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ABSTRACT. Let X be a smooth contractible three-dimensional affine algebraic variety

with a free algebraic C+-action on it such that S = X//C+ is smooth. We prove that X is

isomorphic to S ×C and the action is induced by a translation on the second factor. As a

consequence we show that any free algebraic C+-action on C3 is a translation in a suitable

coordinate system.

1. Introduction. In 1968 Rentschler [Re] proved that every algebraic action of

the additive group C+ of complex numbers on C2 is triangular in a suitable polynomial

coordinate system (which follows also from an earlier theorem of Gutwirth [Gu]). This

implies that a free C+-action on C2 (i.e. an action without fixed points) can be viewed

as a translation. In 1984 Bass [Ba] found a C+-action on C3 which is not triangular in

any coordinate system, and in 1990 Winkelmann [Wi] constructed a free C+-action

on C4 which is not a translation. But the question about free C+-actions on C3

remained open (e.g., see [Sn] , [Kr], [DaFr], [DeFi]). While working on this problem

we consider a more general situation when there is a nontrivial algebraic C+-action

on a complex three-dimensional affine algebraic variety X such that its ring of regular

functions is factorial. By a theorem of Zariski [Za] the algebraic quotient X//C+ is

isomorphic to an affine surface S. Let π : X → S be the natural projection. Then

there is a curve Γ ⊂ S such that for E = π−1(Γ) the variety X \ E is isomorphic to

(S \Γ)×C over S \Γ. The study of morphism π|E : E → Γ is central for this paper.

As an easy consequence of the Stein factorization one can show that π|E = θ◦κ where

κ : E → Z is a surjective morphism into a curve Z with general fibers isomorphic

to C, and θ : Z → Γ is a quasi-finite morphism. A more delicate fact (Proposition

1The author was partially supported by the NSA grant MDA904-03-1-0009.
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3.2) is that in the case of a smooth contractible X morphism θ is, actually, finite

and, furthermore, each irreducible component Z1 of Z, such that θ|Z1 is not injective,

is rational and θ(Z1) is a polynomial curve. A geometrical observation (Proposition

4.2) shows that in the case of a free C+-action and a smooth S such a component

Z1 cannot exist. If the restriction of θ to any irreducible component of Z is injective

then Γ can be chosen empty (Theorem 5.2), i.e. X is isomorphic to S×C over S. In

combination with Miyanishi’s theorem [Miy80] this yields the long-expected result.

Theorem 1. Every free algebraic C+-action on C3 is a translation in a suitable

polynomial coordinate system.

Acknowledgments. It is our pleasure to thank P. Bonnet, D. Daigle, G. Freuden-

burg, K.-H. Fieseler, M. Zaidenberg, and the referee for useful consultations, and J.

Kollár for suggesting Proposition 5.1 and a simple proof of Lemma 4.1. Some essential

elements of Proposition 4.2 belong also to him.

2. The Existence of Decomposition π|E = θ ◦ κ.

Lemma 2.1. Let X be a factorial affine algebraic variety of dimension 3 with a

nontrivial C+-action on it and π : X → S be the quotient morphism. Then S is a

factorial affine algebraic surface, π−1(s0) is either a curve or empty for any s0 ∈ S,

and E = π−1(Γ) is a nonempty irreducible surface for every closed irreducible curve

Γ ⊂ S. Furthermore, if Γ = g∗(0) for a regular function g on S then E = (g ◦ π)∗(0).

Proof. By [Za] S is an affine algebraic surface. Suppose that E is the union of a

surface E ′ and a curve C where E ′ and C may be empty. Assume π(E ′) is not dense

in Γ. Consider a rational function h on S with poles on Γ only. Let e be the product

of h and a regular function that does not vanish at general points of Γ but vanishes

on π(E ′) with sufficiently large multiplicity such that e ◦ π vanishes on E ′ \C. As X

is factorial, by deleting singularities in codimension 2 we see that e ◦ π is a regular

function on X. As it is invariant under the action, e must be regular. Contradiction.

Thus π(E ′) is dense in Γ.

Since X is factorial E ′ is the zero fiber of a regular function f on X. As f does not

vanish on a general fiber π−1(s) ' C it is constant on each general fiber. Hence f is

invariant under the action, i.e. f = g◦π where g a regular function on S which implies

that g is a defining function for Γ (i.e. S is factorial) and, furthermore, E = E ′ 6= ∅.
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If for a regular function f1 on X its zero fiber is an irreducible component of E then

f1 is again invariant under the action, i.e. f1 = g1 ◦ π. As g1 vanishes on Γ only it

must be proportional to g. Thus E is irreducible and we get the last statement as

well. If we assume that π−1(s0) contains a surface for s0 ∈ S the similar argument

yields a regular function on S that vanishes at a finite set only which is impossible.

2

If we have a nontrivial C+-action on a three-dimensional affine algebraic variety

X with a quotient morphism π : X → S = X//C+ then it is well-known that

there is a closed curve Γ ⊂ S such that for S̆ = S \ Γ and E = π−1(Γ) the variety

X \E = π−1(S̆) is naturally isomorphic to S̆×C over S̆. We say that two C+-actions

on X are equivalent if they have the same collection of general orbits (or, equivalently,

the associated locally nilpotent derivations 2 have the same kernel) and, therefore,

generate the same quotient morphism.

Lemma 2.2. Let X be a factorial affine algebraic variety of dimension 3 with

a nontrivial C+-action on it, π : X → S be the quotient morphism, E and Γ be

as before. Then there exist a curve Z, a quasi-finite morphism θ : Z → Γ, and a

surjective morphism κ : E → Z so that π|E = θ ◦ κ and Z contains a Zariski dense

subset Z∗ for which E∗ = κ−1(Z∗) is isomorphic to Z∗ × C over Z∗. Furthermore,

there exists an equivalent action that is free on E∗.

Proof. Extend π|E : E → Γ to a proper morphism π̄ : Ē → Γ̄ of complete varieties.

Consider a closed curve Γ′ in Ē \E that contains singularities of each general fiber of

π̄ provided these singularities exist. One can suppose that Ē is contained in Pn and

blow Pn up with respect to the ideal sheaf generated by Γ′. Replacing Ē with its strict

transform we obtain a new proper morphism π̄ : Ē → Γ̄. Repeating this procedure

several times, if necessary, we remove the singularities of general fibers π̄ and make

them smooth. Thus for a general point s ∈ Γ̄ the fibers π−1(s) and π̄−1(s) have the

same number of connected components, and we shall see below that the components

of π−1(s) are isomorphic to C. By the Stein factorization theorem morphism π̄ is

a composition of morphisms κ̄ : Ē → Z̄ and θ̄ : Z̄ → Γ̄ where Z̄ is a curve, κ̄ has

connected fibers, and the θ̄ is finite. Set κ = κ̄|E, Z = κ(E) and θ = θ̄|Z . This is

2Recall that there is a natural bijective correspondence between C+-actions on X and locally
nilpotent derivations of the algebra of regular functions on X (e.g., see [Re])
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what we need in the first statement of Lemma.

For the second statement we suppose that the action is trivial on an irreducible

component E1 of E, i.e. the associated locally nilpotent derivation ν vanishes (as

a vector field) on E1. By Lemma 2.1 E1 = π−1(Γ1) where Γ1 is an irreducible

component of Γ. Consider a regular function g1 on S for which Γ1 = g∗1(0). Dividing

ν by a power of g1 ◦ π we obtain an equivalent locally nilpotent derivation that does

not vanish identically on E1 which implies the second statement and the fact that for

a general point s ∈ Γ the fiber π−1(s) is a disjoint union of C-curves which are orbits.

2

Notation 2.3. Unless it is stated otherwise for the rest of the paper we suppose

that X,S, E, Γ, Z, E∗, Z∗, π, θ, and κ are as Lemma 2.2. Furthermore, we suppose

always that Z∗ is of form θ−1(Γ∗) where Γ∗ = Γ \ F and F is a finite subset of Γ.

There is some freedom in the choice of F and Γ. In particular, taking “bigger” F and

Γ we suppose that Γ∗, Z∗, and S∗ = S \ F are smooth. We set also X∗ = π−1(S∗),

S̆ = S \ Γ, and X̆ = π−1(S̆), i.e. X̆ = X \ E ' S̆ ×C.

3. Finiteness of θ.

In the case of S ' C2 there is an isomorphism H0(F ) ' H3(S \ F ): namely we

assign to each x0 ∈ F the 3-cycle presented by a small sphere with center at x0. The

same remains true when S is normal (and S is even factorial by Lemma 2.1).

Lemma 3.1. (i) There exists a natural isomorphism χ : H0(F ) → H3(S
∗).

(ii) Let ϕ : H3(S
∗) → H1(Γ

∗) be the composition of the Thom isomorphism

H3(S
∗, S̆) → H1(Γ

∗) and the natural homomorphism H3(S
∗) → H3(S

∗, S̆), let s0 ∈ F ,

ω = χ(s0), and Γj, j = 1, . . . , k be irreducible analytic branches of Γ at s0. Suppose

that γj is a simple loop in Γj around s0 with positive orientation. Then ϕ(ω) =
∑k

j=1 γj

(where we treat γj as an element of H1(Γ
∗)).

Proof. As H3(S) = H4(S) = 0 [Mil, Th. 7.1] the exact homology sequence of

pair (S, S∗) shows that H3(S
∗) ' H4(S, S∗). Thus in (i) it suffices to prove that

H4(S, S∗) ' H0(F ). As S may not be smooth we cannot apply Thom’s isomorphism.

But by the excision theorem H4(S, S∗) ' H4(U,U \ F ) where U is a small Euclidean

neighborhood of F in S, i.e. U is a disjoint union
⋃

i Ui of neighborhoods Ui of a

point si running over F . Hence H4(S, S∗) = ⊕iH4(Ui, Ui \ si). Let Bε be the ball
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of radius ε in Cn ⊃ S with center at s0 ∈ F and U0 = S ∩ Bε. For small ε > 0,

ω = S ∩ ∂Bε is a three-dimensional real manifold and U0 is a cone over ω [Lo]. Hence

H4(U0, U0 \ s0) ' H3(U0 \ s0) ' Z and U0 and ω are generators of H4(U0, U0 \ s0) and

H3(U0 \ s0) respectively. Thus H4(S, S∗) ' H0(F ) which is (i). For small ε > 0 the

sphere ∂Bε and, thus, ω meet each Γj transversally along a simple loop γj around s0

in Γj. Hence the description of Thom’s isomorphism [Do] yields ϕ(ω) =
∑k

j=1 γj. 2

Proposition 3.2. Let the notation of 2.3 hold, H3(X) = 0, and X∗ be smooth.

(i) Then θ is a finite morphism.

(ii) Let X be also smooth and H2(X) = 0. Let Z1 be an irreducible component of

Z and Γ1 = θ(Z1). If θ|Z1 : Z1 → Γ1 is not bijective then Γ1 is a polynomial curve

(i.e. its normalization is C) and Z1 is rational.

Proof. Recall that X̆ ' S̆ × C. We have the following commutative diagram of

the exact homology sequences of pairs

. . . −→ Hj+1(X̆) −→ Hj+1(X
∗) −→ Hj+1(X

∗, X̆) −→ Hj(X̆) −→ Hj(X
∗) −→ . . .

? ? ?
'

? ?
'

. . . −→ Hj+1(S̆) −→ Hj+1(S
∗) −→ Hj+1(S

∗, S̆) −→ Hj(S̆) −→ Hj(S
∗) −→ . . .

which we consider for j = 2. As Γ∗, S∗, and E∗ are smooth, and X∗ \ X̆ = E∗,

the Thom isomorphism [Do] implies Hi(X
∗, X̆) ' Hi−2(E

∗). Similarly, Hi(S
∗, S̆) '

Hi−2(Γ
∗). As H3(S̆) = 0 [Mil, Th. 7.1] and Hi(E

∗) = Hi(Z
∗) we have the crucial

diagram

. . . −→ 0 −→ H3(X
∗) −→ H1(Z

∗) −→ H2(X̆) −→ H2(X
∗) −→ . . .

ϕ′ ψ′ χ′

? ?
δ3

?
θ1

?
' δ̆2

?
δ2 (∗)

. . . −→ 0 −→ H3(S
∗) −→ H1(Γ

∗) −→ H2(S̆) −→ H2(S
∗) −→ . . .

ϕ ψ χ

The next step is to show that Im ϕ′ is contained in the kernel G′ of the homomor-

phism H1(Z
∗) → H1(Z) induced by the natural embedding Z∗ ↪→ Z (the similar fact

that Im ϕ is contained in the kernel G of the homomorphism H1(Γ
∗) → H1(Γ) induced
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by the natural embedding Γ∗ ↪→ Γ is a consequence of Lemma 3.1). As H4(X) = 0

[Mil, Th. 7.1] the exact homology sequence of pair (X, X∗) implies that H3(X
∗) is

isomorphic to H4(X, X∗). By Lemma 2.1 L = π−1(F ) = E \E∗ = X \X∗ is a curve.

If U is a small Euclidean neighborhood of L in X then H4(U,U \ L) = H4(X, X∗)

by the excision theorem. That is, every 3-cycle ω′ ∈ H3(X
∗) can be chosen in U \ L.

Thom’s isomorphism maps the image of ω′ in H(U,U \L) to a 1-cycle α ∈ H1(E
∗∩U).

As Thom’s isomorphisms are functorial under open embeddings [Do, Ch. 8, 11.5] we

can treat α as an element of H1(E
∗). Thus the image of α under the homomorphism

generated by the natural projection E∗ → Z∗ coincides with ϕ′(ω′) ∈ H1(Z
∗). As α

is contained in a small neighborhood U ∩E of L in E we see that ϕ′(ω′) is contained

in a small neighborhood of the finite set Z \ Z∗ which implies that Im ϕ′ ⊂ G′.

Assume that (i) is not true. Let θ̄ : Z̄ → Γ̄ be the extension of θ to completions

of Z and Γ. As θ is not finite the set F ′ = (Z̄ \ Z) \ θ̄−1(Γ̄ \ Γ) is not empty. Let

z0 ∈ F ′. One can suppose that s0 = θ̄(z0) ∈ F . Let Γj, j = 1, . . . , k be irreducible

analytic branches of Γ at s0, and let γj be a simple loop in Γj around s0 with positive

orientation. We treat γ :=
∑k

j=1 γj as an element of H1(Γ
∗). By Lemma 3.1 H3(S

∗)

is generated by elements ω of form ω = χ(s0) and ϕ(ω) = γ. Take a simple loop

β0 around z0 in an irreducible analytic branch Z1 of Z̄ at z0 such that θ̄(Z1) is, say,

Γ1. Take other simple loops in Z∗ around the points of θ̄−1(s0) whose images under

θ are contained in
⋃k

j=2 Γj. Then we can construct an integer Z-linear combination β

of β0 and these other loops so that θ1(β) = mγ where m > 0. As γ ∈ Im ϕ we have

ψ(γ) = 0. As δ̆2 is an isomorphism we have ψ′(β) = 0, i.e. β ∈ Im ϕ′ ⊂ G′. On the

other hand β = β1 + β2 where β1 (resp. β2) is a Z-linear combination of simple loops

around points of θ̄−1(s0) ∩ (Z \ Z∗) (resp. θ̄−1(s0) ∩ F ′). That is, β1 ∈ G′ and β2 is

nonzero since it contains β0 with a nonzero coefficient. Hence β2 belongs to G′ as an

element of H1(Z
∗). But this is impossible since each irreducible component of Z∗ has

punctures in θ̄−1(Γ̄\Γ) and, therefore, the simple loops around points of F ′∪ (Z \Z∗)

are linearly independent. This contradiction implies (i).

The proof of (ii) consists of three steps.

Step 1. Show that for any selfintersection point s0 of Γ (i.e. the number of

irreducible analytic branches of Γ at s0 is at least 2) the set θ−1(s0) is one point.

Assume the contrary. Say, for simplicity, that θ−1(s0) consists of two points z0, z1 ∈
Z \ Z∗. Let Z \ Z∗ = {zi} and G′

i be the kernel of the homomorphism H1(Z \ zi) →
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H1(Z) induced by the natural embedding Z \ zi ↪→ Z. Let β′ ∈ G′
0 ∩ Im ϕ′ (i.e. β′ =

ϕ′(ω′)). Then δ3(ω
′) = mω where m ∈ Z and ω is as before. As ϕ(mω) = θ1(β

′) we

see that θ1(β
′) = mγ. Similarly θ1(β

′′) is proportional to γ for every β′′ ∈ G′
1 ∩ Im ϕ′.

On the other hand since s0 is a selfintersection point, we can find β1 ∈ G′
0 and

β2 ∈ G′
1 such that θ1(β1) and θ1(β2) are not proportional to γ (i.e. β1, β2 /∈ Im ϕ′)

but θ1(β1 + β2) is. The commutativity of (*) implies that β1 + β2 ∈ Ker ψ′ = Im ϕ′.

We shall get a contradiction now by showing that β1, β2 ∈ Im ϕ′.

Indeed, G′ is naturally isomorphic to
⊕

i G
′
i. Moreover, since L = π−1(F ) is the

disjoint union
⋃

i κ
−1(zi) one can choose a neighborhood U of L in X as a disjoint

union of neighborhoods of the curves κ−1(zi). Hence, repeating the argument with the

excision theorem, we get the decomposition Im ϕ′ = ⊕i(G
′
i ∩ Im ϕ′). Hence β1, β2 ∈

Im ϕ′ as β1 + β2 ∈ Im ϕ′ which yields Step 1.

Step 2. Consider a non-canonical isomorphism H1(Γ
∗) = G ⊕ H1(Γ

norm) (resp.

H1(Z
∗) = G′ ⊕ H1(Z

norm)) where Γnorm (resp. Znorm) is a normalization of Γ (resp.

Z). Let us show that in (ii) the ranks of H1(Γ
norm) and H1(Z

norm) (resp. G/Im ϕ and

G′/Im ϕ′) are the same.

Indeed, X∗ = X \ L where L is a curve. Hence H2(X
∗) = 0 since X is smooth

and H2(X) = 0. As Im ϕ′ ⊂ G′ diagram (*) implies now that H2(X̆) is isomor-

phic to (G′/Im ϕ′) ⊕ H1(Z
norm). Similarly H2(S̆) contains a subgroup isomorphic

to (G/Im ϕ) ⊕ H1(Γ
norm) and diagram (*) shows that Im δ̆2 is contained in this last

subgroup. Thus H2(S̆) is isomorphic to (G/Im ϕ) ⊕ H1(Γ
norm) as δ̆2 is an isomor-

phism. Note that the rank of δ̆2(G
′/Im ϕ′) is the same as the rank of G/Im ϕ as

θ1(G
′) is of finite index in G. Hence the rank of G′/Im ϕ′ is greater that or equal to

the rank of G/Im ϕ. The rank of H1(Z
norm) is also greater than or equal to the rank

of H1(Γ
norm) since we have a dominant map of Riemann surfaces Znorm → Γnorm. As

(G′/Im ϕ′)⊕H1(Z
norm) is isomorphic to (G/Im ϕ)⊕H1(Γ

norm) via δ̆2, we see that the

ranks of (G′/Im ϕ′) and (G/Im ϕ) (resp. H1(Z
norm) and H1(Γ

norm)) coincide.

Step 3. By virtue of (i) and Step 1 it suffices to show that θ|Z1 : Z1 → Γ1 is

birational. Assume the contrary. Then Step 2 implies that the genus of Z1 (and,

therefore, Γ1) is zero. Assume that the normalization of Γ1 is different from C, i.e.

Γ̄1 \Γ1 contains at least two point s̄1 and s̄2 where Γ̄1 is the closure of Γ1 in Γ̄. Let Z̄1

be the closure of Z1 in Z̄. Then either (1) θ̄ maps Z̄1\Z1 bijectively onto Γ̄1\Γ1 or (2)

it does not. In (1) set z̄i = θ̄−1(s̄i) and let βi (resp γi) be a simple loop in Z∗ around
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z̄i (resp. in Γ∗ around s̄i). If l is the number of points in a general fiber of θ̄ then

z̄i is a branch point of order l for θ̄ (recall that l ≥ 2 as θ̄ is not birational). Hence

θ1(β
i) = lγi. This implies that γi is not in G + Im θ1. Since G ⊃ Im ϕ = Ker ψ, we

see that ψ(γi) is not in Im δ̆2 ◦ψ′. On the other hand Im ψ′ = H2(X̆) as H2(X
∗) = 0.

This is a contradiction since δ̆2 is an isomorphism. In (2) we can suppose that there

are at least two point z̄′1 and z̄′′1 in θ̄−1(s̄1). A nonzero Z-linear combination β0 of

simple loops around these points such θ1(β
0) = 0 is an element of Ker θ1 \ G′. But

diagram (*) implies again that such elements cannot exist which concludes (ii). 2

Remark 3.3. Proposition 3.2 implies that π is surjective which is a generalization

of the result of Bonnet [Bo] who proved this in the case of X ' C3. This implies that

when X is Cohen-Macaulay, the algebra of regular functions on X is faithfully flat

over the algebra of regular functions on S (this follows from [Ma, Chap. 2, (3.J) and

Th. 3] and [Ei, Th. 18.16], see also [Da]).

4. Bijectivity of θ.

Lemma 4.1. Let X∗ be smooth, s be a general point of Γ, and x ∈ π−1(s). Then the

linear map π∗ : TxX → TsS of the tangent spaces generated by π is surjective, i.e.

morphism π is smooth at x.

Proof. Let z = κ(x), U be a small coordinate neighborhood of s, ΓU = Γ ∩ U ,

ZU be the connected component of θ−1(ΓU) that contains z, and EU = κ−1(ZU), i.e.

x ∈ EU . As s is general θ|ZU
: ZU → ΓU is an biholomorphism. By Lemma 2.2

EU ' ZU × C and κ|EU
is the natural projection to ZU . Hence, as π|E = θ ◦ κ and

ZU is biholomorphic to ΓU , there exists a vector in TxEU ⊂ TxX which is mapped

by π∗ : TxX → TsS to a nonzero vector tangent to ΓU . Let ΓU be given by ζ = 0

in a local coordinate system (ζ, η) on U and g = ζ ◦ π, f = η ◦ π (i.e. in a small

neighborhood V ⊂ X of x morphism π is given by (g, f)). By Lemma 2.1 EU coincides

with g∗(0) in V . As EU and V are smooth g may be viewed as an element of a local

coordinate system on V . Hence π∗ sends any vector from TxX transversal to EU to

a vector from TsS transversal to ΓU which implies the desired conclusion. 2

Proposition 4.2. Let the assumption of Proposition 3.2 (ii) hold, S be smooth,

and π : X → S be the quotient morphism of a C+-action Φ on X.

(i) Let z ∈ Z, s = θ(z), U be a small Euclidean neighborhood of s in S, ΓU = Γ∩U ,
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and ZU be the connected component of θ−1(ΓU) that contains z. Suppose that θ|ZU
is

injective. Then W = π−1(U \ ΓU) ∪ κ−1(ZU) is biholomorphic to U ×C over U .

(ii) Let the action be free. Then θ is bijective and, therefore, π makes X is a

locally trivial analytic C-fibration over S by (i).

Proof. Consider a general point x in κ−1(z) and a germ P of a smooth analytic

surface at x transversal to κ−1(z). We can assume that % = π|P : P → U is surjective

and it is finite as P does not contain fibers of π. Suppose first that the action is free

at x (i.e., the irreducible component L0 of κ−1(z), that contains x, is an orbit of Φ)

and show that % is biholomorphic.

Assume the contrary. Then as S is smooth there must be a branch curve R ⊂ P
of %. For any point x1 ∈ R and s1 = π(x1) the linear map %∗ : Tx1P → Ts1S is not

surjective. On the other hand, as Φ is free, all orbits close to L0 must be transversal

to P . For any point x2 ∈ P , such that P is transversal to the fiber of π through x2

and morphism π is smooth at x2, the linear map %∗ : Tx2P → Ts2S (where s2 = π(x2))

is surjective. Morphism π is obviously smooth at any point x2 ∈ X̆ as X̆ ' S̆ × C

over S̆. Thus R ⊂ P ∩E. But Lemma 4.1 implies that π is smooth at general points

of this curve P ∩ E. Contradiction.

Let the assumption of (i) hold. If the action is free on L0 then each orbit meets

P at most at one point (by injectivity of %) and the union V of orbits through P is

biholomorphic to P ×C ' U ×C. Note that V is contained in W and W \ V is of

codimension 2 in W . As U can be chosen Stein, removing singularities in codimension

2 we get a holomorphic map W → V which is identical on V . This implies that W

and V are biholomorphic. Suppose now that Φ acts trivially on L0, i.e. % is finite

but not a priori biholomorphic. Let X ′ = P ×U π−1(U) and τ : X ′ → π−1(U) be

the natural projection. Set W ′ = τ−1(W ) and W ′
0 = τ−1(W \ κ−1(z)). There is an

analytic surface P ′ in W ′ which is mapped biholomorphically on P by τ . Let x′ ∈ P ′
be the preimage of x and P ′0 = P ′ \ x′. Note that Φ generates an analytic C+-action

Φ′ on X ′. By the second statement of Lemma 2.2 we can suppose that that Φ acts

freely on W \κ−1(z) and, therefore, Φ′ acts freely on W ′
0. By construction, each orbit

meets P ′0 at most at one point. Let V ′
0 ' P ′0 ×C be the union of orbits through P ′0.

Note that V ′
0 can be embedded naturally in the manifold V ′ = P ′ ×C which can be

chosen Stein. As U and, therefore, X ′ can be also chosen Stein, the theorem about

removing singularities in codimension 2 shows, as before, that V ′ is biholomorphic to
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W ′. It remains to note now that as Φ′ acts freely on V ′
0 ' P ′0 ×C it must act freely

on W ′ ' P ×C contrary to the assumption that Φ acts trivially on L0.

In (ii) assume that there is a component Z1 of the Z such that θ|Z1 is not bijective.

Step 1 in the proof of Proposition 3.2 implies that θ|Z1 is not birational. Furthermore,

Proposition 3.2 (ii) implies that Z1 contains a branch point z of θ whose order is

m ≥ 2. As π|E = θ ◦ κ and θ has a branch point of order m we see that % = π|P is at

least m-sheeted contrary to the fact that % must be bijective. 2

5. Main theorem.

We present a proof of the Main Theorem based on the following general result,

due to J. Kollár (the original proof relied on more topological considerations some of

which are outlined in 5.4(3)).

Proposition 5.1 (Kollár) Let π : X → S be a morphism of smooth (not necessarily

affine) algebraic varieties (of any dimension) which is also a locally trivial analytic

C-fibration. Then X is the complement to a section of an algebraic P1-bundle over

S. Furthermore, if S is affine then X is the total space of an algebraic line bundle,

and if, in addition, π : X → S is a quotient morphism of a free C+-action, X is

isomorphic to S ×C over S.

Proof. Extend π to a proper morphism π̄ : X̄ → S with a smooth X̄. Choose an

irreducible divisor D ⊂ S above which π̄ is not smooth. Localize at the generic point

of D. We obtain a morphism of a smooth surface to a curve (over a field extension

k of C) whose general fibers are projective lines. The special fiber F0 is a tree of

rational curves, one of which F1
0 meets X (over k) and, therefore, has multiplicity 1

in F0. As the intersection number of the canonical class with each fiber is -2, F1
0 can

not be the only (−1)-curve in F0. Contracting these other (-1)-curves repeatedly we

obtain a projective line bundle over the whole curve including point D. Returning to

complex numbers we see that there is a codimension 2 subset T ⊂ S and an algebraic

P1-bundle π̄T : X̄T → S \ T with a section RT := X̄T \X.

Thus (π̄T )∗OX̄T
(RT ) is a rank 2 bundle on S \ T (where OX̄T

is, of course, the

structure sheaf). Its push forward to S is a unique reflexive sheaf E on S which

extends (π̄T )∗OX̄T
(RT ) (this holds both analytically and algebraically).

On the other hand, since every automorphism of the affine line extends to P1,

there is an analytic P1-bundle over S containing X, and the similar push forward to
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S gives a rank 2 analytic bundle extending (π̄T )∗OX̄T
(RT ). This implies that E is

locally free and, therefore, generates an algebraic P1-bundle X̃ → S. The closure of

RT gives a rational holomorphic section R̃ ⊂ X̃ such that X̃ \ R̃ agrees with X over

S \ T . Furthermore, by construction this embedding π−1(S \ T ) ↪→ X̃ \ R̃ extends to

a biholomorphic map X → X̃ \ R̃. As rational holomorphic functions are regular the

last map is an isomorphism and R̃ is a regular section.

A P1-bundle with a section comes from an extension of line bundles. Any such

extension splits if S is affine. This gives us a second section in the P1-bundle disjoint

from the first one, which makes X a line bundle over S. Applying the free action to

the zero section of this line bundle we see that X is isomorphic to S ×C over S. 2

Propositions 3.2, 4.2, and 5.1 imply immediately our main result.

Theorem 5.2. Let the assumption of Lemma 2.2 hold, X be smooth, and H2(X) =

H3(X) = 0.

(i) Then Γ can be chosen so that each irreducible component Z0 of Z (resp. Γ0 =

θ(Z0) of Γ) is rational (resp. a polynomial curve), and θ|Z0 : Z0 → Γ0 is not bijective.

(ii) If S is smooth and the C+-action Φ on X has no fixed points then X is

isomorphic to S×C over S and the action is generated by a translation on the second

factor.

Proof of Theorem 1. By [Miy80] C3//C+ ' C2 for every nontrivial C+-action

on C3. Hence Theorem 5.2 (ii) implies the desired conclusion. 2

Remark 5.4. (1) Theorem 1 has the following reformulation in the language of

locally nilpotent derivations. Every locally nilpotent derivation of C[3] that vanishes

nowhere (as a vector field on C3) is a partial derivative in a suitable coordinate

system.

(2) In the case of a smooth contractible X the assumption on smoothness of S in

Theorem 5.2 (ii) will be removed in the coming paper of the author and N. Saveliev.

(3) For contractible X Theorem 5.2 (ii) and, therefore, Theorem 1 follow imme-

diately from injectivity of θ without using Propositions 4.2 (i) and 5.1. Indeed, by

Fujita’s result (e.g., see [Ka94, Prop. 3.2]) a smooth affine contractible X is facto-

rial and its invertible functions are nonzero constants. Hence the same is true for

S. Injectivity of θ is the same as the geometric irreducibility of π in codimension 1
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in terminology of [Miy87]. Thus the assumption of [Miy87, Theorem 2] holds which

implies that X a vector line bundle over S. As S is affine factorial its Picard group

is trivial [Fu, Proposition 1.17], i.e. X is isomorphic to S ×C over S.

(4) Consider an n-dimensional smooth contractible affine algebraic variety X and

a non-degenerate algebraic action of a unipotent group U on it. Suppose that U

is of dimension n − 2 (i.e. U is isomorphic to Cn−2 as an affine algebraic variety).

As we mentioned, X is factorial and by Zariski’s theorem [Za] S = X//U is still

an affine algebraic surface. Now one can adjust the proofs of Proposition 3.2 and

the injectivity statement in Proposition 4.2 for this situation with one additional

assumption: beginning from Lemma 2.2 we suppose that there are at most finitely

many orbits non-isomorphic to Cn−2 (this will provide the Zariski dense cylinder

E∗ ' Z∗ × Cn−2 in E). As Miyanishi’s theorem [Miy80] says that Cn//U ' C2 in

the case of a free U -action, we see that for such actions the analogue of morphism θ

remains bijective.
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