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I. Introduction

• For compact, complex manifold X the cohomology group

H1(TX)

parametrizes the space of first order deformations of the complex

structure on X.

• The obstruction to lifting θ1 ∈ H1(TX) to a second order deformation

of X is the bracket

[θ1, θ1] ∈ H2(TX).

• If this vanishes, there is an obstruction in H2(TX) to extending to a

third order deformation of X, etc.1

• If H2(TX) = 0, then lifting to all orders may be done; in many

examples H2(TX) 6= 0 but nonetheless all the obstructions vanish.

• A traditional problem is to give criteria that this happens so that

the Kuranishi space Def(X) is smooth and has tangent space

(1) T Def(X) = H1(TX).

Date: November 13, 2023.
1The map H1(TX)⊗H1(TX)→ H2(TX) is symmetric.
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• One problem is that in general the group H2(TX) does not have a

geometric interpretation.

• For surfaces it is dual to H0(KX ⊗ Ω1
X), but this does not seem to

be of much help.

• The main classical result due to Bogomolov-Tian-Todorov (BTT) is

that (1) holds if X is Kähler and we are in the Calabi-Yau case where

the canonical bundle

(2) KX
∼= OX .

• In this case H2(TX) ∼= H2(Ωn−1
X ) is a summand of Hn+1(X,C) and

therefore it does have geometric meaning.

• Recently the mechanism behind the proof of the BTT theorem has

been formalized leading to a proof of the

(3) Theorem: The obstruction space Ob(X) to deforming a com-
pact Kähler manifold lies in

ker{H2(TX)→ ⊕Hom(Hq(Ωp
X), Hq+2(Ωp−1

X ))}
where the map is induced by the contraction

c : TX ⊗ Ωp
X → Ωp−1

X .2

• The BTT result is an immediate consequence of this using Ωn
X
∼= OX

and taking q = 0, p = n so that the map in (3) becomes the identity.

• There is also a relative version of the above where we take the defor-

mation of a pair (X,D) with D ⊂ X a global normal crossing divisor

(NCD); the log-Calabi-Yau case is when D ∈ | −KX |.
• In this case there are two types of deformations:

(i) D remains a NCD with the same number of components; the

Zariski tangent space is

H1(TX(− logD));

(ii) D may be partially smoothed; then

Ext1(Ω1
X(logD),OX)

2Ob(X) = 0 ⇐⇒ Def(X) contains an open neighborhood of the origin in
H1(TX).
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is the Zariski tangent space.

In [KKP] there is a variant, motivated by mirror symmetry, of the

relative case.

• Finally there is the case where X may be singular with dualizing

sheaf ωX ∼= OX . Here one looks for deformations that smooth X.

The classical case is when X is a d-semi-stable normal crossing vari-

ety (NCV).3 Then there is an extension of the BTT result ([F] when

dimX = 2, [KN] for any dimX). The recent paper [CLM] contains

a result that extends many earlier results. The paper [FL] is comple-

mentary to these works; it deals with the case where X has isolated

singularities.

• The purpose of this talk us to discuss the proof of (3) above and the

extension of this result to (i) in the relative case. We will not take

up (ii) or the case of an X with general singularities.

• The approach we shall take will be concrete and analytic; we will try

to isolate the essential points.4

II. Deformation theory

• X is a fixed, compact C∞ manifold.

• An almost complex structure ω is given by a sub-bundle Tω ⊂ TR,X⊗C
such that

T ∗ω ⊕ T
∗
ω
∼−→ T ∗C,X .

3This means that Ext1(Ω1
X ,OX) ∼= OD where D is the singular locus of X. In

the local to global spectral sequence for Ext we have

H0(Ext1(Ω1
X ,OX)) // Ext1(Ω1

X ,OX) // H1(Ext0(ΩX ,OX))

∼ = ∼ = ∼ =

H0(OD) // T Def(X) // T Defes(X)

where the first term corresponds to first order smoothings of X.
4There is an extensive formal homological framework for the obstructions. The

intent here is to use direct “blue collar” analytic methods as in the original BTT
proofs.
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Relative to a suitable covering of X by open sets U in each one there

will be a set ωi of smooth complex-valued 1-forms that at each point

gives a basis for T ∗ω .

• The almost complex structure is integrable if the Frobenius condition

(4) dωi ≡ 0
〈
ωi
〉

is satisfied; here 〈ωi〉 is the ideal in the C∞ forms A∗(U) generated

by the ωi.

• By the Newlander-Nirenberg theorem an integrable almost structure

defines a complex manifold; locally in U there are functions zi such

that

span{dzi} = span{ωi}.

• Holomorphic functions f are defined by

df ≡ 0 span{ωi};

coordinate changes from zi in U to z̃i in Ũ are holomorphic.

• A deformation of the almost complex structure is given in each U by

ωi(t) = dzi + tϕi1j̄dz̄
j + t2ϕi2j̄dz̄

j + · · ·

= dzi + ϕ(t).

• The compatibility condition in intersections of open sets gives that

ϕ(t) ∈ A0,1(TX)[t];

i.e., ϕ(t) = ϕij̄(t)∂/∂z
i⊗ dz̄j is a global (0, 1) form with values in the

complex tangent bundle TX .5

• The integrability condition (4) is the ∂-Maurer-Cartan equation

(5) ∂ϕ(t) +
1

2
[ϕ(t), ϕ(t)] = 0;

here the bracket is induced from the usual one on sections of TX .

5Intrinsically the bundle of tangent spaces to the Grassmannian bundle Tω ⊂
TC,X is Hom(Tω, TC,X/Tω) ∼= Hom(Tω, Tω). This is the intrinsic interpretation of
ϕ. We will not deal with convergence issues. So far as I know in all cases where a
formal power series construction is possible a convergent one may be done.
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• The first few equations in (5) are

∂ϕ1 = 0

∂ϕ2 +
1

2
[ϕ1, ϕ1] = 0

∂ϕ3 + [ϕ1, ϕ2] = 0

...

• The first of these gives that ϕ1 defines the Kodaira-Spencer class in

H1(TX).

• The second shows that the bracket [ϕ1, ϕ1] ∈ H2(TX) where it gives

the first obstruction to extending the almost complex structure given

by ϕ1 to an integrable complex structure.

• The next one gives the second obstruction in H2(TX), etc.

• (A0,•(TX), ∂, [ , ]) is a differential graded Lie algebra (dgla). We

will say a little bit more about these below. What is needed is a

formalism that systematically deals with the obstructions that arise

when we try to solve the Maurer-Cartan equation for ϕ(t)’s in a dgla.

Such exists as a general theory; I am not aware of its applications

to deformation theory of smooth algebraic varieties that in examples

go significantly beyond what we will discuss here.

III. Absolute case of the BTT theorem

• As with obstruction theory in topology there isn’t much to be able to

say in general about a direct step-by-step approach to constructing

ϕ(t). However, if we can map the obstructions to something topo-

logical, then maybe Hodge theory can be used to get a handle on

them. Here a basic idea is that the differential of the period mapping

suggests how to construct such mappings.

• This differential is especially simple in the Calabi-Yau case. Let

Ω ∈ H0(Ωn
X) be a generator; locally there are coordinates such that

Ω = dz1 ∧ · · · ∧ dzn.
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• The contraction mapping

c : TX ⊗ Ωn
X
∼−→ Ωn−1

X

induces an isomorphism

(6) A0,q(TX)
∼−→ An−1,q(X)

which commutes with ∂; then we have

(7) Hq(TX)
∼−→ Hq(Ωn−1

X ).

• A natural question is what the bracket [ , ] becomes under the iden-

tifications (6) and (7), a question to which we now turn.

• To give the basic identity (8) below that makes everything work, for

ψ ∈ An−1,q(X) we define

divψ ∈ A0,q(X)

by

divψ · Ω = ∂ψ.

• In coordinates for

ψ = ψi,J̄(∂/∂zicdz1 ∧ · · · ∧ dzn)⊗ dz̄J

= ψi,J̄

(
(−1)i−1dz1 ∧ · · · ∧ d̂z

i
∧ · · · ∧ dzn

)
⊗ dz̄J ;

divψ = ∂ziψi,J̄dz̄
J .

• For ψ, η ∈ A0,1(TX) we have

(8) [ψ, η]cΩ = ∂(ψ ∧ ηcΩ) + (divψ)ηcΩ + (div η)ψcΩ.

Here ψ ∧ η is defined by independently wedging the TX and (0, 1)

parts; the proof is by calculation in local coordinates.

• As a corollary we have

(9) divψ = div η = 0 =⇒ [ψ, η]cΩ = ∂(ψ ∧ ηcΩ).

This is a first hint that for CY varieties bracketing induces a trivial

action on cohomology; to implement this suggestion we will use the
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Proposition 10: If X is Kähler, then any class in H1(TX) is repre-

sented by a form ϕ ∈ A0,1(TX) with

divϕ = 0.

Proof. For a choice of Kähler metric there is a unique harmonic form ϕ

representing the class. This form satisfies both ∂ϕ = 0 and the adjoint

equation

∂
∗
ϕ = 0.

We will show that

∂
∗
ϕ = 0 =⇒ divϕ = 0.

In local coordinates ∂
∗

is a first order differential operator. Since the

metric is Kähler around any point we may choose holomorphic coordi-

nates so that the metric is∑
dzi ⊗ dz̄i + (second order terms).

Evaluated at the origin the formula for ∂
∗

on X is the same as for the

Euclidean metric, and for this one ∂
∗
ϕ is visibly equal to divϕ. �

Theorem 11 (BTT): The deformations of a Kähler Calabi-Yau vari-

ety are unobstructed.

Proof. Using (6) above we have

(12) A0,•(TX) ∼= An−1,•(X).

With this identification the right-hand side of (12) becomes a differen-

tial graded Lie algebra. Using (9) the subspace

ker ∂ ⊂ An−1,•(X)

is a differential graded Lie sub-algebra in which the bracket maps by

[ , ] : Ker(∂)→ Im(∂).

The ∂∂-lemma implies that for ψ ∈ An−1,•(X)

∂ψ = 0 and ψ ∈ Im(∂) =⇒ ψ = ∂η

for some η ∈ An−1,•(X). As a consequence the induced graded Lie

algebra H•(Ωn−1
X ) is abelian.
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By (10) we may take for ϕ1 ∈ A0,1(TX) a set of forms such that

∂(ϕ1cΩ) = 0. Then the iterative construction of ϕ(t) satisfying the

∂-Maurer-Cartan equation (5) takes place in an abelian dgla; hence it

is solvable. �

(13) • For later reference we note that proof analysis shows we do

not need the full strength of the ∂∂-lemma. Rather it suffices that on

A•,•(X) the Hodge→de Rham spectral sequence degenerates at E1.

IV. Main theorem and its proof

• A differential graded Lie algebra (A•, d, [ ]) is a graded vector space

A = ⊕
q=0

Aq with

d : Aq → Aq+1, d2 = 0

[ , ] : Ap ⊗Aq → Ap+q

where properties analogous to those of the dgla (A0,•(TX), ∂, [ , ])

are assumed to hold. Important among these is the graded Jacobi

identity.6

To each power series ϕ(t) in t1, . . . , tm with coefficients in A and

zero constant term and that converges in a neighborhood of the origin

we associate the germ of subvariety defined by the Maurer-Cartan

equation

(14) dϕ(t) +
1

2
[ϕ(t), ϕ(t)] = 0.

• There is a notion of equivalence modeled on that for A0,•(TX) induced

by Diff(X).7

• Under conditions that are again modeled on those satisfied byA0,•(TX)

there is a versal object (the Kuranishi space) given by an analytic

6There is a vast literature about these objects. The notes [M] and the references
cited therein are a good source.

7Actually one uses exp(C∞ sections of TX). The infinitesimal action of θ ∈
A0,0(TX) on ϕ ∈ A0,1(TX) is

ϕ̇ = [θ, ϕ]− ∂θ.
This carries over to a general dgla.
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subvariety

Def(A) ⊂ H1(A).

• In addition to the deformation functor A → Def(A) there is an

obstruction functor given by

ϕ(t)→ LHS of (14) ⊂ H2(A);

here there is a versal object given by a subvariety

Ob(A) ⊂ H2(A).

• There is an obvious notion of morphism

(15) f : A→ B

of dgla’s; here the important property is that (15) induces

(16)

{
fDef : Def(A)→ Def(B),

fOb : Ob(A)→ Ob(B).

• A morphism (15) of dgla’s is a quasi-isomorphism if the induced

maps

Hq(A)
∼−→ Hq(B)

are isomorphisms; in this case the maps (16) are bi-regular.

• An example of a quasi-isomorphism is the inclusion

ker ∂ ↪→ A•,•(X)

for the dgla (A•,•(X), ∂,∧) where X is compact Kähler; as previously

noted proof analysis shows that we only need the degeneration at E1

of the Hodge→ de Rham spectral sequence.8

• We now give a sketch of the proof of Theorem 3; the details are

in [M]. The contraction map

A0,i(TX)× Ap,q(X)→ Ap−1,q+i(X)

induces {
ι : A0,•(TX)→ Hom(A•,•(X), A•,•(X)),

ιϕ(ω) = ϕcω

8For the gradation A•,q(X) has degree q.
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with the properties

(17)

{
ι∂ϕ = [∂, ιϕ],

ι[ϕ,ψ] = [ιϕ, [∂, ιψ]] = [[ιϕ, ∂], ιψ].

• Define

K•
(

ker ∂,
A•,•(X)

∂A•,•(X)

)
=

i
⊕Homi−1

(
ker ∂,

A•,•(X)

∂A•,•(X)

)
,

and make it into a dgla (K•, δ, { , }) by setting{
δf = ∂f + (−1)if∂, f ∈ Homi−1(•, •),
{f, g} = f∂g − (−1)deg(f) deg(g)g∂f.

Basic calculation: ι : A0,•(TX) → K
(

ker ∂, A•,•(X)
∂A•,•(X)

)
is a morphism

of dgla’s.

This is a consequence of (17).

• By the ∂∂-lemma

Hp,q

∂
(ker(∂)) ∼= Hp,q (A•,•(X)

∂A•,•(X)
∼= Hq(Ωp

X)

=⇒ H2(K) ∼= ⊕
p+q=r+s−1

Hom (Hp(Ωq
X), Hr(Ωs

X)) .

• On the other hand the dgla

L =

{
f ∈ K : f(ker(∂)) ⊂ ker(∂)

∂A•,•(X)
, f(∂A•,•(X)) = 0

}
∼= K•

(
ker(∂)

∂A•,•(X)
,

ker(∂)

∂A•,•(X)

)
({ , } = 0 here)

is abelian and thus Ob(L) is trivial.

• The inclusion

L ↪→ K

is a quasi-isomorphism

=⇒ Def(L) ∼= Def(K)

=⇒ Ob(Def(K)) is trivial

=⇒ Ob(Def(X))→ Ob(Def(K)) is the trivial mapping

=⇒ result. �
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• What is going on here? For ϕ ∈ H1(TX) and ω ∈ Hp(Ωq
X)) we want

(18) [ϕ, ϕ]cω = 0.

From the second equation in (17) the left-hand side in (18) is

[ιϕ, [∂, ιϕ]] · ω.

Using ∂ω = 0 and working modulo Im(∂) the term

ϕc∂(ϕcω)

appears twice but with opposite signs, hence is zero. Intuitively

– the operation ω → ϕcω takes cohomology classes to cohomology

classes;

– ∂(ϕcω) is zero in cohomology;

– thus ϕc∂(ϕcω) is zero in cohomology.

• Proof analysis shows we need

– α1 ∈ A0,q(Ωp
X) and ∂α1 = 0 gives that ∂α1 is ∂-closed in A0,q(Ωp+1

X );

– degeneration at E1 of the Hodge-de Rham spectral sequence im-

plies that

∂α1 = ∂α2 for α2 ∈ A0,q−1(Ωp+1
X );

– i.e., ∂-closed and ∂-exact =⇒ ∂-exact;

– above calculation takes place in ∂-exact forms.

V. The relative case

• We will use C∞ forms, ∂, the C∞ log-complex etc. In [I] there is a

more complete discussion using only holomorphic objects and a more

extensive homological formalism.

• We assume given a fixed pair (X, Y ) of C∞ manifolds; will consider

almost complex structures on X that induce almost complex struc-

tures on Y .

• Locally we have {ωi, ωα} such that

(19) ωi
∣∣
Y

= 0.

• Assume that we have an integrable almost complex structure pair;

may choose local holomorphic coordinates zi, wα such that Y ={zi=0}.
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• Using (19) a nearby almost complex structure for the pair is

ωi = dzi + ϕij̄dz̄
j + zjϕijᾱdw̄

α,

ωα = dwα + ϕαī dz̄
i + ϕαβ̄dw̄

β.

This leads to a deformation theory for the pair.

• Note that ϕ induces a form in IY ·A0,1(NY/X); in case codim Y = 1,

IY is a line bundle and

ϕ ∈ A0,1(TX(− log Y )).

May now take Y to be a normal crossing divisor D and use as ansatz

(20) ϕ ∈ A0,1(TX(− logD)).

• Leads to a deformation theory with

(21)

{
Def(X,D) ⊂ H1(TX(− logD)),

Ob(X,D) ⊂ H2(TX(− logD)).

• If D ∈ | −KX | then have

(22) A0,•(TX(− logD))
∼−→ An−1,•

X (logD)

where the right-hand side is in the C∞ log complex.

• IfX is projective the Hodge→de Rham spectral sequence degenerates

at E1.

• May repeat the above argument to have the BTT result for log

Calabi-Yau varieties

Def(X,D) is smooth with tangent space H1(TX(− logD))

(cf. [I] for a detailed algebraic proof).

• Remark that deformations of a pair (X,D) where we do not require

that it remain a local product, i.e., we allow partial smoothing of D,

may be obstructed (cf. [FPR]).

• There is an important variant (KKP) of the above result: A base-

point-free anti-canonical pencil in | −KX | gives

f : X → P1, f ∗OP1(1) = −KX .
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Assume f−1(∞) := D is a NCD and that for Y := X − D the

restriction of f to Y gives

w : Y → C.

Assume w is smooth outside a compact subset of Y ; the smooth

fibres are Calabi-Yau varieties.

Example: Y = C∗n and w(z) =
∑
zi + 1

z1···zn .

• Define Def(X,D)D ⊂ Def(X,D) to be the deformations (X,D)
π−→ S

such that

π−1(S) ∩D = D × S

(the deformation is anchored at ∞).

These are Landau-Ginzberg models that are ubiquitous in mirror

symmetry.

Theorem: Def(X,D)D is unobstructed.9

<◦>

• Am not sure if in the literature there is an extension of the full

statement in Theorem 3 to the relative case.

• A main issue: Very many naturally occurring deformation problems

are unobstructed but have the relevant H2 6= 0. Basically one has to

work a bit to find natural obstructed deformation problems.10

Is there a refinement of Theorem 3 that would give more applicable

criteria for smoothness?

• Finally, even if there are obstructions it may be that there are only

primary ones; i.e., the Kuranishi space is given by the quadratic

equations arising from the kernel of

H1 ⊗H1 → H2.

9The results in [KKP] are more extensive that this. Of particular interest is the
subcomplex of the log-complex using log forms ψ such that df ∧ψ is also a log form.

10It seems that one has to work hard to find examples where Def(X) is non-
reduced. Thus generally Def(X) tends to be a variety whose singular points corre-
spond to X’s with special geometric properties.
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One says that the deformation problem is formal. Here the basic

example is the result of Goldman-Millson (Publ. Math. IHES, tome

67 (1988)):

Let (V;∇) → X be the flat vector bundle underlying a variation of

Hodge structure over a compact Kähler manifold. If

ρ : π1(X)→ Aut(V )

is the monodromy representation, then Def(ρ) is defined by the qua-

dratic equations arising from the kernel of

Sym2{H1(X,V)} → H2(X,V).
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