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1. Introduction

The purpose of this paper is to present recent developments in the study of
algebraic group actions on affine algebraic varieties. This study leads inevitably
to other subjects in affine algebraic geometry and we touch them as well but in
less detail (for a wider overview of affine algebraic geometry we refer to [Zai99],
[Kr96], [Mi04]). Among several beautiful results of the last decade the Koras-
Russell proof [KoRu99] of the Linearization Conjecture in dimension three has
a special place. The Conjecture claims that every algebraic C∗-action on Cn is
conjugate to a linear one in the group of polynomial automorphisms of Cn. It was
first stated by Kambayashi [Kam] but, perhaps, the starting point was the earlier
paper of Gutwirth [Gu62] who proved it for n = 2. Using his previous result
with Kraft on linearization of semi-simple group actions Popov showed that the
Koras-Russell theorem implies that every algebraic action of a connected reductive
group on C3 is a representation in a suitable polynomial coordinate system [Po01].
In general reductive groups admit non-linearizable actions and for every connected
reductive group different from a torus such an action exists on Cn with sufficiently
large n, but the question about C∗-actions in higher dimensions remains open. In
the case of the similar questions for real Euclidean spaces or holomorphic actions
there are counterexamples which will be presented below. While discussing the
steps of the solution of the Linearization Conjecture we encounter the Koras-Russell
threefolds that are smooth complex affine algebraic varieties diffeomorphic to R6

and equipped with obviously non-linearizable C∗-actions. The trouble was that
all old invariants capable of distinguishing C2 from smooth contractible surfaces,
were the same for these threefolds and for C3. In particular, these threefolds were
viewed as potential counterexamples to linearization until the introduction of the
Makar-Limanov invariant [ML]. For an affine algebraic variety X this invariant
AK(X) is the subring of the ring of regular functions on X that consists of functions
invariant under any C+-action on X. If X is a Koras-Russell threefold then AK(X)
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includes non-constant functions which shows that X is not isomorphic to C3 since
AK(Cn) = C. We present the scheme of computation of AK(X) in the case of
the most vivid of the Koras-Russell threefolds which is the Russell cubic - the
hypersurface in C4 given by the equation x + x2y + z2 + t3 = 0. In particular, we
see that the study of “good guys” (reductive group actions) requires the study of
“bad guys” (C+-actions) that are hidden in the group of automorphisms of X. This
leads to the latest developments in the fourteenth Hilbert problem, and some other
results on algebraic quotients X//C+, i.e. we explain why for any nontrivial C+-
action on a smooth affine contractible threefold X the quotient is always a smooth
contractible surface. This fact contributes to another theorem in this survey: if
in addition the C+-action on such an X is free then X is isomorphic to S × C
and the action is a translation on the second factor [KaSa]. In particular, every
free C+-action on C3 is a translation in a suitable polynomial coordinate system
[Ka04]. At the end we return to C∗-actions on affine algebraic varieties with
nontrivial topology and present the coming classification of C∗-actions on smooth
affine algebraic surfaces.

2. Preliminaries

Throughout this paper X will be a normal complex affine algebraic variety,
A = C[X] will be the algebra of regular functions on X, and G will be an algebraic
group. Recall that a G-action on X is a homomorphism of G into the group of
bijections of X which generates, therefore, a map Φ : G×X → X. We say that the
action is algebraic (resp. holomorphic) if Φ is a morphism (resp. a holomorphic
map), i.e. Φ is generated by a homomorphism from G into the group AutX of
regular (resp. holomorphic) automorphisms of X. Unless we state otherwise every
action of an algebraic group G that we discuss below will be algebraic and non-
degenerate (i.e. there is a orbit of the same dimension as G). Consider two examples
of algebraic C∗-actions and C+-actions on Cn crucial for this paper.

Example 2.1. (1) A linear action C∗ × Cn → Cn is given by

(λ, x̄) → (λk1x1, . . . , λ
knxn)

where x̄ = (x1, . . . , xn) is a coordinate system on Cn, λ ∈ C∗, and ki ∈ Z.
(2) A triangular action C+ × Cn → Cn is given by

(t, x̄) → (x1, x2 + tp2(x1), . . . , xn + tpn(x1, . . . , xn−1))

where t ∈ C+ and each pi is a polynomial in variables x1, . . . , xi−1.

Remark 2.2. Elements of a triangular action are contained in the Jonquière
group of automorphisms of Cn that is

Jn = {ϕ = (ϕ1, . . . , ϕn) ∈ AutCn| ∀i ϕi ∈ C[x1, . . . , xi]}
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while elements of a linear action are contained in the intersection of Jn and the
subgroup of affine transformation

An = {ϕ = (ϕ1, . . . , ϕn) ∈ AutCn| ∀i ϕi ∈ C[x1, . . . , xn], deg ϕi = 1}.
Definition 2.3. A point x ∈ X is a fixed point of a G-action Φ : G×X → X

on X if Φ(g, x) = x for every g ∈ G. The action is called free if it has no fixed
points (precaution: this definition of a free action is valid for varieties over C or
other algebraically closed fields of zero characteristics but it must be changed in
the absence of algebraic closedness). In the case of G = C+ we say that the action
on X is a translation if X is isomorphic to Y ×C and the action is generated by a
translation on the second factor. Of course, each translation is free.

Example 2.4. The fixed point set for the triangular action in Example 2.1 is
given by p2 = . . . = pn = 0. That is, it is a cylinder Y × Cxn

where Cz (resp.
Cn

x1,...,xn
) means a line equipped with coordinate z (resp. Cn equipped with a

coordinate system (x1, . . . , xn)). In particular, the action is free if the polynomials
p2, . . . , pn have no common roots. In the case of n = 2 this means that p2 is
constant and, therefore, any free triangular action on C2 is a translation.

Definition 2.5. Let Φi : G×X → X, i = 1, 2 be effective algebraic G-actions
on X (i.e. no proper subgroup of G acts trivially on X). We say that Φ1 and Φ2

are equivalent if there exists α ∈ AutX such that Φ2 = α ◦ Φ1 ◦ α−1.

It is natural, for instance, to ask when a given algebraic C∗-action on Cn is
equivalent to a linear one (that is, it is linear in a suitable coordinate system). One
can formulate this question in a more general setting.

Classification Problem. Given two effective algebraic G-actions on X es-
tablish whether they are equivalent. More generally, describe equivalence classes of
effective algebraic G-actions on X.

The main obstacle for a solution of such a problem may lie in the structure of
AutX. When this structure is known the answer may be simple. For C2, say, it
works like this (e.g., see. [Kr96]). The group AutC2 is the amalgamated product
A2 ∗H2 J2 where Hn = An ∩ Jn.1 Then every algebraic subgroup of AutC2 is of
bounded length in this amalgamated product [Wr], i.e. the number of factors in
the amalgamated decomposition of each element of this subgroup is bounded by the
same constant. But any subgroup of bounded length is isomorphic to a subgroup
of one of the factors [Se]. Using this fact one can reprove the following results of
Gutwirth [Gu62], [Gu61], and Rentschler [Re] obtained by other methods.

1That is, every α ∈ AutC2 is a composition α = α1 ◦α2 ◦ · · · ◦αn where each αi is contained

either in J2 \A2 or in A2 \J2 and αi ∈ J2 iff αi±1 ∈ A2. Furthermore, this composition is unique

up to consequent changes of the following type: αi is replaced by αi ◦ γ and αi+1 is replaced by

γ−1 ◦ αi+1 where γ ∈ H2. In particular, the number n of factors is uniquely determined.
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Theorem 2.6. Every C∗-action on C2 is equivalent to a linear one, every C+-
action on C2 is equivalent to a triangular one. In particular, every free C+-action
on C2 is a translation.

Unfortunately, the structure of the automorphism group AutCn is unknown
for n ≥ 3 and, furthermore, answering the old question of Nagata, Shestakov and
Umirbaev [ShUm04a], [ShUm04b] proved recently that the automorphism of C3

given by

(x, y, z) → (x− 2y(xz + y2)− z(xz + y2)2, y + z(xz + y2), z)

is not a composition of Jonquière and affine transformations. Hence one has to use
other tools when facing the Classification Problem in higher dimensions and one of
them is the notion of algebraic quotient.

3. Algebraic quotient and Hilbert’s Fourteenth problem

From now on, given an algebraic G-action on X, we denote by AG the subal-
gebra of G-invariant regular functions on X and by X//G the spectrum SpecAG

which is called the algebraic quotient. Hilbert’s fourteenth problem asks when AG

is finitely generated, or, equivalently, when X//G is an affine algebraic variety.
The classical result of Nagata says that X//G is affine for a reductive G but for
a non-reductive G the answer is negative in general. The complete description of
algebraic quotients was obtained by Winkelmann [Wi03].

Theorem 3.1. For every action of an algebraic group G on X its quotient is
quasi-affine. Moreover, for every normal quasi-affine algebraic variety Y there is
an algebraic C+-action on some X such that the algebra of C+-invariant regular
functions on X is isomorphic to the algebra of regular functions on Y .

The original Nagata’s example of an algebraic C+-action on Cn with a non-
affine quotient was constructed for n = 32. Later efforts of Roberts, Daigle, and
Freudenburg [Ro], [Fr00], [DaiFr99] reduced this dimension to 5. For n = 3 such
a quotient is always affine by Zariski’s theorem [Za] that gives a partial answer to
the following version of the Hilbert’s fourteenth Problem suggested by Nagata:

Is F ∩A an affine domain for a subfield F of Frac(A)?
Zariski’s theorem gives a positive answer when the transcendence degree of F

(over C) is at most 2 and it has the following corollary (in order to prove it one has
to put F equal to the subfield of G-invariant rational functions on X).

Theorem 3.2. Suppose that the algebraic quotient X//G of an algebraic G-
action on X is of dimension 2. Then X//G is affine. In particular, for a three-
dimensional X its algebraic quotients are always affine.

Recently Kuroda [Ku] constructed a counterexample to the question of Nagata
in the case when the transcendence degree of F ∩A is 3 or higher. However, F ∩A
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in his example cannot serve as the ring of G-invariant functions for an algebraic
G-action on X. Thus we want to emphasize that the question whether C4//C+ is
affine remains open for the fans of the fourteenth Hilbert Problem.

4. Linearization Problem

The problem we are going to discuss is when an algebraic G-action on Cn is
linearizable, i.e. when it is equivalent to a representation. As we mentioned this is
so for every algebraic C∗-action on C2 by the Gutwirth theorem [Gu62].

Theorem 4.1. [KoRu99] Every C∗-action on C3 is equivalent to a linear one.

Earlier Popov and Kraft proved that an algebraic action of a semi-simple group
on C3 is equivalent to a representation [KrPo]. Combining these two results Popov
got the following [Po01].

Theorem 4.2. Every action of a connected reductive group on C3 is lineariz-
able, i.e. it is equivalent to a representation.

He showed also that for a connected reductive group different from C∗ or (C∗)2

its algebraic action on C4 is always linearizable.
The fact that actions of (C∗)4 and (C∗)3 on C4 is linearizable follows from an

old result of Bialynicki-Birula [BB]. In fact, we have more [De], [BeHa].

Theorem 4.3. Let X be a toric variety of dimension n with a canonical action
Φ of torus T = (C∗)n. Then any other effective action of T on X is equivalent to Φ
and, furthermore, any effective action of (C∗)n−1 on X is equivalent to the action
of an (n− 1)-dimensional subtorus of T generated by Φ.

We discuss briefly some elements of proof of the Koras-Russell theorem (for a
more detailed exposition of ideas of this proof one can see [KaKoMLRu]).

By the end of 1980’s the linearization of algebraic C∗-actions on C3 was estab-
lished in all cases except for the hyperbolic one. In that case a C∗-action Φ on C3

has only one fixed point o and the induced linear C∗-action Ψ on ToC3 ' C3
x,y,z is

hyperbolic, i.e. it is given by

(x, y, z) → (λ−ax, λby, λcz)

where integers a, b, c > 0. In particular, one can see that ToC3//Ψ ' C2//Zd where
the last quotient is the result of a linear action on C2 of a cyclic group Zd with
d = a/GCD(a, b)GCD(a, c). When the action Φ is linearizable then there exists a
natural isomorphism C3//Φ ' C3//Ψ.

Koras and Russell discovered a construction of each smooth contractible affine
algebraic threefold X equipped with a hyperbolic C∗-action Φ̃ (i.e., Φ̃ has only
one fixed point õ and the induced C∗-action Ψ̃ on TõX is hyperbolic) such that
X//Φ̃ is isomorphic to TõX//Ψ̃. For some of these varieties (which are called now
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Koras-Russell threefolds) it was not clear whether they are isomorphic to C3 but
Φ̃ in this case was obviously non-linearizable. Koras and Russell proved in their
previous papers that

Every hyperbolic algebraic C∗-action Φ on C3 is linearizable provided
(1) none of Koras-Russell threefolds are isomorphic to C3;
(2) S is isomorphic to C3//Ψ ' C2/Zd where Ψ is the induced linear action

on the tangent space at the fixed point.
The introduction of the Makar-Limanov invariant enabled us to remove the

first obstacle [ML], [KaML97b], i.e. Koras-Russell threefolds are, indeed, non-
isomorphic to C3. Then Koras and Russell established some properties of S which
include the facts that S is contractible with one singular point s0 of analytic type
C2//Zd, and with the logarithmic Kodaira dimension κ̄(S) = −∞. Using the sem-
inal paper of Fujita [Fu82] and the results of Miyanishi and Tsunoda [MiTs] on
the existence of affine rulings and Platonic C∗-fiber spaces for open smooth sur-
faces with non-connected boundaries and a negative logarithmic Kodaira dimension,
Koras and Russell showed first that the second claim is true under additional as-
sumption that S \ s0 has logarithmic Kodaira dimension at most 1. Then using
among other tools their own deep results and the Kobayashi version of the BMY-
inequality they proved that the case when S \ s0 is of general type can be excluded
and, therefore, removed this additional assumption for (2)2. In fact, in their new
paper [KoRu07] a stronger result is established.

Theorem 4.4. Let S be a normal contractible surface of κ̄(S) = −∞ with
quotient singularities only. Then κ̄(Sreg) = −∞. Furthermore, if S has only one
singular point then S is isomorphic to the quotient of C2 with respect to a linear
action of a finite group.

This concludes the brief description of the proof of Linearization Conjecture in
dimension 3.

5. The Russell cubic and the scheme of computation of the
Makar-Limanov invariant

One of the Koras-Russell threefolds is the Russell cubic R that is the hyper-
surface R in C4

x,y,z,t given by x + x2y + z2 + t3 = 0 (for construction of a general
Koras-Russell threefold we refer again to the survey [KaKoMLRu]). Let us ex-
plain first why it was difficult to distinguish R from C3.

2A remarkable strengthening of statement (2) is obtained in Gurjar’s paper [Gu07]. He

showed that if X is a smooth contractible affine algebraic variety that admits a dominant morphism

from a Euclidean space then for every reductive group G acting on X so that X//G is two-

dimensional this quotient is isomorphic to the quotient of C2 with respect to a linear action of a

finite group. His proof is based on Theorem 4.4.
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Lemma 5.1. The Russell cubic is diffeomorphic to R6 as a real manifold and
its logarithmic Kodaira dimension is κ̄(R) = −∞.

Proof. Note that the natural projection ρ : R → C3
x,z,t is an affine modifica-

tion such that its restriction over C3
x,z,t \ {x = 0} ' C∗ × C2 is an isomorphism.

In particular, κ̄(R) = κ̄(C∗ × C2) = −∞. Furthermore, looking at the exceptional
divisor of ρ one can see that it is an affine modification that preserves the funda-
mental groups and homology ([KaZa], Prop. 3.1 and Th. 3.1). Thus R has all
trivial senior homotopy groups by the Gurewitch theorem and R is contractible by
the Whitehead theorem. Now one can apply the Choudary-Dimca theorem that
says that every smooth contractible affine algebraic variety of dimension at least 3
is diffeomorphic to a real Euclidean space [ChDi].

¤

Ramanujam’s theorem [Ra] says that if a smooth contractible surface S is
homeomorphic to R4 or the boundary of S at infinity is simply connected then S is
isomorphic to C2. The Gurjar-Miyanishi theorem [GuMi] says that a smooth con-
tractible surface of non-positive logarithmic Kodaira dimension is also isomorphic
to C2. Lemma 5.1 shows that the similar invariants cannot help us to prove that R is
not isomorphic to C3. Some of contractible threefolds can be distinguished from C3

by the absence of dominant morphisms from Euclidean spaces [KaML97a]. One of
them is a hypersurface suggested by Dimca {(x, y, z, t) ∈ C4|x+x4y+y2z3+t5 = 0}.
But the Russell cubic admits a dominant morphism from C3. Thus we need some-
thing new.

Definition 5.2. A derivation ∂ on A is locally nilpotent (LND) if for every
a ∈ A there exists n = n(a) such that ∂n(a) = 0. The set of locally nilpotent
derivations on A is denoted by LND(A). The Makar-Limanov invariant of A is

AK(A) =
⋂

∂∈LND(A)

Ker ∂.

Since A is the ring of regular functions on X we may write AK(X) instead of
AK(A).

Remark 5.3. There exists one-to-one correspondence between C+-actions on
X and locally nilpotent derivations ∂ on A. Indeed, one can see that exp(∂) is
a C+-action while treating a C+-action as a phase flow with complex time one
can check that its generating vector field is locally nilpotent on A. Hence AK(X)
coincides with the ring of regular functions on X that are invariant with respect to
any C+-action. Clearly we have AK(Cn) = C (in order to show that the intersection
of kernels of LND consists of constants only it suffices to consider the intersection
of kernels of partial derivatives).

We give a sketch of the proof of the following [ML].
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Theorem 5.4. The Makar-Limanov invariant of the Russell cubic coincides
with AK(R) = C[x]|R, i.e. R is not isomorphic to C3.

Step 1. Introduce an associated affine variety X̂ and the affine domain Â =
C[X̂] for X and A with a map A → Â, a → â so that for every ∂ ∈ LND(A) \ 0
there exists a unique associated ∂̂ ∈ LND(Â) \ 0. Usually, in order to construct Â

one needs to consider the filtration generated by a weighted degree function on A

and set Â equal to the associated graded algebra. Another way is the geometrical
construction which we present below [KaML07].

Let C be a germ of a smooth curve at o ∈ C, f be a regular function on C with
a simple zero at o, C∗ = C \ o, ρ : X → C be an affine morphism such that X is
normal, X̂ := ρ∗(o) be reduced irreducible, X ∗ := X \ ρ−1(o) ' X × C∗ over C∗.
Then a nonzero LND ∂ on X defines a LND ∂∗ on X ∗. For some n ∈ Z vector field
fn∂∗ extends to a LND δ on X with ∂̂ = δ|X̂ 6= 0. We define â via a in a similar
manner (that is, if a∗ = a ◦ τ where τ : X ∗ → X is the natural projection then
for some n ∈ Z function fna∗ extends to a regular function on X with a nonzero
restriction â to X̂).

Example 5.5. Consider ρ : R = {cx+x2y + z2 + t3 = 0} → C ' C. For c 6= 0,
ρ−1(c) ' R while ρ−1(0) ' R̂ = {x2y + z2 + t3 = 0}.

Note that unlike R the threefold R̂ has a singular line. This line must be
invariant under any C+-action. This gives hope that it is easier to compute all
associated C+-actions on R̂ than C+-actions on R. Another encouraging fact is
that associated LND’s are homogeneous (see Definition 10.6) which implies that
with an appropriate choice of associated objects the kernels of these LND’s are
generated by some variables and functions of form z2 + ct3, c ∈ C∗. Since it can
be shown that when z2 + ct3 ∈ Ker ∂ \ {0} for ∂ ∈ LND(A) then z, t ∈ Ker ∂,
we disregard the last possibility. These observations allow us to find all associated
C+-actions on R̂ and LND’s on C[R̂]. In fact each of these LND’s is proportional
to one of the vector fields (with the coefficient of proportionality in the kernel of
the LND): 2z ∂

∂y − x2 ∂
∂z or 3t2 ∂

∂y − x2 ∂
∂t .

Step 2. The rest of computation is based on the existence of the degree function
deg∂(a) = min{n|∂n+1(a) = 0} generated by a LND ∂ on A \ 0 (i.e., Ker ∂ = {a ∈
A|deg∂(a) = 0}). The construction of the associated objects implies the inequality
deg∂̂(â) ≤ deg∂(a). The computation of associated LND’s in Step 1 shows that
deg∂̂(ŷ) ≥ 2 in C[R̂] and, therefore, deg∂(y) ≥ 2 in C[R]. Furthermore, using
different (weighted degree functions for the construction of) associated varieties
one can extend this inequality to a stronger fact: each b ∈ C[R] with deg∂(b) ≤ 1
is a restriction of p ∈ C[x, z, t]. Now one has to use the following simple results.

Lemma 5.6. Let ∂ be a nonzero LND on A. Then
8



(1) for every a ∈ A, we have a = a2/a1 where a1 ∈ Ker ∂ and a2 is from the
algebra generated over Ker ∂ by b ∈ A with deg∂(b) = 1.

(2) the ring Ker ∂ is inept, i.e. if a1a2 ∈ Ker ∂ \ 0 then a1, a2 ∈ Ker ∂.

The description of b before Lemma 5.6 implies now that on R we have y =
p(x, z, t)/q(x, z, t) with q(x, z, t) ∈ Ker ∂. On the other hand y = −(x+ z2 + t3)/x2

which yields divisibility of q(x, z, t) by x. Hence, by Lemma 5.6 (2), x ∈ Ker ∂ for
every ∂ on C[R] and thus x ∈ AK(R).

6. Limitation of the Makar-Limanov and Derksen invariants

Definition 6.1. A smooth affine algebraic variety is called an exotic algebraic
(resp. holomorphic) structure on Cn if it is diffeomorphic to R2n but not isomorphic
(resp. biholomorphic) to Cn.

In particular, we proved in the previous section that the Russell cubic is an
exotic algebraic structure on C3 (as well as any other Koras-Russell threefold
[KaML97b]). However, we do not know any technique that allows to check whether
R is an exotic holomorphic structure. Furthermore, the computation described be-
fore works very poorly in dimension 4 and higher. We can check, say, that the
hypersurface x+x2y + z2 + t3 +u5 = 0 in C5 is an exotic algebraic structure on C4

(see [KaML07]) but we do not know whether R×C is an exotic algebraic structure
on C4. In particular, R is still a potential counterexample to the following.

Cancellation Conjecture (Zariski-Ramanujam). Let X × Ck be isomorphic
to Cn+k. Then X is isomorphic to Cn (for n ≤ 2 the answer is positive [Fu79]).

We still have hope that AK(R×C) is nontrivial (i.e. different from C) but this
hope is absent in the case of other interesting hypersurfaces [KaZa].

Lemma 6.2. Let D be a hypersurface in Cn+2
u,v,x̄ given by uv = p(x̄) where x̄ =

(x1, . . . , xn) and the zero fiber of the polynomial p ∈ C[x̄] is smooth reduced. Then
D has a trivial Makar-Limanov invariant, i.e. AK(D) = C. If p−1(0) is also
contractible then D is diffeomorphic to R2n+2.

Example 6.3. One of such contractible hypersurfaces is given by uv+x+x2y+
z2 + t3 = 0 in C6

x,y,z,t,u,v. A topological computation shows that nonzero fibers of
uv + x + x2y + z2 + t3 are not contractible.

That is, the hypersurface from this example is a potential counterexample to
the following.

Embedding Conjecture (Abhyankar-Sathaye). Every algebraic embedding of
Cn−1 into Cn is rectifiable. That is, the image of Cn−1 is a coordinate hyperplane
in a suitable polynomial coordinate system (for n = 2 the answer is positive - the
AMS theorem).
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Remark 6.4. (1) There is another potential counterexample to the Embedding
Conjecture that would be much more spectacular; it is the Vénéreau polynomial3

v1 := y + x(xz + y(yt + z2)) = y + x2z + xy2t + xyz2 on C4. All fibers of this
polynomial are isomorphic to C3 but nobody has found a way to rectify its zero
fiber. In smaller dimensions the similar problem was solved positively by Sathaye
[Sat] (in combination with [BaCoWr]). Even more, every polynomial on C3 with
infinite number of fibers isomorphic to C2 is a variable in a suitable polynomial
coordinate system (see [DaiKa], [Ka02], [Mi87]). It is worth mentioning that if
one considers the Vénéreau polynomial on Cn (whose coordinate system contains
x, y, z, t as variables) then for a sufficiently large n the zero fiber of v1 becomes
rectifiable. This is a consequence of the Asanuma [As87] and Bass-Connell-Wright
theorems [BaCoWr].

(2) There is a more general form of this conjecture which says that each alge-
braic embedding Ck ↪→ Cn+k is rectifiable. This conjecture is true for n ≥ k + 2
[Ka91] (see also [Sr] and Nori, unpublished). In particular, each algebraic embed-
ding C ↪→ Cn is rectifiable for n 6= 3 (for n = 2 this is the statement of the AMS
theorem and for n ≥ 4 it was proven earlier by Craighero [Cr] and Jelonek [Je]).
It is also known that each algebraic embedding C ↪→ C3 is rectifiable by means of
analytic automorphisms of C3 [Ka92]. Precaution: there are proper holomorphic
embeddings C ↪→ Cn, n ≥ 2 non-rectifiable by holomorphic automorphisms.

In fact, D from Lemma 6.2 is m-transitive for any m > 0 (see [KaZa]) and it
has the Andersén-Lempert property, i.e. the Lie algebra generated by completely
integrable algebraic vector fields coincides with Lie algebra of all algebraic vector
fields on it [KaKu]. This implies the validity of the Oka-Grauert-Gromov principle
for D and, in particular, each point of D has a (Fatou-Bieberbach) neighborhood
biholomorphic to a Euclidean space but it is still unknown whether D itself is
biholomorphic to a Euclidean space.

Definition 6.5. Derksen suggested a modification of the Makar-Limanov in-
variant which is easier to compute in some cases [DeKr] (it almost eliminates Step
2 in the computation for the Russell cubic). His new invariant Dr(A) is the subring
of A generated by kernels of all nonzero LND’s on A. We say that this invariant is
trivial if Dr(A) = A. This is so, of course, in the case of A = C[n].

The Derksen and Makar-Limanov invariants are not equivalent, i.e. one may
be trivial while the other is not [CrMa]. For the Russell cubic R the Derksen
invariant coincides with the subring of C[R] that consists of the restrictions of all
polynomials from C[x, z, t] to R but in the case of other hypersurfaces in this section
it is as ineffective as the Makar-Limanov invariant.

3Freudengurg informed us that slightly more complicated polynomials with similar properties

were discovered earlier by Bhadwadekar and Dutta [BhDu] and a general method of constructing

such polynomials will appear in [DaiFr07].
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7. Asanuma’s construction and other counterexamples to the
Linearization Problem

The first example of a non-linearizable action of O(2) on C4 was constructed
by Schwarz [KrSh]. As we mentioned in the introduction for every connected
reductive group different from a torus there exists a non-linearizable action on some
Cn where n depends on the group [Kn]. For finite groups non-linearizable actions on
C4 were constructed by Jauslin-Moser, Masuda, Petrie, and Freudenburg [MaPe],
[MaMJPe], [FrMJ]. These examples of non-linearizable G-actions were extracted
from the existence of non-trivial G-vector bundles on representation spaces of G.
New ideas were brought by Asanuma [As99].

Theorem 7.1. There exists a non-linearizable algebraic R∗-action on R5.

Applying the technique of Asanuma, Derksen and Kutzschebauch constructed
a counterexample to linearization in the holomorphic category [DeKu].

Theorem 7.2. There exist non-linearizable holomorphic C∗-actions on Cn for
any n ≥ 4.

Remark 7.3. Asanuma’s construction works if there are non-rectifiable al-
gebraic embeddings of a line into a Euclidean space. Say, one can find such an
embedding R ↪→ R3 since every unbounded knot in R3 is isotopic to an algebraic
embedding R ↪→ R3 [Sh]. There are also non-rectifiable proper holomorphic em-
beddings C ↪→ Cn, n ≥ 2 (e.g., see [FoGlRo], [Ka92]). As we mentioned before
it is unknown whether there exists an algebraic embedding C ↪→ C3 non-rectifiable
by algebraic automorphisms. However we consider this construction in the case of
complex algebraic varieties since it may have very interesting consequences (its re-
formulation in the real, higher dimensional, or holomorphic cases is obvious which
yields Theorems 7.1 and 7.2).

Definition 7.4. Let f ∈ A \ 0, D = f∗(0) ⊂ X, and C be a closed subvariety
of D whose defining ideal in A is I. We suppose for simplicity that D and C

are reduced irreducible, that X, D, and C are smooth, and that C is at least of
codimension 2 in X. Then one can consider the blowing-up BlC(X). We call the
variety Y = BlC(X)\D′ the affine modification of X with center C along D (where
D′ is the strict transform of D in BlC(X)).

The following easy facts can be found in [KaZa].

Proposition 7.5. (1) The affine modification Y is a smooth affine variety with
the algebra of regular functions C[Y ] = A[I/f ] where A[I/f ] is the algebra generated
over A by rational functions b1/f, . . . , bn/f such that f, b1, . . . , bn are generators of
I.

(2) If X,D, C are contractible, so is Y .
11



Remark 7.6. If C is a strict complete intersection in X given by f = b1 =
. . . = bk = 0 then the affine modification Y is isomorphic to the subvariety of
X × Ck

v1,...,vk
given by fv1 − b1 = . . . = fvk − bk = 0. In this case we call Y a

simple modification of X.

Example 7.7. Let X = Cn+1
x1,...,xn,t, D be the hyperplane t = 0 in X, and

C be given by x1 = . . . xk = t = 0 where k ≤ n − 1. Then by Remark 7.6
Y ⊂ Cn+k+1

x1,...,xn,t,v1...,vk
is given by tv1 − x1 = . . . = tvk − xk = 0. In particular,

Y ' Cn+1.

Definition 7.8. Let X = C4
x,y,z,t, f = t, D = {t = 0} ' C3

x,y,z, and C is the
image of C in D under a polynomial embedding. Then the affine modification Y

of X with center at C along D is called an Asanuma fourfold. Proposition 7.5 and
the Choudary-Dimca theorem imply that it is diffeomorphic to R8.

Asanuma’s construction is based on the following elegant fact.

Lemma 7.9. Let X, D, C, Y be as in Definition 7.4. Set X̃ = X×C, D̃ = D×C,
and C̃ = C × 0 ⊂ D̃. Then the affine modification Ỹ of X̃ with center at C̃ along
D̃ is isomorphic to Y × C.

Proof. Let f and I be as in Definition 7.4 and f, b1, . . . , bk be generators of I.
That is, C[Y ] is generated over A by b1/f, . . . , bk/f . Hence C[Y ×Cv] is generated
over A by b1/f, . . . , bk/f and an independent variable v. Then f, b1, . . . , bk, u are
generators of the defining ideal of C̃ in X̃ = X × Cu. Hence C[Ỹ ] is generated
over A by b1/f, . . . , bk/f , and u/f . Sending v → u/f we get an isomorphism
C[Ỹ ] ' C[Y × C].

¤

Proposition 7.10. Let X = C4, D ' C3 be a coordinate hyperplane in X and
C ⊂ D be isomorphic to C. Suppose that Y is the affine modification of X with
center at C along D. Then

(1) Y ' C4 provided C is rectifiable in D;
(2) Y × C ' C5;
(3) Y is biholomorphic to C4;
(4) in the case of a non-rectifiable C there exist non-linearizable C∗-actions on

Y and on C5.

Proof. Example 7.7 implies (1). By Remark 6.4 every algebraic embedding
of C into C4 is rectifiable. Hence (2) follows from Lemma 7.9 and Example 7.7.
Statement (3) follows from the same argument since every algebraic embedding of
C into C3 is rectifiable by a holomorphic automorphism. In (4) consider first the
C∗-action on C4

x,y,z,t given by (x, y, z, t) → (x, y, z, λt) and a neighborhood U of
any point ζ ∈ C which is of form U = U0 × Ct where U0 ⊂ C3

x,y,z is open in the
12



standard topology. We restrict the C∗-action to U and since C is smooth we can
suppose that it is given in U by ỹ = z̃ = t = 0 where (x̃, ỹ, z̃) is a local holomorphic
coordinate system on U0 (in particular, ζ = (c0, 0, 0, 0)). Let σ : Y → X be
the natural projection. Then σ−1(U) is a hypersurface in U × C2

v1,v2
given by

tv1 − ỹ = tv2 − z̃ = 0, i.e. the action can be lifted to a C∗-action Φ on σ−1(U)
as (x̃, ỹ, z̃, t, v1, v2) → (x̃, ỹ, z̃, λt, λ−1v1, λ

−1v2) (clearly, Φ can be extended to Y ).
The only C∗-orbit in X, whose proper transforms are non-closed C∗-orbits in Y ,
are of form x̃− c0 = ỹ = z̃ = 0 and the closures of these orbits contain fixed points
of Φ (given by t = v1 = v2 = 0). The algebra of C∗-invariant functions on Y

consists of polynomials in x, y, and z, i.e. there is a natural isomorphism between
Y//Φ and D. Hence, if π : Y → D is the quotient morphism then π−1(ζ) contains
a fixed point for ζ ∈ D iff ζ ∈ C. Assume that Y ' C4 and Φ is linearizable.
Looking at the induced action at fixed points one can see that Φ is equivalent to
(x, y, z, t) → (x, λ−1y, λ−1z, λt). The quotient of this linear action is C3 but the
image of the fixed point set in this quotient is a rectifiable line which is the desired
contradiction.

For the last statement of (4) consider the C∗-action on Y generated by the
action (x, y, z, t) → (x, y, z, λ2t) on C4. Extend it to the C∗-action Ψ on C5 =
Y × Cu so that u → λ−1u. Then C5//Ψ ' D × C ' C4 and for the quotient
morphism ρ : C5 → D ×C the image of the fixed point set is C × 0 is contained in
D × 0 = ρ(Y × 0). For any orbit O of Ψ the action Ψ|O is effective iff O is not in
Y ×0. Assume that Ψ is linearizable. Looking at the induced action at fixed points
one can see that Ψ is equivalent to (x, y, z, t, u) → (x, λ−2y, λ−2z, λ2t, λ−1u). The
quotient of this linear action is C4 but the image of the orbits with non-effective
action Ψ on them (resp. the fixed point set) is C3 (resp. C ′) and C ′ is a rectifiable
line is this C3 which is the desired contradiction.

¤

Remark 7.11. If we could prove that one of Asanuma’s fourfold is an exotic
algebraic structure on C4 this would produce a counterexample to the Zariski-
Ramanujam Conjecture in dimension 4, a non-rectifiable embedding C ↪→ C3, and
an exotic algebraic structure biholomorphic to C4 (examples of exotic algebraic
structures that are not exotic analytic structures are not known).

8. Free C+-actions

We mentioned that any C+-action on C2 is triangular and, therefore, any free
C+-action is a translation (see Theorem 2.6).

There are non-triangular C+-actions on C3 [Ba], (and, furthermore, such ac-
tions can be constructed on any Cn with n ≥ 3 [Po87]). Indeed, consider the action
Φ : C+ × C3 → C3 given by

(t, x1, x2, x3) = (x1, x2 + tx1u, x3 − 2tx2u− t2x1u
2)

13



where u = x1x3 + x2
2. Then its fixed point set x1x3 + x2

2 = 0 is not a cylinder as
required for triangular actions by Remark 2.4.

Starting with n = 4 not all free C+-actions on Cn are translations since it may
happen that C4//C+ is not homeomorphic to the standard topological quotient
C4/C+ ([Wi90], known also to M. Smith). In Winkelmann’s example the standard
quotient C4/C+ of a free action is not Hausdorff4 while in the case of translations on
X ' Y ×C the standard topological quotient X/C+ is homeomorphic to X//C+ '
Y and, therefore, is affine.

The remaining question about translations on C3 was tackled by the following
[Ka04].

Theorem 8.1. Let Φ be a C+-action on a factorial three-dimensional X with
H2(X) = H3(X) = 0. Suppose that the action is free and S = X//Φ is smooth.

Then Φ is a translation, i.e. X is isomorphic to S × C and the action is
generated by a translation on the second factor.

Indeed, since C3//C+ ' C2 for any nontrivial C+-action [Mi80] we have the
long-expected result.

Corollary 8.2. A free C+-action on C3 is a translation in a suitable coordi-
nate system.

Equivalently, every nowhere vanishing (as a vector field) locally nilpotent deriva-
tion on C[3] is a partial derivative in a suitable coordinate system.

Actually in the case of a smooth contractible X the assumption on smoothness
of S in Theorem 8.1 is superfluous by virtue of the following generalization of
Miyanishi’s theorem [KaSa].

Theorem 8.3. Let Φ be a nontrivial C+-action on a three-dimensional smooth
contractible X. Then the quotient S = X//Φ is a smooth contractible surface.

This result has an application to the Van de Ven’s conjecture which says that
Every smooth contractible affine algebraic manifold X is rational.
Gurjar and Shastri established the validity of this conjecture in the case of

dim X = 2. Combining this result with Theorem 8.3 we get the following.

Corollary 8.4. If a smooth affine contractible threefold X admits a nontrivial
C+-action, then X is rational.

Remark 8.5. The rationality of a smooth affine contractible X equipped with
a nontrivial C∗-action was establishes by Gurjar, Shastri, and Pradeep [GuSh],
[GuPr], [GuPrSh].

4More precisely, the action is given by (t, x1, x2, x3, x4) → (x1, x2+tx1, x3+tx2+t2x1/2, x4+

t(x2
2 − 2x1x3 − 1)). One can see that the points (0, 1, 0, 0) and (0,−1, 0, 0) do not belong to the

same orbit while for ε 6= 0 the points (ε, 1, 0, 0) and (ε,−1, 0, 0) are in the same orbit (just take

t = 2/ε ∈ C+).

14



9. Elements of the proof of Theorem 8.3

The crucial fact about surjectivity of the quotient morphism π : X → S was es-
tablished in [Ka04]. Hence if s0 is a singularity of S then there is a finite morphism
from a germ of a smooth surface in X onto a germ of S at s0. This implies that s0

is at worst a quotient singularity [Br]. Furthermore, surjectivity of π implies (via
algebraic topology) that S is contractible and the link of S is a homology sphere.
Thus by another Brieskorn’s result s0 is at worst an E8–singularity (i.e. a singu-
larity of type x2 + y3 + z5 = 0) and its link is a Poincaré homology 3-sphere L0.
Algebraic topology implies also that the link L∞ of S at infinity is also a homology
3-sphere.

Assume first for simplicity that s0 is the only singularity of S. The the part of
S between the links yields a cobordism between L0 and L∞. Moreover, surjectivity
of π in combination with algebraic topology implies that it is a simply connected
homology cobordism. But this type of cobordisms between L0 and another homol-
ogy 3-sphere is forbidden by a theorem of Taubes [Ta]. Thus S cannot have one
singular point.

In the case of several singularities s0, s1, . . . , sk one has to consider links Li

around si and drill “holes” joining L∞ with L1, . . . ,Lk. Then we get again a
simply connected homology cobordism between L0 and another component of the
boundary which is the connected sum of L∞,L1, . . . ,Lk. But a connected sum of
homology 3-spheres is again a homology 3-sphere. Thus we get a contradiction with
the theorem of Taubes once more.

It remains to note that being a quotient of a normal space S is normal itself,
i.e. the set of its singular points is at worst finite. Thus we get the smoothness of
S.

10. Partial results on classification of C+-actions on affine contractible
threefolds

In this section X is a smooth contractible affine threefold equipped with a
nontrivial C+-action and π : X → S = X//C+ is its algebraic quotient morphism.
It is well-known that there is a curve Γ ⊂ S such that π−1(S \ Γ) is isomorphic to
(S \ Γ)× C over S \ Γ. We have the following result from [Ka04].

Theorem 10.1. Each component of the (smallest possible) curve Γ as before is
a polynomial curve, i.e. its normalization is C.

Remark 10.2. In all known examples Γ, and therefore, each of its components,
is contractible. The author suspects that this is always so. If this fact were correct
then, using Zaidenberg’s theorem [Zai88] about the absence of curves with Euler
characteristics 1 on smooth contractible surfaces of general type, one would get the
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following: if logarithmic Kodaira dimension κ̄(S) = 2 then X ' S × C and the
action is proportional to the the natural translation on X over S.

In the case when κ̄(S) = 1 one can give a complete classification of such C+-
actions based on the description of polynomial curves in smooth contractible sur-
faces of logarithmic Kodaira dimension 1. It was established by Zaidenberg, Gurjar
and Miyanishi that such a surface S contains a unique curve L isomorphic to a line
[Zai88], [GuMi]. We can claim more [KaML96].

Theorem 10.3. Let S and L be as before (i.e. S is smooth contractible with
κ̄(S) = 1 and L is the line in it). Then L is the only polynomial curve in S.

Proof. We use the result of tom Dieck and Petrie [tDPe] (see also [KaML97a])
which says that there exists an affine modification ρ : S → C2

x,y such that (1) ρ

is an isomorphism over C2 \ P where P is the curve given by xk − yl = 0 with
k ≥ 2 and l ≥ 2 being relatively prime, (2) ρ(S) coincides with the union of C2 \P

and point (1, 1), and (3) ρ−1(1, 1) = L. Assume there is a polynomial curve in S

different from L. Then its image C in C2 is a polynomial curve that meets P at
most at one point (1, 1). If C does not meet P then it is contained in a nonzero
fiber of xk − yl which has a nonzero genus but this is impossible for a polynomial
curve. Thus C∩P = (1, 1). Let C be given by the zero locus of a polynomial p(x, y)
and Cz → C2, z → (zl, zk) be the normalization of P . Then p(zl, zk) = 0 must
have the only root at z = 1 (since the image of z = 1 under this normalization is
(1, 1)), i.e. up to a constant factor p(zl, zk) = (z−1)m. Now one can check that the
right-hand side of the last equality has a zero derivative at z = 0 while the similar
derivative of the left-hand side is nonzero. This contradiction concludes the proof.

¤

Remark 10.4. Suppose that X,π, S, and Γ are as in the beginning of this
section. It follows from [Ka04] that the quotient morphism π factors through a
surjective affine modification ρ : X → S × C which generates an isomorphism over
(S \Γ)×C. In the case when Γ is isomorphic to a line (or a union of disjoint lines),
Theorem 3.1 from [Ka02] implies that ρ is a composition of a finite number of simple
affine modifications (in the sense of Remark 7.6) whose centers are contractible
irreducible curves (they are also smooth when X ' C3). In combination with
Theorem 10.3 this gives a construction of all smooth affine contractible threefolds
equipped with a nontrivial C+-action such that the logarithmic Kodaira dimension
of the quotient is 1. However, Freudenburg constructed a C+-action on C3 such
that Γ consists of two lines in S ' C2 that meets transversally at one point [Fr98].
It can be shown that in this case ρ cannot be presented as a composition of simple
modifications.

Example 10.5. (1) Consider, for instance, the C+-action on the Russell cubic
R whose associated LND is ∂ = 2z ∂

∂y − x2 ∂
∂z . The kernel of ∂ is C[x, t]. Hence the
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quotient space S = C2
x,t and the affine modification ρ : R → S × C described in

Remark 10.4 is nothing but the natural projection R → C3
x,z,t. The role of Γ ⊂ S

is played by the line x = 0. Consider the simple affine modification X1 → C3
x,z,t

along the (z, t)-coordinate plane with center at the polynomial curve z2 + t3 = 0.
By Remark 7.6 X1 can be viewed as the hypersurface xv = z2 + t3 in C4

x,z,t,v.
Take the next affine modification X2 → X1 along the divisor {x = 0} ⊂ X1

with center at the polynomial curve v + 1 = 0. Again X2 can be viewed as the
hypersurface in X1 × Cy given by xy = −(v + 1). Multiplying this equality by x

we get x + x2y + z2 + t3 = 0, i.e. X2 ' R and we have the desired decomposition
of ρ into simple affine modifications.

(2) We describe Freudenburg’s example as a LND on C[x, y, z]. Consider poly-
nomials F,G, R defined as follows:

F = xz − y2; R = x3 − Fy; G = zF 2 − 2x2yF + x5.

In particular, xG = F 3 +R2. Consider the derivation ∂ such that ∂(F ) = ∂(G) = 0
(i.e. Ker ∂ = C[F, G]) and ∂(R) = −FG. Since x = (F 3 +R2)/G, y = (X3−R)/F ,
and

z = (G− x5 + 2x2yF )/F 2 = (G− 2x2R + x5)/F 2

one can see that ∂ is a well-defined LND on C3
x,y,z. The curve Γ is the cross FG = 0

in the quotient S = C2
F,G.

Note that in Freudenburg’s example the coordinates F and G in the quotient
plane C2

F,G are homogeneous polynomials on C3
x,y,z. This is a special case of a

homogeneous LND.

Definition 10.6. Consider a weighted degree function ω on C[x, y, z] such that
the weights ω(x), ω(y), ω(z) are relatively prime natural numbers, i.e. ω generates a
weighted projective space P2

ω. By Miyanishi’s theorem the kernel of any nontrivial
LND ∂ on C[x, y, z] is of form C[f, g] with f, g ∈ C[x, y, z]. We call a LND ∂

homogenous if f and g are homogeneous with respect to some weighted degree
function ω as before.

Theorem 10.7. ([Dai] ) Let ω be as in Definition 10.6 and f and g ∈ C[x, y, z]
be two ω-homogeneous polynomials with relatively prime ω-degrees. Suppose that
Cf and Cg are the curves in P2

ω generated by zeros of f and g respectively. Then
the existence of a homogeneous LND on C[x, y, z] with kernel C[f, g] is equivalent
to the fact that P2

ω \ (Cf ∪ Cg) ' C× C∗.
Remark 10.8. Thus the problem of classification of homogeneous LND on C[3]

(and the associated homogenous C+-actions on C3) is equivalent to the problem
of finding all curves Cf and Cg as in Theorem 10.7. Such curves were completely
classified by Daigle and Russell [DaiRu01a] and [DaiRu01b] but their description
is a bit long for this survey.
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11. C∗-actions on affine surfaces.

In this section we consider the Classification Problem for effective C∗-actions
on smooth affine algebraic surfaces. As we mentioned any algebraic C∗-action on
C2 is equivalent to a linear one: (x, y) → (λkx, λly) where (x, y) are coordinates
on C2, λ ∈ C∗, and k, l ∈ Z. We require that k and l are relatively prime since
otherwise the action is not effective. It is easy to check that any other linear action
(x, y) → (λnx, λmy) is equivalent to this one if the unordered pairs {k, l} and {n, m}
coincide. This yields the classification of all equivalence classes of C∗-actions on
C2. Applying Theorem 4.3 we see that for the other smooth toric surfaces C× C∗
and C∗ × C∗ every C∗-action is also equivalent to a linear one, i.e. we have a
classification in this case as well.

In the case of a normal non-toric affine surface S we need some canonical effec-
tive C∗-actions on S (similar to linear actions on C2) such that any other action is
equivalent to one of those. They are provided by the Dolgachev-Pikhman-Demazure
(DPD) presentation, introduced by Flenner and Zaidenberg [FlZa03], [FlZa05a],
which allows also to describe all normal affine surfaces that admit nontrivial C∗-
actions.

Remark 11.1. Their approach was generalized in [AlHa] with C∗-actions re-
placed by actions of higher dimensional tori. Another beautiful extension of this
DPD-presentation can be found in [Ko].

Recall that the existence of a non-trivial algebraic C∗-action Φ on S is equiva-
lent to the existence of a nontrivial Z-grading B = ⊕i∈ZBi = B≥0 ⊕B0 B≤0 of the
algebra B = C[S] of regular functions on S where each b ∈ Bi is an λi-eigenvector
of the isomorphism of B generated by the action of λ ∈ C∗.

If S//Φ is a curve, we set C = S//Φ. Otherwise there exists only one fixed
(attractive) point o of Φ and we set C = (S\o)/Φ. The DPD-presentation describes
the Z-grading in terms of Q-divisors on C and it distinguishes three types of action.

Elliptic type: Φ has an attractive fixed point o. Then C is a smooth projective
curve and there exists an ampleQ-divisor D on C so that B = ⊕i≥0H

0(C,O(biDc)ui

where u is an unknown and bEc is the integral part of a Q-divisor E. (If B =
⊕i≤0H

0(C,O(biDc)ui then switching from Φ to Φ−1 one can make indices nonneg-
ative.)

Parabolic type: Φ contains a curve of fixed points. Then this curve is smooth
affine and isomorphic to C, and there exists a Q-divisor D on C so that B =
⊕i≥0H

0(C,O(biDc)ui. (One may need to replace Φ by Φ−1 as before to get such
a presentation for B.)

Hyperbolic type: a finite number of fixed points none of which are attractive.
Then C is affine smooth and there exist Q-divisors D+ and D− on C so that
D+ + D− ≤ 0; B≥0 = ⊕i≥0H

0(C,O(biD+c)ui, B≤0 = ⊕i≤0H
0(C,O(b−iD−c)ui,
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and B = B≥0 ⊕B0 B≤0. To replace of Φ by Φ−1 in this case is the same as to
interchange D+ and D−.

Vice versa: taking the spectrum of the algebra B, that appears in the descrip-
tion of these three types of actions, one can see that any smooth affine curve C

with Q-divisors D+ and D− on it such that D+ +D− ≤ 0 (resp. a smooth affine or
projective curve C with an appropriate Q-divisor D on it) corresponds to a normal
affine algebraic surface S equipped with an effective hyperbolic (resp. parabolic or
elliptic) C∗-action.

Remark 11.2. It is worth mentioning some geometrical features of S in the
hyperbolic case which is the most interesting for us. Suppose that {pi} (resp.
{qj}) is the set of points of C for which D+(pi) + D−(pi) < 0 (resp. D+(qj) =

−D−(qj) /∈ Z). By technical reasons we put D±(pi) = ∓e±i
m±

i

where (e±i , m±
i ) is a

pair of relatively prime integers and ±m±
i > 0. We put also D+(qj) = −ej

mj
with

mj > 0. The quotient morphism π : S → C = S//C∗ admits a proper extension
S̃ → C such that S̃ \ S consists of two sections C+ and C− of this morphism.
Denote by p±i (resp. q±j ) the image of pi (resp. qj) under the natural isomorphism
C ' C±. Every singularity of S̃ is automatically a quotient singularity and the
only singularities of S̃ on C± are points from {p±i , q±j } with each p±i being of type
(±m±

i ,−e±i ) 5 and each q±j being of type (mj ,∓ej). A complete description of the
quotient morphism fibers and the other singularities of S̃ can be also obtained from
this data. Say, every fiber π∗(pi) is not irreducible and every fiber π∗(qj) is not
reduced.

Consider an effective C∗-action Φ′ on our non-toric surface S and suppose that
a curve C ′ plays the same role for Φ′ as C for Φ. It can be shown that Φ and Φ′

are of the same type and C ' C ′.

Theorem 11.3. ([FlZa03]) Let D (resp. D′) be the Q-divisor on C ' C ′ that
appears in the DPD-presentation of Φ (resp. Φ′) in the elliptic or parabolic cases.
In the hyperbolic case we denote the similar divisors on C by D+ and D− (resp.
D′

+ and D′
−). Then Φ is equivalent to Φ′ if and only if an isomorphism C ' C ′

can be chosen so that
(1) D is linearly equivalent to D′ in the elliptic and parabolic cases;
(2) D′

+ = D+ +P and D′
− = D−−P for a principal divisor P in the hyperbolic

case.

Thus in order to find all equivalence classes of effective C∗-actions one needs
to classify all possible DPD-presentations for a fixed surface S up to a linear

5Recall that a cyclic quotient singularity of type (m, e) is biholomorphic to the singularity

of C2/Zm where Zm is the cyclic group generated by a primitive m-root ζ of unity that acts on

C2
x,y by formula (x, y) → (ζx, ζey) with e and m being relatively prime.
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equivalence (in the parabolic and elliptic case) or up to a principal divisor (in
the hyperbolic case). Flenner and Zaidenberg established a uniqueness of DPD-
presentations for non-toric surfaces with a non-trivial Makar-Limanov invariant
[FlZa05a], [FlZa05b].

Theorem 11.4. Let Φ and Φ′ be effective C∗-actions on a non-toric affine
surface S such that AK(S) 6= C. Then, replacing Φ by Φ−1 if necessary, one can
choose an isomorphism between the curves C and C ′ so that D and D′ (resp. D±
and D′

±) in the DPD-presentations satisfy condition (1) (resp. (2)) of Theorem
11.3 (in particular, there are at most two equivalence classes of effective C∗-actions
on S). Moreover, Φ (or Φ−1) is conjugated to Φ′ by an element of a C+-action6.

For a non-toric surface with a trivial Makar-Limanov invariant effective C∗-
actions are automatically hyperbolic [FKZ07b] and the curve C is always isomor-
phic to C. In this case the situation is much more complicated and Russell found
examples of such smooth surfaces with more than two equivalence classes of effective
C∗-actions.

Definition 11.5. Let Fn → P1 be a Hirzebruch surface over P1 and L be its
section with L2 = k+1. If L is ample (i.e. k ≥ n) then Fn\L is a Danilov-Gizatullin
surface7.

Theorem 11.6. ([FKZ07b]) There are exactly k equivalence classes of effective
C∗-actions on a surface from Definition 11.5. More precisely, every action is hyper-
bolic and its DPD-presentation is of form C ' C, D+ = − 1

r [p0], D− = − 1
k+1−r [p1]

for distinct p0, p1 ∈ C and r = 1, . . . , k.

Danilov-Gizatullin surfaces are contained in the wider class of Gizatullin sur-
faces.

Definition 11.7. A normal affine algebraic surface S is a Gizatullin one if it
has a simple normal crossing completion S̄ such its boundary divisor S̄ \S consists
of rational curves and the dual weighted graph Γ of this divisor is linear8 (this
graph is called a zigzag). If S admits also a nontrivial C∗-action we say that it is
a Gizatullin C∗-surface.

Remark 11.8. It is worth mentioning that with the exception of C×C∗ the set
of Gizatullin surfaces coincides with the set of surfaces with a trivial Makar-Limanov

6Thus, if AK(S) = C[S] then either Φ or Φ−1 is equal to Φ′.
7We use this name because of the theorem of Danilov and Gizatullin which states that two

of such surfaces are isomorphic if and only if they have the same k in their construction [DaGi].

This fact was crucial for Russell.
8Recall that each irreducible component of S̄ \ S is viewed as a vertex of Γ with its weight

being the selfintersection number of the component, and two vertices are connected by an edge if

the corresponding components meet.
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invariant. Each of these surfaces is also quasi-homogeneous, i.e. it contains an orbit
of the algebraic automorphism group whose complement is at most finite (the only
quasi-homogeneous surface that is not a Gizatullin one is C∗ × C∗). In particular,
such surfaces possess huge automorphism groups. That is why the Classification
Problem was the most difficult in this case.

A simple normal crossing completion S̄ of a non-toric S can be always chosen
so that its zigzag is standard, i.e. Γ consists of vertices Ci, i = 0, 1, . . . , n (where
n ≥ 1) of weights wi such that w0 = w1 = 0 and wi ≤ −2 for the rest of in-
dices. The standard zigzag is unique up to the reversion of its nonzero part and
smooth Gizatullin C∗-surfaces can be divided into the following three collections
([FKZ07b]):
(1) Danilov-Gizatullin surfaces (for these surfaces wi = −2 for all i ≥ 2 in their
standard zigzags);
(2) special C∗-Gizatullin surfaces whose standard zigzags have wi = −2 for all i ≥ 2
except for one index 2 ≤ k ≤ n;
(3) the rest of smooth Gizatullin C∗-surfaces.

Collection (3) was classified in [FKZa], and we have the following uniqueness
result.

Theorem 11.9. For every surface S from the third collection up to interchange
of D+ and D− any two DPD-presentations are equivalent, i.e. their divisors satisfy
condition (2) of Theorem 11.3. In particular, there are at most two equivalence
classes of C∗-actions.

The most difficult remaining case of the second collection will be settled in the
coming paper [FKZb] which concludes the classification of effective C∗-actions on
smooth affine surfaces. Compared with the other cases the answer is really amazing
but first we need a few remarks.

It can be shown [FKZ07b] that for any Gizatullin C∗-surface the support of
the fractional part {D+} = D+ − bD+c of D+ (resp. {D−} of D−) is concentrated
at most at one point p− (resp. p+). For special Gizatullin surfaces these fractional
parts are both nonzero and p+ 6= p− unless k = 2 or n in the description of collection
(2). In the case of k = 2 or n either {D−} or {D+} vanishes and the support of
the fractional part of D+ +D− is concentrated at most at one point p (when n = 2
both fractional parts vanish).

Theorem 11.10. Let S and S′ be special Gizatullin surfaces with the same stan-
dard zigzag and with DPD-presentations D+, D− and D′

+, D′
− on curves C ' C and

C ′ ' C respectively. Then S and S′ are isomorphic if and only if an isomorphism
C ' C ′ can be chosen so that bD+ + D−c = bD′

+ + D′
−c =: E. In particular, (by

Theorem 11.3) up to automorphisms of C preserving E each equivalence class of
C∗-actions on S is determined uniquely by the continuous parameters p+ and p−
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in the case of k 6= 2 or n, and by the continuous parameter p in the case of k = 2
or k = n > 2.
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[Za] O. Zariski, Interprétations algébrico-géométriques du quatorzième problème de Hilbert

(French), Bull. Sci. Math. (2) 78 (1954), 155–168.

25



[Zai88] M. Zaidenberg, Isotrivial families of curves on affine surfaces, and the characterization

of the affine plane (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 534–

567, 688; translation in Math. USSR-Izv. 30 (1988), no. 3, 503–532. See also: Additions

and corrections to the paper: ”Isotrivial families of curves on affine surfaces, and the

characterization of the affine plane”, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 55

(1991), no. 2, 444–446; translation in Math. USSR-Izv. 38 (1992), no. 2, 435–437.

[Zai99] M. Zaidenberg, Exotic algebraic structures on affine spaces, (Russian) Algebra i Analiz

11 (1999), no. 5, 3–73; translation in St. Petersburg Math. J. 11 (2000), no. 5, 703–760

Department of Mathematics, University of Miami, Coral Gables, FL 33124, U.S.A.

E-mail address: kaliman@math.miami.edu

26


