} \subset T=\operatorname{ker}\{\theta \rightarrow \theta \cdot \lambda\}
$$

- for $X \subset \mathbb{P}^{3}$ of degree $d \geqq 4$ in the estimate

$$
d-3 \leqq \operatorname{codim}_{B} \mathrm{NL}_{\lambda} \leqq\binom{ d-1}{3}=h^{2,0}(X)
$$

both bounds are achieved (Green; lower bound $\Longleftrightarrow X$ contains a line);

- now let $\operatorname{dim} X=4, \lambda \in \operatorname{Hg}^{2}(X)_{\text {prim }}$; in first approximation

$$
\operatorname{codim} \mathrm{NL}_{\lambda} \leqq h^{1,3}(X)+h^{0,4}(X) ;
$$

- but $\theta \cdot \lambda \in H^{1,3}(X)$ so this estimate must be refined to
(*) $\quad \operatorname{codim}_{B} \mathrm{NL}_{\lambda} \leqq h^{1,3}(X)$.
Definition: The right-hand side of $(*)$ is the expected codimension of NL_{λ} in B.
- Integrability: With $T_{\lambda} \subset T$ as above set

$$
\sigma_{\lambda}=\operatorname{Image}\left\{T_{\lambda} \otimes H^{4,0}(X) \rightarrow H^{3,1}(X)\right\} .
$$

Observation:

$$
\operatorname{codim}_{B} \mathrm{NL}_{\lambda} \leqq h^{1,3}(X)-\operatorname{dim} \sigma(\lambda) .
$$

Proof: For $\theta \in T_{\lambda}, \theta^{\prime} \in T, \omega \in H^{4,0}(X)$

$$
\begin{aligned}
\left\langle\theta \omega, \theta^{\prime} \lambda\right\rangle & =\left\langle\omega, \theta \theta^{\prime} \lambda\right\rangle \\
& =\left\langle\omega, \theta^{\prime} \theta \lambda\right\rangle \quad \text { (integrability) } \\
& =0 .
\end{aligned}
$$

Thus the number of conditions on $\theta^{\prime} \in T$ to be in T_{λ} is $\leqq h^{1,3}-\operatorname{dim} \sigma(\lambda)$.

- Note: For the first example of $X \subset \mathbb{P}^{3}$ the expected codimension drops for geometric reasons: if $L \subset X$ is a line with Hodge class λ and if
$\omega \in H^{0}\left(\Omega_{X}^{2}\right) \cong H^{0}\left(\Theta_{X}(d-4)\right)$, then if $L \subset(\omega)$,

$$
\left.\langle\theta \lambda, \omega\rangle=\langle\lambda, \theta \cdot \omega\rangle=\int_{L} \theta\right\rfloor \omega=0
$$

for all $\theta \in H^{1}\left(T_{X}\right)$; thus such ω^{\prime} s do not contribute to the equations defining NL_{λ}. In the second example the drop by σ_{λ} in the expected codimension is for Hodge theoretic reasons.

III. Statement of main result

- Polarized Hodge structure $\left(V, Q, F^{\bullet}\right)$ of weight n
- non-degenerate $Q: V \otimes V \rightarrow \mathbb{Q}$,

$$
Q(u, v)=(-1)^{n} Q(v, u)
$$

$-F^{n} \subset F^{n-1} \subset \cdots \subset F^{0}=V_{\mathbb{C}}, F^{p} \oplus \bar{F}^{n-p+1} \xrightarrow{\sim} V_{\mathbb{C}}$ for $0 \leqq p \leqq n$;
$-V^{p, q}=F^{p} \cap \bar{F}^{q}, V_{\mathbb{C}}=\oplus V^{p, q}$ with $\overline{V^{p, q}}=V^{q, p}$;

- Hodge-Riemann bilinear relations;
- $n=2 m, \operatorname{Hg}^{m}(V)=V^{m, m} \cap V$.
- Lie algebra $\mathfrak{g} \subset \operatorname{End}(V, Q)$ and $\mathfrak{g}_{\mathbb{C}}=\oplus \mathfrak{g}^{-k, k}$ where

$$
\begin{aligned}
\mathfrak{g}^{-k, k} & :=\mathfrak{g}^{-k}=\left\{A \in \mathfrak{g}_{\mathbb{C}}: A\left(V^{p, q}\right) \subset V^{p-k, q+k}\right\} \\
\ell(\mathfrak{g}) & =\min \left\{k: \mathfrak{g}^{-k} \neq(0)\right\} \\
-\ell(\mathfrak{g}) \geqq 3 & \Longrightarrow n \geqq 3
\end{aligned}
$$

- Mumford-Tate group
- $V^{\otimes}:=\stackrel{k}{\oplus}\left(\otimes^{k} V\right)$;
- Hodge tensors $\mathrm{Hg}^{\bullet}(V)=\stackrel{k}{\oplus} \mathrm{Hg}^{k n / 2}(V)$;
$-\operatorname{MT}(V) \subset \operatorname{Aut}(V, Q)$ is $\operatorname{Fix}\left(\operatorname{Hg}^{\bullet}(V)\right)$;
- is a reductive \mathbb{Q}-algebraic group H;
- finite cover of H is $\mathbb{C}^{* k} \times H_{0}$ where H_{0} is semi-simple; for simplicity of exposition we will assume H is semi-simple; essential ideas appear in this case;

Example: Assume λ, Q generate the algebra of Hodge tensors, $\operatorname{MT}(V)=H_{\lambda}=\operatorname{Fix} \lambda \subset \operatorname{Aut}(V, Q)$.

- Variation of Hodge structure $\left(\mathbb{V}, \mathcal{F}^{\bullet} ; B\right)$
- B and $\mathbb{V} \rightarrow B$ as above;
- \mathcal{F}^{\bullet} is a filtration of $\mathcal{V}:=\mathbb{V}_{\mathbb{C}} \mathbb{C}_{\mathbb{C}} \mathcal{O}_{B}$ inducing a polarized Hodge structure on each \mathbb{V}_{b} (understood there is $Q: \mathbb{V} \otimes \mathbb{V} \rightarrow \mathbb{Q}$);
$-\nabla \mathcal{F}^{p} \subset \mathcal{F}^{p-1} \otimes \Omega_{B}^{1}$ (transversality);
- for $b_{0} \in B$ and $V=V_{b_{0}}$ we have the monodromy group $\Gamma \subset \operatorname{Aut}(V, Q)$;
- the \mathbb{Q}-Zariski closure $\overline{\Gamma \mathbb{Q}}=$ semi-simple \mathbb{Q}-algebraic group that is a factor of the MT-group of $\left(V, \mathbb{Q}, F_{b}^{\bullet}\right)$ at a very general point of B.
- Period mappings
- $G=$ semi-simple \mathbb{Q}-algebraic group and $D=$ period domain of polarized Hodge structures of a given type and with generic Mumford-Tate group G;
- $D=G(\mathbb{R}) / G_{0}, G_{0}$ compact;
- period mapping $\Phi: B \rightarrow \Gamma \backslash D$;
- for simplicity of exposition we will assume that $\bar{\Gamma}^{\mathbb{Q}}:=G=$ Mumford-Tate group of the polarized Hodge structure at a very general point of B;
This is justified because the image $\Phi(B)$ of the period mapping is contained in a translate of a $\overline{\Gamma^{\mathbb{Q}}}(\mathbb{R})$-orbit.
$-T_{F_{0}} D \cong \mathfrak{g}_{\mathbb{C}} / F^{0} \mathfrak{g}_{\mathbb{C}} \cong{ }^{k>0} \mathfrak{g}^{-k, k}$ where $\mathfrak{g}_{\mathbb{C}} \subset \operatorname{End}\left(V_{\mathbb{C}}\right)$ and $\theta \in \mathfrak{g}^{-k, k}$ satisfies $\theta\left(F^{p}\right) \subset F^{p-k}$;
- $\Phi_{*}: T_{b} B \rightarrow \mathfrak{g}^{-1,1}$ (transversality);
- image is an abelian subalgebra $\mathfrak{a} \subset \mathfrak{g}^{-1,1}$ (integrability);
- notation: $\Phi(B)=P \subset \Gamma \backslash D, \widetilde{P} \subset D$ inverse image of P.
- Hodge loci
- if λ, Q generate $\mathrm{Hg}^{\bullet}\left(V_{b}^{\otimes}\right)$, then

$$
\mathrm{NL}_{\lambda}^{0}=\Phi^{-1}\left(\Phi(B) \cap G_{\lambda}(\mathbb{R}) \cdot 0\right)^{0} \quad\left({ }^{0}=\text { identity component }\right) ;
$$

- thus Noether-Lefschetz loci are (translates of) orbits of particular Mumford-Tate subgroups of G;
- this is the crucial conceptual point; Hodge loci are intersections with translates of Mumford-Tate sub-domains.

Definition: If $H \subset G$ is a Mumford-Tate group and

$$
D_{H}=H(\mathbb{R}) \cdot o, \quad \Gamma_{H}=\Gamma \cap H
$$

$\Phi^{-1}\left(\Phi(B) \cap\left(\Gamma_{H} \backslash D_{H}\right)\right)^{0}$ is a special subvariety of B.

- thus special subvarieties of B are those $b \in B$ where the algebra of Hodge tensors is strictly larger than at a general point of B.
- set $P_{H}=P \cap\left(\Gamma_{H} \backslash D_{H}\right)$, then the standard codimension of an intersection inequality is
(দ) $\quad \operatorname{codim}_{\Gamma \backslash D} P_{H} \leqq \operatorname{codim}_{\Gamma \backslash D} P+\operatorname{codim}_{\Gamma \backslash D}\left(\Gamma_{H} \backslash D_{H}\right)$;
Definition: Special subvariety is atypical if we have strict inequality in (\downarrow).
- Thus atypical means we have more Hodge tensors than predicted by the usual expected dimension count formula.
Example: Notations as in the second example above

$$
\begin{aligned}
\operatorname{codim}_{\Gamma \backslash D}\left(\Phi(B) \cap\left(\Gamma_{\lambda} \backslash D_{\lambda}\right)\right)= & \operatorname{codim}_{\Gamma \backslash D} \Phi(B) \\
& +\operatorname{codim}_{\Gamma \backslash D}\left(\Gamma_{\lambda} \backslash D_{\lambda}\right)-\operatorname{dim} \sigma(\lambda)
\end{aligned}
$$

Theorem ([BKU]): If $\ell(\mathfrak{g}) \geqq 3$, then every special subvariety of B is atypical.
Example: For smooth $X \subset \mathbb{P}^{n+1}, n \geqq 3$ and $\operatorname{deg}(X) \geqq 6$ every special subvariety is atypical.

Reason for result: M is a manifold and $I^{\prime}, I^{\prime \prime}$ distributions in TM given by $\left\{\omega_{i}^{\prime}\right\}$, $\left\{\omega_{\alpha}^{\prime \prime}\right\} ; N^{\prime}, N^{\prime \prime}$ variable integral manifolds of $I^{\prime},\left.I^{\prime \prime}\right|_{N^{\prime}}$'s; want to estimate codimension of the $N^{\prime} \cap N^{\prime \prime \prime}$'s; integrability conditions given by $d \omega_{i}^{\prime}$ may impose linear relations on the $\omega_{\alpha}^{\prime \prime} \mid N^{\prime}$; leads to more than expected number of $N^{\prime} \cap N^{\prime \prime \prime}$'s.

IV. Proof of the main result

- Assume equality holds in (\square) and will arrive at a contraction to the assumption $\mathfrak{g}^{-k} \neq 0$;
- pass to tangent spaces and use

$$
\begin{aligned}
\operatorname{dim} T_{0} D & =\mathfrak{g}^{-}, \\
\operatorname{dim} T_{0} D_{H} & =\mathfrak{h}^{-}, \\
T_{0} \widetilde{P} & \subset \mathfrak{g}^{-1}, \\
T_{0}\left(\widetilde{P} \cap D_{H}\right) & =T_{0} \widetilde{P} \cap \mathfrak{h}^{-1}
\end{aligned}
$$

$\sum \operatorname{dim} \mathfrak{h}^{-k}+\operatorname{codim}_{\mathfrak{h}^{-1}}\left(T_{0} \widetilde{P} \cap \mathfrak{h}^{-1}\right)=\sum_{k \geqq 2} \operatorname{dim}_{\mathfrak{g}^{-k}+\operatorname{codim}_{\mathfrak{g}^{-1}} T_{0} \widetilde{P}}$ $\operatorname{dim} \mathfrak{h}^{-k} \leqq \operatorname{dim} \mathfrak{g}^{-k}$

$$
\begin{aligned}
& \operatorname{codim}_{\mathfrak{h}^{-1}}\left(T_{0} \widetilde{P} \cap \mathfrak{h}^{-1}\right) \leqq \operatorname{codim}_{\mathfrak{g}^{-1}} T_{0} \widetilde{P} \\
\Longrightarrow & \left\{\begin{array}{l}
\mathfrak{h}^{-k}=\mathfrak{g}^{-k}, \quad k \geqq 2 \\
\operatorname{codim}_{\mathfrak{h}^{-1}} T_{0} \widetilde{P} \cap \mathfrak{h}^{-1}=\operatorname{codim}_{\mathfrak{g}^{-1}} T_{0} \widetilde{P} .
\end{array}\right.
\end{aligned}
$$

We want to conclude

$$
\begin{align*}
\mathfrak{h}^{-1} & =\mathfrak{g}^{-1} \\
& \Downarrow \tag{46}\\
T_{0} D_{H} & =T_{0} D \Longrightarrow D_{H}=D .
\end{align*}
$$

- Basic idea
$-\mathfrak{h}, \mathfrak{g}$ are reductive Lie algebras in which $\mathfrak{h}^{-}, \mathfrak{g}^{-}$are parabolic sub-algebras;
- there is maximal torus $\mathfrak{t}_{\mathbb{R}} \subset \mathfrak{g}_{\mathbb{R}}$ relative to which $\mathfrak{h}^{-}, \mathfrak{g}^{-}$ are direct sums of negative root spaces;
- the root space and Hodge decomposition of $\mathfrak{h}^{-}, \mathfrak{g}^{-}$align in the sense that each of $\mathfrak{h}^{-k}, \mathfrak{g}^{-k}$ are direct sums of negative root spaces;
- this is the first key point where the Lie theory and Hodge theory interact; the complex structure on $T_{0} D \cong \mathfrak{g}_{\mathbb{R}} / \mathfrak{g}_{\mathbb{R}}^{0}$ is given by an $E \in \mathfrak{t}_{\mathbb{R}}$ whose centralizer is $\mathfrak{g}_{\mathbb{R}}^{0}$ and whose eigenspace decomposition on $\mathfrak{g}_{\mathbb{R}} / \mathfrak{g}_{\mathbb{R}}^{0}$ is a direct sum of non-trivial conjugate root subspaces (cf. [R] for details);
- let $\beta_{i}, i \in I$, be the simple positive roots whith corresponding root space $\mathfrak{g}_{\beta_{i}} \subset \mathfrak{g}^{+}$; denote by $J \subset I$ the subset, possibly empty, where $\mathfrak{g}_{\beta_{i}} \subset \mathfrak{h}^{+}$; since every positive root is a sum of the β_{i}, it will suffice to show that

$$
\begin{equation*}
J=I ; \tag{b}
\end{equation*}
$$

in this case we will have (如);

- note that \mathfrak{g}^{-}is generated by $\mathfrak{g}^{-1} \Longleftrightarrow$ all $\mathfrak{g}_{-\beta_{i}} \subset \mathfrak{g}^{-1}$.
- Second key point
- this is where integrability comes in; $\widetilde{P} \subset D$ is an integral manifold of the $G(\mathbb{R})$-invariant distribution of $T(D)$ given by $\mathfrak{g}^{-1} \subset \mathfrak{g}^{-}=T_{0} D$; the real Lie algebra generated by the brackets in $\mathfrak{g}^{ \pm 1}$ corresponds to a reductive subgroup $G_{\mathbb{R}}^{\prime} \subset G(\mathbb{R})$ and $\widetilde{P} \subset G_{\mathbb{R}}^{\prime} \cdot o$; thus we may assume

$$
\mathfrak{g}^{-1} \text { bracket generates } \mathfrak{g}^{-}
$$

(cf. [R] for details);

- suitably interpreted the previous considerations apply also to $\widetilde{P} \cap D_{H}$; the upshot is that in effect we may assume this bracket generating property also for \mathfrak{h}^{-1} and \mathfrak{h}^{-};
- we now assume (b) also does not hold, and from this note that
(bb) $\quad\left[\mathfrak{g}_{\beta_{i}} \cdot \mathfrak{g}_{\beta_{j}}\right]=0, \quad j \in J$ and $i \in \Lambda \backslash J$.
Indeed, if this bracket is non-zero, then since $\mathfrak{h}^{-2}=\mathfrak{g}^{-2}$ it belongs to \mathfrak{h}^{2} and the non-zero root space

$$
\mathfrak{g}_{\beta_{i}}=\left[\left[\mathfrak{g}_{\beta_{i}}, \mathfrak{g}_{\beta_{j}}\right], \mathfrak{g}_{-\beta_{j}}\right] \in \mathfrak{h}^{1}
$$

which is a contradiction;

- for the final step, if $\mathfrak{g}^{3} \neq 0$, we have $\beta_{1}, \beta_{2}, \beta_{3}$ such that $\beta_{1}+\beta_{2}+\beta_{3}$ is a root. Then

$$
\left[\mathfrak{g}_{\beta_{1}+\beta_{2}+\beta_{3}}, \mathfrak{g}_{-\beta_{1}-\beta_{2}}\right]=\mathfrak{g}_{-\beta_{3}} \in \mathfrak{h}^{1} ;
$$

thus

$$
J \neq \emptyset .
$$

If $J \neq I$, then ($b b$) gives a contradiction to the fact that the highest root is $\sum_{i \in I} n_{i} \beta_{i}$ with all $n_{i}>0$.

- If $n=2$, the argument works all the way up to the last step where, as in the first example, we do have $J=\emptyset$ (and $\mathfrak{g}^{-2} \neq 0 \Longleftrightarrow h^{2,0}>0$ for $G=\mathrm{SO}(2 a, b)$).
- Examples: $X \subset \mathbb{P}^{n+1}$ smooth degree d hypersurface

$$
F(x)=0
$$

where $F(x)$ homogeneous of degree d. For

$$
\left\{\begin{array}{l}
S^{\bullet}=\mathbb{C}\left[x_{0}, \cdots, x_{n+1}\right] \\
J^{\bullet}=\text { Jacobian ideal }\left\{F_{x_{0}}, \cdots, F_{x_{n+1}}\right\}, \\
R^{\bullet}=S^{\bullet} / J_{F}^{\bullet}
\end{array}\right.
$$

there is an isomorphism

$$
H^{p, n-p}(X)_{\operatorname{prim}} \cong R^{(n-p) d+n-2}
$$

tangent space family of X 's is

$$
T \cong R^{d}
$$

and
$(\# \#) \quad T \otimes H^{p, n-p}(X)_{\text {prim }} \rightarrow H^{p-1, n-p+1}(X)_{\text {prim }}$
given by multiplication of polynomials

$$
R^{d} \otimes R^{(n-p) d+n-2} \rightarrow R^{(n-p+1) d+n-2} .
$$

X non-singular gives (Macauly's theorem) that
the mappings ($\sharp \sharp$) are non-zero whenever both sides are non-zero.
G is Mumford-Tate group for the period mapping of X 's, then

$$
R^{d} \rightarrow \mathfrak{g}^{-1,1} \subset F^{-1} \operatorname{End}(V, Q)
$$

Image is an abelian sub-algebra $\mathfrak{a} \subset \mathfrak{g}^{-1.1} \subset \mathfrak{g}_{\mathbb{C}}$, induces

$$
\operatorname{Sym}^{k} \mathfrak{a} \rightarrow \mathfrak{g}^{-k, k}
$$

giving
$\operatorname{Sym}^{k} \mathfrak{a} \rightarrow \mathfrak{g}^{-k, k} \subset \oplus \operatorname{Hom}\left(H^{p, n-p}(X)_{\text {prim }}, H^{p-k, n-p+k}(X)_{\text {prim }}\right)$
which is a subspace of

$$
\operatorname{Sym}^{k} R^{d} \otimes R^{(n-p) d+n-2} \rightarrow R^{(n-p+k) d+n-2}
$$

given by multiplication of polynomials. Conclude that map is non-zero whenever both sides are non-zero, which gives $\mathfrak{g}^{-3,3} \neq 0$ for $n \geqq 3, d \geqq 6$.

- In the second example at the beginning

$$
\sigma(\lambda)=0 \Longleftrightarrow \mathfrak{g}^{-3}=(0)
$$

- in general coupling length defined by

$$
\zeta(\mathfrak{a})=\max \left\{m: \operatorname{Sym}^{m} \mathfrak{a} \rightarrow \operatorname{Hom}\left(\mathbb{V}_{b}^{n, 0}, \mathbb{V}_{b}^{n-m, m}\right) \neq 0\right\}
$$

at a general point of B. Then

$$
\zeta(\mathfrak{a}) \geqq \ell(\mathfrak{g})
$$

There are many examples where $\zeta(\mathfrak{a}) \geqq 3$; e.g., hypersurfaces as above, CY's of dimension $\geqq 3$ whose Yukaya coupling is $\neq 0$.

V. Motivic Hodge structures

- Recent posting arXiv.org/abs/2308.16164 by Tobias Kreutz gives an interesting application of the method in [BKU].
- Idea is nice; statement of the result is not complete because it does not use integrability of transversality; following is an amended version.
- Polarized Hodge structure (PHS) $\left(V, F^{\bullet}, Q\right):=H$ comes from geometry if
- (first approximation) $H=H^{n}(X)$ for a smooth projective variety X,
- actual definition is motivic; basically H is made up of sub-quotients of the above.
- These objects have Mumford-Tate groups G and corresponding Mumford-Tate domains D with compact dual $D=G(\underline{\mathbb{C}}) / P$; this is a homogenous algebraic variety defined over $\overline{\mathbb{Q}}$.
- If D is non-classical then most points of D do not come from geometry; intuitive reason is that because of the differential constraint the image of a period mapping does not contain an open set; the set of points of coming from geometry is the complement of a countable union of proper analytic subvarieties.
- Nobody has exhibited an explicit H not coming from geometry; assuming the generalized Hodge conjecture (GHC) and the version due to André of Grothendieck's generalized period conjecture (GPC), Kreutz gives a necessary condition that H come from geometry.
- With terms to be explained the result is

$$
\operatorname{tr} \operatorname{deg}(H)<L(\mathfrak{g}) \Longrightarrow H \text { does not come from geometry. }
$$

- H is defined over a field k if equivalently

$$
\begin{aligned}
& -F^{p} \subset V \otimes_{\mathbb{Q}} k, \\
& -F^{\bullet} \in \check{D}(k) .
\end{aligned}
$$

- Then the definition

$$
\operatorname{tr} \operatorname{deg}(H):=\min \operatorname{tr} \operatorname{deg}(k)
$$

makes sense.

- As above $H \in \check{D}=G(\mathbb{C}) / P$ where $G=$ Mumford-Tate group of H, and we define

$$
L(\mathfrak{g}):=\min \left\{\operatorname{codim}_{\mathfrak{g} / \mathfrak{g}^{0}} \mathfrak{a}: \mathfrak{a} \subset \mathfrak{g}^{-1,1} \text { is abelian }\right\} .
$$

Then

$$
\left\{\begin{array}{l}
L(\mathfrak{g})=0 \Longleftrightarrow D \text { is a Hermitian symmetric domain } \\
L(\mathfrak{g})>0 \Longleftrightarrow D \text { is non-classical. }
\end{array}\right.
$$

Theorem: Assuming (GHC) and (GPC), if

$$
\operatorname{tr} \operatorname{deg}(H)<L(\mathfrak{g})
$$

the H does not come from geometry.

- Equivalently,
H comes from geometry $\Longrightarrow \operatorname{tr} \operatorname{deg}(H) \geqq L(\mathfrak{g})$.
- For X defined over $\overline{\mathbb{Q}}$ the GPC roughly says that the relations over $\overline{\mathbb{Q}}$ satisfied by the period matrix are reflected in the Mumford-Tate group of the PHS. The extension of the GHC to a general X is due to André is essential for the proof.
- The argument also gives for $H=H^{n}(X)$ with Mumford-Tate domain D and assuming GPC

$$
\operatorname{tr} \operatorname{deg} H<\operatorname{dim} D \Longrightarrow X \text { is not defined over } \overline{\mathbb{Q}} .
$$

Example: $n=2$ and H has Hodge numbers (2, b, 2)

$$
\operatorname{tr} \operatorname{deg}(H) \leqq b \Longrightarrow\left\{\begin{array}{c}
H \text { does not come } \\
\text { from geometry }
\end{array}\right\} .
$$

$n=3$ and H has Hodge numbers ($1,1,1,1$)

$$
\operatorname{tr} \operatorname{deg}(H) \leqq 2 \Longrightarrow\left\{\begin{array}{c}
H \text { does not come } \\
\text { from geometry }
\end{array}\right\} .
$$

References

[BKU] G. Baldi, B. Klingler, and E. Ullmo, On the distribution of the Hodge locus, arXiv:2107.08838, 2021.
[R] C. Robles, Schubert varieties as variations of Hodge structure, Selecta Math. (N.S.) 20(3) (2014), 719-768.

[^0]: *Talk based on the paper [BKU] and related works given in the references in that work, and on extensive discussions with Mark Green and Colleen Robles.

