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Abstract

The AK-invariant of an affine domain is the intersection of kernels of locally
nilpotent derivations on this domain. It allows often to distinguish exotic struc-
tures from Euclidean spaces, especially in dimension 3. In this paper we develop
methodology for computation of AK-invariant and give examples of its applications.
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1 Introduction

Let A be an affine domain over C and LND(A) be the set of all locally nilpotent
derivations of A . We study methods of computation of the following invariant

AK(A) =
⋂

∂∈LND(A)

Ker ∂.

This invariant was introduced in [M-L96] where it was used to distinguish the Russell
cubic (which is the smooth contractible hypersurface x + x2y + z2 + t3 = 0 in C4 )
from C3 while old invariants failed to do so. It turned out that the AK-invariant (or its
modification [De97]) is the only known tool to show that some contractible affine algebraic
manifolds are exotic algebraic structures on Cn (i.e. they are diffeomorphic to R2n but
not isomorphic to Cn ) [KaM-L97b, KaZa00, Ka02]. Since the task of recognizing exotic
structures appears naturally in several classical problems of affine algebraic geometry
[Za97] the AK -invariant has some nice applications. The most essential of them is the
contribution [KaM-L97b] to the positive solution of the Linearization Conjecture which
was eventually achieved by M. Koras and P. Russell [KoRu99, KaKoM-LRu97]. Another
result obtained with the help of the AK-invariant is the classification [Ka02] of smooth
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1



contractible affine threefolds with a non-degenerate C2
+ -action which in combination

with [KaZa01] yields the following theorem: every polynomial on C3 with general C2 -
fibers is a variable. Unfortunately, none of these papers contain a coherent technique of
computation of AK(A) for a sufficiently large class of affine domains A . Our aim here
is to fix this situation.

Here is the scheme of computation of AK(A) . An associated algebra Â with a
natural mapping gr : A → Â is constructed in such a way that for every nonzero
∂ ∈ LND(A) there is a canonically defined associated nonzero ∂̂ ∈ LND(Â) with the
following property

deg∂(a) ≥ deg
∂̂
(gr (a)) ∀a ∈ A

where deg∂ (resp. deg
∂̂

) is the degree function on A (resp. Â ) generated by ∂ (resp.

∂̂ ) [FLN92]. In many cases it is easier to study LND(Â) than LND(A) . Knowing
LND(Â) and using the inequality on degrees it is sometimes possible to compute AK(A) .
In our previous papers Â appeared as the associated graded algebra of a filtered algebra
(A,F) where the filtration F was generated by a degree function on A . Here we show
that in fact Â can be viewed as the algebra of regular function on an associated affine
algebraic variety X̂ . This approach enables us to give an explicit construction of the
associated locally nilpotent derivation ∂̂ after replacing ∂ by an equivalent derivation
(i.e. by a locally nilpotent derivation with the same kernel). We suggest also an alternative
more geometrical way of constructing Â . Suppose that X := specA is normal and Γ is
a germ of a smooth curve at point o . We consider the germ of a normal affine algebraic
variety X with morphism ρ : X → Γ so that X ∗ = X \ ρ−1(o) is naturally isomorphic
to X × Γ∗ with Γ∗ = Γ \ o . We shall show that if the fiber ρ∗(o) is reduced then the
algebra of regular functions on it may serve as Â . It is worth mentioning that in [Po86]
associated objects appear in a somewhat similar manner. However our construction is
essentially different.

We conclude the paper with several examples. In section 10 we consider a smooth
surface with Kodaira logarithmic dimension 1. It was shown in [KaM-L97a] that every
such a surface is isomorphic to a hypersurface in C3

x,y,z given by a “standard” equation
P (x, y, z) = 0 . Consider hypersurfaces in C4

x,y,z,t given by tl − P (x, y, z) = 0, l ≥ 2 .
Some of them (but not all) are contractible and, therefore, diffeomorphic to R6 [ChDi94].
We show that the AK-invariant of such a contractible hypersurface is nontrivial, i.e. it is
an exotic structure on C3 . In section 11 we prove a similar result for the hypersurface
x + x2y + z2 + t3 + u5 = 0 in C5

x,y,z,t,u which is diffeomorphic to R8 . (We attribute
the question about this hypersurface to M. Masuda who asked the first author about it
long ago. But this question is so natural that it occurred certainly to other people.) One
can find more complicated examples (different from hypersurfaces) in [Ka02] but we avoid
them in this paper since computations are a bit tedious.

2 Preliminaries

Notation. In this paper A will be always the algebra of regular functions C[X] on a
closed reduced affine algebraic subvariety X of Cn . The defining ideal of X will be
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denoted by I , i.e. A = C[n]/I . Beginning from Lemma 2.2 we shall suppose that X is
irreducible, i.e. A is an affine domain.

Definition 2.1. Recall that a derivation ∂ on A is a linear endomorphism which
satisfies the Leibnitz rule, i.e. ∂(ab) = a∂(b) + b∂(a) . This derivation is called locally
nilpotent if for each a ∈ A there exists an m = m(a) such that ∂m(a) = 0 . The set of
all locally nilpotent derivations of A will be denoted by LND(A) . We shall denote the
kernel of ∂ by A∂ .

The exponent of t∂ where ∂ ∈ LND(A) , t ∈ C can be viewed as an (associated)
algebraic C+ -action on X , and every algebraic C+ -action on X arises in this way
(e.g., see [Re68]). Note that a ∈ A∂ iff a is fixed under the associated C+ -action. In
particular, we have a more geometrical description of the AK-invariant: it is the subring of
A whose elements are the regular functions that are fixed under all algebraic C+ -actions.
The associated action is nontrivial iff ∂ is nonzero. Hence we have

Lemma 2.1. Let ∂ ∈ LND(A) be nonzero and ϕ = (a1, . . . , ak) : X− → Ck be a
rational map with each ai ( i = 1, . . . , k ) in the fraction field Frac(A∂) . Then the fibers
ϕ−1(c), c ∈ Im ϕ ⊂ Ck are invariant under the associated C+ -action and for a general
c ∈ ϕ(X) the restriction of this action to ϕ−1(c) is nontrivial.

Definition 2.2. We shall call such a restriction of the action to a general fiber ϕ−1(c)
a specialization of a1, . . . , ak .

If A is a domain every locally nilpotent derivation defines a degree function deg ∂

on A with natural values [FLN92] given by the formula deg ∂(a) = max{m | ∂m(a) 6= 0}
for every nonzero a ∈ A . This implies

Lemma 2.2. Let the assumption of Lemma 2.1 hold, Ac be the algebra of regular
functions on Xc = ϕ−1(c) for c ∈ Im ϕ , and ac = a|Xc . Denote by ∂c the locally
nilpotent derivation on Ac generated by ∂ . Then deg ∂(a) = deg ∂c

(ac) for general
c ∈ Im ϕ .

Proposition 2.1. [M-L96, KaM-L97b, Ka02] Let ∂ ∈ LND(A) be nonzero.
(1) A has transcendence degree one over A∂ . The field Frac(A) of fractions of A

is a purely transcendental extension of Frac(A∂) , and A∂ is algebraically closed in A .
(2) Let b ∈ A and deg ∂(b) = 1 . Then for every a ∈ A such that deg ∂(a) = m

there exist a′, a0, a1, . . . , am ∈ A∂ for which a′, am 6= 0 and a′a =
∑m

j=0 ajb
j .

(3) Suppose a1, a2 ∈ A . Then a1a2 ∈ A∂ \ {0} implies a1, a2 ∈ A∂ . In particular,
every unit u ∈ A belongs to A∂ .

(4) Let F = (f1, . . . , fs) : X → Y ⊂ Cs and G : Y → Z ⊂ Cj be dominant
morphisms of reduced affine algebraic varieties. Put H = G ◦F = (h1, . . . , hj) : X → Z .
Suppose that for general point ξ ∈ Z there exists a (Zariski) dense subset Tξ of G−1(ξ)
such that the image of any non-constant morphism from C to G−1(ξ) does not meet
Tξ . If h1, . . . , hj ∈ A∂ then f1, . . . , fs ∈ A∂ .

The next fact is an immediate consequence of (4).
Corollary 2.1. Suppose that an irreducible polynomial p ∈ C[x, y] is not a variable

in any polynomial coordinate system on C2 (resp. none of a nonzero fibers of p contains
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a polynomial curve) and morphism (a1, a2) : X → C2 is dominant for a1, a2 ∈ A (resp.
p(a1, a2) 6= 0 ). Let p(a1, a2) ∈ A∂ . Then a1, a2 ∈ A∂ . In particular, if a2

1+a3
2 ∈ A∂\{0}

then a1, a2 ∈ A∂ .

Definition 2.3. Two derivations are called equivalent if they have the same kernel.

Lemma 2.3. (cf. Prop. 1.2 from [Da97]) Every two locally nilpotent derivations ∂
and δ on A are equivalent iff they generate the same degree function. Furthermore,
there exist α, β ∈ A∂ \ 0 such that α∂ = βδ .

Proof. If ∂ and δ generate the same degree function they have the same kernel
which consists of elements of degree zero. Let ∂ and δ be equivalent. We show that
they generate the same degree function. Let b ∈ A and deg ∂(b) = 1 . By Proposition
2.1(2) it suffices to show that deg δ(b) = 1 , that is, α := δ(b) ∈ A∂ = Aδ . Assume
that m = deg ∂(α) > 0 . Then there exist a′ 6= 0, a0, a1, . . . , am ∈ A∂ for which a′α =∑m

j=0 ajb
j . Hence a′δ(α) = α

∑m
j=1 jajb

j−1 which implies that deg δ(δ(α)) ≥ deg δ(α) .
Contradiction. For the second statement we may put α = δ(b) and β = ∂(b) . 2

A mapping D : Aj → A is a multiderivation of rank j if D is antisymmetric
and D is a derivation in any argument. That is, if we fix, say a1, . . . , aj−1 ∈ A , then
∂(a) = D(a1, . . . , aj−1, a) is a derivation on A . When j is the transcendence degree of
A we say that D is of maximal rank. The following fact is simple.

Lemma 2.4. Let a1, . . . , aj ∈ A be algebraically dependent. Then for every multi-
derivation D of rank j we have D(a1, . . . , aj) = 0 . Furthermore, if D is nonzero and
of maximal rank then D(a1, . . . , aj) = 0 iff a1, . . . , aj ∈ A are algebraically dependent.

The proof of the following fact is the exact repetition of Lemma 6 from [M-L96].

Lemma 2.5. Let D be a nonzero multiderivation of maximal rank and let ∂(a)
= D(a1, . . . , aj−1, a) for some algebraically independent a1, . . . , aj−1 ∈ A (in particu-
lar, ∂ is nonzero). Let b1, . . . , bj−1 ∈ A∂ be algebraically independent. Put δ(a) =
D(b1, . . . , bj−1 , a) . Then δ and ∂ are equivalent.

Let (x1, . . . , xn) be a coordinate system in Cn ⊃ X and x̃i = xi|X for every i .
Suppose that dim X = k and that X0 is the subset of X such that (x̃1, . . . , x̃k) is a
local holomorphic coordinate system at each point of X0 . Without loss of generality one
can assume that X0 is a Zariski dense subset of X . Let a1, . . . , ak be elements of A .
Consider the matrix {∂aj/∂x̃i | i, j = 1, . . . , k; } of regular functions on X0 . Denote
the determinant of this matrix by JX(a1, . . . , ak) . Let J(p1, . . . , pn) be the Jacobian of
n polynomials pi ∈ C[n] with respect to (x1, . . . , xn) and π : C[n] → A = C[n]/I be the
natural projection. Set JX(P) equal to π(J(P , x1, . . . , xk)) where P = (P1, . . . , Pn−k)
is an ordered sequence of polynomials on Cn .

Lemma 2.6. Let P and ai be as before and Pi ∈ I for every i . Put ai = π(pi) .
Then π(J(P1, . . . , Pn−k, p1, . . . , pk)) coincides up to a sign with JX(P)JX(a1, . . . , ak) .
In particular, the last product is a regular function on X and, therefore, D(a1, . . . ,
ak) := JX(P)JX(a1, . . . , ak) is a multiderivation on A of maximal rank.

Proof. If the gradients of P1, . . . , Pn−k are linearly dependent at general points of X
then one can see that both π(J(P1, . . . , Pn−k, p1, . . . , pk)) and JX(P) are zeros. Thus
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we assume that the gradients are linearly independent at a general point z of X0 .
Let U ⊂ Cn be a neighborhood of z where (P , x1, . . . , xk) is a local holomorphic
coordinate system. Consider the Jacobian of (P , p1, . . . , pk) with respect to this system.
The restriction of this Jacobian to X ∩ U is JX(a1, . . . , ak) . Since π(J(P , x1, . . . , xk))
coincides with JX(P) the Chain rule implies the desired conclusion. 2

Definition 2.4. Let D be as in Lemma 2.6. The derivation ∂(a) = D(a1, . . . , ak−1, a)
(with fixed a1, . . . , ak−1 ) will be called a derivation of Jacobian type. The set of all locally
nilpotent derivations of A of Jacobian type will be denoted by JLND(A) .

Proposition 2.2. [M-L04] For every ∂ ∈ LND(A) there exists an equivalent δ ∈
JLND(A) . In particular, AK(A) =

⋂
∂∈JLND(A) A∂ .

Remark 2.1. In general the choice of the sequence P which appears in an equiv-
alent locally nilpotent derivation of Jacobian type depends on ∂ ∈ LND(A) . But if
X is a strict complete intersection given by P1 = . . . = Pn−k = 0 then δ(a) =
JX(P1, . . . , Pn−k)J

X(a1 , . . . , ak−1, a) with a1, . . . , ak−1 ∈ A∂ is always locally nilpotent
and it is equivalent to ∂ provided a1, . . . , ak−1 are algebraically independent. This can
be proven exactly in the same manner as it was done for hypersurfaces in [KaM-L97b].

3 Degree and semi-degree functions

Each nonzero polynomial p is the sum of nonzero monomials, and the set of these mono-
mials will be denoted by M(p) .

Definition 3.1. A weight degree function on the polynomial algebra C[n] is a real-
valued degree function d such that d(p) = max{d(m) |m ∈ M(p)}, where p ∈ C[n] is
a non-zero polynomial. Clearly, d is uniquely determined by the weights di := d(xi) ∈
R, i = 1, . . . , n. A weight degree function d defines a grading C[n] = ⊕t∈RC

[n]
d, t, where

C
[n]
d, t \{0} consists of all the d− homogeneous polynomials of d− degree t . Accordingly,

for any p ∈ C[n] \ {0} we have a decomposition p = pt1 + . . . + ptl into a sum of
d− homogeneous components pti of degree ti where t1 < t2 < . . . tl = d(p) . We call
p̄ := pd(p) the principal component of p . It is clear that pq = p̄q̄ .

Let Î be the graded ideal in C[n] generated by the principal components p̄, where
p runs over I.

Lemma 3.1. There exists c0 > 0 such that for every d -homogeneous q̄ ∈ Î there
exists q ∈ I whose principal component is q̄ and such that d(q)− d(q − q̄) ≥ c0 .

Proof. Let q1, ..., ql be elements of I such that their principal components q̄1, ..., q̄l

are generators of Î . Let c0 = min1≤i≤l(d(qi)−d(qi−q̄i)) . If r1, ..., rl are d− homogeneous
polynomials (i.e. r̄i = ri ) such that polynomial q̄ =

∑l
i=1 riq̄i then d(riqi) − d(riqi −

r̄iq̄i) ≥ c0 and d(riqi) = d(q) for every i . Hence d(q)−d(q− q̄) ≥ c0 for q =
∑l

i=1 riqi .
2

We say that a function s : A −→ R
⋃{−∞} is a semi-degree function if in the

standard definition of a degree function on A (e.g., see [Za97]) the equality s(ab) =
s(a) + s(b) is replaced by the inequality s(ab) ≤ s(a) + s(b) for all a, b ∈ A .
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Lemma 3.2. Let d be a weight degree function on C[n] and π : C[n] → A =
C[n]/I = C[X] be the natural projection and let X contain the origin 0̄ of Cn . For
a ∈ A \ {0} set dA(a) = infp∈π−1(a) d(p) . For every nonzero a ∈ A we have

(1) there exists a polynomial p ∈ π−1(a) such that p̄ /∈ Î ;
(2) dA(a) = d(q) for a polynomial q ∈ π−1(a) iff q̄ /∈ Î . In particular, dA(a) =

minq∈π−1(a){d(q)} ;
(3) dA is a semi-degree function and, moreover, d(ab) < d(a) + d(b) for a, b ∈ A

only in the case when there exist p ∈ π−1(a) and q ∈ π−1(b) such that p̄, q̄ /∈ Î and
p̄q̄ ∈ Î . In particular, if Î is prime then dA is a degree function on A .

Proof. It is clear that dA(a) = d(q) for q ∈ π−1(a) when q̄ /∈ Î , and dA(a) < d(q)
when q̄ ∈ Î . Thus (2) follows from (1).

In order to prove (1) we show first that for nonzero a ∈ A we have dA(a) 6= −∞ .
Assume the contrary. That is, there exists a sequence pj ∈ C[n], j = 1, . . . , such that
pj ∈ π−1(a) and lim

j→∞
d(pj) = −∞. Note that I ⊂ α where α ⊂ C[n] is the maximal

ideal that vanishes at the origin 0̄ ∈ Cn . For p ∈ C[n] set µ(p) = minm∈M(p){deg m},
where deg is the standard degree. Then p ∈ αµ(p) . Note that µ(pj) →∞ . Denote by
p̃ the regular function π(p) ∈ A and set the ideal α̃ := (x̃1, . . . , x̃n) ⊂ A . Note that
a = p̃j ∈ α̃µ(pj), j = 1, . . . . Thus, a ∈ ⋂

l∈N α̃l = {0} ⊂ A by the Krull Theorem (e.g.,
see [Hu74], Theorem 4.4), and so, a = 0. Hence, dA(a) > −∞ for any a ∈ A \ {0}.

Let c0 be as in Lemma 3.1. Choose p ∈ π−1(a) so that d(p) < dA(a) + c0 . Assume
that its principal component p̄ belongs to Î . Then there exists q ∈ I as in Lemma
3.1 such that p̄ = q̄ . Hence for s = p − q we have s ∈ π−1(a) and d(s) < d(p) .
Furthermore, since d(q)− d(q − q̄) ≥ c0 all monomials in s whose d -degree is at least
dA(a) are the same as the corresponding monomials in p . If s̄ /∈ Î then we are done.
Otherwise we can subtract from s a polynomial of the same type as q . Since the number
of monomials in p whose d -degree is at least dA(a) is finite after a finite number of
subtractions we obtain a polynomial r ∈ π−1(a) such that either d(r) < dA(a) (which
is impossible) or r̄ /∈ Î . Hence we have (1).

The fact that dA is a semi-degree function which satisfies (3) follows from the con-
struction of dA . 2

4 Filtrations and associated graded algebras

A degree function dA on A determines the ascending filtration F = {F tA} on A,
where F tA := {a ∈ A | dA(a) ≤ t} and t ∈ R . Set F t

0A = {a ∈ A | dA(a) < t} . We
want to emphasize the following two properties of this filtration (see [Za97] for the rest)

(f3) (F t1A \ F t1
0 A)(F t2A \ F t2

0 A) ⊂ (F t1+t2A \ F t1+t2
0 A).

(f4) If {ti} ⊂ R is a decreasing sequence which is convergent to t and a ∈ A belongs
to each F tiA then a ∈ F tA .

In the case when dA is a semi-degree function condition (f3) is replaced by

(f3 ′ ) (F t1A \ F t1
0 A)(F t2A \ F t2

0 A) ⊂ F t1+t2A.
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Definition 4.1. Consider the linear space Gr A = ⊕t∈RGr tA where Ât = Gr tA :=
F tA/F t

0A, and introduce the following multiplication on Gr A . Suppose that f1 ∈
F t1A/F t1

0 A and f2 ∈ F t2A/F t2
0 A . Put (f1 + F t1

0 A)(f2 + F t2
0 A) equal to f1f2 + F t1+t2

0 A
if f1f2 ∈ F t1+t2A\F t1+t2

0 A and 0 otherwise (of course, the last possibility does not hold in
the case when the filtration is generated by a degree function). Extend this multiplication
using the distributive law. Then we call Â = Gr A the associated graded algebra of the
filtered algebra (A, F) . An element â ∈ Â is called dA -homogeneous iff â ∈ Ât for
some t ∈ R .

Define the mapping gr : A −→ Gr A by gr f = f̂ = f +F t
0A when f ∈ F tA\F t

0A .
If dA is a degree function, by property (f3) this mapping gr is a homomorphism of
multiplicative semigroups.

Proposition 4.1. Let Â be the associated graded algebra of a filtered algebra (A, F)
where the filtration F is generated by dA from Lemma 3.2 (in particular 0̄ ∈ X ). Then

Â ' C[n]/Î = C[X̂] ,

where X̂ is the affine variety in Cn defined by the ideal Î .

Proof. Let B = C[n]/Î . Note that Î is d -homogeneous, i.e. Î = ⊕t∈RÎ t where

Î t = I∩C
[n]
d,t . Put Bt = C

[n]
d,t/Î

t . Then B may be viewed as the graded algebra ⊕t∈RBt

with the natural multiplication. Construct a linear mapping ϕt : Bt → Ât as follows.
Let b ∈ Bt and let q ∈ C

[n]
d,t be a representative of b , i.e. b = q + Î . Suppose that b is

nonzero and thus q /∈ Î . For every p ∈ C[n] we denote by p̃ the regular function π(p)
on X . Put ϕt(b) = gr (q̃) . Since q = q̄ /∈ Î Lemma 3.2 implies that dA(q̃) = t and,
therefore, ϕt(b) is a nonzero element of Ât .

We want to show that this mapping is well-defined, injective, and surjective. The
injectivity follows from the fact that ϕt(b) is nonzero for nonzero b . Let q1 be another
representative of b , i.e. q2 := q − q1 ∈ Î t . By Lemma 3.2 dA(q̃) = dA(q̃1) = t but
dA(q̃2) < t . Hence gr (q̃) = gr (q̃1 + q̃2) = gr (q̃1) which implies that ϕt is well-defined.

Let a ∈ A and dA(a) = t . By Lemma 3.2 there exists p ∈ π−1(a) such that p̄ /∈ Î
and d(p) = d(p̄) = t . Put a1 = p̄|X and a2 = a − a1 = (p − p̄)|X . By Lemma 3.2
dA(a1) = t but dA(a2) < t since d(p − p̄) < t . Hence gr (a) = gr (a1 + a2) = gr (a1) .
Since gr (a1) belongs to the image of ϕt we see that ϕt is surjective.

Thus we obtained an isomorphism of linear spaces ϕ := ⊕t∈R : B → Â . Let b′ =
q′+Î ∈ Bt′ . If qq′ /∈ Î then qq′ is a representative of bb′ . By Lemma 3.2 dA(q̃q′) = t+t′

and, therefore, gr (q̃)gr (q̃′) = gr (q̃q′) . If qq′ ∈ Î then bb′ = 0 and dA(q̃q′) < t + t′ by
Lemma 3.2. Hence the definition of multiplication in Â implies that gr (q̃)gr (q̃′) = 0 .
Thus ϕ transforms the multiplication in B into the multiplication in Â . That is, ϕ
is an isomorphism of algebras which is the desired conclusion. 2

Remark 4.1. The proof of Proposition gives the following description of the mapping
gr . Let p ∈ π−1(a) where a ∈ A and let d(p) = dA(a) . Then gr (a) = π̂(p̄) where
π̂ : C[n] → Â, q → q|

X̂
is the natural projection.
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5 Associated locally nilpotent derivations

In this section Â and dA are the same as in Proposition 4.1.

Lemma 5.1. For every derivation ∂ on A there exists t0 such that ∂(F tA) ⊂
F t+t0A for every t ∈ R . 1

Proof. For every q ∈ C[n] put q̃ = π(q) where π is as in Lemma 3.2. Let
t0 = maxi(dA(∂(x̃i)) − dA(x̃i)) where (x1, . . . , xn) is a coordinate system on Cn . For
a nonzero a ∈ A choose p ∈ π−1(a) so that dA(a) = d(p) . Let pi be the partial
derivative of p with respect to xi . Clearly, p̃i = pi(x̃1, . . . , x̃n) and a = p(x̃1, . . . , x̃n) .
Hence ∂(a) =

∑
p̃i∂(x̃i) and

dA(∂(a)) ≤ max
i

dA(p̃i∂(x̃i)) ≤ max
i

(dA(p̃i) + dA(x̃i) + t0) ≤ dA(a) + t0

(the last inequality holds since dA(p̃i) + dA(x̃i) ≤ d(pi) + d(xi) ≤ d(p) = dA(a) ). 2

Definition 5.1. The smallest t0 as above will be called the defect def∂ of ∂
(the smallest t0 exists by (f4), Section 4). For every a ∈ A put â = gr (a) and

for every nonzero ∂ ∈ LND(A) define a nonzero ∂̂ ∈ LND(A) as follows: ∂̂(â) = ∂̂(a)
if dA(∂(a)) − dA(a) = def∂ , and ∂̂(â) = 0 otherwise. We call ∂̂ the associated locally
nilpotent derivation for ∂ . Clearly, deg ∂(a) ≥ deg

∂̂
(â) for every a ∈ A . We also want

to note that the associated derivation is a homogeneous derivation on graded algebra Â ,

i.e. any element of Â∂̂ coincides with a linear combination of dA -homogeneous elements

of Â∂̂ .

Definition 5.2. Let ∂(a) = JX(P)JX(a1, . . . , ak−1, a) be a Jacobian locally nilpotent
derivation. We say that ∂ is perfect if â1, . . . , âk−1 are algebraically independent. Denote
the set of perfect derivations on A by Per(A) .

The advantage of perfect derivations is that in the case, when Â is a domain, the

associated derivations can be given by gr (JX(P))J X̂(â1, . . . , âk−1, â) .
We shall show later (Corollary 7.1) that if Â is a domain then for a subalgebra

A0 of A , which contains m algebraically independent elements, gr (A0) contains m
algebraically independent elements as well. Applying this fact to A0 = Aδ where δ ∈
LND(A) , by Lemma 2.5 and Proposition 2.2 we have

Corollary 5.1. Let Â be a domain and δ ∈ LND(A) be nonzero. Then there exists
∂ ∈ Per(A) which is equivalent to δ . In particular, AK(A) =

⋂
∂∈Per(A) A∂.

6 Geometrical construction of associated objects

Let Γ be a germ of a smooth curve at o ∈ Γ , Γ∗ = Γ\o , X be an affine variety over Γ
(i.e. there exist a morphism ρ : X → Γ ), Xc = ρ−1(c), c ∈ Γ , X ∗ = X \Xo . We suppose
that there exists an isomorphism ϕ : X ∗ → X×Γ∗ such that ρ◦ϕ−1 is the projection to
the second factor. Consider the algebras of regular functions A = C[X ] ⊂ A∗ = C[X ∗] ,

1This fact was proven independently by the second author and by M. Masuda.
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and B = C[Γ] which we treat as a subalgebra of A . For every nonzero ∂ ∈ LND(A)
isomorphism ϕ generates a nonzero ∂∗ ∈ LND(A∗) so that B ⊂ Ker ∂∗ . Let b ∈ B
vanish at o . Since ∂̃ := bm∂∗ ∈ LND(A∗) and A∗ is finitely generated, for sufficiently
large m we have

Lemma 6.1. Every nonzero ∂ ∈ LND(A) generates a nonzero ∂̃ ∈ LND(A) so that

B ⊂ A∂̃ and the restriction of ∂̃ to each fiber Xc ' X, c 6= o is proportional to ∂ .

Put ∂o = ∂̃|Xo and consider b ∈ B with a simple root at o . Suppose that the
defining ideal of the divisor ρ∗(o) is the principal ideal of A generated by b (this is
the case when X is normal and ρ∗(o) is reduced). Choosing the smallest possible m in
the definition of ∂̃ we obtain a nonzero locally nilpotent derivation ∂o on Ao := C[Xo] .
Furthermore, using the projection of X ∗ ' X × Γ∗ to the first factor, for each nonzero
a ∈ A we assign a∗ ∈ A∗ which in general is not regular on X . Note that bna∗ ∈ A
for sufficiently large n . Choosing n the smallest possible we see that ao := bna∗|Xo is
a nonzero element of Ao . Define gr o : A → Ao by gr (a) = ao . This construction
implies

Proposition 6.1. Let the defining ideal of ρ∗(o) in A be the principal ideal generated
by b ∈ B which has a simple root at o , Ao, ∂o , and gr o be as before. Then ∂o ∈
LND(Ao) and deg ∂(a) ≥ deg ∂o

(gr o(a)) for every a ∈ A .

Remark 6.1. (1) The derivation ∂o defines a non-trivial associated C+ -action on
Xo which maps singXo onto itself. Furthermore, since this action is the restriction of
the associated C+ -action of ∂̃ it maps (singX ) ∩ Xo onto itself.

(2) By the Chevalley semi-continuity theorem about the dimension of the fibers of
algebraic morphisms we see that the dimension of every irreducible component of Xo is
at least dim X .

Example 6.1. Let d be a weight degree function on C[n] with integer values, i.e.
di = d(xi) ∈ Z . Then it generates a C∗ -action G on C[n] with Gc(xi) = c−dixi where
c ∈ C∗ . Let Γ = C and Γ∗ = C∗ , i. e. o = 0 . Put Xc = Gc(X) for c ∈ C∗ . This
defines X ∗ . Set X equal to the closure of X ∗ in C×Cn . In particular, Xo is a closed
subvariety of Cn ' Cn × o .

Lemma 6.2. Let the assumption of Example 6.1 hold, and Î , Â be as in Proposition
4.1.

(1) Let p ∈ C[n] and let pc = clp ◦ Gc where d(p) = l and c ∈ C∗ . Then pc → p̄
as c → 0 where p̄ is the d -principal component of p .

(2) The defining ideal Io of Xo in Cn contains Î and dim X̂ = dim X = dimXo .
In particular, if Î is prime (resp. primary) then Xo coincides with X̂ (resp. the
reduction of X̂ ).

Proof. Let p = p1 + . . . + ps + p̄ be the decomposition of p into d -homogeneous
polynomials, i. e. pi is homogeneous and li = d(pi) < l = d(p̄) . Clearly pc =
p̄ +

∑s
i=1 cl−lipi which yields (1). If p ∈ I then pc belongs to the defining ideal of Xc

in Cn . Since every point of Xo is a limit of points from Xc when c → 0 we see that
(1) implies the first statement of (2). Therefore, dimXo ≤ dim X̂ .

If dim X̂ = m then there are m algebraically independent regular functions π̂(p1) ,
. . . , π̂(pm) on X̂ where p1, . . . , pm are polynomials and π̂ : C[n] → Â = C[X̂] is
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the natural projection. Since Â is generated by homogeneous elements we can sup-
pose that each pi is d -homogeneous of weight ri . Consider a nonzero polynomial Q
in m variables such that Q is homogeneous with respect to the weights r1, . . . rm for
these variables. The fact that π̂(p1), . . . , π̂(pm) are algebraically independent is equiv-
alent to the fact that for every such Q the polynomial Q(p1, . . . , pm) does not belong
to Î . Moreover, for every nonzero polynomial P in m variables one can find such
a Q for which Q(p1, . . . , pm) is the principal d -component of P (p1, . . . , pm) . Thus
P (p1, . . . , pm) cannot belong to I which implies that π(p1), . . . , π(pm) are algebraically
independent (recall that π(p) = p|X ) and, therefore, dim X ≥ dim X̂ . On the other
hand by Remark 6.1 (2) dim X̂ ≥ dimX0 ≥ dim X . 2

7 The dimension of X̂

Let X, A, I be as in Preliminaries. Suppose that ∂ is a locally nilpotent derivation on
A . For every weight degree function d on C[n] we constructed the associated objects
which were denoted by X̂, Â, Î, gr , ∂̂ . Since we are going to consider now different
weight degree functions we shall use index d . That is, the associated objects now are
X̂d, Âd, Îd, gr d, ∂̂d . The following fact is obvious.

Lemma 7.1. (1) If d1 and d2 are two nonzero weight degree functions which are
proportional then their associated objects coincide. In particular, dim X̂d = dim X for
every weight degree function d with rational values.

(2) Let d be a weight degree function, M(p) be the set of monomials that are sum-
mands in a nonzero polynomial p , and N(p) be the set of Laurent monomials that are
of the form ν = µ1/µ2 where µ1, µ2 ∈ M(p) . Treat each ν as the vector in Zn ⊂ Rn

with the coordinates that are the powers of ν . Then p is d -homogeneous iff d (as a
vector in Rn ) is orthogonal to each ν ∈ N(p) .

Lemma 7.2. Let d be a weight degree function with real values. Then there exists
a weight degree function d1 with rational values such that Îd ⊂ Îd1 , i. e. X̂d1 is a
subvariety of X̂d .

Proof. Consider a set of d -homogeneous generators T of Îd and N(T ) =⋃
q∈T N(q) . Then the space V (T ) of vectors, that are orthogonal to N(T ) , is nonzero

(since it contains d ) and for every d1 ∈ V (T ) each d -homogeneous polynomial is d1 -
homogeneous by Lemma 7.1. Since V (T ) is determined in Rn by a system of linear
equations with integer coefficients, the subset of V (T ) , that consists of points with ra-
tional coordinates, is dense in V (T ) . Choose d1 from this subset. Then each q ∈ T is
d1 -homogeneous. Let p ∈ I be such that its principal d -component p̄d = q ∈ T . If d1

is near d then the principal d1 -component of p is again q . Thus we can choose d1 so
that Îd1 contains the generators of Îd which implies the desired conclusion. 2

Note that the argument in the proof of Lemma 6.2 that dim X ≥ dim X̂d works for
not only integer-valued but real-valued weight degree functions d . On the other hand
since X̂d1 is a subvariety of X̂d we have that dim X̂d ≥ dim X̂d1 = dim X where the
last equality is a consequence of Lemmas 6.2 and 7.1 (1). Thus we have
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Theorem 7.1. For every real-valued degree function d the dimensions of X and
X̂d coincide.

Corollary 7.1. Let Â be a domain and A0 be a subring of A which contains m
algebraically independent elements. Then gr (A0) contains m algebraically independent
elements.

Proof. Let m be the transcendence degree of A0 and l ≤ m be the transcendence
degree of gr (A0) . Since by Theorem 7.1 the transcendence degree of Â is k = dim X
there exist homogeneous elements â1, . . . , âk−l ∈ Â that are algebraically independent
over gr (A0) . Let âi = gr (ai) where ai ∈ A . Assume that l < m . Then there
exists a nonzero polynomial P in k − l variables with coefficients in A0 such that
α := P (a1, . . . , ak−l) = 0 . Consider the set M(P ) of monomials from P . Choose
monomials from M(P ) whose dA -degree is the largest and consider their sum (recall
that dA is a degree function on A by Lemma 3.2). This is another nonzero polynomial
Q(a1, . . . , ak−l) with coefficients in A0 . For every µ ∈ M(P ) its image gr (µ) in Â is a
monomial in â1, . . . , âk−l with a nonzero coefficient from gr (A0) . Thus Q̂(â1, . . . , âk−l)
is a nonzero polynomial in â1, . . . , âk−l with coefficients in gr (A) . This polynomial must
be zero since otherwise gr (α) 6= 0 . This contradicts our assumption that â1, . . . , âk−l

must be algebraically independent over gr (A0) . 2

8 How to choose degree functions

Let d, dA, Â, Î and X̂ ⊂ Cn be as in Lemma 3.2 and Proposition 4.1. In order to describe
associated derivations on Â we need to find out which subalgebras of Â may serve as
kernels of nonzero homogenous locally nilpotent derivations on Â . By Theorem 7.1,
dim X̂ = k . Hence, if Â is a domain, Proposition 2.1 (1) implies that such a subalgebra
is determined by any (k − 1) -tuple of its algebraically independent elements. We can
suppose that each of these elements is dA -homogeneous and, furthermore, irreducible by
Proposition 2.1 (3). To make our search smaller we need to make the set of all irreducible
dA -homogeneous elements of Â as small as possible. Every dA -homogeneous â ∈ Â
is the restriction to X̂ of a d -homogeneous polynomial p . Assume that p is not a
monomial, i.e. we have monomials µ1 6= µ2 ∈ M(p) . We treat d and ν = µ1/µ2 ∈ N(p)
as elements of Rn . By Lemma 7.1 p is d -homogeneous iff N(p) ⊂ Ld := Zn∩Kd where
Kd is the hyperplane orthogonal to d . Thus in order to reduce the set of d -homogeneous
polynomials we have to choose d so that the set Ld is the smallest possible. On the
other hand we cannot make it too small if we want to keep Îd the same (i.e. Îd = Î ).
Indeed, if P̄1, . . . , P̄l are generators of Î then

⋃l
i=1 N(P̄i) ⊂ Ld . It turns out that this

is the only restriction on Ld .

Lemma 8.1. Let P̄1, . . . , P̄l be as above, W ⊂ Rn be the subspace spanned by⋃l
i=1 N(P̄i) , and L = W ∩ Zn . Then d can be chosen so that Ld = L . Furthermore,

the set of such weight degree functions is dense in the subspace V ⊂ Rn of vectors
orthogonal to L .

Proof. Every z ∈ Rn \W is not orthogonal to any d in an open dense subset Vz

of V . The set
⋂

z Vz with z running over Zn \L is dense in V by the Baire category
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theorem. 2

Now every dA -homogeneous element of Â may be viewed as the restriction to X̂ of
a d -homogeneous polynomial p so that M(p) ⊂ (µ + L) ∩ (Z≥0)

n for any µ ∈ M(p) .
Furthermore, suppose that P1, . . . , Pl is a Gröbner basis of I with respect to a monomial
order and µi is the initial term of Pi . Any element of A is the restriction of a unique
polynomial p such that M(p) is contained in the set SA = (Z≥0)

n \ ⋃l
i=1(µi + (Z≥0)

n)
which we call a canonical monomial set of A . We denote also by P the free Z -
submodule of L generated by the Laurent monomials ν ∈ L of the form ν = µ1/µ2

where µ1, µ2 ∈ SA . Remark 4.1 implies

Lemma 8.2. In the above notation every dA - homogeneous â ∈ Â is the restriction
to X̂ of a d -homogeneous polynomial p so that M(p) ⊂ (µ+L)∩SA for any µ ∈ M(p) .

Proposition 8.1. Let â, p, µ be as in Lemma 8.2. Suppose that â is irreducible and
ûâ is not the restriction to X̂ of a variable for any unit û ∈ Â .

(1) Then, replacing â by ûâ , if necessary, one can suppose that p and the Laurent
polynomial µ−1p are irreducible. In particular, if {ν1, . . . νk} is a Z -basis of P then
µ−1p = q(ν1, . . . , νk) where q is an irreducible polynomial.

(2) Let each νi in (1) be of the form νi = µi/µ0 where µ0, . . . , µk are standard
relatively prime monomials. Then there exists a standard homogeneous polynomial Q in
k + 1 variables such that p = Q(µ0, . . . , µk) .

Proof. Since â is irreducible, the restriction to X̂ of any divisor of p but one is a
unit in Â . Thus replacing â by ûâ , if necessary, one can suppose that p is irreducible.
Let µ−1p = r1r2 where r1 and r2 are non-invertible Laurent polynomials and let µ1

and µ2 be (standard) monomials such that q1 = µ1r1 and q2 = µ2r2 are polynomials
that are not divisible by variables. Then q1q2 is a polynomial that is not divisible by any
variable. Since the same is true for p we have p = q1q2 which contradicts irreducibility
of p . Thus we have (1). If s is the degree of q then µs

0q(ν1, . . . , νk) = Q(µ0, . . . , µk)
is a standard irreducible polynomial which implies (2). 2

9 Non-trivial AK(A)

If AK(A) = C we say that A (or X ) has a trivial AK -invariant. This is so, for
instance, when A is a polynomial ring. Thus X with a nontrivial AK -invariant cannot
be isomorphic to Cn . Since a nonzero locally nilpotent derivation generates a nonzero
associated locally nilpotent derivation we have the following.

Proposition 9.1. Suppose that there are no nonzero locally nilpotent derivations on
the associated algebra Â of A . Then there are no nonzero locally nilpotent derivations
on A and, in particular, AK(A) = A .

If there are nonzero derivations on Â but AK(Â) 6= C the situation is much more
complicated. We know some cases in which a non-triviality of AK(A) can be established.
One of them is discussed below.
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Let Î be the associated ideal of I for some weight degree function. We say that a
weight degree function d is strongly compatible with pair {I, Î} if Îd = Î and Ld = L
in notation of Lemma 8.1.

Theorem 9.1. Let (x̄, ȳ) = (x1, . . . , xk, y1, . . . , ym) be a coordinate system on Cn

(where n = m + k ) such that the restrictions of x1, . . . , xk to a closed subvariety X
of Cn are algebraically independent. Suppose that the defining ideal I of X contains
P = q(x̄)y1 − p(x̄) where q(x̄) and p(x̄) are relatively prime nonconstant polynomials.
Let Î be the associated graded ideal of I for some weight degree function, L and SA

be as in Lemma 8.2. Suppose that
(i) for every monomials µ1, µ2 ∈ SA we have µ1µ

−1
2 ∈ L if and only if µi = µµ′i, i =

1, 2 where µ′i ∈ C[x̄] ;
(ii) there is a sequence of weight degree functions {dj} strongly compatible with {I, Î}

such that the set {dj(xi)} is bounded from above, and for every µ ∈ SA \C[x̄] we have
dj(µ) →∞ as j →∞ ;

(iii) for every i = 1, . . . , m , a nonzero ∂ ∈ LND(A) , and sufficiently large j we
have deg

∂̂dj

(yi|X̂) ≥ 2 .

Then q(x̄)|X ∈ A∂ . In particular, AK(A) is non-trivial.
Proof. Every a ∈ A is a restriction of a unique polynomial r such that M(r) ⊂ SA .

Let us show that if deg ∂(a) ≤ 1 then M(r) ⊂ SA ∩C[x̄] . Let M(r) = M1 ∪M2 where
M1 ⊂ SA ∩ C[x̄] and M2 ⊂ SA \ C[x̄] . Assume that M2 is not empty. Then we can
suppose by (ii) that dj(µ) > dj(κ) for every µ ∈ M2 and κ ∈ M1 . Hence M(r̄) ⊂ M2

for the dj -principal component r̄ of r . Then (i) implies that r̄ is divisible by some
yi and, therefore, deg

∂̂dj

(r̄) ≥ 2 by (iii). By Remark 4.1 r̄|
X̂

= gr dj
(a) . Hence

deg ∂(a) ≥ 2 by the inequality on degree in Definition 5.2. Contradiction.
Let b ∈ A and deg ∂(b) = 1 . By Proposition 2.1 (2) every a ∈ A is of the form

a = (
∑k

i=0 aib
i)/a′ where a′, a0, . . . , ak ∈ A∂ . Hence a is the restriction of the rational

function r1(x̄)/r2(x̄) where r2|X = a′ ∈ A∂ . Note that y1 = p(x̄)/q(x̄) is a nonconstant
rational function on Ck

x̄ . Hence, putting a = y1 , we see that r2 is divisible by q . The
desired conclusion follows from the fact that A∂ is factorially closed. 2

Remark 9.1. Derksen [De97] suggested to consider instead of AK(A) the subring
DK(A) of A generated by the kernels on nonzero locally nilpotent derivations, while
keeping the scheme of computation the same. We say that DK(A) is trivial if DK(A) =
A . This is so, for instance, when A = C[n] . It follows from the proof that under the
assumption of Theorem 9.1 y1, . . . , ym /∈ DK(A) and, therefore, DK(A) is not trivial.
Furthermore, for non-triviality of DK(A) it suffices to require that deg

∂̂dj

(ŷi) ≥ 1

instead of assumption (iii). In general these two invariants AK(A) and DK(A) are not
equivalent, i.e. non-triviality of one of them does not imply non-triviality of the other
[CrMa03].

Example 9.1. Let us show how this technique works in the case of the Russell cubic
which is the hypersurface P = x + x2y + z2 + t3 = 0 in C4 (the argument below is also
valid for a hypersurface x+xmy+zk +tl = const where k, l ≥ 2 are relatively prime and
m ≥ 2 ), i.e. I is the principal ideal generated by P . Choose a weight degree function d
so that the associated ideal Î is generated by P̄ = x2y+z2 +t3 . For X̂ given by P̄ = 0
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the associated algebra Â = C[X̂] by Proposition 4.1. In particular, it is a domain. Note
that L from Lemma 8.1 is generated by the Laurent monomials x2yz−2 and t3z−2 .
Choosing an appropriate monomial order we can suppose that SA from Lemma 8.2 does
not contain monomials divisible by x2y . Hence P from Proposition 8.1 is generated
by vector t3z−2 . The same Proposition implies that every irreducible d -homogeneous
element â of Â is a restriction of either a variable or a polynomial of the form c1z

2+c2t
3

with c1, c2 ∈ C∗ . If in the last case â ∈ Â∂̂ for a nonzero ∂̂ ∈ Â then z, t ∈ Â∂̂ by

Corollary 2.1. Thus Â∂̂ contains always a pair of irreducible algebraically independent
d -homogeneous elements which are the restrictions of variables. Denote these variables
by ξ and ζ . Note that (x, y) 6= (ξ, ζ) since otherwise the specialization of x and y
(as in Definition 2.2) leads to a non-trivial C+ -action on the curve z2 + t3 = c (where
c ∈ C ) which is absurd. Similarly (ξ, ζ) cannot coincide with (z, t) , (y, z) , or (y, t) .
This leaves two cases: either (ξ, ζ) = (x, z) or (ξ, ζ) = (x, t) . In the first case the
specialization leads to the curve y = t3 + c where c ∈ C . Clearly deg ∂(y) ≥ 3 for
every nonzero locally nilpotent derivation on this curve. Similarly, in the second case
deg ∂(y) ≥ 2 which yields assumption (iii) of Theorem 9.1. Assumption (i) in the case
of the Russell cubic means that for every monomials µ1, µ2 ∈ SA we have µ1µ

−1
2 ∈ L

if and only if µi = µµ′i, i = 1, 2 where µ′i ∈ C[x, z, t] . This follows readily from the
description of SA and L since d(y) is not a Q -linear combination of d(z) and d(t) .
Note also that one can change d so that d(z) and d(t) remain fixed and d(y) → ∞
while d(y)+2d(x) = 2d(z) = 3d(t) . Thus assumption (ii) of Theorem 9.1 is also satisfied
and the AK -invariant of the Russell cubic is non-trivial.

10 Threefolds ramified over C3 .

It was shown in [KaM-L97a] that every smooth contractible surface of Kodaira logarithmic
dimension 1 is isomorphic to a hypersurface Ym,n,k in C3

x,y,z given by Pm,n,k(x, y, z) = 0
where Pm,n,k(x, y, z) = z−m[(zmy + g(z))k − (zmx + f(z))n + z] ; m ≥ 1 , n > k ≥ 2 ,
(k, n) = 1 ; f(0) = g(0) = 1 , and f and g are polynomials of degree at most m − 1
which are chosen so that Pm,n,k is a polynomial. Consider the hypersurface Xm,n,k,l ⊂
C4

x,y,z,t given by Rm,n,k,l(x, y, z, t) = tl − Pm,n,k(x, y, z) = 0 where l ≥ 2 . Then aim
of this section is to show that whenever Xm,n,k,l is contractible its AK -invariant is
nontrivial, i.e. it is an exotic algebraic structure on C3 . This will be done in Proposition
10.1 and Lemma 10.1 below.

It is easy to check that the zero fiber of P1,n,k (resp. R1,n,k,l ) is a general fiber.
By the Némethi-Sebastiani-Thom theorem [Ne91] X1,n,k,l is homotopy equivalent to the
joint of Y1,n,k and the general fiber of tl (which consists of l points). Thus X1,n,k,l is
contractible as Y1,n,k is contractible, and furthermore, X1,n,k,l is diffeomorphic to R6

by [ChDi].

Proposition 10.1. Let X := Xm,n,k,l . Then AK(A) = A unless k = l = 2 and m
is even. In particular, X1,n,k,l is an exotic structure on C3 .

Proof. We choose a weight degree function d so that the principal d -component
of Rm,n,k,l is Q(x, y, z, t) = tl + zm(n−1)xn − zm(k−1)yk , i.e. X̂ is a hypersurface given
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by Q(x, y, z, t) = 0 . By Proposition 9.1 it suffices to show that any associated locally
nilpotent derivation ∂̂ on Â is zero. Assume the contrary and by abusing notation
denote the restrictions of variables to X̂ by the same letters.

Case 1: k > 2 . Since n > k one can see that, when m(k − 1) > 1 (which holds
for k > 2 ) the singular locus of X̂ is the union of the surface given by z = t = 0 and
the line given by x = y = 0 . The singular surface coincides with the reduction of zeros
of z and a general orbit O of the associated C+ -action does not meet it by Remark
6.1 (1). Hence the image of the projection of O to the z -axis does not contain 0 which

implies that z is constant on O . Hence z ∈ Â∂̂ . The specialization of z produces a
non-trivial C+ -action on the Pham-Brieskorn surface Sn,k,l = {tl−xn +yk = 0} ⊂ C3

x,y,t

in contradiction with [KaZa00, Lemma 4]. Thus we can suppose that k = 2 .
Case 2: k = 2,m = 1 , i.e. X̂ is given by

tl + z(n−1)xn − zy2 = 0. (1)

We can suppose that the lattice L from Lemma 8.1 is generated by the Laurent monomi-
als z(n−2)xny−2 and zy2t−l , and P from Proposition 8.1 is generated by z(n−2)xny−2 .
The same Proposition implies that up to a unit factor any irreducible dA -homogeneous
element of Â is a restriction of a polynomial which is either a variable or of the form

c1z
(n−2)xn − c2y

2 (2)

with c1, c2 ∈ C∗ . If algebraically independent irreducible dA -homogeneous elements

â1, â2 ∈ Â∂̂ are the restrictions of two polynomials as in (2) then one can see that the

restrictions of z(n−2)xn and y2 to X̂ are in Â∂̂ . Since Â∂̂ is factorially closed x, y, z ,

and, therefore, t are in Â∂̂ . Hence ∂̂ is the zero derivation. If only â1 is of the form
c1z

(n−2)xn − c2y
2 then we have two possibilities : c1/c2 = 1 and c1/c2 6= 1 . In the

latter case the specialization of â1 (as in Definition 2.2) and (1) gives two equations
tl = z(c′y2 + c′0) and zn−2xn = cy2 + c0 with c, c′ 6= 0 . One can see that â2 cannot be
the restriction of a variable, since the specialization of any variable in combination with
the two equations leads to a curve without non-trivial C+ -actions in contradiction with

Lemma 2.1. When c1/c2 = 1 equation (1) implies that t is in Â∂̂ and the specialization
of t leads to a surface zn−2xn − y2 = c . Specializing a variable on this surface we get
the same contradiction. The similar argument works also in the case when â1 and â2

are the restrictions of variables.
Case 3: k = 2, m > 1 . As we mentioned in Case 1 z ∈ Â∂̂ . Thus after the

specialization of â1 = z we have again a non-trivial C+ -action on Sn,2,l . As n ≥ 3
and the action can be non-trivial only in the case of dihedral surface [KaZa00] we have
l = 2 . If m is odd Proposition 8.1 implies (in the same manner as in Case 2) that up
to a unit factor every irreducible dA -homogeneous element of Â is the restriction of a
polynomial which is either a variable or a polynomial of the form c1z

(n−2)mxn − c2y
2 .

One can check now that the specialization of algebraically independent irreducible dA -

homogeneous â1 and â2 from Â∂̂ produces a curve without a non-trivial C+ -action.
2

If m is even and k = l = 2 then AK(Â) is different from Â . However, this case is
not a trouble since Xm,n,2,2 is not homeomorphic to a Euclidean space.
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Lemma 10.1. If m is even then for i 6= 0, 2 the integer homology Hi(Xm,n,2,2) are
trivial, and H2(Xm,n,2,2) = Zn .

Proof. Let m = 2j . Replace t by t = u − zjy . Then Rm,n,2,2 becomes u2 −
2y(uzj + g(z)) + z−m[(zmx + f(z))n − g2(z) − z] . Hence M ′ := Xm,n,2,2 is the affine
modification of M = C3

x,z,u along divisor D = {uzj + g(z) = 0} ⊂ M with center
C = {u2 + z−m[(zmx + f(z))n − g2(z) − z] = uzj + g(z) = 0} ⊂ D (see [KaZa99] for
definitions). Note that D ' G × Cx where G is the hyperbola in C2

z,u given by
uzj + g(z) = 0 . As u2 + z−m[(zmx+f(z))n− g2(z)− z] = z−m[(zmx+f(z))n− z] on C ,
the natural projection C → G is an n -sheeted unramified covering. Hence it induces
the homomorphism H1(C) = Z → Z = H1(G) whose image is nZ . The exceptional
divisor E ⊂ M ′ is naturally isomorphic to C×Cy . Thus if σ : M ′ → M is the natural
projection σ|E : E → C ⊂ D induces the homomorphism τ1 : H1(E) = Z → Z = H1(D)
whose image is nZ . As σ∗(D) = E this affine modification satisfies the assumption
of [KaZa99, Th. 3.1] which says that the modification induces an isomorphism between
H∗(M ′) and H∗(M) iff it induces an isomorphism between H∗(E) and H∗(D) . Thus
M ′ is not contractible. In order to be more specific let us consider the commutative
diagram from [KaZa99, Th. 3.1]

. . . −→ Hj−1(E) −→ Hj(M̆ ′) −→ Hj(M
′) −→ Hj−2(E) −→ Hj−1(M̆ ′) −→ . . .

?
τ∗

?
' σ̆∗

?
σ∗

?
τ∗

?
' σ̆∗

. . . −→ Hj−1(D) −→ Hj(M̆) −→ Hj(M) −→ Hj−2(D) −→ Hj−1(M̆) −→ . . .

where M̆ = M \D, M̆ ′ = M ′ \E and σ̆∗ : H∗(M̆ ′) → H∗(M̆) is induced by the natural
isomorphism M̆ ′ → M̆ . As G ⊂ C2 is a general fiber of uzj + g(z) , the fundamental
group and, therefore, the first homology of C2 \G are isomorphic to Z [Ka93]. By the
additivity of Euler characteristics [Du87] we have χ(C2\G) = 1 . Hence H2(C

2\G) ' Z
since C2 \ G is homotopy equivalent to a 2-dimensional CW-complex and H2(C

2 \ G)
has no torsion [Mi63]. As M̆ ' M̆ ′ ' (C2 \G)×C we have H3(M̆ ′) = H3(M̆) = 0 and
H2(M̆ ′) = H2(M̆) = Z . Therefore, we have the commutative diagram

. . . −→ 0 −→ H3(M
′) −→ Z −→ Z −→ H2(M

′) −→ 0

? ?
τ1

?
'

. . . −→ 0 −→ 0 −→ Z −→ Z −→ 0 −→ 0

This implies that H2(M
′) = Zn and H3(M

′) = 0 . As π1(M
′) = π1(M) = 0

[KaZa99, Prop. 3.1] we have H1(M
′) = 0 . 2

This type of examples makes us to repeat the question which appeared first in [OP].

Conjecture. Let X be a smooth contractible affine algebraic variety of dimension 3
such that AK(A) = C (resp. DK(A) = A ). Then X is isomorphic to C3 .
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11 On Masuda’s question

In all previous computations of AK -invariant we dealt essentially with the case when the
free Z -module P from Proposition 8.1 was one-dimensional. If we study the invariant
on the hypersurface X of C5 given by x + x2y + z2 + t3 + u5 = const we encounter the
situation when P is of dimension 2 which is more complicated.

Lemma 11.1. Let q1 and q2 be irreducible algebraically independent homogenous
(in a standard sense) polynomials on C3 such that each component of general fibers of
morphism f = (q1, q2) : C3 → C2 is a (straight) line in C3 . Then q1 and q2 are
linear.

Proof. Consider the fiber f−1(0, c2) where c2 ∈ C∗ . It contains a line ` (which is
the limit of lines contained in general fibers). This line does not contain the origin as the
origin belongs to f−1(0, 0) . The plane that contains the origin and ` is a component of
q−1
1 (0) because f−1(0, c2) ⊂ q−1

1 (0) and q1 is homogeneous. Since q1 is irreducible it
is linear. 2

Lemma 11.2. Let X be an affine algebraic threefold with a dominant morphism
τ : X → C3

z,t,u . Suppose that ∂ ∈ LND(A) is such that A∂ contains two algebraically
independent elements a1 and a2 of the form

ai = qi(z
2, t3, u5), i = 1, 2 (3)

where each qi is homogeneous. Then two of three variables z, t , and u are contained
in A∂ .

Proof. Assume the contrary. Consider the composition ρ : X → C3
ξ,ζ,η of τ with

map C3
z,t,u → C3

ξ,ζ,η given by (ξ, ζ, η) = (z2, t3, u5) . Let g = (a1, a2) : X → C2 , and
f : C3 → C2 be given by f(ξ, ζ, η) = (q1(ξ, ζ, η), q2(ξ, ζ, η)) , i.e. g = f ◦ ρ .

Consider first the case when z, t, u /∈ A∂ . Note that any coordinate plane H ⊂ C3
ξ,ζ,η

is not the preimage of a curve in C2 under f . Indeed, otherwise there exists a polynomial
r on C2 such that r ◦ f vanishes on H , i.e. r ◦ f is divisible by a variable. Hence
r ◦ g = r ◦ f ◦ ρ is divisible by one of elements z, t, u . This contradicts our assumption
that z, t, u /∈ A∂ because A∂ is factorially closed and r ◦ g ∈ A∂ . Hence f(H) is dense
in C2 and, therefore, for general c ∈ C2 the curve Γc = f−1(c) meets any coordinate
hyperplane H of C3 transversally.

Since for general c each component C ′ of the curve Gc = g−1(c) is an orbit of a C+ -
action, each component C of Γc = ρ(Gc) is a polynomial curve because it is the image
of morphism ρ|C′ = (h1, h2, h3) : C ′ ' C → C ⊂ C3 . Condition that Γc meets each
coordinate plane transversally means that each hi has simple roots only. Furthermore,
ρ|C′ : C ′ ' C → C factors through a Galois covering τ(C ′) → C ramified over points
ρ(h−1

1 (0)), ρ(h−1
2 (0)), ρ(h−1

3 (0)) with orders 2,3, and 5 respectively. The Riemann-Hurwitz
formula implies that each hi must have at most one root as otherwise C ′ cannot be
isomorphic to C . Hence C is a straight line in C3

ξ,ζ,η . By Lemma 11.1 both q1 and
q2 are linear. Replacing them with their linear combinations we can suppose that q1 is,
say, of the form c1ξ + c2ζ which implies that c1z

2 + c2t
3 is invariant by the C+ -action

on X . By Corollary 2.1 z and t are in A∂ contrary to our assumption.
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Now suppose that one of variables, say u , is in A∂ . Then specializing u we can
treat ai as a polynomial in z2 and t3 . Hence Corollary 2.1 implies that both z, t are
contained in A∂ contrary to our assumption. 2

Proposition 11.1. Let X be the hypersurface of C5 given by x+x2y+z2+t3+u5 =
const . Then x|X ∈ AK(A) .

Proof. With an appropriate choice of a weight degree function d we can suppose
that X̂ is the hypersurface x2y + z2 + t3 + u5 = 0 in C5 , that L from Lemma 8.1 is
generated by x2yz−2, t3z−2, u5z−2 , and, therefore, P from Proposition 8.1 is generated
by t3z−2 and u5z−2 (because one can choose SA without monomials divisible by x2y ).
As in Example 9.1 we see that the assumptions (i) and (ii) of Theorem 9.1 hold (where
µ1, µ2 ∈ C[x, z, t, u] for assumption (i)). Thus it suffices to check assumption (iii) of that
Theorem. By Proposition 8.1 every dA -homogeneous irreducible element of Â is the
restriction to X̂ = X of either a variable or a polynomial q(z2, t3, u5) where q is a
(standard) homogeneous polynomial. By abusing notation we denote the restriction of

x, y, z, t, u to X̂ by the same letters. Let ∂̂ ∈ LND(Â) be homogeneous. If â ∈ Â∂̂ is
one of z, t, u then specializing â we reduce the dimension of the problem and, therefore,
we can see as in Example 9.1 that deg

∂̂
(ŷ) ≥ 2 .

Let us show that such an element â exists by assuming the contrary. As dim X = 4
by Proposition 2.1 one can find irreducible dA -homogeneous algebraically independent

elements â1, â2, â3 ∈ Â∂̂ . Note that x and y cannot belong to Â∂̂ simultaneously since
otherwise their specialization leads to a nontrivial C+ -action on the surface S given by
z2 + t3 + u5 = const in C3 . But it has no such actions by Proposition 9.1 since (with
an appropriate choice of a weight degree function) the associated surface Ŝ is the Pham-
Brieskorn surface z2 + t3 + u5 = 0 which has no nontrivial C+ -action [KaZa00, Lemma
4]. Thus â1, â2 ∈ C[z, t, u] and by Lemma 11.2 we can suppose that they coincide with
two of the variables z, t, u . 2

Remark 11.1. (1) The same application of the Smith theory, which shows that the
Russell cubic is contractible [KoRu97], implies that the hypersurface x+x2y+z2+t3+u5 =
0 is also contractible and, therefore, diffeomorphic to R8 [ChoDi94]. Since its AK -
invariant is nontrivial it is an exotic algebraic structure on C4 . (2) Note also that the
argument of Proposition 11.1 is applicable for hypersurfaces x+xmy+zk +tl +us = const
where k, l, s ≥ 2 are pairwise prime and m ≥ 2 .
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