- a) by showing each side is a subset of the other side.
- b) using a membership table.
- 16. Let A and B be sets. Show that
 - a) $(A \cap B) \subseteq A$.
- b) $A \subseteq (A \cup B)$.
- c) $A B \subseteq A$.
- d) $A \cap (B A) = \emptyset$.
- e) $A \cup (B A) = A \cup B$.
- 17. Show that if A, B, and C are sets, then $\overline{A \cap B \cap C} = \overline{A \cup B \cup C}$
 - a) by showing each side is a subset of the other side.
 - b) using a membership table.
- (18.) Let A, B, and C be sets. Show that
 - a) $(A \cup B) \subseteq (A \cup B \cup C)$.
 - **b)** $(A \cap B \cap C) \subseteq (A \cap B)$.
 - c) $(A-B)-C\subseteq A-C$.
 - d) $(A-C)\cap (C-B)=\emptyset$.
 - e) $(B A) \cup (C A) = (B \cup C) A$.
- (19.) Show that if A and B are sets, then $A B = A \cap \overline{B}$.
- Show that if A and B are sets, then $(A \cap B) \cup (A \cap \overline{B}) = A$.
- 21. Prove the first associative law from Table 1 by showing that if A, B, and C are sets, then $A \cup (B \cup C) = (A \cup B) \cup C$.
- 22. Prove the second associative law from Table 1 by showing that if A, B, and C are sets, then $A \cap (B \cap C) = (A \cap B) \cap C$.
- 23. Prove the second distributive law from Table 1 by showing that if A, B, and C are sets, then $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- 24. Let A, B, and C be sets. Show that (A B) C = (A C) (B C).
- **25.** Let $A = \{0, 2, 4, 6, 8, 10\}$, $B = \{0, 1, 2, 3, 4, 5, 6\}$, and $C = \{4, 5, 6, 7, 8, 9, 10\}$. Find
 - a) $A \cap B \cap C$.
- b) $A \cup B \cup C$.
- c) $(A \cup B) \cap C$.
- d) $(A \cap B) \cup C$.
- 26. Draw the Venn diagrams for each of these combinations of the sets A, B, and C.
 - a) $A \cap (B \cup C)$
- b) $\overline{A} \cap \overline{B} \cap \overline{C}$
- c) $(A B) \cup (A C) \cup (B C)$
- 27. Draw the Venn diagrams for each of these combinations of the sets A, B, and C.
 - a) $A \cap (B-C)$
- **b)** $(A \cap B) \cup (A \cap C)$
- c) $(A \cap \overline{B}) \cup (A \cap \overline{C})$
- 28. Draw the Venn diagrams for each of these combinations of the sets A, B, C, and D.
 - a) $(A \cap B) \cup (C \cap D)$
- b) $\overline{A} \cup \overline{B} \cup \overline{C} \cup \overline{D}$
- c) $A (B \cap C \cap D)$
- 29. What can you say about the sets A and B if we know that
 - a) $A \cup B = A$?
- b) $A \cap B = A$?
- c) A B = A?
- d) $A \cap B = B \cap A$?
- (e) A B = B A?
- Can you conclude that A = B if A, B, and C are sets such that
 - a) $A \cup C = B \cup C$?
- b) $A \cap C = B \cap C$?
- c) $A \cup B = B \cup C$ and $A \cap C = B \cap C$?
- (e 1 p-1 4129 B= du, y, 29 C= 12?

31. Let A and B be subsets of a universal set U. Show that $A \subseteq B$ if and only if $\overline{B} \subseteq \overline{A}$?

The symmetric difference of A and B, denoted by $A \oplus B$, is the set containing those elements in either A or B, but not in both A and B.

- 32. Find the symmetric difference of $\{1, 3, 5\}$ and $\{1, 2, 3\}$.
- 33. Find the symmetric difference of the set of computer science majors at a school and the set of mathematics majors at this school.
- **34.** Draw a Venn diagram for the symmetric difference of the sets *A* and *B*.
- **35.** Show that $A \oplus B = (A \cup B) (A \cap B)$.
- **36.** Show that $A \oplus B = (A B) \cup (B A)$.
- 37. Show that if A is a subset of a universal set U, then
 - a) $A \oplus A = \emptyset$.
- **b)** $A \oplus \emptyset = A$.
- c) $A \oplus U = \overline{A}$.
- d) $A \oplus \overline{A} = U$.
- 38. Show that if A and B are sets, then
 - a) $A \oplus B = B \oplus A$.
- **b)** $(A \oplus B) \oplus B = A$.
- **39.** What can you say about the sets A and B if $A \oplus B = A$?
- *40. Determine whether the symmetric difference is associative; that is, if A, B, and C are sets, does it follow that $A \oplus (B \oplus C) = (A \oplus B) \oplus C$?
- *41. Suppose that A, B, and C are sets such that $A \oplus C = B \oplus C$. Must it be the case that A = B?
- **42.** If A, B, C, and D are sets, does it follow that $(A \oplus B) \oplus (C \oplus D) = (A \oplus C) \oplus (B \oplus D)$?
- **43.** If A, B, C, and D are sets, does it follow that $(A \oplus B) \oplus (C \oplus D) = (A \oplus D) \oplus (B \oplus C)$?
- (*44.) Show that if A, B, and C are sets, then

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B|$$

- $|A \cap C| - |B \cap C| + |A \cap B \cap C|$.

(This is a special case of the inclusion–exclusion principle, which will be studied in Chapter 7.)

*45. Let $A_i = \{1, 2, 3, ..., i\}$ for i = 1, 2, 3, ... Find

- $\mathbf{a}) \bigcup_{i=1}^n A_i.$
- **b**) $\bigcap_{i=1}^n A_i$
- *46. Let $A_i = \{\dots, -2, -1, 0, 1, \dots, i\}$. Find
 - a) $\bigcup_{i=1}^n A_i$.
- $\mathbf{b)} \bigcap_{i=1}^n A_i$
- 47. Let A_i be the set of all nonempty bit strings (that is, bit strings of length at least one) of length not exceeding i. Find
 - $\mathbf{a)} \bigcup_{i=1}^{n} A_{i}$
- b) $\bigcap_{i=1}^{n} A_i$
- 48. Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if for every positive integer i,
 - a) $A_i = \{i, i+1, i+2, \ldots\}.$
 - **b)** $A_i = \{0, i\}.$
 - c) $A_i = (0, i)$, that is, the set of real numbers x with 0 < x < i
 - d) $A_i = (i, \infty)$, that is, the set of real numbers x with x > i.