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Abstract. We consider a jump-diffusion process describing a system of diffusing particles
that upon contact with an obstacle (catalyst) die and are replaced by an independent
offspring with position chosen according to a weighted average of the remaining particles.
The obstacle is a bounded nonnegative function V (x) and the birth/death mechanism is
similar to the Fleming-Viot critical branching. Since the mass is conserved, we prove a
hydrodynamic limit for the empirical measure, identified as the solution to a generalized
semilinear (reaction-diffusion) equation, with nonlinearity given by a quadratic operator.
A large deviations principle from the deterministic hydrodynamic limit is provided. The
upper bound is given in any dimension, and the lower bound is proven for d = 1 and
V bounded away from zero. An explicit formula for the rate function is provided via an
Orlicz type space.

1. Introduction

Let N be a positive integer, Td be the d-dimensional unit torus, V (x) a bounded
measurable function on Td, and a scalar function h ∈ C1,2([0,∞),Td). We shall de-
note x = (x1, x2, . . . , xN ) ∈ (Td)N , with the convention that xij ∈ (Td)N is the vec-
tor where the component i has been deleted and replaced with the component j, for all
1 ≤ i 6= j ≤ N . In addition, {w(t)}t≥0, w(t) = (w1(t), w2(t), . . . , wN (t)) is a system of N
independent Brownian motions on Td with respect to the filtration {Ft}t≥0 on the probabil-
ity space (Ω, Σ, P ). The probability space accommodates a family of mutually independent
Poisson clocks of rate one, also independent of the Brownian motion, enabling the con-
struction of a Feller process {xN

V,h(t)}t≥0 on the Skorohod space D([0,∞), (Td)N ), where
x(t) = (x1(t), x2(t), . . . , xN (t)) behaves as described in the following. When no confusion
on the parameters (V, h) is possible, the process is simply denoted by {xN (t)}t≥0. At time
t = 0, the process starts from a distribution on (Td)N . Write H(t,x) =

∑N
i=1 h(t, xi) and

pN,h
ij (t,x(t)) = pij = (N − 1)−1eH(s,xij(s))−H(s,x(s))(1.1)

CN
i (t,x(t)) =

(∑

k 6=i

pN,h
ij (t,x(t))

)
V (xi(s)) .(1.2)

Each particle xi(·), 1 ≤ i ≤ N , carries a Poisson clock, independent of all others. The
particles evolve independently as Brownian motions with drift ∇h(s, x) until one of the
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clocks with time running at rates CN
i (t,x(t)) rings. At that moment, the particle xi jumps

to the location of the particle xj with probability pij(
∑

k 6=i pik)−1. When h is a constant,
the particle redistribution is exactly the Fleming-Viot sampling mechanism.

The process x(·) is the solution of the martingale problem stating that for any f ∈
C1,2([0,∞)× (Td)N ), the expression Mf (t) is a (P, {Ft}t≥0) - martingale, where

Mf (t) = f(t,x(t))− f(0,x(0))(1.3)

−
∫ t

0
∂sf(s,x(s)) +

N∑

i=1

(
1
2
∆xif(s,x(s)) +∇xiH(s,x(s)) · ∇xif(s,x(s))

)
ds(1.4)

−
N∑

i=1

∫ t

0

[ N∑

j 6=i

pN,h
ij (t,x(t))

(
f(s,xij(s))− f(s,x(s))

)]
V (xi(s))ds .(1.5)

Due to the fact that supx∈Td |V (x)| < ∞, the process is well defined for all times, P − a.s..
More precisely, it is easy to see that all particles have a finite number of jumps in every finite
time interval with probability one, a consequence of the law of large numbers applied to the
exponential holding times. In addition, we can write that MN

f (t) = MN,B
f (t) +MN,J

f (t),

where MN,B
f (t) is the Brownian martingale and MN,J

f (t) is the jump martingale, with
predictable quadratic variations

〈MN,B
f 〉(t) =

∫ t

0

N∑

i=1

|∇xif(s,x(s))|2ds(1.6)

〈MN,J
f 〉(t) =

N∑

i=1

∫ t

0

[ ∑

j 6=i

pN,h
ij (t,x(t))

(
f(s,xij(s))− f(s,x(s))

)2]
V (xi(s))ds .(1.7)

The jump-diffusion process {xN (·)} generalizes the branching mechanism present in the
particle-system construction of the catalytic Fleming-Viot measure-valued process. The
branching allows conservation of mass, and is triggered by cumulative contact with the
catalyst V . We choose to keep the particle system perspective on the process. Particles are
tagged, and when the exponential clocks ring, they jump to a location of one of the other
N − 1 particles with probabilities weighted according to the corresponding pair involved in
the exchange. An interesting point of the large deviations perspective is the natural need
to consider inhomogeneous redistribution mechanisms reflected in the probabilities (1.1),
and then the jump probabilities from (1.5). By introducing a perturbation of the original
system through the factor exp(H(s,xij(s))−H(s,x(s))), we have to redistribute particle i
over to the location of particle j with relative weight exp(h(s, xj(s))) (after normalization).
When h ≡ 0, the weights are equal to one, giving the uniform redistribution mechanism
of the Fleming-Viot dynamics. An extreme case of the process, introduced in [1], can be
described informally by setting V (x) = +∞·1Dc , where D is a bounded region of Rd. The
large deviations principle in this case should also cover the average number of boundary
hits by all particles, as discussed in [5].

The empirical process (1.8) satisfies a law of large numbers (1.15) given in Theorem 1.
The deterministic limit is in fact a delta function on the Skorohod space D([0,∞),M1(Td))
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of measure-valued time-indexed paths. Considering the case h ≡ 0, we derive large devi-
ations results for the family of empirical processes in Theorem 2. In order to do that, we
need a perturbation of the process, by introducing a drift ∇h(t, x). An exposition of the
general method used to derive large deviation principles from hydrodynamic limits is given
in [7], for symmetric simple exclusion processes, that appeared in [8]. The closest reference
to the present work is [9].

The upper bound is rather standard, leading to a variational formula (1.24) based on
(3.13). For the lower bound, there are several important hurdles to overcome. One is to
establish the uniqueness of the solution of a nonlinear integro-differential pde (Section 2).
The others are specific to the present problem, and cannot be treated with the methods
previously available. One has to solve a variational problem in an Orlicz type space (Section
4, Theorem 4, where the bound away from zero of the catalyst V is required) and especially
to prove the smoothness of the weak solution of the nonlinear integro-differential equation
(5.9). This is done in Section 5, and a certain degree of smoothness is needed for V
(continuity), as well as the restriction to d = 1. The latter is technical, and hopefully
can be removed. Finally, we note that Proposition 4 provides the explicit form of the rate
function for mildly regular paths µ(·, dx).

Empirical measure and initial profile. Denote M1(Td) the space of probability mea-
sures on the d-dimensional torus Td, D([0, T ],Td) the Skorohod space of rcll measure-valued
paths on the time interval [0, T ], where T > 0 is fixed but arbitrary. The process {xN (·)} on
D([0,∞), (Td)N ) solving the martingale problem (1.3)-(1.5), induces the empirical measure
process

(1.8) µN
h (t, dx) =

1
N

N∑

i=1

δxi(t) ∈ D([0, T ],Td) , t ≥ 0 .

Assume that there exists µh(dx) ∈ M1(Td) such that the initial empirical distribution
converge weakly to µh(dx) in probability, in other words, for any φ ∈ C1,2([0, T ]×Td),

(1.9) lim
ε→0

P
(∣∣∣〈φ(0, ·), µN

h (0, ·)〉 − 〈φ(0, ·), µh(·)〉
∣∣∣ > ε

)
= 0 .

Hydrodynamic limit. Let

(1.10) Ltψ =
1
2
∆ψ +∇h(t, ·) · ∇ψ , ψ ∈ C1,2([0, T ]×Td)

and

(1.11) L∗t ψ =
1
2
∆ψ −∇ · (ψ∇h(t, ·)) , ψ ∈ C1,2([0, T ]×Td)

where L∗t is the adjoint operator of Lt. In addition, for any measure µ(dx), we denote

(1.12) ah(µ ; t, x) = 〈e−h(t,·)V (·), µ(t, ·)〉eh(t,x) − 〈eh(t,·), µ(t, ·)〉e−h(t,x)V (x)

a linear (also bounded whenever V is bounded) functional on µ ∈ M(Td) depending on
h(t, x), contributing to the nonlinear part of the hydrodynamic limit (1.13).
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Any deterministic measure valued path {µ(t, dx)}t≥0 verifying the integro-differential
equation

〈φ(t, ·), µh(t, ·)〉 − 〈φ(0, ·), µh(0, ·)〉 =(1.13)
∫ t

0
〈∂sφ(s, ·) +

1
2
∆φ(s, ·) +∇φ(s, ·) · ∇h(s, ·), µh(s, ·)〉ds +

∫ t

0

∫

Td

∫

Td

(
φ(s, y)− φ(s, x)

)
eh(s,y)−h(s,x)V (x)µh(s, dx)µh(s, dy)ds

for any φ ∈ C1,2([0, T ]×Td) is said a weak solution of the nonlinear equation

(1.14) ∂tµ = L∗µ + µah(µ) .

Theorem 1. Let the initial configuration µN
h (dx) of the particles in the process xN (·) =

xN
V,h(·), defined by (1.3)-(1.5) converge weakly in probability to µh(dx) ∈ M1(Td) as in (1.9).

Assume, in addition, that there exists a bounded function v0 on Td such that µh(0, dx) =
v0(x)dx. Then, for any φ ∈ C1,2([0, T ]×Td), the empirical measure process {µN

h (t, dx)}t≥0

satisfies

(1.15) lim
ε→0

P
(

sup
t∈[0,T ]

∣∣∣〈φ(t, ·), µN
h (t, ·)〉 − 〈φ(t, ·), µh(t, ·)〉

∣∣∣ > ε
)

= 0 ,

where the limiting measure valued process {µh(t, ·)}t∈[0,T ] is concentrated on the determin-
istic path given by the unique weak solution of the partial differential equation (1.13) with
initial profile µh(0, ·) = µh(·).
Proof. For a smooth φ ∈ C1,2([0, T ],Td), we apply Ito’s formula for semi-martingales to
the test function 〈φ(t, x), µN

h (t, dx)〉 = N−1
∑

j φ(t, xj(t)), with µN
h given in (1.8). Due to

the mean field character of the evolution, the calculation is straightforward (see also [6],
and [5] for the related limit for hard obstacle V ). The martingale converges to zero, in
square norm. Moreover, the quadratic variation over time intervals [s, t], 0 ≤ s < t ≤ T is
bounded uniformly in N by a modulus of continuity that vanishes as t − s → 0, proving
that the empirical measure process is tight in the Skorohod space, with time-continuous
limit µh(·, dx) ∈ C([0, T ],M1(Td)). We derive that any limit point µh(t, dx) of the tight
sequence of empirical measure processes indexed by t satisfies the weak pde (1.13). The
proof is complete if (1.13) has a unique solution, which is shown in Theorem 3. ¤

Large deviations principle. Given µ(dx), µ0(dx) in M1(Td), H(µ|µ0) is the relative
entropy of µ given µ0, or

(1.16) H(µ|µ0) = sup
q∈C2(Td)

∫

Td

q(x)µ(dx)− log
(∫

Td

eq(x)µ0(dx)
)

equal to

(1.17) H(µ|µ0) =

{ ∫
Td

dµ(dx)
dµ0(dx)dx , if µ(dx) << µ0(dx) ,

+∞ otherwise
.
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For any µ ∈ C([0, T ],M1(Td)), ψ ∈ C([0, T ],Td), t ∈ [0, T ], we have 〈ψ(t), µ(t)〉 =∫
Td ψ(t, x)µ(t, dx)dx. Let φ ∈ C1,2([0, T ],Td), and write

`φ(µ) = 〈φ(T ), µ(T )〉 − 〈φ(0), µ(0)〉(1.18)

−
∫ T

0
〈∂sφ(s), µ(s)〉+ 〈1

2
∆φ(s), µ(s)〉ds(1.19)

and

Jφ(µ) = `φ(µ)(1.20)

− 1
2

∫ T

0
〈|∇φ(s)|2, µ(s)〉ds(1.21)

−
∫ T

0

∫

Td

∫

Td

(
eφ(s,y)−φ(s,x) − 1

)
V (x)µ(s, dy)µ(s, dx)ds .(1.22)

We are ready to write down the rate function:

(1.23) I(µ) = Iinit(µ) + Idyn(µ) if µ ∈ D([0, T ],M1(Td) ,

where

Iinit(µ) = H(µ |µ0) , Idyn(µ) = sup
φ∈C1,2([0,T ]×Td)

Jφ(µ) .(1.24)

We note that I(µ) may take the value +∞ and point to Proposition 4, which provides the
explicit form of the rate function for paths µ(·, dx) = µh(·, dx) that arise as hydrodynamic
limits of a perturbed process as in Theorem 1.

Theorem 2. The empirical measures {µN (·, dx)}N>0 defined in (1.8) of the process solving
the martingale problem (1.3)-(1.5) for h ≡ 0 satisfy a law of large numbers (1.15) as in
Theorem 1. In addition, in any dimension d, given that V is bounded, then for any closed
subset G of D([0, T ],M1(Td))

lim sup
N→∞

1
N

log QN
(
µN ∈ G

)
≤ − inf

µ∈G
I(µ)(1.25)

and, if d = 1, given that V ∈ C(Td) and there exists c− > 0 such that V (x) ≥ c− for all
x ∈ Td, then for any open subset O of D([0, T ],M1(Td)),

lim inf
N→∞

1
N

log QN
(
µN ∈ O

)
≥ − inf

µ∈O
I(µ) .(1.26)

Remark. 1) In dimension d = 1, when V is continuous and bounded away from zero, a
complete large deviations principle is satisfied with rate function I(·), given by (1.23). 2)
We can also check that in Proposition 4, Idyn(µh) = 0 when h ≡ 0. 3) The proof remains
valid when the obstacle V depends on time as well. In this case we require boundedness for
the upper bound and C2 smoothness in t, in addition to the requirements of the theorem,
for the lower bound.

Proof. Section 3 proves the upper bound (1.25) and Section 5 proves the lower bound
(1.26). ¤
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2. The PDE.

Theorem 3. Any weak solution µh(t, dx) in the sense of (1.13) of the equation (1.14) with
initial value µh(0, dx) = µh(dx) ∈ M(Td) is a bounded function µh(t, dx) = vh(t, x)dx for
t > 0 with a uniform bound c(t) depending only on the time t. If the initial value is a
bounded function µh(dx) = v0,h(x)dx and 0 ≤ v0,h ≤ c then the solution is unique.

Proof. We shall prove first that the solution is a function, and then that it is unique.
The solution is a bounded function. Let ph(t, x, y) be the kernel of the semigroup with
generator L from (1.10), C such that ah(µ; t, x) ≤ C uniformly in µ, t, x and p̃h(t, x, y) =
eCtph(t, x, y). For r > 0, t > 0 such that t + r ≤ T and any g ∈ L1(Td) define the function
in C1,2([0, t]×Td)

(2.1) g̃(s, x) =
∫

Td

g(y)p̃h(t + r − s, x, y)dy .

We set g̃ = φ in (1.13) and obtain

〈g̃(t, ·), µh(t, ·)〉 = 〈g̃(0, ·), µh(0, ·)〉(2.2)

+
∫ t

0

∫

Td

(ah(µ; s, x)− C) g̃(s, x)µh(s, dx)ds

which proves

(2.3) 〈g̃(t, ·), µh(t, ·)〉 ≤ 〈g̃(0, ·), µh(0, ·)〉 ≤ c(t + r)
∫

Td

|g(y)|dy

for any g ≥ 0, where c(t) = eCt supx,y∈Td ph(t, x, y), t > 0. Let g(x) = 1G(x) where G is

an open set in Td. Fatou’s lemma applied to
∣∣∣
∫
Td g̃(t, x)µh(t, dx)

∣∣∣ as r → 0 shows that, for
g(y) = 1G(y) and t > 0,

(2.4) µh(t, G) ≤ lim inf
r→0

∫

Td

g̃(t, x)µh(t, dx) ≤ c(t)
∫

Td

|g(y)|dy = c(t)|G| .

In case µh(dx) = v0,h(x)dx is a bounded function, we re-calculate the right hand side of
(2.2)

〈g̃(0, ·), µh(0, ·)〉 =
∫

Td

∫

Td

g(y)p̃h(t + r, x, y)v0,h(x)dydx ≤ c

∫

Td

|g(y)|dy = c|G|

which concludes the first part of the proof.

Uniqueness. We prove uniqueness under the assumption of uniform boundedness of the
solutions. Let c be such that the two solutions µ1

h(t, dx) = v1
h(x)dx and µ2

h(t, dx) = v2
h(x)dx

satisfy 0 ≤ v1
h(x) ≤ c and 0 ≤ v2

h(x) ≤ c. Equation (1.14) is a reaction-diffusion integro-
differential equation. We show that the nonlinear term vah(v) is uniformly bounded and
Lipschitz. For any t ≥ 0, i = 1, 2, in the uniform norm ‖ · ‖

‖viah(vi)‖ ≤ 2c2 exp(2‖h‖)‖V ‖ ,(2.5)

6



from (1.12). In addition,

‖v1ah(v1)− v2ah(v2)‖ ≤(2.6)

‖v1 − v2‖ sup
x∈Td

|ah(v1; t, x)|(2.7)

+ ‖v2‖ sup
x∈Td

|ah(v1; t, x)− ah(v2; t, x)| .(2.8)

According to (1.12), line (2.7) is bounded above by 2c exp(2‖h‖)‖V ‖‖v1−v2‖ while ‖v2‖ ≤ c
and

sup
x∈Td

|ah(v1; t, x)− ah(v2; t, x)| ≤ 2e2‖h‖‖V ‖‖v1 − v2‖(2.9)

provide a Lipschitz bound for line (2.8). The rest of the proof follows identically from
Oelschläger [11], Proposition 3.4 and 3.5. ¤

3. The Upper Bound.

We apply the integral formula (1.3)-(1.5) in the case h(t, x) ≡ 0 to the function f(t,x) =
exp(

∑N
i=1 φ(t, xi)), where φ ∈ C1,2([0, T ]×Td). With the observation

f(t,x(t)) = N〈φ(t, ·), µN (t, ·)〉 = 〈φ(t), µN (t)〉
for simplification, we see that

expN〈φ(t), µN (t)〉 − expN〈φ(0), µN (0)〉
(3.1)

−
∫ t

0
eN〈φ(s),µN (s)〉

{
N

[
〈∂sφ(s), µN (s)〉+ 〈1

2
∆φ(s), µN (s)〉+ 〈|∇φ(s)|2, µN (s)〉

]}
ds

(3.2)

−
∫ t

0

N2

N − 1
eN〈φ(s),µN (s)〉

{
〈eφ(s), µN (s)〉 〈V e−φ(s), µN (s)〉 − 〈V, µN (s)〉

}
ds

(3.3)

is a martingale. We notice that we can write the last integrand as
∫

Td

∫

Td

(
eφ(s,y)−φ(s,x) − 1

)
V (x)µN (s, dy)µN (s, dx) .(3.4)

For any µ ∈ C([0, T ],M1(Td), recall (1.18) and (1.20). If

Eφ(µ) = −
∫ t

0

1
N − 1

{
〈eφ(s), µ(s)〉 〈V e−φ(s), µ(s)〉 − 〈V, µ(s)〉

}
ds(3.5)

then, the formula of the martingale (3.1) and the differential formula for semimartingales
show that

exp
{

N
(
Jφ(µN ) + Eφ(µN )

)}
(3.6)
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is an exponential martingale with mean one. At time t = T ,

EP N
[
exp

{
N

(
Jφ(µN ) + Eφ(µN )

)}
exp

{
N〈q(·), µN (0)〉

}]
= exp

{
N log

∫

Td

eq(x)dx
}(3.7)

proving that, for

J0
q (µ) = 〈q, µ(0)〉 − log

∫

Td

eq(x)dx ,(3.8)

and

J̃q,φ(µ) = Jφ(µ) + J0
q (µ) ,(3.9)

exp
{

N
(
J̃q,φ(µN ) + Eφ(µN )

)}
(3.10)

is a mean one exponential martingale. From (3.5), we see that, for sufficiently large N ,

‖Eφ(µ)‖ ≤ N−1c(φ) , c(φ) = ‖V ‖
(
e2‖φ‖ + 1

)
.(3.11)

Let A be a Borel set in D([0, T ],M1(Td)). Then

QN
(
µN ∈ A

)
=

EQN
[
exp

{
−N

(
J̃q,φ(µN ) + Eφ(µN )

)}
· exp

{
N

(
J̃q,φ(µN ) + Eφ(µN )

)}
1{µN∈A}

]

≤ EQN
[
exp

{
−N

(
J̃q,φ(µN )− c(φ)

N

)}
· exp

{
N

(
J̃q,φ(µN ) + Eφ(µN )

)
1{µN∈A}

}]

≤ exp
{
−N inf

µ∈A
{J̃q,φ(µ)}+ c(φ)

)}
(3.12)

which implies

lim sup
N→∞

1
N

log QN
(
µN ∈ A

)
≤ − sup

q,φ
inf
µ∈A

{J̃q,φ(µ)} .(3.13)

The three terms defining Jφ(µ) in (1.20) are continuous as functionals on D([0, T ],M1(Td)).
The first (1.20) is linear. The second (1.21) and third (1.22) terms are continuous as
follows. Suppose liml→∞ µl = µ weakly in the Skorohod norm. This implies that for any
continuous and bounded function, as ∇φ and the integrand (3.4) present in (3.5), the rcll
paths s → 〈|∇φ(s)|2, µl(s)〉 and (3.4) indexed by l converge to the corresponding paths
for the limit µ. The functionals are uniformly bounded for each fixed test function φ
and convergence in the Skorohod topology implies almost sure convergence in time. The
continuity follows by dominated convergence. In addition, (3.8) is continuous as well. The
set A can be taken to be a compact K. At this point we can use standard results (see
Kipnis-Landim [6], Appendix 2, Lemma 3.3) to conclude that

lim sup
N→∞

1
N

log QN
(
µN ∈ K

)
≤ − inf

µ∈K
I(µ)(3.14)

where I(µ) = Iinit(µ) + Idyn(µ) given in (1.23), for the case when µ0(dx) = v0dx.
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4. Orlicz norms.

Let t > 0 fixed but arbitrary, µ ∈ C([0, t],M1(Td)) and consider the space H1
t (µ) of

real-valued measurable functions f on [0, t]×Td such that
∫ t

0

∫

Td

[|f(s, x)|2 + |∇f(s, x)|2]µ(s, dx)ds < ∞ .

Given a real-valued measurable function ρ, we define the functional

Φρ,V (f) =
∫ t

0

{1
2

∫
|∇f(s, x)|2µ(dx)(4.1)

+
∫ ∫

ρ(f(s, y)− f(s, x))V (x)µ(s, dy)µ(s, dx)
}

ds

on f ∈ H1
t (µ), whenever it makes sense.

We shall consider the case of ρ(x) equal to one of the functions γ(x) = coshx − 1, its
convex conjugate γ∗(x), and ζ(x) = ex − 1 − x. Notice that γ, γ∗, ζ are (i) convex with
effective domain R, (ii) equal to zero at zero, (iii) positive everywhere else. In addition, ζ
is increasing everywhere, while γ, γ∗ are even, increasing for x > 0 and represent a pair
of conjugate N -functions. We note that γ ∈ ∆2, γ∗ ∈ ∇2 (for this and the definitions of
Young functions the reader is refereed to [12]).

Let Φ be one of the functionals defined above. On the space

ŨΦ = {f measurable : ∃λ > 0 Φ(λf) < ∞}
we define the functionals

(4.2) ||f ||Φ := inf
{

β > 0 : Φ(
f

β
) ≤ 1

}
.

Since µ(s, dx) is a finite measure, all bounded functions are in ŨΦ.

Proposition 1. When Φ is determined by a Young function ρ(x), the functionals (4.2)
are semi-norms on ŨΦ. Let UΦ denote the quotient space obtained by identifying functions
f ∈ ŨΦ that differ by a constant µ(ds, dx) - almost surely. Then UΦ is a Banach space with
norm ||f ||Φ.

Proof. The proof is straightforward and left to the reader. ¤
Proposition 2. If V (x) is bounded above and below, then there exists constants 0 < c1 ≤ c2

such that

(4.3) Φγ, c1(f) ≤ Φρ,V (f) ≤ Φγ, c2(f) .

For any f ∈ C∞([0, t],Td)), we shall write

`(f) =
∫

D
f(t, x)µ(t, dx)−

∫

D
f(0, x)µ(0, dx)(4.4)

−
∫ t

0

∫

D
∂sf(s, x) +

1
2
∆f(s, x) µ(s, dx) ds

−
∫ t

0

∫

D

∫

D
(f(s, y)− f(s, x))V (x)µ(s, dx)µ(s, dy) .
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We want to show the following result.

Theorem 4. For any fixed t > 0, any finite measure µ(·, ·) on [0, t] ×Td, the variational
problem

(4.5) Idyn(µ) = sup
f∈C∞([0,t],Td))

{
`(f)− Φζ,V (f)

}
< ∞

implies that ` ∈ U∗
Φγ,1

and the supremum is achieved for a function h = hµ ∈ UΦγ,1 for
which µ is a weak solution of the semi-linear equation (1.14). The star superscript denotes
the topological dual of UΦγ,1.

Proof. The proof is given after Lemma 1 and Proposition 3. ¤

Lemma 1. The space UΦρ, 1 is a dual space. More concretely, U∗
Φρ∗, 1

= UΦρ, 1.

Proof. Young’s inequality xy ≤ γ(x)+γ∗(y) for a Young function γ and its convex conjugate
γ∗ implies that the bilinear functional

Q(f, g) =
∫ t

0

∫
∇f(s, x)∇g(s, x) µ(s, dx) ds(4.6)

+
1
2

∫ t

0

∫ ∫
(f(s, y)− f(s, x))(g(s, y)− g(s, x))µ(s, dx) µ(s, dy) ds

is finite for any f ∈ UΦρ∗, 1
and g ∈ UΦρ, 1 . A first classical fact we need is that the new

functional

(4.7) ||f ||′Φρ, 1
= sup

{
|Q(f, g)| : Φ∗(g) ≤ 1

}

is an equivalent norm to ||f ||Φρ, 1 on ŨΦρ, 1/C, where C is the class of functions that differ
by a constant µ-almost surely. We refer the reader to Proposition 3.3.4, page 61 from [12].

The next step is based on the observation that γ∗(x) = x ln(x+
√

x2 + 1)−√x2 + 1+1 ≤
p(x) = 1

2x2, which implies that UΦp, 1 ⊆ UΦρ∗, 1
and follows an idea from P. Lax [10], p.

79. A bounded linear functional α ∈ U∗
Φρ∗, 1

satisfies |α(f)| ≤ K||f ||Φρ∗, 1
for some K > 0

and any f ∈ UΦρ∗, 1
. The previous observation and the fact that ||f ||Φρ∗, 1

≤ ||f ||Φp, 1 show
that α is a bounded linear functional on UΦρ, 1 . The space generated by the function p(x)
is a Hilbert space, since Q(·, ·) is an inner product, and we identify functions f1, f2 with
f1 − f2 ∈ C. There exists a function g ∈ UΦp, 1 such that, for any f ∈ UΦp, 1 ⊆ UΦρ∗, 1

,
α(f) = Q(f, g). Note that C∞([0, t],Td)) is dense in UΦρ∗, 1

. This allows to take the
supremum in the norm (4.7) over C∞([0, t],Td)) ⊆ UΦp, 1 (to ensure the validity of the
inclusions, we remind that the set Td) is a bounded region in Rd). At this point, since the
norm (4.7) is equivalent to || · ||Φρ, 1 , there exists a constant K1 > 0 such that

K1||g||Φρ, 1 ≤ sup
{
|Q(f, g)| : f ∈ C∞([0, t],Td)) , ||f ||Φρ∗, 1

≤ 1
}

.

Since C∞([0, t],Td)) ⊆ UΦp, 1 , the equality α(f) = Q(f, g) holds. We know that |α(f)| ≤
K||f ||Φρ∗, 1

. This implies that ||g||Φρ, 1 ≤ K/K1 < ∞, which is what we wanted to prove. ¤

10



Proposition 3. 1) The functional Φζ,V (·) is lower semi-continuous on UΦγ, 1.
2) If `(·) is a continuous linear functional on UΦγ, 1, then for any real q, the sets

Kq =
{

f ∈ UΦρ, 1 : `(f)− Φζ,V (f) ≥ q
}

are weak* - compact in UΦρ, 1 in the topology induced by σ(UΦρ, 1 , UΦρ∗, 1
).

Proof. Since the closed ball centered at zero is compact in the weak* topology, one has to
show that 1) the mapping f −→ `(f)−Φζ,V (f) is lower semi-continuous and 2) that there
exists a constant C1 > 0 such that f ∈ Kq implies that ||f ||Φρ, c2

≤ C1.
For 1) we remind that γ is convex with effective domain dom (γ) = R. The norms

|| · ||Φρ, c are equivalent for all c > 0 so we shall use the norm corresponding to c = 1.
Assume ||fn − f ||Φρ, 1 → 0 as n → ∞ in UΦγ, 1 . Since γ(x) = coshx − 1 ≥ p(x) = 1

2x2,
it follows that UΦγ, 1 ⊆ UΦp, 1 and ||fn − f ||Φp, 1 → 0. The gauge norm associated to p(x)
generates a Hilbert space, which implies that there exists a subsequence fn′ over which
∇fn′ → ∇f and also that

lim
n′→∞

∫ t

0

∫ ∫
(f̌n′(s, x, y)− f̌(s, x, y))2V (x)µ(s, dx)µ(s, dy)ds = 0 ,

where ǧ(s, x, y) = g(s, y) − g(s, x) for any g ∈ UΦp, 1 . This implies that there is a subse-
quence of fn′ indexed by n′′ over which f̌n′′ → f̌ almost surely with respect to the measure
V (x)µ(s, dx) ⊗ µ(s, dy) ⊗ ds. To simplify notation, we denote fn′′ by fn in the following.
Furthermore, there exists at least one y0 ∈ Td) (actually a set of measure one of them) such
that f̌n(s, x, y0) → f̌(s, x, y0) on a set of measure one with respect to V (x)µ(s, dx)⊗ ds, so
fn(s, x) → f(s, x) a.s. relative to µ(s, dx) ⊗ ds, since V is bounded below. The functions
ζ(fn(s, y)−fn(s, x)) and |∇fn(s, x)|2 are nonnegative and continuous. By the Fatou lemma
we have

lim inf
n→∞ Φζ, V (fn) ≥ Φζ, V (f) ,

which is what we needed to prove.
For 2) we write that f ∈ Kq implies

(4.8) Φρ, c1(|f |) = Φρ, c1(f) ≤ Φξ, V (f) ≤ `(f)− q ≤ C||f ||Φρ, c2
+ |q| ≤ C ′||f ||Φρ, c1

+ |q| ,
where C ′ was introduced to compensate for the switch from c2 to c1 in the equivalent norms
||f ||Φρ, ci

, i = 1, 2, and the absolute value on the left hand side of the inequality is permitted
due to the evenness of γ. Assume there exists no constant C1 as above. Then there exists a
sequence {fn} ∈ Kq with ||fn||Φρ, c1

→∞. Write λn = ||fn||Φρ, c1
−1. For large n, λn >> 1.

The elementary inequality

ρ(λx) = cosh(λx)− 1 ≥ λ2ρ(x) , x ≥ 0 , λ ≥ 1

applied to the integral (4.1) defining the functional Φρ, c1 with λ → λn and x → |f |/λn

gives

λ2
nΦρ,c1(

|fn|
λn

) ≤ C ′||f ||Φρ, c1
+ |q| .

The definition of the gauge norm (4.2) and the fact that 0 < λn < ||fn||Φρ, c1
imply that

either Φρ,c1(
|fn|
λn

) = +∞, in which case we obtained a contradiction, or Φρ,c1(
|fn|
λn

) > 1. In
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the latter case, we obtained that (||fn||Φρ, c1
− 1)2 ≤ C ′||fn||Φρ, c1

+ |q|, which contradicts
the fact that the norms of fn tend to infinity. ¤

4.1. Proof of Theorem 4. Part 1. We first show that ` ∈ U∗
Φγ,1

. Due to the right-hand
side of inequality (4.3), the supremum in (4.5) remains finite when we substitute Φζ,V by
Φγ, c2 . If

sup
f∈C∞([0,t],Td))

{
`(f)− Φγ,c2(f)

}
= C0 < ∞ ,

then there exists C > 0 such that |`(f)| ≤ C‖f‖Φγ, c2
, in other words ` is continuous in the

Orlicz norm ‖·‖Φγ, c2
. We prove this by contradiction. Assume there exists a sequence {fn}

such that |`(fn)| > n ‖fn‖Φγ, c2
, or ‖fn‖Φγ, c2

< n−1|`(fn)|. By the definition of the Orlicz
norm,

Φγ, c2(
nfn

|`(fn)|) ≤ 1 ,

and we can write

(
n

|`(fn)|)`(fn)− Φγ, c2(
nfn(x)
|`(fn)| ) ≤ C0 < ∞

and then

n
( `(fn)
|`(fn)|

)
≤ 1 + C0 .

Notice that we can always assume `(fn) > 0, otherwise we replace fn by −fn.

Part 2. This is an application of Theorem 1.1, p. 2 in [13], based on Proposition 3 and
Lemma 1. ¤

We have shown that the supremum is achieved for a function h ∈ UΦγ,1 . Since this
function depends on µ, we can write h = hµ when needed. The first observation is that
0 ≤ `(h) − Φζ, V (h) < ∞. The functional is nonnegative because it equals zero at f = 0,
and h is a maximizer. On the other hand, h ∈ UΦγ, 1 , and ` is a bounded functional,
hence the linear part is finite. The functional Φζ, V (h) is nonnegative and as seen above,
0 ≤ Φζ, V (h) ≤ `(h) ≤ C||h||Φγ, 1 , which shows that Φζ, V (h) < ∞.

Once we know that, we write `(f) − Φζ, V (f) ≤ `(h) − Φζ, V (h) for f(s, x) = fε(s, x) =
h(s, x)+εφ(s, x), φ(s, x) ∈ C∞

c ([0, t],Td)). Due to the boundedness of the smooth functions
φ, all 0 ≤ Φζ, V (fε) < ∞. The function ζ(x) is finite everywhere (domζ = R), smooth,
strictly convex, increasing and ζ(x) = 0 only if x = 0. As a function of ε, the functional
`(fε)− Φζ, V (fε) from (4.5) has a maximum at ε = 0.

We want to prove that the functional is differentiable at ε = 0. Taylor’s formula for
ζ(a) = ea − 1 − a, ζ(a + εb) = ζ(a) + εbζ ′(a) + εb

∫ 1
0 ζ ′(a + λεb) − ζ ′(a)dλ applied to

a = f(s, y)− f(s, x) and b = φ(s, y)− φ(s, x) tells us that we have to calculate

lim
ε→0

∫ t

0

∫ ∫ {
ef(s,y)−f(s,x)

∫ 1

0

[
eλε(φ(s,y)−φ(s,x)) − 1

]
dλ

}
V (x)µ(s, dx)µ(s, dy)ds = 0 .

For M > 1 we have ea ≤ eM if |a| ≤ M and there exists a constant cM > 0 such that
ea ≤ cMζ(a) for |a| > M , giving the bound ea ≤ e2 + c2ζ(a) for M = 2. This, and the
fact that φ, λ are bounded, as well as Φζ, V (h) < ∞ allow us to find an integrable upper

12



bound independent of ε for the integrand in braces. Applying dominated convergence we
are done.

By equation (4.4) with (4.9), we have shown that for a fixed µ(t, dx), the solution hµ

satisfies the weak equation (1.13), that is, for ζ ′(x) = ex − 1

`(φ) =
∫ t

0

∫
∇φ(s, x) · ∇h(s, x)µ(s, dx) ds(4.9)

+
∫ t

0

∫ ∫
(φ(s, y)− φ(s, x))ζ ′(h(s, y)− h(s, x))V (x)µ(s, dx) µ(s, dx) ds .

Remark. Whenever (h(s, y)−h(s, x)) exp{(h(s, y)−h(s, x))} is integrable, reasoning along
the lines of the maximization following equation (5.8), equation (4.9) allows us to write the
rate function as Idyn(µ) from (1.24).

5. Lower Bound

Denote by PN
ρ,H the law of the Nd-dimensional process solving the martingale problem

(1.3) - (1.5), where ρ(x) is the density of the initial profile µh(dx) (1.9). In the present
setting, xi(0), 1 ≤ i ≤ N are i.i.d. random variables with xi(0) ∼ ρ(x)dx. Accordingly, PN

will denote the law of the process with h ≡ 0 and ρ = ρ0. We can assume that ρ = ρ0.
Since the particles are i.i.d. at time t = 0, in the general case we should add to (5.2) and
(5.3) the relative entropy of the two initial profiles.

The Radon-Nikodym derivative of PN
ρ,H with respect to PN over the time interval [0, T ]

is

(5.1)
dPN

ρ,H

d PN
= exp

{
H(T,x(T ))−H(0,x(0))

−
∫ T

0

(
∂sH(s,x(s)) +

1
2

N∑

i=1

∆xiH(s,x(s))
)
ds

− 1
2

∫ T

0

N∑

i=1

|∇xiH(s,x(s))|2ds

−
∫ T

0
e−H(s,x(s))

N∑

i=1

(N − 1)−1V (xi(s))
N∑

j 6=i

(
eH(s,xij(s)) − eH(s,x(s))

)
ds

}
.

Hence the relative entropy normalized by a factor of N−1 is

(5.2) N−1H(PN
ρ,H : PN ) = EPρ,H

[
N−1 log

(dPN
ρ,H

d PN

)]
=

〈h(T, ·), µN (T, ·)〉 − 〈h(0, ·), µN (0, ·)〉 −
∫ T

0
〈∂sh(s, ·), µN (s, dx)〉ds

− 1
2

∫ T

0

(
〈∆h(s, ·), µN (s, ·)〉+ 〈|h(s, ·)|2, µN (s, ·)〉

)
ds

−
∫ T

0

∫

Td

∫

Td

(
eh(s,y)−h(s,x) − 1

)
V (x)µN (s, dy)µ(s, dx)ds− E1(N, h) ,
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where µN (t, dx) is the empirical measure (1.8) and E1(N, h) is an error term of order N−1,
depending on the supremum norm of the smooth function h.

Proposition 4. Let µh(·, dx) ∈ D([0, T ],M1(Td)) be the hydrodynamic limit of the em-
pirical measures (1.8) corresponding to the drift h ∈ C1,2([0,∞),Td), with initial profile
µh(dx) = ρ(x)dx, where ρ(x) is bounded. Then

(5.3) lim
N→∞

N−1H(PN
ρ,H : PN ) = Idyn(µh) .

In addition, the explicit expression of Idyn(µ) for µ = µh is given by (5.5)-(5.7).

Remark. We note that h ≡ 0 implies that Idyn(µh) = 0.

Proof. We know (Theorem 1) that under the law PN
ρ,H , the process {µN (·, dx)}0≤t≤T con-

verges in probability, uniformly in time, to the solution to the PDE expressed in weak
form in (1.13). Since the perturbation term h(t, x) ∈ C1,2([0, T ],Td), the functional from
the right hand side of (5.2) over D([0, T ],Td) is continuous and bounded. Combining the
hydrodynamic limit equation in weak form for the particular choice of φ = h in (1.13) and
(5.2), we obtain

(5.4) lim
N→∞

N−1H(PN
ρ,H : PN ) =

(5.5)
1
2

∫ T

0
〈|∇h(s, ·)|2, µh(s, ·)〉ds

(5.6) +
∫ T

0

∫

Td

∫

Td

(
h(s, y)− h(s, x)

)
eh(s,y)−h(s,x)V (x)µh(s, dy)µh(s, dx)ds

(5.7) −
∫ T

0

∫

Td

∫

Td

(
eh(s,y)−h(s,x) − 1

)
V (x)µh(s, dy)µh(s, dx)ds .

We want to compare the limit (5.4) as a functional of the measure µh(·, dx) to the value
of Idyn(µh), where Idyn(µ) is the large deviations upper bound rate function defined in
(1.24). With the notation established in (1.18), and (1.20)-(1.22),

(5.8) sup
φ∈C1,2([0,T ],Td)

Jφ(µh) = sup
φ

{
`φ(µh)− 1

2

∫ T

0
〈|∇φ(s, ·)|2, µh(s, ·)〉ds

−
∫ T

0

∫

Td

∫

Td

(
eφ(s,y)−φ(s,x) − 1

)
V (x)µh(dy)µh(dx)ds

}
.

Once again, reading the equation (1.13) satisfied by µh, we can put the quantity to be
maximized from (5.8) in the form

1
2

∫ T

0

[
〈|∇h(s, ·)|2, µh(s, ·)〉 − 〈|∇h(s, ·)−∇φ(s, ·)|2, µh(s, ·)〉

]
ds

+
∫ T

0

∫

Td

∫

Td

[(
φ(s, y)− φ(s, x)

)
eh(s,y)−h(s,x)

−
(
eφ(s,y)−φ(s,x) − 1

)]
V (x)µh(s, dy)µh(s, dx) ds .
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Denote α(p, q) = peq − (ep − 1) and notice that, as a function of p ∈ R, α is a concave
function with the only critical point p = q where the maximum value supp α(p, q) = α(q, q).
By substituting p = φ(s, y)− φ(s, x) and q = h(s, y)− h(s, x), we have proven (5.3). ¤

Let C ′([0, T ],M1(Td)) be the time-continuous probability - measure valued paths in
C([0, T ],M1(Td))) that are absolutely continuous with respect to the Lebesgue measure dx
on Td) and have Radon-Nikodym derivative v(s, x) ∈ C1,2([0, T ],Td)). To complete the
proof of the lower bound, we have to prove the following statement.

Proposition 5. Let µ(·, ·) ∈ C([0, T ],M1(Td))) be a time-continuous path of probability
measures on Td) such that the functional Idyn(µ) defined in the variational formula (4.5)
is finite. Then (i) there exists a family of integrable functions v(s, x) indexed by s ∈ [0, T ]
for which µ(s, dx) = v(s, x)dx, and (ii) there exists a sequence of measures µn(·, dx) ∈
C ′([0, T ], M1(Td))) converging weakly to µ(·, dx) such that limn→∞ Idyn(µn) = Idyn(µ).

Proof. Step 1. The rate function I(µ) from (1.23) is lower semi-continuous. The part due to
the initial distribution Iinit(µ) is the classical entropy, while Idyn(µ) described in (5.8) and
(4.5) is the supremum of continuous functionals (in the sense of the weak convergence of
measures) indexed by smooth test functions φ. The continuity of the linear part is evident,
and the continuity of the nonlinear part is a consequence of the fact that V is continuous
and bounded, and that the map taking µ(·, dx) into the direct product µ(·, dx)⊗µ(·, dy) is
continuous. Due to the special form of Idyn(µ), we may abuse notation and identify µ with
µ⊗ µ, noticing that Idyn(µ⊗ µ) = Idyn(µ), in the sense that we shall consider all terms in
(5.8) integrated against µ(s, dy) as well, without loss of generality.

First consider a convolution of µ ⊗ µ with ρε(x) ⊗ ρε(y), where ρε is a smooth approxi-
mation of the identity with ρε(x) ≥ 0, supp ρε ⊆ [−ε, ε]d and total mass equal to one. The
convolution will be equal to

ρε(x)⊗ ρε(y) ∗ µ(·, dx)⊗ µ(·, dy) = ρε(x) ∗ µ(·, dx)⊗ ρε(y) ∗ µ(·, dy) .

Denote µε(·, dx) = ρε(x) ∗ µ(·, dx), an absolutely continuous measure with density vε(·, x).
Since µε ⇒ µ and I(·) is lower semi-continuous, we have I(µ) ≤ lim inf I(µε). The functional
I(·) is translation invariant, due to the translation invariance of the underlying space (Rd

or the torus) and the fact that the set of test functions over which we maximize in (5.8) is
invariant to a space shift. By convexity (supremum over linear functionals of µ ⊗ µ) and
translation invariance of the functional I(·), I(µε) = I(µε ⊗ µε) ≤ I(µ⊗ µ) = I(µ).

We can assume that µ(·, dx) = v(·, x)dx with v a smooth function in x. For ε > 0, write
µε = (1 − ε)µ + εµ1, where µ1 is a probability measure with a smooth density in both t
and x bounded away from zero on a fixed time interval [0, T ], in other words, there exists
c = c(T ) > 0 such that v(t, x) ≥ c(T ) for all 0 ≤ t ≤ T and x ∈ Rd. Once again µε ⇒ µ.
Lower semi-continuity and the convexity of I(·) applied to the convex combination that
defines µε prove that we can assume without loss of generality that µ has a smooth density
in x and is bounded away from zero on any finite time interval. A standard procedure (see
section 10.6 of [7]) allows us to assume that the density v is smooth in the time variable as
well.

Step 2. We have shown in Theorem 4 that for any given µ(·, ·) such that I(µ) < ∞,
there exists a function h ∈ Uγ,1 such that µ satisfies equation (1.14) in weak form with h
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appearing in the nonlinear part ah(µ) of the equation. Let v be the density of the measure
µ. To conclude our argument for the lower bound we need to show that if v ≥ c0 > 0, v
smooth in t and x and h satisfies in weak sense the equation

(5.9) −∇ · (v∇h) + α(h) = g , g := −∂tv +
1
2
∆v , α(h) := ah(v)v

with nonlinear part α(h) defined in (1.12), then h ∈ C1,2([0, T ],Td)). The explicit form of
α(h) is

(5.10) α(h)(t, x) =
∫

Td)
α0(t, x, y)v(t, x)v(t, y)dxdy ,

where

(5.11) α0(t, x, y) = eh(t,x)−h(t,y)V (y)− eh(t,y)−h(t,x)V (x) .

From theorem 4, we have

(5.12)
∫ T

0

∫

Td)
|h(t, x)|2dxds < ∞ ,

∫ T

0

∫

Td)
|α(h)(t, x)|dxds < ∞ ,

which implies that h(t, ·) ∈ H1(Td)), t-a.e.. We look at the Poisson equation −∇· (v∇h) =
g1, with g1 = g − α(h). Since g is smooth, the right hand side g1(t, ·) ∈ L1(Td)), t almost
everywhere. Note that we can use the Lebesgue reference measure due to the uniform lower
bound away from zero of both v and V . Other than in d = 1, regularity results for the
solution of such an equation are difficult. In d = 1, either directly by integration or using
Theorem 8.15 in [4], we obtain that

(5.13) sup
x∈Td)

|h(t, x)| ≤ c1(||h(t, ·)||2 + ||α(h)||1) , t− a.e. .

In the following cj denote constants independent of the functions involved in the equation,
and time and space variables.

In the variable x, the strongly elliptic equation −∇ · (v∇h) = g1 with g1 ∈ L∞(Td)) ⊆
L2(Td)) has H2(Td)) solutions (6.3 [2]). Since g1 is a smooth function of h, we can bootstrap
this argument and show that h(t, ·) ∈ C∞(Td)). Examining (5.9) and its detailed form
(1.14) we see that h is determined up to shifts by a function of t, that is we can replace h
by h(t, x) − h(t, 0) without loss of generality. The upper bound in (5.13) is integrable in
the variable t. The next goal is to show that it is actually uniformly bounded in t.

Notice that hα(h) is jointly integrable in (t, x), due to the smoothness of g and |∇h(t, x)|2
being integrable in (t, x). Multiply (5.9) by h and integrate in x. Let β(p) = pep + e−1,
with β(p) ≥ 0.

Since h is smooth in the x variable, and the equation on Td) has periodic boundary
conditions, after applying Schwarz’s inequality on the right hand side,

(5.14)
∫

Td)
|∇h(t, x)|2dx +

∫

Td)
β(h(t, y)− h(t, x))dxdy ≤ c2||h(t, ·)||1 + c3 .

Under periodic boundary conditions, ||h||2 ≤ c4||∇h||2, and ||h||1 ≤ c5||h||2. We obtain
that ||∇h||2 ≤ c6 and ||α(h)||1 ≤ c7, hence ||h||2 ≤ c8. These inequalities refer to norms
in the x variable, but are uniform in t. This, together with (5.13) show that h(t, x) has
essential supremum independent of t and x.
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The next step is to prove uniform bounds in both t and x for the time-variable discrete
derivative Dδh(t, x) = δ−1(h(t + δ, x)− h(t, x)), δ > 0 sufficiently small. The time interval
[0, T ] is considered for arbitrary T , which implies that we can consider from the beginning
a larger time interval [0, T +1] and prove the regularity of h on [0, T ]. This takes enables us
to make sense of h(t + δ, x) for any t ∈ [0, T ]. Differentiation rules applying to the discrete
derivatives are described in [3]. The argument is easier to follow if we formally differentiate
(5.9) with respect to the time variable and work with ∂th in the sense of distributions.
However, at the moment, we do not know whether ∂th is integrable, or, for that matter, if
it is a function. To prove this, based on (5.10)-(5.11), denote

Dδα(h)(t, x) =(5.15) ∫

Td)
Dδ[α0(t, x, y)]v(t, x)v(t, y)dxdy+(5.16)

∫

Td)
α0(t, x, y)Dδ[v(t, x)v(t, y))]dxdy .(5.17)

The equation satisfied by Dδh(t, x) is

∇ ·
(
v(t, x)∇(Dδh(t, x)) + (Dδv(t, x))∇h(t, x)

)
=(5.18)

∫

Td)
Dδ[α0(t, x, y)]v(t, x)v(t, y)dy+(5.19)

∫

Td)
α0(t, x, y)Dδ[v(t, x)v(t, y))]dy −Dδg(t, x) + E(δ, t, x) ,(5.20)

where |E(δ, t, x)| ≤ c9 is the order of magnitude of the error term, withe c9 independent of
(δ, t, x) and h. Denoting a ⊗ b = a(x)g(y) for any functions a(x), b(y), we multiply (5.18)
by Dδh(t, x) and integrate over x to have

∫

Td)
v|∇(Dδh)|2dx +

∫

Td)

∫

Td)
(Dδα0)(Dδh)v ⊗ vdydx =

∫

Td)
β(Dδh)dx ,(5.21)

with

(5.22) β = −(Dδv)∇h−
∫

Td)
α0[∂tv ⊗ v + v ⊗ ∂tv]dy + (Dδg)− E .

It is essential that the first bracket in the integrand of (5.19) is symmetric in (x, y). We
need to show that the second term of (5.21) is nonnegative, that is

(5.23)
∫

Td)

∫

Td)
(α(t + δ, x, y)− α(t, x, y))(h(t + δ, x)− h(t, x))v(t, x)v(t, y)dydx ≥ 0 .

We symmetrize the integrand

1
2

∫

Td)

∫

Td)
(α(t + δ, x, y)− α(t, x, y))×

(
(h(t + δ, x)− h(t + δ, y))− (h(t, x)− h(t, y))

)
v(t, x)v(t, y)dydx
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and see that if we write z1 = h(t + δ, x)− h(t + δ, y), z0 = h(t, x)− h(t, y), then the whole
integral is∫

Td)

∫

Td)

[
(ez1 − ez0)V (y)− (e−z1 − e−z0)V (x)

]
(z1 − z0) v(t, x)v(t, y)dydx ≥ 0 .

Noticing that Dδ and ∇ commute, and that the last three functions appearing in (5.22)
are uniformly bounded in (t, x), while |(Dδv)∇h|2 has an integral in x independent of t.
Applying a Sobolev inequality to (5.21), we bound below the norm of the gradient by the
norm of the function. Schwarz inequality for (5.22) gives that, in the square norm with
respect to x,

||Dδh(t, x)||H1 ≤ c10 ,

again with c10 independent of (t, x, δ). As a consequence, letting δ → 0, we showed that
h(·, x) is absolutely continuous, hence differentiable a.e., with derivative ∂th(t, ·) ∈ L2(Td)).
If

α1(t, x, y) = eh(t,x)−h(t,y)V (y) + eh(t,y)−h(t,x)V (x) ,

we define the bounded linear operators β : L1,2([0, T ],Td)) −→ L1,2([0, T ],Td))

β1(u)(t, x) =
∫

Td)
α1(t, x, y)(u(t, x)− u(t, y))v(t, x)v(t, y)dy .

At this point we can write the pde satisfied by u(t, x) = ∂th(t, x) as

(5.24) ∇ · (v∇u + f1) = β1(u) + g1

where

f1 = (∂tv)∇h , ||f1||2 ≤ c11 , g1 = −∂tg +
∫

Td)
α0(∂v⊗v +v⊗∂v)dy , ||g1||∞ ≤ c12 .

We verify that β(u) is positive definite in the sense that
∫

β(u)udx ≥ 0, which is easier to
see directly but is also a consequence of (5.23). Since β(∂th) is square integrable in x with
uniform bound in t, we consider (5.24) as a simpler elliptic equation with right hand side
equal to g2 square integrable and uniformly bounded in t. Theorem 8.15 in [4] shows that
u = ∂th is uniformly bounded in (t, x).

The next step of the proof shows that u = ∂th is differentiable in t and the derivative is
bounded in both t and x. The reasoning is essentially the same as for u = ∂th itself. In
order to avoid technical difficulties related to the fact that β is a linear operator and does
not fit exactly the classical theory - the corresponding case is an elliptic operator with a
negative potential - we shall proceed as before, working with the discrete derivative Dδu at
first. However, it is useful to write down the formal equation satisfied by ∂tu(t, x).

Since equation (5.24) is satisfied weakly in (t, x), we can write, in the sense of distributions

(5.25) ∇ · (v∇(∂tu) + f2) = β1(∂tu) + g2 ,

with
f2 = ∂tf1 + (∂tv)∇u , ||f2||2 ≤ c13

and, for

g21(t, x) =
∫

Td)
∂tα1(t, x, y)(u(t, x)− u(t, y))v(t, x)v(t, y)dy ,
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g22(t, x) =
∫

Td)
α1(t, x, y)(u(t, x)− u(t, y))∂t[v(t, x)v(t, y)]dy ,

we have
g2(t, x) = ∂tg1(t, x) + g21 + g22 , ||g2||2 ≤ c14 .

We note that the bounds in square norms are in fact true in the uniform norm.
Due to linearity, equation (5.25) will be satisfied by the discrete derivative Dδu(t, x). All

we have to verify is that
∫

β(∂tu)∂tudx ≥ 0. Following the same steps as before, we conclude
that ∂tu = ∂tth is bounded uniformly in (t, x). He have shown that h(t, x), ∂th(t, x), as
well as the derivatives in x are continuous in (t, x).

The last step is to show that the spatial derivatives of ∂th are jointly continuous in t and
x. We know that the spatial derivatives for both h and ∂th exist as functions in L2(Td)) with
norms uniformly bounded in t. Both (5.9) and (5.24) are classical equations when regarded
in x, since the integrals over y yield uniformly bounded functions of time, independent of the
space variable. The proof proceeds by differentiating in the space variable equation (5.24).
The linear operator β(u) reduces to a classical term c(t, x)u, with c uniformly bounded in
(t, x). Reasoning as above, we obtain in fact that all space derivatives of ∂th are continuous
in x, with uniform bounds in (t, x). To complete the continuity in t, we know already that
∂tth is a bounded function for all (t, x). In conclusion we note that by iterating the same
procedure, it can be shown that h is infinitely differentiable in (t, x). ¤

References

[1] Burdzy, K., HoÃlyst, R., March, P. (2000)A Fleming-Viot particle representation of the Dirichlet Lapla-
cian. Comm. Math. Phys. 214, no. 3.

[2] Evans, L.C. (1998) Partial Differential Equations. American Mathematical Society, Providence, R.I.
[3] Folland, G. B. (1976), Introduction to Partial Differential Equations, Mathematical Notes, Princeton

University Press.
[4] Gilbarg, D., Trudinger, N. S. (1983), Elliptic Partial Differential Equations of Second Order. Springer-

Verlag, Berlin, New York.
[5] Grigorescu, Ilie; Kang, Min (2004) Hydrodynamic limit for a Fleming-Viot type system. Stochastic

Process. Appl. 110, no. 1, 111–143.
[6] Kipnis, C.; Landim, C. Scaling Limits of Interacting Particle Systems. Springer-Verlag, New York,

1999.
[7] Kipnis, C.; Landim, C. Scaling Limits of Interacting Particle Systems. Springer-Verlag, New York,

1999.
[8] Kipnis, C., Olla, S., Varadhan, S.R.S. (1989) Hydrodynamics and large deviations for simple exclusion

processes. Comm. Pure and Appl. Math. XLII, 115-137.
[9] Jona-Lasinio, G.; Landim, C.; Vares, M. E. Large deviations for a reaction diffusion model. Probab.

Theory Related Fields 97 (1993), no. 3, 339–361.
[10] Lax, P. Functional Analysis, John Wiley & Sons, New York, 2002.
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